
This paper appeared in the Proceedings of the AAAI Fall Symposium Games: planning and Learning, 1993. Menlo Park ,
CA: AAAI.

Toward a Theory for Well-Guided Search

Susan L. Epstein
Hunter College and The Graduate School of the City University of New York

695 Park Avenue
New York, NY 10021 USA
sehhc@cunyvm.cuny.edu

Abstract

A game learner’s experience is no more than the
nodes it encounters in the search space. For a
challenging game, only a small fraction of that space
can ever be visited. People’s ability to learn to play
difficult games well is a clear indication that not all
nodes are equally relevant to learning. There are, it is
argued here, key nodes particularly important to the
development of expertise, and those key nodes
appear in clusters in the game tree. A game learning
program might arrive at a key node by chance, be
drawn there by a choice it makes, or be driven there
by the moves of its opposition. Trainer guidance has
some similarity to varying the sequence of training
examples in ordinary induction, but here is delegated
to the program itself. This paper offers empirical
evidence of substantial improvement in the quality of
play when a program is steered to clusters of key
nodes, and considers several ways to do so.

The thesis of this work is that people are able to learn to
play difficult games1 expertly because the knowledge
they require is not evenly distributed across the game tree,
but located at key nodes. The quality of learned
performance depends in part on the learner’s familiarity
with these key nodes. Well-guided search takes the
learner to the key nodes, the places where the most
valuable learning can occur.

This paper identifies and offers empirical evidence for
some basic principles of well-guided search. The first
section explains the role of key nodes in experience. The
second provides background on a game-learning program
whose empirical data instigated the theory described here.
The next two sections document how the learner arrives at
key nodes through both external direction (training) and
internal direction (choice). Subsequent sections discuss
the results, their impact on discovery learning, and future

1For clarity, we distinguish carefully here between a
game (a board, playing pieces, and a set of rules
determining play) and a contest (a complete experience at
a game, from some initial state specified by the rules to
some final state where the rules designate a winner or
declare a draw).

work.
1. Key Nodes and Experience

Even a simple game offers evidence of how limited an
expert player’s experience is. Consider tic-tac-toe, for
example, a game that many nine-year-old children play
perfectly, but one whose statistics are initially daunting. It
has a branch factor of 4.5 and a contest averages nine
moves. Theoretically, there could be as many as 94.5 =
19,683 states in the game graph, but the search space is
far smaller than it first appears. A reachable state is a
game board, along with a designated mover, that can
actually occur during competition. There are only 5478
distinct, reachable states in tic-tac-toe. These states can be
normalized for symmetry, so that, for example, all four of
the corner openings are considered as a single state. After
normalization there remain only 170 distinct paths
through the game graph, beginning with the initial empty
board, that must be explored before one has enough
information to play perfectly.2 The average person would
have difficulty memorizing either of these reduced spaces,
and few have exhaustively visited all their nodes. Yet
people, with a few memorized openings and a reliable
winning endgame detector, often play expert, even
perfect, tic-tac-toe.

Data indicate striking similarities between the way
ordinary folk cope with the somewhat oversized tic-tac-
toe search space and the way grandmasters at chess cope
with an enormous one. The literature on expert chess
players confirms that they neither search nor remember
very much of such a space. With a branch factor of 20 and
contests that average 80 moves, the chess game graph
could have as many as 2080 ≈ 10120 nodes. Although
there may be as many as 40,000 distinct chess openings,
most tournament players encounter no more than 400 of
them in the course of a year of play, and prepare only
three or four for any given tournament (Charness, 1991).
If one restricts the graph to these 40,000 openings,
assumes a memorized endgame, and restricts moves to
those that masters might select, there would still be
4 × 1020 “sensible” contests (paths through the space)
with exhaustive search (Charness, 1983). An expert chess

2 This computation is based upon data from (Berlekamp,
Conway, & Guy, 1982).

player is estimated to see 1,200,000 nodes per year
(Charness, 1991). During 20 years of learning, that
amounts to only about 6 × 10-14 of the “sensible space”
and 2.4 × 10-113 of the entire space.

That the tiny, experienced fraction of the search space
so well supports learning to play, suggests that some of
these nodes are particularly significant, and so we call
them key nodes. Since nodes encountered during contests
delineate a path in the game tree, and since human study
often focuses on variations that explore the neighborhood
of those paths, we hypothesize that key nodes are not
scattered randomly about the space, but appear in isolated
clusters.

If we presume that expertise develops when key nodes
are visited, then a game-learning program must somehow
be exposed to them. Key nodes could be encountered by
chance, they could be presented by a teacher as a
sequence of training examples with explanation or
solution, they could be encountered during competition in
a carefully structured environment, or the learner itself
could seek them out. The first of these, random
encounters, is unreasonable given the apparent sparsity of
key nodes in a game tree. The second, a series of “puzzle
problems” for instruction, would require that the teacher
have a clear test for key nodes and a road map to reach
them. Unfortunately, neither is available for difficult
games; the only evidence that one has visited key nodes is
in the improved quality of one’s play. After some
background, we explore the other two possibilities,
competition and internal direction .

2. Background

Let a perfect player for a game be one that always makes
the best possible move from every node in the game
graph. A draw game is one in which every contest
between two perfect players must, by the nature of the
game graph, end in a draw. (Tic-tac-toe is an example of a
draw game.) A contestant who loses a contest at a draw
game has made an error; one who wins or draws a contest
at a draw game is said to have achieved an expert
outcome. A tournament is a sequence of contests between
two participants in which they alternate moving first.

The experiments in the next two sections were run with
Hoyle, a program that learns to play two-person, perfect
information, finite board games (Epstein, 1992). Hoyle
relies upon its Advisors, procedures that recommend and
advise against the current choices available to the mover.
Each Advisor takes a particular, game-independent
perspective and searches no more than two-ply forward
from the current node. When it is Hoyle’s turn to move,
the program consults its Advisors. The input to every
Advisor is the same: the current game state, the current
legal moves, and the current useful knowledge (see
below) accrued for the game from experience. An

Advisor’s output is one or more comments, ordered triples
naming the Advisor, a legal move, and an integer that

X

X

O

X

O

O

Figure 1: A significant win state from tic-tac-toe, with X
to move. The contest is not over, but with perfect play X
will win.

indicates an opinion somewhere between strong aversion
(0) and enthusiastic support (10). Hoyle’s 7 primary
Advisors have a priority ranking; if they do not designate
a move, the remaining 16 all comment. The move with
the most support is chosen, and ties are broken by random
selection. Hoyle begins with only the rules of a game and
is expected to learn to play it expertly during competition
against an external program, its trainer. For Hoyle,
internal direction to key nodes comes from its Advisors,
and external direction from its trainer.

Useful knowledge in Hoyle is game-dependent data
computed and stored in game-independent slots. It is
possibly relevant and probably correct. There are, for
example, useful knowledge slots to record average contest
length, applicable two-dimensional symmetries, good
openings, relevant forks, important contest histories,
whether going first or second is an advantage, and
significant states. A significant win state is one that must
result in a win for the mover when she plays perfectly, no
matter how the other contestant plays. An example of
such a state appears in Figure 1. A significant loss state is
one that must result in a loss for the mover when the other
contestant plays perfectly, no matter how the mover plays.
An example of a significant loss state appears in Figure 2.
By definition, all the children of a significant loss state
are themselves significant win states for the other
contestant, and at least one of the children of a significant
win state is a significant loss state for other contestant.

Hoyle has one or more heuristic, game-independent
learning procedures associated with each useful
knowledge slot. These learning strategies vary from one
procedure to the next, and include explanation-based

X

X

O

X

O

Figure 2: A significant loss state from tic-tac-toe, with O

to move. O cannot prevent a perfect-playing X from a
win.

X

X

O

Figure 3: A key node for Hoyle from tic-tac-toe, with X
to move. This is not a significant state.

learning, induction, and deduction. Learning occurs after
contests and after tournaments.

The relationship between key nodes and significant
states is non-trivial. Consider, for example, a state S with
a dozen children. After playing one or more contests
“through” each of S’s children, Hoyle might deduce first
that each of S’s children is a significant loss state for one
contestant, and then deduce that S is therefore a
significant win state for the other contestant. This does
not mean that S and all its children are key nodes; perhaps
visiting S alone would suffice for a particular learning
method. Thus a significant state is not necessarily a key
node.

It may also happen that important learning occurs at a
state that is not itself a significant state. An example from
tic-tac-toe appears in Figure 3, where O is the mover.
Although prospects look grim, O can always manage a
draw from Figure 3 by avoiding the corners. (The
significant states in Figures 1 and 2 make clear what
happens after Figure 3 with corner play.) For Hoyle,
Figure 3 is a key node; the program does not “know” the
correct move there and will always make the wrong
choice the first time it encounters the state. If Hoyle trains
without encountering Figure 3, it will be vulnerable there.
Once Hoyle experiences Figure 3 (or its symmetric
equivalent) and loses, however, it will move correctly
there in subsequent contests. Clearly significant states and
key nodes are in some sense intertwined, and lie in each
others vicinity, but they are by no means equivalent.

3. Visiting Key Nodes via Competition

Without an explicit road map to key nodes, the most
obvious way to expose a program to them is to have the
opposition play so that the program must confront them.
The data reported here is taken from extensive
experiments with a variety of trainers in which Hoyle was
required to learn to play three quite different draw games
with small search spaces. Full details on that work are
available in (Epstein, To appear); here we cite data to
demonstrate how difficult key nodes are to reach. Each
experiment pitted Hoyle in a learning tournament against

a trainer until the program had learned to play well
enough to draw 10 consecutive contests. Then learning
was turned off and Hoyle played a twenty-contest testing
tournament against each of four challengers: a perfect
player and play that simulated a (slightly imperfect)
expert challenger, a novice, and a random player.
Although the results were consistent for all three games,
space limitations restrict discussion here to lose tic-tac-
toe, the most difficult of the three for the program to
learn. (Like tic-tac-toe, lose tic-tac-toe is played on a
3 × 3 grid between X and O. Whoever achieves three of
the same marker in a row, however, vertically,
horizontally, or diagonally, however, loses.)

Table 1 highlights representative data; each value
represents an average over 5 runs. Power is the ability to
exploit the other contestant’s errors; it is measured here
for a draw game by the percentage of contests won, and is
reported against the expert, novice, and random
challengers, in that order. (In a draw game, power against
a perfect player must be zero.) For lose tic-tac-toe,
maximal power was computed in a 10,000-contest
tournament between the perfect player and each of the
other challengers. It is 16% against the expert, 66%
against the novice, and 74% against the random
challenger. Reliability is the consistent achievement of an
expert outcome; it is measured here for a draw game by
the percentage of contests won or drawn, and is reported
first against a perfect player, and then against the other
challengers in the same order. In a draw game, ideal
reliability is 100%. Space is long-term memory allocation
for useful knowledge.

A perfect player as trainer provided no experience with
key nodes beyond those that two perfect players would
proffer to each other. The first line of Table 1
demonstrates that there are key nodes beyond those
regularly visited during competition against a perfect
player. Even though Hoyle learned to play perfectly
reliably (100 as the first entry in column 3) against this
trainer, when confronted during testing with the imperfect
moves of the other challengers it has difficulty with their
errors. Although an expert should play better against a
weaker contestant, Hoyle is less reliable(88, 82, and 81%
in column 3) against the other challengers than it is
against the perfect player. Instruction with a perfect
player shows the learner ideal play, but only in an
extremely narrow context, as evidenced by the relatively
small long-term memory (in column 4) allocated for
useful knowledge. For example, a key node like Figure 3
that is a once-only (and deliberately avoided thereafter)
experience may never arise during competition against a
perfect player.

Noise in the trainer does not lead the learner to more
key nodes, i.e., they are not randomly distributed. A series
of fallible trainers was tested, each a perfect player with a
stochastic opportunity to err. The tested random move
selection rates were multiples of 10% from 10% to 100%,
inclusive. The next ten lines of Table 1 show

representative data for the fallible trainers. A fallible trainer increased the demand on long-term memory and

Instruction with Power Reliability Space

Perfect player 27 - 65 - 73 100 - 88 - 82 - 81 89.2

10% fallible 16 - 70 - 61 57 - 91 - 84 - 78 135.6
20% fallible 15 - 54 - 68 60 - 96 - 86 - 79 224.2
30% fallible 31 - 59 - 68 57 - 78 - 78 - 82 137.6
40% fallible 24 - 65 - 78 58 - 89 - 81 - 86 325.6
50% fallible 28 - 61 - 74 49 - 71 - 84 - 82 306.8
60% fallible 35 - 61 - 78 52 - 72 - 81 - 84 273.8
70% fallible 29 - 69 - 77 41 - 63 - 83 - 82 301.6
80% fallible 41 - 72 - 71 45 - 68 - 80 - 85 154.8
90% fallible 32 - 60 - 76 42 - 72 - 78 - 88 209.2
100% fallible 41 - 64 - 75 57 - 66 - 80 - 87 185.4

Self-training 14 - 66 - 69 39 - 54 - 77 - 78 186.2
Lesson and practice 18 - 63 - 85 100 - 98 - 97 - 100 299.0

Table 1: A comparison of the power and reliability achieved after different instruction in lose tic-tac-toe.

directed the learner to more nodes than the perfect player
did. If those additional nodes were equally likely to be
key nodes, then the program should have learned to play
better with more fallible instruction. In fact, it generally
played worse, further evidence that key nodes are
organized some way within the search space, a way that a
perfect player somehow reflects.

Left on its own, a program is unlikely to encounter key
nodes. When the trainer is eliminated, its lack of guidance
to key nodes proves costly. In self-training Hoyle is
expected to learn while playing against itself. Although
self-training is often presumed to be a natural
environment in which to improve expertise gradually, the
data in the penultimate line of Table 1 indicate otherwise.
With self-training, Hoyle was the least reliable against
every challenger and the least powerful against the perfect
challenger. Although Hoyle had achieved 10 consecutive
draws during self-training, the nodes it chose to visit
alone did not include enough of the knowledge learnable
at key nodes that it would later require in its encounter
against the challengers. Clearly, one of the functions of a
trainer is to guide the learner to key nodes.

A new training paradigm, called lesson and practice
training, provides good guidance to key nodes. Lesson
and practice training advocates interleaving relatively few
learning contests against the best available expert (the
lesson) with relatively many self-training contests (the
practice). The application cited here gave Hoyle
experience in cycles of 2 lessons followed by 7 practice
contests. The last line in Table 1 is from learning
tournaments where termination was after 20 consecutive
wins or draws, instead of the 10 used in all the other
instruction. This gave Hoyle almost as much experience
against the perfect player (an average of 28 contests rather

than 35.6) as the program had when the perfect player
was its trainer. (Extension to 20 for self-training and for
instruction with a perfect player showed no appreciable
improvement. Extension to 20 for fallible trainers proved
more helpful, but only against a more fallible opponent.)
Lesson and practice training proved more reliable and
powerful against all the challengers than most other kinds
of instruction; it was never less reliable or less powerful at
the 95% confidence level.

Our explanation for this improved performance is that
Hoyle was able to derive useful knowledge because it was
forced by lesson and practice training to visit more key
nodes. During each practice contest against itself, Hoyle
makes non-random choices, driven both by the general
game-playing knowledge encoded in its Advisors and by
the useful knowledge it has thus far acquired in
competition against its trainer. These knowledge-based
decisions effectively search in the immediate vicinity of
nodes Hoyle has already seen during lessons with the
trainer. The program’s improved performance argues for
the clustering of key nodes.

4. Visiting Key Nodes via Internal Direction

Hoyle is currently learning nine men’s morris, an ancient
African game played with 18 pieces on a 24-position
board

.
Most people find the search space of approximately 143
billion nodes quite challenging. Hoyle’s contests average
60 moves in two stages: a placing stage with an average
of 15.5 legal moves for every turn, and a sliding stage

with an average of 7.5 legal moves. Nine men’s morris is
unsolved (the backed up value of the root in the game
graph is unknown), but generally believed to be a draw

game (Gasser, 1991).
Originally, Hoyle was not a very good nine men’s

Outcome # Outcome # Outcome # Outcome # Outcome
1 draw 11 loss 21 loss 31 loss 41 draw
2 loss 12 loss 22 draw 32 loss 42 draw
3 draw 13 loss 23 loss 33 win 43 win
4 loss 14 draw 24 draw 34 draw 44 draw
5 loss 15 loss 25 loss 35 win 45 win
6 draw 16 draw 26 loss 36 loss 46 win
7 loss 17 draw 27 win 37 loss 47 win
8 draw 18 draw 28 loss 38 loss 48 win
9 loss 19 loss 29 loss 39 win 49 loss

10 draw 20 loss 30 draw 40 loss 50 draw

Table 2: The outcome of a 50-contest tournament at nine men’s morris between Hoyle and a hand-crafted expert program.
“win” indicates that Hoyle defeated the trainer; “loss” indicates that Hoyle lost to the trainer.

morris player; it lost every contest against its trainer, a
hand-crafted, very strong, expert program. Recently,
however, two new Advisors were added that capitalize on
the visual cues provided by predrawn lines on the game
board (Epstein, Gelfand, Lesniak, & Abadie, 1993). With
these Advisors, the program initially had some ability to
draw, and then began to learn to win. Table 2 shows the
outcome of a 50-contest tournament with both the new
Advisors in place. During the 50 contests in Table 2,
Hoyle lost 24 times, drew 17 times, and won nine times.
(If nine men’s morris is indeed a draw game, then the
wins mean that the hand-crafted program made errors. We
have located and corrected a few, but have begun to
suspect, based on more recent experiments, that nine
men’s morris may not be a draw game after all.) The first
win was not until the 27th contest, and five of the wins
were in the last eight contests, suggesting that Hoyle was
learning to play better as it acquired more experience.
(The likelihood that when 10 wins are distributed at
random among 50 contests, none would appear before the
27th contest is .02%, and that five would appear in the
last eight is 0.4%.) Comparison against what we believe
to be a perfect player for the placing stage indicates that
the program made no identifiable errors in the placing
stage of any of the last 10 contests.

There are several possible explanations for this playing
improvement:
• New application of useful knowledge: One possibility
is that the new Advisors were associated with a new
category of useful knowledge. These two Advisors,
however, do not reference any useful knowledge at all,
and so could not benefit from learning.
• Unusually accurate new Advisors: Another possibility
is that the new Advisors were so clever that they quickly
dominated the decision making process. This is not the
case either; Hoyle gathers statistics on the performance of
its Advisors and, although the new ones were active, they

by no means overwhelmed the others. Although there
were now some early draws, the ability to win was not
immediate, as it should have been if these Advisors
“knew” the right moves from the start; the program’s
improvement was clearly gradual.
• Direction without learning: Yet another possibility is
that learning was already drawing the program to places
where all Hoyle needed was some good advice from these
new Advisors to play well. If that were the case, then the
useful knowledge store should be roughly the same size
without the new Advisors as with them. This is not the
case either. The useful knowledge store increased with the
new Advisors.
• Visiting the key nodes: The final possible explanation,
and the one advocated here, is that the program
performed better because of the new nodes it chose to
visit during learning. The new Advisors drew the
program to places in the search space where the learning
strategies presumably extracted different, more powerful,
useful knowledge upon which the other Advisors were
able to capitalize. Hoyle definitely plays smarter with
these new Advisors, and smart play directs it to the key
nodes.

5. Discussion

There are clear lessons here for the development of game-
playing expert programs. The typical, competitively
successful game-playing program has incorporated only
some of the work from cognitive science: an extensive
opening book and an error-free closing book. It is in the
middlegame where such a program makes most of its
mistakes, when it selects a move with a heuristic
approximation of exhaustive search. These decisions are
dependent on the accuracy of a feature-based evaluation

function and, to some extent, on the search depth. This
paper shows that, unless those features direct the
program’s attention to key nodes, and unless the program
can learn there, middlegame play will be both inefficient
and inaccurate.

The supervision of instruction is non-trivial. The role of
a trainer is to provide guidance in an otherwise intractable
search space, and a trainer can fail to direct the learner to
key nodes for many reasons. A lack of breadth, like
instruction with a perfect player, may overlook nodes that
the nascent expert should visit for robustness. A lack of
reliability, like instruction with fallible players, may
fragment experience and distract the learner from causal
associations. A lack of expertise coupled with a lack of
inherent variation, like self-training, may also miss crucial
nodes. High quality instruction requires variation that
addresses the vicinity of the key nodes; that is what
lesson-and-practice training appears to do. The lessons
direct the learner to the nodes an expert would be likely to
visit, while the practice permits the learner to explore
variations on that guidance. One interesting option would
be to have a game-learning program deliberately explore
variations, i.e., sets of short paths in the vicinity of nodes
encountered during training.

For most challenging games one must presume an
imperfect trainer. If a program takes an imperfect trainer
as a model of expert behavior, however, it will eventually
learn something that is incorrect. One reason lesson and
practice training succeeds is probably that Hoyle
distinguishes carefully between its own moves and those
of its trainer. A trainer’s move is more highly regarded,
and trainer error is less likely to be suspected. Thus nodes
are in some sense labeled by the reason that they were
visited, and treated accordingly.

A sudden, rather than a gradual, improvement in
performance during learning may be explainable as the
crystallization of developing internal direction, as if the
learner has finalized some good decision-making
technique. The described impact of the two new Advisors
in Hoyle simulates this. Another example is TD-gammon,
a neural net program that learns to play backgammon as
well as the best human experts (Tesauro, 1992). Work on
TD-gammon supports the principles of well-guided
search. The program learned in about a month, playing
200,000 contests against itself. Contests averaged 60
moves, so that the program encountered no more than
2⋅108 nodes, a tiny fraction of its search space. During the
first week, however, the program played “long, looping
contests that seemed to go nowhere” (Tesauro, 1991).
Then the program improved rapidly, suggesting that first
the network learned to find key nodes, and then to make
good decisions. A less-accomplished precursor,
Neurogammon, had a trainer, but repeatedly experienced
the same 400 contests, without any ability to encounter
additional key nodes. When TD-gammon learned against
Neurogammon instead of against itself, it was able to
progress away from random moves much more quickly

(Tesauro, 1991).
A theory of well-guided search is applicable to domains

beyond game playing. Recent work in cognitive science
indicates that studies of chess experts are representative of
expertise in other fields as well. Regardless of the
domain, experts are distinguished from novices in several
ways: they rely heavily on mental models and special-
purpose knowledge representations, they have larger
long-term memories and expert procedural techniques,
and they have extensive, readily accessible knowledge
(Chase, & Simon, 1973; Ericsson, & Smith, 1991;
Ericsson, & Staszewski, 1989). Their search, however, is
distinguished by its limited focus, not its breadth or speed
(Charness, 1991).

In particular, the work described here highlights the
dangers inherent in learning with a reactive program. A
reactive program is in some sense the victim of its
environment; it is expected only to experience, generalize
and correct, and keep reacting. It has no control over the
nature of its next experience, and can take no initiative.
Since the environment is its trainer, a reactive learning
program can only succeed to the extent that its
environment shapes its experience appropriately.

6. Driving Discovery

The distinctive property of discovery learning is that the
program is expected to formulate and direct its own tasks,
rather than to follow the examples or the tasks set by an
instructor. Discovery learning is notoriously difficult, in
part because the program must focus its own attention.
Early work on mathematical discovery, for example, was
found to be unintentionally biased by LISP, the language
in which the concept definitions were formulated (Lenat,
1976; Lenat, 1984). Focus of attention requires meta-
knowledge: a measure of self-awareness and a metric for
interestingness. A discovery program must therefore
either begins with a bias as to what is interesting or must
learn such a bias.

If interestingness were domain-independent, or if the
program were restricted to a set of related domains,
interestingness could be defined in advance. Three
fundamental elements of the definition are surprise (i.e.,
expectation failure), curiosity (i.e., partial but
inconclusive knowledge), and ignorance (i.e.,
computation failure). Each of these is an important
indication of inadequate knowledge often cited by people
as the reason that they formulate a task.

Surprise occurs when a program expects something
different from what actually occurs, e.g., a robot
“believes” it has picked up a wrench and then sees that it
is still on the table. Such states are a kind of key node.
Indeed, the position in Figure 3 is interesting because it
violates the expectation that X will win. The program
needs to learn knowledge that will correct its expectation

for this state the next time. Rather than begin each contest
from the initial state, a game-learning program could
begin a practice session from such a key node. This would
still not be exhaustive search, but a series of carefully
organized “what if’s” that addressed problematic
positions.

Curiosity is spurred by partial but inconclusive data.
Pell has considered incomplete experiential data about the
efficacy of a move in Go on a 9 × 9 board (Pell, 1991).
His program learned (gathered statistics on) the wins and
losses associated with individual moves. It pursued
(became curious about) moves that had a true mean of
winning most likely to be better than a “fickleness
parameter.” This amounts to a forced exploration of
situations which are not clearly categorized by the feature
set and the program’s playing experience. Against an
external, hand-coded expert, Pell’s program with the
parameter set to .5 performed better than a program that
simply chose a move based on the historical data. In the
context of key nodes, the primary problem with this
approach is that it is directed toward move preference,
rather than toward knowledge acquisition for expert
behavior. Thus the learning it results in is reflexive and
not particularly transparent.

Moore has a program for a learning control system that
attempts to concentrate experience in “regions of the
control space that are relevant to the task at hand”
(Moore, 1991). His program introduces some randomness
into an otherwise carefully learned controller. He shows
that random perturbations of a decision are better than
random decisions, and that predictive analysis of random
perturbation is even more effective. This last class of
methods attempts to harness some regularity in the space
to identify good decisions. The tacit assumption in that
approach is that the value of an action is to some extent
continuous in the space. Although that may be true for
Moore’s toy car driving domain, it is not necessarily true
for many others, including game playing.

Hunter has taken ignorance as an impetus to plan to
learn, primarily in the context of biological research
(Hunter, 1989). His IVY was an opportunistic planner that
generated knowledge goals. An IVY-inspired extension of
the work described here would be to have a game-
learning program deliberately construct a state (or a set of
states) from which to begin a practice session. For
example, if a program encounters a new opening and
loses to it, why should it have to wait until it encounters
that opening again to seek an appropriate defense? The
program could instead undertake a deliberate
investigation of the opening, alternately playing each side,
preferably against the same expert who introduced it.
Here the key node (or nodes) may expose important
strategic strengths or weaknesses.

Another example of ignorance-driven search would be
to seek a situation in which one decision-making principle
(Advisor) would be inapplicable or always take precedent
over another one. Rather than attempt to construct such

states, the program could save their partial descriptions
and alert itself for analysis when enough of them arise.

7. Future Work

There are many interesting issues associated with the
theory of well-guided search as proposed here. The
identification of key nodes is non-trivial; although Hoyle
has some successful, domain-dependent detectors,
“important” or “interesting” remains an elusive property.
The distribution of key nodes, in particular their tendency
to cluster, may vary with the domain. Perhaps
combinations of key nodes, rather than individual ones,
are what drives learning. Different learning strategies may
perform better with different key nodes. Explicit labeling
of key nodes may even suggest a new class of learning
strategies that rely upon their significance as exemplars or
counterexamples, or require clusters of key nodes as
input. All of these are topics for future work.

Hoyle already saves contests that it considers
significant because they violate its expectations. Key
nodes arise, as Hunter suggests, in the context of “good
teaching cases.” Thus a natural way to turn a skilled
learner into a skilled teacher would be to focus on these
paradigmatic experiences. Where the program has
learned, so may its students, particularly if the instructor
and students have similar learning algorithms.

8. Conclusions

If the knowledge intrinsic to expert performance can only
be extracted after all, or even most, of the nodes in an
intractably large search space are visited, then prospects
for a person to learn expertise there would be dim. The
existence of human experts in spaces intractable for them
argues that most of the important knowledge is located at
a limited number of key nodes. Thus, visiting the key
nodes should become a priority during learning in a very
large space, regardless of the learning strategy used after
arrival there.

Hoyle is predicated on the idea that general expertise in
a broad domain can be efficiently instantiated for a
subdomain to develop specific expertise there, as when
general game-playing knowledge is applied to a particular
game. For Hoyle, this is discovery learning, triggered by
its experience during play. Although Hoyle exploits non-
experiential knowledge (like the rules, the Advisors, and
various knowledge representations), the program will
learn nothing unless it plays. For human experts, too,
experience is the catalyst for learning. Thus the focus on
key nodes is appropriate.

Deliberate direction to key nodes is well-guided search.
Given the goal of learning to perform expertly in a large
space, a theory for well-guided search begins with the

following principles, supported by results described here:
• There are key nodes where important knowledge may be
extracted by the learner.
• Key nodes appear in clusters.
• Guidance to those key nodes is both appropriate and
necessary.
• Internal direction to key nodes is available from high-
quality decisions made by the learner.
• External direction to key nodes can be managed by the
trainer.
• A mixture of external direction to key nodes and
exploration in their vicinity is a productive way to exploit
the clusters of key nodes in a large space, and to
compensate for trainer error.

Acknowledgments

This work has benefited from conversations with Tom
Mitchell and the suggestions of several anonymous
referees. The author was supported in part by NSF
9001936. Pascal Abadie and Joanna Lesniak provided
programming support.

References

Berlekamp, E. R., Conway, J. H., & Guy, R. K. (1982).
Winning Ways for Your Mathematical Plays . London:
Academic Press.

Charness, N. (1983). Human Chess Skill. In P. W. Frey

(Ed.), Chess Skill in Man and Machine, second edition
(pp. 34-53). New York: Springer-Verlag.

Charness, N. (1991). Expertise in Chess: The Balance

between Knowledge and Search. In K. A. Ericsson, & J.
Smith (Ed.), Toward a General Theory of Expertise -
Prospects and Limits (pp. 39-63). Cambridge:
Cambridge University Press.

Chase, W. G., & Simon, H. A. (1973). The Mind’s Eye in

Chess. In W. G. Chase (Ed.), Visual Information
Processing (pp. 215-281). New York: Academic Press.

Epstein, S. L. (1992). Prior Knowledge Strengthens

Learning to Control Search in Weak Theory Domains.
International Journal of Intelligent Systems, 7, 547-
586.

Epstein, S. L. (To appear). Toward an Ideal Trainer.

Machine Learning.

Epstein, S. L., Gelfand, J., Lesniak, J., & Abadie, P.
(1993). The Integration of Visual Cues into a Multiple-
Advisor Game-Learning Program. Raleigh.

Ericsson, K. A., & Smith, J. (1991). Prospects and Limits

of the Empirical Study of Expertise: An Introduction. In
K. A. Ericsson, & J. Smith (Ed.), Toward a General
Theory of Expertise - Prospects and Limits (pp. 1-38).
Cambridge: Cambridge University Press.

Ericsson, K. A., & Staszewski, J. (1989). Skilled Memory

and Expertise: Mechanisms of Exceptional
Performance. In D. Klahr, & Kotovsky (Ed.), Complex
Information Processing: The Impact of Herbert A.
Simon (pp. 235-267). Hillsdale, NJ: Erlbaum.

Gasser, R. (1991). Applying Retrograde Analysis to Nine

Men’s Morris. In D. N. L. Levy, & D. F. Beal (Ed.),
Heuristic Programming in Artificial Intelligence 2 -
The Second Computer Olympiad (pp. 161-173).
Chichester: Ellis Horwood.

Hunter, L. (1989). Knowledge Acquisition Planning:

Results and Prospects. Morgan Kaufmann, 61-65.

Lenat, D. B. (1976). AM: An Artificial Intelligence

Approach to Discovery in Mathematics. Ph.D.,
Department of Computer Science, Stanford University,

Lenat, D. B. (1984). Why AM and EURISKO Appear to

Work. Artificial Intelligence, 23(3), 249-268.

Moore, A. (1991). Knowledge of Knowledge and

Intelligent Experimentation for Learning Control. 683-
688.

Pell, B. (1991). Exploratory Learning in the Game of GO:

Initial Results. In D. N. L. Levy, & D. F. Beal (Ed.),
Heuristic Programming in Artificial Intelligence 2 -
The Second Computer Olympiad (pp. 137-152).
Chichester, England: Ellis Horwood.

Tesauro, G. (1991). Personal communication.

Tesauro, G. (1992). Practical Issues in Temporal

Difference Learning. Machine Learning, 8(3/4), 257-
277.

