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Abstract 

A game learner’s experience is no more than the 
nodes it encounters in the search space. For a 
challenging game, only a small fraction of that space 
can ever be visited. People’s ability to learn to play 
difficult games well is a clear indication that not all 
nodes are equally relevant to learning. There are, it is 
argued here, key nodes particularly important to the 
development of expertise, and those key nodes 
appear in clusters in the game tree. A game learning 
program might arrive at a key node by chance, be 
drawn there by a choice it makes, or be driven there 
by the moves of its opposition. Trainer guidance has 
some similarity to varying the sequence of training 
examples in ordinary induction, but here is delegated 
to the program itself. This paper offers empirical 
evidence of substantial improvement in the quality of 
play when a program is steered to clusters of key 
nodes, and considers several ways to do so.  
 

The thesis of this work is that people are able to learn to 
play difficult games1 expertly because the knowledge 
they require is not evenly distributed across the game tree, 
but located at key nodes. The quality of learned 
performance depends in part on the learner’s familiarity 
with these key nodes. Well-guided search takes the 
learner to the key nodes, the places where the most 
valuable learning can occur.  

This paper identifies and offers empirical evidence for 
some basic principles of well-guided search. The first 
section explains the role of key nodes in experience. The 
second provides background on a game-learning program 
whose empirical data instigated the theory described here. 
The next two sections document how the learner arrives at 
key nodes through both external direction (training) and 
internal direction (choice). Subsequent sections discuss 
the results, their impact on discovery learning, and future 

                                                             
1For clarity, we distinguish carefully here between a 
game (a board, playing pieces, and a set of rules 
determining play) and a contest (a complete experience at 
a game, from some initial state specified by the rules to 
some final state where the rules designate a winner or 
declare a draw).   

work.  
1. Key Nodes and Experience 

Even a simple game offers evidence of how limited an 
expert player’s experience is. Consider tic-tac-toe, for 
example, a game that many nine-year-old children play 
perfectly, but one whose statistics are initially daunting. It 
has a branch factor of 4.5 and a contest averages nine 
moves. Theoretically, there could be as many as 94.5 = 
19,683 states in the game graph, but the search space is 
far smaller than it first appears. A reachable state is a 
game board, along with a designated mover, that can 
actually occur during competition. There are only 5478 
distinct, reachable states in tic-tac-toe. These states can be 
normalized for symmetry, so that, for example, all four of 
the corner openings are considered as a single state. After 
normalization there remain only 170 distinct paths 
through the game graph, beginning with the initial empty 
board, that must be explored before one has enough 
information to play perfectly.2 The average person would 
have difficulty memorizing either of these reduced spaces, 
and few have exhaustively visited all their nodes. Yet 
people, with a few memorized openings and a reliable 
winning endgame detector, often play expert, even 
perfect, tic-tac-toe.  

Data indicate striking similarities between the way 
ordinary folk cope with the somewhat oversized tic-tac-
toe search space and the way grandmasters at chess cope 
with an enormous one. The literature on expert chess 
players confirms that they neither search nor remember 
very much of such a space. With a branch factor of 20 and 
contests that average 80 moves, the chess game graph 
could have as many as 2080 ≈ 10120 nodes. Although 
there may be as many as 40,000 distinct chess openings, 
most tournament players encounter no more than 400 of 
them in the course of a year of play, and prepare only 
three or four for any given tournament (Charness, 1991). 
If one restricts the graph to these 40,000 openings, 
assumes a memorized endgame, and restricts moves to 
those that masters might select, there would still be 
4 × 1020 “sensible” contests (paths through the space) 
with exhaustive search (Charness, 1983). An expert chess 

                                                             
2 This computation is based upon data from (Berlekamp, 
Conway, & Guy, 1982). 



 

player is estimated to see 1,200,000 nodes per year 
(Charness, 1991). During 20 years of learning, that 
amounts to only about 6 × 10-14 of the “sensible space” 
and 2.4 × 10-113 of the entire space.  

That the tiny, experienced fraction of the search space 
so well supports learning to play, suggests that some of 
these nodes are particularly significant, and so we call 
them key nodes. Since nodes encountered during contests 
delineate a path in the game tree, and since human study 
often focuses on variations that explore the neighborhood 
of those paths, we hypothesize that key nodes are not 
scattered randomly about the space, but appear in isolated 
clusters.  

If we presume that expertise develops when key nodes 
are visited, then a game-learning program must somehow 
be exposed to them. Key nodes could be encountered by 
chance, they could be presented by a teacher as a 
sequence of training examples with explanation or 
solution, they could be encountered during competition in 
a carefully structured environment, or the learner itself 
could seek them out. The first of these, random 
encounters, is unreasonable given the apparent sparsity of 
key nodes in a game tree. The second, a series of “puzzle 
problems” for instruction, would require that the teacher 
have a clear test for key nodes and a road map to reach 
them. Unfortunately, neither is available for difficult 
games; the only evidence that one has visited key nodes is 
in the improved quality of one’s play. After some 
background, we explore the other two possibilities, 
competition and internal direction . 

2. Background 

Let a perfect player for a game be one that always makes 
the best possible move from every node in the game 
graph. A draw game is one in which every contest 
between two perfect players must, by the nature of the 
game graph, end in a draw. (Tic-tac-toe is an example of a 
draw game.) A contestant who loses a contest at a draw 
game has made an error; one who wins or draws a contest 
at a draw game is said to have achieved an expert 
outcome. A tournament is a sequence of contests between 
two participants in which they alternate moving first. 

The experiments in the next two sections were run with 
Hoyle, a program that learns to play two-person, perfect 
information, finite board games (Epstein, 1992). Hoyle 
relies upon its Advisors, procedures that recommend and 
advise against the current choices available to the mover. 
Each Advisor takes a particular, game-independent 
perspective and searches no more than two-ply forward 
from the current node. When it is Hoyle’s turn to move, 
the program consults its Advisors. The input to every 
Advisor is the same: the current game state, the current 
legal moves, and the current useful knowledge (see 
below) accrued for the game from experience. An 

Advisor’s output is one or more comments, ordered triples 
naming the Advisor, a legal move, and an integer that  
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Figure 1: A significant win state from tic-tac-toe, with X 
to move. The contest is not over, but with perfect play X 
will win. 

indicates an opinion somewhere between strong aversion 
(0) and enthusiastic support (10). Hoyle’s 7 primary 
Advisors have a priority ranking; if they do not designate 
a move, the remaining 16 all comment. The move with 
the most support is chosen, and ties are broken by random 
selection. Hoyle begins with only the rules of a game and 
is expected to learn to play it expertly during competition 
against an external program, its trainer. For Hoyle, 
internal direction to key nodes comes from its Advisors, 
and external direction from its trainer.  

Useful knowledge in Hoyle is game-dependent data 
computed and stored in game-independent slots. It is 
possibly relevant and probably correct. There are, for 
example, useful knowledge slots to record average contest 
length, applicable two-dimensional symmetries, good 
openings, relevant forks, important contest histories, 
whether going first or second is an advantage, and 
significant states. A significant win state is one that must 
result in a win for the mover when she plays perfectly, no 
matter how the other contestant plays. An example of 
such a state appears in Figure 1. A significant loss state is 
one that must result in a loss for the mover when the other 
contestant plays perfectly, no matter how the mover plays. 
An example of a significant loss state appears in Figure 2. 
By definition, all the children of a significant loss state 
are themselves significant win states for the other 
contestant, and at least one of the children of a significant 
win state is a significant loss state for other contestant.  

Hoyle has one or more heuristic, game-independent 
learning procedures associated with each useful 
knowledge slot. These learning strategies vary from one 
procedure to the next, and include explanation-based  
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Figure 2: A significant loss state from tic-tac-toe, with O 



 

to move. O cannot prevent a perfect-playing X from a 
win. 
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Figure 3: A key node for Hoyle from tic-tac-toe, with X 
to move. This is not a significant state. 

learning, induction, and deduction. Learning occurs after 
contests and after tournaments. 

The relationship between key nodes and significant 
states is non-trivial. Consider, for example, a state S with 
a dozen children. After playing one or more contests 
“through” each of S’s children, Hoyle might deduce first 
that each of S’s children is a significant loss state for one 
contestant, and then deduce that S is therefore a 
significant win state for the other contestant. This does 
not mean that S and all its children are key nodes; perhaps 
visiting S alone would suffice for a particular learning 
method. Thus a significant state is not necessarily a key 
node.  

It may also happen that important learning occurs at a 
state that is not itself a significant state. An example from 
tic-tac-toe appears in Figure 3, where O is the mover. 
Although prospects look grim, O can always manage a 
draw from Figure 3 by avoiding the corners. (The 
significant states in Figures 1 and 2 make clear what 
happens after Figure 3 with corner play.) For Hoyle, 
Figure 3 is a key node; the program does not “know” the 
correct move there and will always make the wrong 
choice the first time it encounters the state. If Hoyle trains 
without encountering Figure 3, it will be vulnerable there. 
Once Hoyle experiences Figure 3 (or its symmetric 
equivalent) and loses, however, it will move correctly 
there in subsequent contests. Clearly significant states and 
key nodes are in some sense intertwined, and lie in each 
others vicinity, but they are by no means equivalent. 

3. Visiting Key Nodes via Competition 

Without an explicit road map to key nodes, the most 
obvious way to expose a program to them is to have the 
opposition play so that the program must confront them. 
The data reported here is taken from extensive 
experiments with a variety of trainers in which Hoyle was 
required to learn to play three quite different draw games 
with small search spaces. Full details on that work are 
available in (Epstein, To appear); here we cite data to 
demonstrate how difficult key nodes are to reach. Each 
experiment pitted Hoyle in a learning tournament against 

a trainer until the program had learned to play well 
enough to draw 10 consecutive contests. Then learning 
was turned off and Hoyle played a twenty-contest testing 
tournament against each of four challengers: a perfect 
player and play that simulated a (slightly imperfect) 
expert challenger, a novice, and a random player. 
Although the results were consistent for all three games, 
space limitations restrict discussion here to lose tic-tac-
toe, the most difficult of the three for the program to 
learn. (Like tic-tac-toe, lose tic-tac-toe is played on a 
3 × 3 grid between X and O. Whoever achieves three of 
the same marker in a row, however, vertically, 
horizontally, or diagonally, however, loses.) 

Table 1 highlights representative data; each value 
represents an average over 5 runs. Power is the ability to 
exploit the other contestant’s errors; it is measured here 
for a draw game by the percentage of contests won, and is 
reported against the expert, novice, and random 
challengers, in that order. (In a draw game, power against 
a perfect player must be zero.) For lose tic-tac-toe, 
maximal power was computed in a 10,000-contest 
tournament between the perfect player and each of the 
other challengers. It is 16% against the expert, 66% 
against the novice, and 74% against the random 
challenger. Reliability is the consistent achievement of an 
expert outcome; it is measured here for a draw game by 
the percentage of contests won or drawn, and is reported 
first against a perfect player, and then against the other 
challengers in the same order. In a draw game, ideal 
reliability is 100%. Space is long-term memory allocation 
for useful knowledge. 

A perfect player as trainer provided no experience with 
key nodes beyond those that two perfect players would 
proffer to each other. The first line of Table 1 
demonstrates that there are key nodes beyond those 
regularly visited during competition against a perfect 
player. Even though Hoyle learned to play perfectly 
reliably (100 as the first entry in column 3) against this 
trainer, when confronted during testing with the imperfect 
moves of the other challengers it has difficulty with their 
errors. Although an expert should play better against a 
weaker contestant, Hoyle is less reliable(88, 82, and 81% 
in column 3) against the other challengers than it is 
against the perfect player. Instruction with a perfect 
player shows the learner ideal play, but only in an 
extremely narrow context, as evidenced by the relatively 
small long-term memory (in column 4) allocated for 
useful knowledge. For example, a key node like Figure 3 
that is a once-only (and deliberately avoided thereafter) 
experience may never arise during competition against a 
perfect player.  

Noise in the trainer does not lead the learner to more 
key nodes, i.e., they are not randomly distributed. A series 
of fallible trainers was tested, each a perfect player with a 
stochastic opportunity to err. The tested random move 
selection rates were multiples of 10% from 10% to 100%, 
inclusive. The next ten lines of Table 1 show 



 

representative data for the fallible trainers. A fallible trainer increased the demand on long-term memory and  

Instruction with Power Reliability Space 
 

Perfect player 27 - 65 - 73 100 - 88 - 82 - 81 89.2 
    
10% fallible 16 - 70 - 61 57 - 91 - 84 - 78 135.6 
20% fallible 15 - 54 - 68 60 - 96 - 86 - 79 224.2 
30% fallible 31 - 59 - 68 57 - 78 - 78 - 82 137.6 
40% fallible 24 - 65 - 78 58 - 89 - 81 - 86 325.6 
50% fallible 28 - 61 - 74  49 - 71 - 84 - 82 306.8 
60% fallible 35 - 61 - 78 52 - 72 - 81 - 84 273.8 
70% fallible 29 - 69 - 77 41 - 63 - 83 - 82 301.6 
80% fallible 41 - 72 - 71 45 - 68 - 80 - 85 154.8 
90% fallible 32 - 60 - 76 42 - 72 - 78 - 88 209.2 
100% fallible 41 - 64 - 75 57 - 66 - 80 - 87 185.4 
    
Self-training 14 - 66 - 69 39 - 54 - 77 - 78 186.2 
Lesson and practice 18 - 63 - 85 100 - 98 - 97 - 100 299.0 

Table 1: A comparison of the power and reliability achieved after different instruction in lose tic-tac-toe.  

directed the learner to more nodes than the perfect player 
did. If those additional nodes were equally likely to be 
key nodes, then the program should have learned to play 
better with more fallible instruction. In fact, it generally 
played worse, further evidence that key nodes are 
organized some way within the search space, a way that a 
perfect player somehow reflects. 

Left on its own, a program is unlikely to encounter key 
nodes. When the trainer is eliminated, its lack of guidance 
to key nodes proves costly. In self-training Hoyle is 
expected to learn while playing against itself. Although 
self-training is often presumed to be a natural 
environment in which to improve expertise gradually, the 
data in the penultimate line of Table 1 indicate otherwise. 
With self-training, Hoyle was the least reliable against 
every challenger and the least powerful against the perfect 
challenger. Although Hoyle had achieved 10 consecutive 
draws during self-training, the nodes it chose to visit 
alone did not include enough of the knowledge learnable 
at key nodes that it would later require in its encounter 
against the challengers. Clearly, one of the functions of a 
trainer is to guide the learner to key nodes. 

A new training paradigm, called lesson and practice 
training, provides good guidance to key nodes. Lesson 
and practice training advocates interleaving relatively few 
learning contests against the best available expert (the 
lesson) with relatively many self-training contests (the 
practice). The application cited here gave Hoyle 
experience in cycles of 2 lessons followed by 7 practice 
contests. The last line in Table 1 is from learning 
tournaments where termination was after 20 consecutive 
wins or draws, instead of the 10 used in all the other 
instruction. This gave Hoyle almost as much experience 
against the perfect player (an average of 28 contests rather 

than 35.6) as the program had when the perfect player 
was its trainer. (Extension to 20 for self-training and for 
instruction with a perfect player showed no appreciable 
improvement. Extension to 20 for fallible trainers proved 
more helpful, but only against a more fallible opponent.) 
Lesson and practice training proved more reliable and 
powerful against all the challengers than most other kinds 
of instruction; it was never less reliable or less powerful at 
the 95% confidence level.  

Our explanation for this improved performance is that 
Hoyle was able to derive useful knowledge because it was 
forced by lesson and practice training to visit more key 
nodes. During each practice contest against itself, Hoyle 
makes non-random choices, driven both by the general 
game-playing knowledge encoded in its Advisors and by 
the useful knowledge it has thus far acquired in 
competition against its trainer. These knowledge-based 
decisions effectively search in the immediate vicinity of 
nodes Hoyle has already seen during lessons with the 
trainer. The program’s improved performance argues for 
the clustering of key nodes. 

4. Visiting Key Nodes via Internal Direction  

Hoyle is currently learning nine men’s morris, an ancient 
African game played with 18 pieces on a 24-position 
board

. 
Most people find the search space of approximately 143 
billion nodes quite challenging. Hoyle’s contests average 
60 moves in two stages: a placing stage with an average 
of 15.5 legal moves for every turn, and a sliding stage 



 

with an average of 7.5 legal moves. Nine men’s morris is 
unsolved (the backed up value of the root in the game 
graph is unknown), but generally believed to be a draw 

game (Gasser, 1991).  
Originally, Hoyle was not a very good nine men’s  
 

 
# Outcome # Outcome # Outcome # Outcome # Outcome 
1 draw 11 loss 21 loss 31 loss 41 draw 
2 loss 12 loss 22 draw 32 loss 42 draw 
3 draw 13 loss 23 loss 33 win 43 win 
4 loss 14 draw 24 draw 34 draw 44 draw 
5 loss 15 loss 25 loss 35 win 45 win 
6 draw 16 draw 26 loss 36 loss 46 win 
7 loss 17 draw 27 win 37 loss 47 win 
8 draw 18 draw 28 loss 38 loss 48 win 
9 loss 19 loss 29 loss 39 win 49 loss 

10 draw 20 loss 30 draw 40 loss 50 draw 

Table 2: The outcome of a 50-contest tournament at nine men’s morris between Hoyle and a hand-crafted expert program. 
“win” indicates that Hoyle defeated the trainer; “loss” indicates that Hoyle lost to the trainer. 

morris player; it lost every contest against its trainer, a 
hand-crafted, very strong, expert program. Recently, 
however, two new Advisors were added that capitalize on 
the visual cues provided by predrawn lines on the game 
board (Epstein, Gelfand, Lesniak, & Abadie, 1993). With 
these Advisors, the program initially had some ability to 
draw, and then began to learn to win. Table 2 shows the 
outcome of a 50-contest tournament with both the new 
Advisors in place. During the 50 contests in Table 2, 
Hoyle lost 24 times, drew 17 times, and won nine times. 
(If nine men’s morris is indeed a draw game, then the 
wins mean that the hand-crafted program made errors. We 
have located and corrected a few, but have begun to 
suspect, based on more recent experiments, that nine 
men’s morris may not be a draw game after all.) The first 
win was not until the 27th contest, and five of the wins 
were in the last eight contests, suggesting that Hoyle was 
learning to play better as it acquired more experience. 
(The likelihood that when 10 wins are distributed at 
random among 50 contests, none would appear before the 
27th contest is .02%, and that five would appear in the 
last eight is 0.4%.) Comparison against what we believe 
to be a perfect player for the placing stage indicates that 
the program made no identifiable errors in the placing 
stage of any of the last 10 contests.  

There are several possible explanations for this playing 
improvement: 
• New application of useful knowledge: One possibility 
is that the new Advisors were associated with a new 
category of useful knowledge. These two Advisors, 
however, do not reference any useful knowledge at all, 
and so could not benefit from learning.  
• Unusually accurate new Advisors: Another possibility 
is that the new Advisors were so clever that they quickly 
dominated the decision making process. This is not the 
case either; Hoyle gathers statistics on the performance of 
its Advisors and, although the new ones were active, they 

by no means overwhelmed the others. Although there 
were now some early draws, the ability to win was not 
immediate, as it should have been if these Advisors 
“knew” the right moves from the start; the program’s 
improvement was clearly gradual.  
• Direction without learning: Yet another possibility is 
that learning was already drawing the program to places 
where all Hoyle needed was some good advice from these 
new Advisors to play well. If that were the case, then the 
useful knowledge store should be roughly the same size 
without the new Advisors as with them. This is not the 
case either. The useful knowledge store increased with the 
new Advisors. 
• Visiting the key nodes: The final possible explanation, 
and the one advocated here, is that the program 
performed better because of the new nodes it chose to 
visit during learning. The new Advisors drew the 
program to places in the search space where the learning 
strategies presumably extracted different, more powerful, 
useful knowledge upon which the other Advisors were 
able to capitalize. Hoyle definitely plays smarter with 
these new Advisors, and smart play directs it to the key 
nodes. 

5. Discussion 

There are clear lessons here for the development of game-
playing expert programs. The typical, competitively 
successful game-playing program has incorporated only 
some of the work from cognitive science: an extensive 
opening book and an error-free closing book. It is in the 
middlegame where such a program makes most of its 
mistakes, when it selects a move with a heuristic 
approximation of exhaustive search. These decisions are 
dependent on the accuracy of a feature-based evaluation 



 

function and, to some extent, on the search depth. This 
paper shows that, unless those features direct the 
program’s attention to key nodes, and unless the program 
can learn there, middlegame play will be both inefficient 
and inaccurate. 

The supervision of instruction is non-trivial. The role of 
a trainer is to provide guidance in an otherwise intractable 
search space, and a trainer can fail to direct the learner to 
key nodes for many reasons. A lack of breadth, like 
instruction with a perfect player, may overlook nodes that 
the nascent expert should visit for robustness. A lack of 
reliability, like instruction with fallible players, may 
fragment experience and distract the learner from causal 
associations. A lack of expertise coupled with a lack of 
inherent variation, like self-training, may also miss crucial 
nodes. High quality instruction requires variation that 
addresses the vicinity of the key nodes; that is what 
lesson-and-practice training appears to do. The lessons 
direct the learner to the nodes an expert would be likely to 
visit, while the practice permits the learner to explore 
variations on that guidance. One interesting option would 
be to have a game-learning program deliberately explore 
variations, i.e., sets of short paths in the vicinity of nodes 
encountered during training. 

For most challenging games one must presume an 
imperfect trainer. If a program takes an imperfect trainer 
as a model of expert behavior, however, it will eventually 
learn something that is incorrect. One reason lesson and 
practice training succeeds is probably that Hoyle 
distinguishes carefully between its own moves and those 
of its trainer. A trainer’s move is more highly regarded, 
and trainer error is less likely to be suspected. Thus nodes 
are in some sense labeled by the reason that they were 
visited, and treated accordingly.  

A sudden, rather than a gradual, improvement in 
performance during learning may be explainable as the 
crystallization of developing internal direction, as if the 
learner has finalized some good decision-making 
technique. The described impact of the two new Advisors 
in Hoyle simulates this. Another example is TD-gammon, 
a neural net program that learns to play backgammon as 
well as the best human experts (Tesauro, 1992). Work on 
TD-gammon supports the principles of well-guided 
search. The program learned in about a month, playing 
200,000 contests against itself. Contests averaged 60 
moves, so that the program encountered no more than 
2⋅108 nodes, a tiny fraction of its search space. During the 
first week, however, the program played “long, looping 
contests that seemed to go nowhere” (Tesauro, 1991). 
Then the program improved rapidly, suggesting that first 
the network learned to find key nodes, and then to make 
good decisions. A less-accomplished precursor, 
Neurogammon, had a trainer, but repeatedly experienced 
the same 400 contests, without any ability to encounter 
additional key nodes. When TD-gammon learned against 
Neurogammon instead of against itself, it was able to 
progress away from random moves much more quickly 

(Tesauro, 1991).  
A theory of well-guided search is applicable to domains 

beyond game playing. Recent work in cognitive science 
indicates that studies of chess experts are representative of 
expertise in other fields as well. Regardless of the 
domain, experts are distinguished from novices in several 
ways: they rely heavily on mental models and special-
purpose knowledge representations, they have larger 
long-term memories and expert procedural techniques, 
and they have extensive, readily accessible knowledge 
(Chase, & Simon, 1973; Ericsson, & Smith, 1991; 
Ericsson, & Staszewski, 1989). Their search, however, is 
distinguished by its limited focus, not its breadth or speed 
(Charness, 1991).  

In particular, the work described here highlights the 
dangers inherent in learning with a reactive program. A 
reactive program is in some sense the victim of its 
environment; it is expected only to experience, generalize 
and correct, and keep reacting. It has no control over the 
nature of its next experience, and can take no initiative. 
Since the environment is its trainer, a reactive learning 
program can only succeed to the extent that its 
environment shapes its experience appropriately.  

6. Driving Discovery 

The distinctive property of discovery learning is that the 
program is expected to formulate and direct its own tasks, 
rather than to follow the examples or the tasks set by an 
instructor. Discovery learning is notoriously difficult, in 
part because the program must focus its own attention. 
Early work on mathematical discovery, for example, was 
found to be unintentionally biased by LISP, the language 
in which the concept definitions were formulated (Lenat, 
1976; Lenat, 1984). Focus of attention requires meta-
knowledge: a measure of self-awareness and a metric for 
interestingness. A discovery program must therefore 
either begins with a bias as to what is interesting or must 
learn such a bias.  

If interestingness were domain-independent, or if the 
program were restricted to a set of related domains, 
interestingness could be defined in advance. Three 
fundamental elements of the definition are surprise (i.e., 
expectation failure), curiosity (i.e., partial but 
inconclusive knowledge), and ignorance (i.e., 
computation failure). Each of these is an important 
indication of inadequate knowledge often cited by people 
as the reason that they formulate a task.  

Surprise occurs when a program expects something 
different from what actually occurs, e.g., a robot 
“believes” it has picked up a wrench and then sees that it 
is still on the table. Such states are a kind of key node. 
Indeed, the position in Figure 3 is interesting because it 
violates the expectation that X will win. The program 
needs to learn knowledge that will correct its expectation 



 

for this state the next time. Rather than begin each contest 
from the initial state, a game-learning program could 
begin a practice session from such a key node. This would 
still not be exhaustive search, but a series of carefully 
organized “what if’s” that addressed problematic 
positions. 

Curiosity is spurred by partial but inconclusive data. 
Pell has considered incomplete experiential data about the 
efficacy of a move in Go on a 9 × 9 board (Pell, 1991). 
His program learned (gathered statistics on) the wins and 
losses associated with individual moves. It pursued 
(became curious about) moves that had a true mean of 
winning most likely to be better than a “fickleness 
parameter.” This amounts to a forced exploration of 
situations which are not clearly categorized by the feature 
set and the program’s playing experience. Against an 
external, hand-coded expert, Pell’s program with the 
parameter set to .5 performed better than a program that 
simply chose a move based on the historical data. In the 
context of key nodes, the primary problem with this 
approach is that it is directed toward move preference, 
rather than toward knowledge acquisition for expert 
behavior. Thus the learning it results in is reflexive and 
not particularly transparent. 

Moore has a program for a learning control system that 
attempts to concentrate experience in “regions of the 
control space that are relevant to the task at hand” 
(Moore, 1991). His program introduces some randomness 
into an otherwise carefully learned controller. He shows 
that random perturbations of a decision are better than 
random decisions, and that predictive analysis of random 
perturbation is even more effective. This last class of 
methods attempts to harness some regularity in the space 
to identify good decisions. The tacit assumption in that 
approach is that the value of an action is to some extent 
continuous in the space. Although that may be true for 
Moore’s toy car driving domain, it is not necessarily true 
for many others, including game playing. 

Hunter has taken ignorance as an impetus to plan to 
learn, primarily in the context of biological research 
(Hunter, 1989). His IVY was an opportunistic planner that 
generated knowledge goals. An IVY-inspired extension of 
the work described here would be to have a game-
learning program deliberately construct a state (or a set of 
states) from which to begin a practice session. For 
example, if a program encounters a new opening and 
loses to it, why should it have to wait until it encounters 
that opening again to seek an appropriate defense? The 
program could instead undertake a deliberate 
investigation of the opening, alternately playing each side, 
preferably against the same expert who introduced it. 
Here the key node (or nodes) may expose important 
strategic strengths or weaknesses. 

Another example of ignorance-driven search would be 
to seek a situation in which one decision-making principle 
(Advisor) would be inapplicable or always take precedent 
over another one. Rather than attempt to construct such 

states, the program could save their partial descriptions 
and alert itself for analysis when enough of them arise. 

 

7. Future Work 

There are many interesting issues associated with the 
theory of well-guided search as proposed here. The 
identification of key nodes is non-trivial; although Hoyle 
has some successful, domain-dependent detectors, 
“important” or “interesting” remains an elusive property. 
The distribution of key nodes, in particular their tendency 
to cluster, may vary with the domain. Perhaps 
combinations of key nodes, rather than individual ones, 
are what drives learning. Different learning strategies may 
perform better with different key nodes. Explicit labeling 
of key nodes may even suggest a new class of learning 
strategies that rely upon their significance as exemplars or 
counterexamples, or require clusters of key nodes as 
input. All of these are topics for future work. 

Hoyle already saves contests that it considers 
significant because they violate its expectations. Key 
nodes arise, as Hunter suggests, in the context of “good 
teaching cases.” Thus a natural way to turn a skilled 
learner into a skilled teacher would be to focus on these 
paradigmatic experiences. Where the program has 
learned, so may its students, particularly if the instructor 
and students have similar learning algorithms. 

8. Conclusions 

If the knowledge intrinsic to expert performance can only 
be extracted after all, or even most, of the nodes in an 
intractably large search space are visited, then prospects 
for a person to learn expertise there would be dim. The 
existence of human experts in spaces intractable for them 
argues that most of the important knowledge is located at 
a limited number of key nodes. Thus, visiting the key 
nodes should become a priority during learning in a very 
large space, regardless of the learning strategy used after 
arrival there.  

Hoyle is predicated on the idea that general expertise in 
a broad domain can be efficiently instantiated for a 
subdomain to develop specific expertise there, as when 
general game-playing knowledge is applied to a particular 
game. For Hoyle, this is discovery learning, triggered by 
its experience during play. Although Hoyle exploits non-
experiential knowledge (like the rules, the Advisors, and 
various knowledge representations), the program will 
learn nothing unless it plays. For human experts, too, 
experience is the catalyst for learning. Thus the focus on 
key nodes is appropriate. 

Deliberate direction to key nodes is well-guided search. 
Given the goal of learning to perform expertly in a large 
space, a theory for well-guided search begins with the 



 

following principles, supported by results described here:  
• There are key nodes where important knowledge may be 
extracted by the learner.  
• Key nodes appear in clusters.  
• Guidance to those key nodes is both appropriate and 
necessary.  
• Internal direction to key nodes is available from high-
quality decisions made by the learner.  
• External direction to key nodes can be managed by the 
trainer.  
• A mixture of external direction to key nodes and 
exploration in their vicinity is a productive way to exploit 
the clusters of key nodes in a large space, and to 
compensate for trainer error. 
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