
The Integration of Visual Cues into a Multiple-Advisor Game-Learning Program

Susan L. Epstein
Hunter College and
The Graduate School of
The City University of New York
695 Park Avenue
New York, NY 10021 USA
sehhc@cunyvm.cuny.edu

Jack Gelfand
Department of Psychology
Green Hall
Princeton University
Princeton, NJ 08544 USA
jjg@phoenix.princeton.edu

Joanna Lesniak
Pascal Abadie
The Graduate School of
The City University of New York
33 West 42nd Street
New York, NY 10036 USA
leshc@cunyvm.cuny.edu
abahc@cunyvm.cuny.edu

Abstract
Although people rely heavily on visual cues during problem
solving, it is non-trivial to integrate them into machine
learning. This paper reports on three general methods that
smoothly and naturally incorporate visual cues into a
hierarchical decision algorithm for game learning: two that
interpret predrawn straight lines on the board, and one that
uses an associative pattern database for pattern recognition.
They have been integrated into Hoyle, a game learning
program that makes decisions with a hierarchy of modules
representing individual rational and heuristic agents. One
method relies upon a bounded pattern language for visual
features, called BPL. As a direct result, the program now
learns to play more difficult games faster and better.

1. Introduction

Since the early work of Chase and Simon, researchers have
noted that expert chess players retain thousands of patterns
(Holding, 1985). There has been substantial additional work
on having a program learn specific patterns for chess
(Berliner, 1992; Campbell, 1988; Flann, 1992; Levinson &
Snyder, 1991). There is conflicting evidence as to whether
or not expert game players learn to play solely by as-
sociating appropriate moves with key patterns detected on
the board, but it is believed that pattern recognition is an
important part of a number of different strategies exercised
in expert play (Holding, 1985). Learned visual cues have
also been derived from goal states with a predicate calculus
representation (Fawcett & Utgoff, 1991; Yee, Saxena,
Utgoff & Barto, 1990).

This work integrates both the pattern recognition and the
explanatory heuristics that experts use into a program called
Hoyle that learns to play two-person, perfect information,
finite board games. Hoyle is based on a learning and prob-
lem-solving architecture for skills called FORR, predicated
upon multiple rationales for decision making (Epstein,
1992a). Hoyle learns to play in competition against a hand-
crafted, external expert program for each specific new
game. As in the schematic of Figure 1, whenever it is
Hoyle’s turn to move, a hierarchy of resource-limited
procedures called Advisors is provided with the current

game state, the legal moves, and any useful knowledge
(described below) already acquired about the game. There
are 23 heuristic Advisors in two tiers. The first tier
sequentially attempts to compute a decision based upon
correct knowledge, shallow search, and simple inference,
such as Victory’s “make a move that wins the contest
immediately.” If no single decision is forthcoming, then the
second tier collectively makes many less reliable
recommendations based upon narrow viewpoints, like
Material’s “maximize the number of your markers and min-
imize the number of your opponent’s.” Based on the Advi-
sors’ responses, a simple arithmetic vote selects a move.
Further details on Hoyle are available in (Epstein, 1992b).

A FORR-based program learns from its experience to
make better decisions based on acquired useful knowledge.
Useful knowledge is expected to be relevant to future play
and is probably correct in the full context of the game tree.
Each item of useful knowledge is associated with at least
one learning algorithm whose learning strategy (or
strategies, like explanation-based learning or induction) vary
with the item. The learning algorithms are highly selective

current state
acquired useful knowledge

legal moves

Victory

Panic

Enough
Rope

Absolute
decision?

Coverage PatsyShortcutMaterial

Tier 1:
Shallow search and
inference based on
perfect knowledge

Tier 2:
Heuristic
opinions

yes

no

make
move

…

Blackboard

Voting

Figure 1: How Hoyle makes decisions.

Advisor Tier Relevant Information Useful Knowledge Learning Strategy

Victory 1 Next move is a win Significant states Deduction

Panic 1 Null move heuristic detects a loss Significant states Deduction

Leery 2 Questionable move Play failure and proof failure Abduction

Pitchfork 2 Applicable fork Fork knowledge base Explanation-based learning

Open 2 Reliable opening Opening knowledge base Induction

Patsy 2 Pattern associated with win or loss Pattern knowledge base Associative pattern classifier

Table 1: Examples of Hoyle’s Advisors. These procedures are general rationales that reference one or more items of useful
knowledge, each supported by its own learning strategy.

about what they retain, may generalize, and may choose to
discard previously acquired knowledge. Individual Advisors
apply current useful knowledge to construct their
recommendations. Examples of Hoyle’s Advisors, along
with their useful knowledge and its associated learning
strategy, appear in Table 1.

There is an important distinction drawn in this paper
between thinking and seeing in game playing. By “thinking”
we mean the manipulation of symbolic data, such as “often-
used opening gambit;” by “seeing” we mean inference-free,
explanation-free reaction to visual stimuli. This acquired
“sight” is compiled expert knowledge. Hoyle “sees” through
visual cues integrated into its decision-making process with
three new Advisors in the second tier. Consistent with
Hoyle’s limited rationality, these Advisors react to lines and
clusters of markers without any human interpretation of
their significance and without reasoning. The three are a
step toward the construction of a system that both uses and
learns visual cues. They provide powerful performance
gains and promise a natural integration with learning. The
first two new Advisors rely on predrawn lines on the game
board; other notices patterns of markers. Although the
descriptions of these Advisors are presented in the context
of a single family of games, Section 5 extends the results to
Hoyle’s entire domain.

2. Using Predrawn Lines

Morris games have been played for centuries throughout the
world on boards similar to those in Figure 2. We use them
as examples here because their substantial search spaces
(ranging from 9 million to 776 billion states) provide
interesting challenges. For clarity, we distinguish carefully
here between a game (a board, markers, and a set of rules)
and a contest (one complete experience at a game, from an
initially empty board to some state where the rules terminate
play). We refer to the predrawn straight lines visible in
Figure 2 simply as lines. Any location where a marker may
legitimately rest is called a legal position or simply a
position. (In morris games, the intersection of two or more
lines is a position.) A position without a marker on it is said
to be empty. Although the program draws pictures like those
in Figure 2 for output, the internal, computational
representation of any game board is a linear list of position
values (e.g., black or white or blank) along with the identity
of the mover and whether the contest is in the placing or
sliding stage. The program also makes obvious representa-
tional transformations to and from a two-dimensional array
to normalize computations for symmetry, but the array has
no meaningful role in move selection. The game definition
includes a list of predrawn lines and the positions on them.

A morris game has two contestants, black and white, each
with an equal number of markers. A morris contest has two
stages: a placing stage, where initially the board is empty,

 (a) (b) (c)

Figure 2: Some morris boards with (a) 16 positions for five or six men’s morris, and 24 positions for (b) nine men’s morris
and for (c) 11 men’s morris. The darkened line segments represent the metric unit discussed in Section 4.

1211 13

10
8

654

1 2 3

7 9

161514

9

1211 13

10
8

654

1 2 3

7

161514

Figure 3: A five men’s morris state with white to move in
the placing or the sliding stage.

and the contestants alternate placing one of their markers on
any empty position, and a sliding stage, where a turn
consists of sliding one’s marker along any line drawn on the
game board to an immediately adjacent empty position. A
marker may not jump over another marker or be lifted from
the board during a slide. Three markers of the same color on
immediately adjacent positions on a line form a mill. Each
time a contestant constructs a mill, she captures (removes)
one of the other contestant’s markers that is not in a mill.
Only if the other contestant’s markers are all in mills, does
she capture one from a mill. (There are local variations that
permit capture only during the sliding stage, permit hopping
rather than sliding when a contestant is reduced to three near
a contest’s end, and so on.) The first contestant reduced to
two markers, or unable to move, loses.

2.1 The Coverage Algorithm Intuitively, a marker
offensively offers the potential to group others along lines it
lies on (juxtaposition) and to facilitate movement there
(mobility), while it defensively obstructs the opposition’s
ability to do the same. Intuitively:
• the coverage of a marker represents the positions over
which it has potential influence to cluster and move
• the cover of a contestant represents the combined
influence of her markers
• the cover difference between two contestants represents
those positions over which the first has potential influence
and the second does not.

More formally, when a marker is placed on any position
on a line, it is said to affect all the positions on that line, in-
cluding its own. The coverage of a position is the multiset
of all distinct positions that it affects. A multiset is a set in
which each element may appear more than once. An
element that appears more than once is preceded by a count
of the number of its occurrences. Thus {a, 2 ⋅ b} denotes a
set of one a and 2 b’s. A multiset can represent repeated as
well as singular influence, a helpful way to describe the
relative potential of positions.

A marker positioned where two lines meet induces two
copies of its position in its coverage. Thus the coverage of

Figure 4: A five men’s morris state with white to move in
the sliding stage.

the marker on 3 in Figure 3, for example, is {1, 2, 2 ⋅ 3, 10,
16}. A set of markers belonging to a single contestant P
produces a cover, a multiset denoted

CP = {c1 ⋅ v1, c2 ⋅ v2,…, cn ⋅ vn}
that lists the positions v1, v2,…, vn that P’s markers affect
and the number of times ci which each vi is so affected. CP
is the union of the coverages of the positions where P has
markers. In Figure 3, for example, the white cover is

CW ={2 ⋅ 1, 2, 3, 2 ⋅ 4, 5, 2 ⋅ 6, 2 ⋅ 7, 2 ⋅ 8, 9, 11, 13, 14}.
The cover difference C ~ D of
 C={c1 ⋅ v1, c2 ⋅ v2,… , cn ⋅ vn}
and D= {d1 ⋅ w1, d2 ⋅ w2,… , dm ⋅ wm}
is defined to be the multiset

C ~ D = {x ⋅ y | y = vi for some i = 1, 2,…, n; x ⋅ y ∈ C;
y ≠ wj for any j = 1, 2,…, m}.

Cover difference is not commutative. In Figure 3, for
example, CB ~ CW = {10, 12, 15, 2 ⋅ 16} while CW ~ CB =
∅.

The Coverage algorithm attempts to spread its markers
over as many positions as possible, particularly positions
already covered by the other contestant, and tries to do so on
positions that are multiply covered (i.e., ci > 1) by the other
contestant. Assume, without loss of generality, that it is
white’s turn to move. In the placing stage, Coverage rec-
ommends a move to every empty position ci ⋅ v i
∈ CB ~ CW where ci >1. If there are no such positions, it
recommends a move to every position in CB ~ CW where
ci = 1. If there are no such positions of either kind, it recom-
mends a move to every empty position where ci > 1. For
example, in Figure 3 with White to move in the placing
stage, CB ~ CW = {10, 12, 15, 2 ⋅ 16} so Coverage
recommends a move to 16.

In the sliding stage, Coverage recommends each legal
move that increases | vi |, the number of the mover’s distinct
covered positions. Let (p,q) denote a sliding move from
position p to position q. In Figure 4 the legal moves (1,7),
(9,6), (9,13), (10,3), (10,16), (14,7) change | vi | by -1, +2,
0,0, 0, -1, respectively, so Coverage recommends (9,6). In
the sliding stage, however, one’s cover can also decrease.
Therefore, Coverage also recommends each legal slide to a

1211 13

10
8

654

1 2 3

7 9

161514

8 97

17 1816

19 2120

22 2423

1 32

4 65

Figure 5: Another five men’s morris state with white to
move in the sliding stage.

position ci ⋅ vi ∈ CB where ci >1 but for which ci ≤1 in CW
In Figure 5, for example, where the legal moves are (2,3),
(6,9), (8,4), (8,7), (10,3), (10,9), (14,7), and (14,15), and

CB = {2 ⋅ 1, 2 ⋅ 2, 2 ⋅ 3, 2 ⋅ 4, 2 ⋅ 5, 6, 7, 8, 10, 3 ⋅ 11,
3 ⋅ 12, 2 ⋅ 13, 2 ⋅ 14, 2 ⋅ 15, 2 ⋅ 16}

CW = {2 ⋅ 1, 2 ⋅ 2, 2 ⋅ 3, 2 ⋅ 4, 2 ⋅ 5, 2 ⋅ 6, 2 ⋅ 7, 2 ⋅ 8, 2 ⋅ 9,
2 ⋅ 10, 11, 13, 2 ⋅ 14, 15, 2 ⋅ 16}

those positions are 11, 12, 13, 15, so Coverage can only
recommend (14,15).

2.2 The Shortcut algorithm The Shortcut algorithm
addresses long-range ability to move, and does so without
forward search into the game graph. We take the standard
definitions from graph theory for adjacency, path, and path
length. The algorithm for Shortcut begins by calculating the
non-zero path lengths between pairs of same-color markers,
including that from a marker to itself. For example, in
Figure 6 the shortest paths between the white markers on 2
and 20 are [2, 5, 6, 14, 21, 20], [2, 3, 15, 14, 21, 20], and [2,
5, 4, 11, 19, 20]. Next, the algorithm selects those pairs for
which the shortest non-zero length path between them is a
minimum. It then retains only those shortest paths that meet
the following criteria: every empty position lies on some
line without a marker of the opposite color, and at least one
position on the path lies at the intersection of two such lines.
All three paths identified for Figure 6 are retained because
of positions 5, 14, and 5, respectively. Shortcut recommends
a placing or sliding move to the middlemost point(s) of each
such path. In Figure 6, Shortcut therefore recommends
moves to the midpoints 6 and 14, 15 and 14, and 4 and 11.
This algorithm, styled as spreading activation, is very fast.

2.3 Results with Coverage and Shortcut When predrawn
board lines are taken as visual cues for juxtaposition and
mobility, Hoyle learns to play challenging games faster and
better. Prior to Coverage, Hoyle never played five men’s
morris very well. There are approximately 9
million possible board positions in five men’s morris with
an average branch factor of about 6. After 500 learning
contests Hoyle was still losing roughly 85% of the time.
Once Coverage was added,

Figure 6: A placing state in nine men’s morris, white to
move.

however, Hoyle’s decisions improved markedly. (Shortcut
was not part of this experiment.) Data averages results
across five runs. With Coverage, Hoyle played better faster;
after 32.75 contests it had learned well enough to draw 10 in
a row. The contests averaged 33 moves, so that the program
was exposed during learning to at most 1070.5 different
states, about .012% of the search space. From that
experience, the program was judged to simulate expert play
while explicitly retaining data on only about .006% of the
states in the game graph.

In post-learning testing, Hoyle proved to be a reliable, if
imperfect, expert at five men’s morris. When the program
played 20 additional contests against the model with
learning turned off, it lost 2.25 of them. Thus Hoyle after
learning is 88.75% reliable at five men’s morris, still a
strong performance after such limited experience and with
such limited retention in so large a search space. Additional
testing displayed increasing prowess against decreasingly
skilled opposition, an argument that expertise is indeed
being simulated.

There are approximately 20 million states in akidada
(referred to here as “six men’s morris”). Although it has a
substantially larger search space than five men’s morris,
akidada is played on the same board. Given the crowding
that results, the game is actually somewhat easier to learn.
With Coverage and Shortcut Hoyle learns to play expert-
level akidada in 14 contests on average.

With a search space about 16,000 times larger than that of
five men’s, nine men’s morris is a more strenuous test of
Hoyle’s ability to learn to play well. Because there is no
definition of expert outcome for this game, we chose simply
to let the program play 50 contests against the model.

Without Coverage and Shortcut, Hoyle lost every contest.
With them both, however, there was a dramatic
improvement. Inspection showed that the program played as
well as a human expert in the placing stage of the last 10
contests. During those 50 contests, which averaged 60
moves each, it lost 24 times, drew 17 times, and won nine
times. (Some minor corrections to the model are now
underway.) The first of those wins was on the 27th contest,

? ? #
#
#

? # #
?
#

?
?
#

? # ?
#
#

? # #
#
?

?
#
?

? ? ?
#
#

? # #
?
?

?
?
? #

Figure 7. A template set used by the original version of the pattern classifier for a 3 × 3 grid.

and four of them were in the last six contests, suggesting
that Hoyle was learning to play better. With the addition of
less than 200 lines of game-independent code for the two
new visually-cued Advisors, Hoyle was able to learn to
outperform expert system code that was more than 11 times
its length and restricted to a single game. The morris family
includes versions for 6, 9, 11, and 12 men, with different
predrawn lines. At this writing, Hoyle is learning them all
rapidly.

It should be noted that neither Coverage nor Shortcut ap-
plies useful knowledge; instead, they direct the learning
program’s experience to the parts of the game graph where
the key information lies, highly-selective knowledge that
distinguishes an expert from a novice (Epstein, 1993; Erics-
son & Smith, 1991). If this knowledge is concisely located,
as it appears to be in the morris games, and the learner can
harness it, as Hoyle’s learning algorithms do, the program
learns to play quickly and well. As detailed here, this gen-
eral improvement comes at a mere fraction of the develop-
ment time for a traditional game-specific expert system.

3. Learning Patterns

One of the authors is an expert game-player. Initially he was
asked to learn one new game every week. so that we might
develop, for each new game, a perfect player algorithm to
serve as Hoyle’s opposition during learning. The games we
gave him were progressively more difficult. It is a habit in
our laboratory to sketch the game board on a piece of paper
and then use coins to represent the markers. One week,
when he arrived to report his progress, the game “board”
was so well used that the coins had worn translucent paths
on the paper. A protocol follows.

I played this game for a very long time. At first I
played it with a friend, but then, after a few hours, he
tired of it, so I played it by myself. I played it a long,
long time, for many hours. After a while I began to
notice that patterns appeared. [When queried, he
described these as small clusters of same-colored
markers forming a V-like or L-like shape.] After an
even longer time, I began to notice that, once these
patterns appeared, something happened. I would win,
maybe, or lose. Maybe not right away, but after a few
moves. Then I figured out why those patterns made
this happen, and here is the algorithm.

It was not the (correct) algorithm we were now interested
in, but this remarkable description of learning. An

accomplished game player was confronted with a task in
which he could not bring his usual expertise to bear. As he
persisted, some mental process collected visual cues for
him, a process he had not consciously initiated. But once
that process had results, and he noticed them, he could use
those visual cues to play well and even to calculate why
those visual cues were correct. If it worked for our expert, it
could work for a machine.

Of course, game learning with pattern recognition is not
new. De Groot proposed, and Chase and Simon refined, a
recognition-association model to explain chess skill (Chase
& Simon, 1973; de Groot, 1965). Despite a thoughtful
refutation of their recognition-association theory, the idea of
patterns as chunks in experts’ memories has persisted
(Holding, 1985). MACH integrated chunks identified by
human master chess players from grandmaster games, into
the evaluation function of Phoenix (George & Schaeffer,
1991). With this addition, Phoenix made better moves but
no longer played in real time. Levinson modified chunks to
include empty squares and threat-defense relations
(Levinson, et al., 1991). His chess-learning program,
Morph, learns and stores about 5000 patterns that it uses to
play chess.

The novelty of the approach described in this section is
that it integrates a real-time, low-level pattern learner into a
high-level reasoning framework. Our premise is that visual
patterns are not a primary reasoning device (an argument
Holding supports with substantial empirical evidence) but
that they are an important fallback device, just as they were
in the protocol.

Hoyle, as a limitedly rational program, deliberately avoids
exhaustive search and complete storage of its experience.
Therefore when Hoyle learns patterns, it retains only a small
number of those encountered during play, ones with strong
empirical evidence of their significance. The program uses a
heuristically-organized, fixed-size database to associate
small geometrical arrangements of markers on the board
with winning and losing. The associative pattern database is
a new item of useful knowledge.

The pattern database is constructed from templates by the
pattern classifier, an associated learning algorithm. A
template is a partial description of the location of markers
on the board. A “?” in a template represents an X, an O, or
an empty space; “#” is the don’t care symbol. A sample
template set for a 3 × 3 grid is shown in Figure 7. The
middlemost template, for example, could be instantiated as
“X’s on the endpoints of some diagonal.” The templates in
Figure 7 were chosen from experience; more general
methods for their construction appear in the next section.

At the end of each contest, the pattern classifier matches
every state against a set of templates, adjusting for all the
symmetries of the two-dimensional plane. A pattern is an
instantiation of a template, e.g., X’s in the corners of a
diagonal. The pattern database consists of those patterns
which have appeared at least twice during play. Most states
match one or more templates several ways and therefore
make multiple contributions to the pattern database. Each
pattern also records pattern strengths: the number of
contests in which it participated in a win, a loss, and a draw.

It is important to forget in the pattern database, primarily
to discount novice-like play during the early learning of a
game. There will be winning contests, and patterns
associated with them, that were due to the learner’s early
errors. We have therefore implemented two ways to forget
in the pattern database. First, when the database is full and a
new entry should be made, the least recently used entry is
eliminated. Second, at the end of every contest, the pattern
strengths are multiplied by 0.9. Thus a pattern is a gener-
alization over a class of states: those that have recently
occurred with some frequency and contain simple
configurations of markers. The pattern classifier forms cate-
gories (winning, drawing or losing) based on observed game
states and associates responses to the observed states by
learning during play.

Patsy is an Advisor that ranks legal next moves based on
their fit with the pattern database. Patsy looks at the set of
possible next states resulting from the current legal moves.
Each next state is compared with the pattern level of the
database. A matched winning pattern awards the state a +2,
a matched drawing pattern a +1, and a matched losing
pattern a -2. A state’s score is the total of its pattern values
divided by the number of patterns in the cache. Patsy
recommends the move whose next state has the highest such
score. Ties were broken by random selection.

To show Patsy’s contribution to game learning, the
Advisor was tested first with a severely pared-down version
of Hoyle that had only two of the original Advisors, Victory
and Panic, plus Patsy. The pattern store was limited to 30.

Victory + Panic + Patsy

Victory + Panic

Number of Contests

50

45

40

35

30

25

15

20

10

5

0
0 5 10 15 20 25 30 35 40 45 50

Figure 8. The performance of a pared-down version of

Hoyle, with and without Patsy.
Three 50-contest tournaments between a perfect tic-tac-toe
player and this program were run to assess its performance.
The perfect player was a look-up table of correct moves.
The average cumulative number of wins and draws for the
learning program is plotted against contest number in Figure
8. The graph compares the pared-down version’s average
performance, with and without Patsy, against the perfect
contestant’s. Clearly the pared-down version performed
consistently better with Patsy.

This experiment showed that a pattern recognition
component could be a smoothly integrated, contributing
element of a game playing system. A simple game was
chosen to facilitate debugging the pattern classifier and
measuring performance against an absolute standard. More
than two Advisors would have obscured the contribution of
the pattern-associative component.

Patsy was then tested, again with the templates of Figure
7, in the full version of Hoyle on nine different games
defined on a 3 × 3 grid (e.g., lose tic-tac-toe, les pendus,
marelle). Once again the pattern database was limited to 30.
There was no degradation of prior performance, i.e., the
games that Hoyle had been able to learn to play expertly
without Patsy it could also learn to play just as quickly and
well with Patsy. In addition, statistics indicated that Hoyle
frequently judged Patsy among the most significant of its
Advisors for learning such a game, i.e., an Advisor whose
recommendations agreed with expert play more often than
those of most Advisors. The extension of Patsy to more
difficult games, where it is expected to make an important
contribution, appears in the next section.

4. Identifying Board-Specific Templates

Although Patsy does eventually contribute to good move
choices, its original templates were for a specific game
board (a 3 × 3 grid) and predetermined by people. Our new
version of Patsy has a template generator that is applied to
deduce templates from the topology of the board.

Hoyle now calculates the templates for Patsy when it
encounters a new game. These templates are detected as
instantiations of a feature language with a visual bias called
BPL (Bounded Pattern Language). Let the version of the
game board drawn for output, as in Figure 2, be called the
picture. The program constructs a metric graph whose
nodes are the legal positions for markers, e.g., in morris
games the intersection points of predrawn lines. There is an
edge between a pair of nodes in the metric graph if and only
if it is sometimes legal to move a marker in one turn from
one of the corresponding positions to the other, e.g., in
morris games the metric graph’s edges correspond to
predrawn line segments. Each edge is labeled with the
Euclidean distance between its two positions that is
measurable from the picture. The metric graph for five
men’s morris appears in Figure 9, with letters to identify the

nodes. Now Hoyle computes the metric unit for the game
board, the smallest label in the metric graph. (Each game

1

2

1

2

1

1

1

1

1

1

1

1

2 2

2 2

1

1

22

A B C

D E F

G H J K

L M N

QP
R

Figure 9: The metric graph for five men’s morris.

board in Figure 2 has a single bold line that represents an
instance of its metric unit.) Next the program finds
instantiations of the BPL expressions. A BPL expression is
a class of shapes with ?’s in its required positions and #’s in
its irrelevant (“don’t care”) ones.

There are five valid expressions in BPL: straight lines,
squares, diagonals, L’s and triangles (the equivalent of the
V’s in the protocol). Each is defined below; examples list
the vertices in Figure 9 that are identified with ?’s to form
the appropriate shape. BPL takes a single field of view
parameter that determines the area over which a template
may extend. Field of view has been set to 4 in the following
definitions. The valid BPL expressions are
• A BPL straight line is a predrawn straight line segment in
the picture whose endpoints are no more than 4 metric units
apart. A BPL straight line may include more than two posi-
tions. The endpoints, and no other points, are marked by a ?.
• A BPL square, with any orientation, is a square whose
vertices are positions and whose edges are predrawn straight
line segments in the picture. A BPL square labels its 4
vertices, and no other points, with ?’s. Every pair of vertices
of a BPL square are no more than 4 metric units apart.
• Given a square whose vertices are positions and whose
edges may or may not be predrawn in the picture, a BPL
diagonal is any contiguous segment on a diagonal of such a
square, such that the endpoints of the segment are no more
than 4 metric units apart. A BPL diagonal may include more
than two positions. The endpoints, and no other points, are
marked by a ?.
• A BPL L is a pair of perpendicular line segments that form
a single right angle in the picture. The three endpoints of the
line segments must be positions, and every pair of such
positions must be no more than 4 metric units apart. The
two “legs” of a BPL L may be different lengths. A BPL L
may include more than three positions. The three endpoints
of the line segments, and no other points, are marked by a ?.
• A BPL triangle is a triangle whose vertices are positions,
all three of whose edges are predrawn in the picture, and
along which every pair of positions is no more than 4 metric
units apart. The sides of a BPL triangle may be different

lengths. The three vertices of a BPL triangle, and no other
points, are marked by a ?.

 A board-specific template is an instantiation of a BPL
expression. The concern is, of course, that there not be too
many board-specific templates, nor too few. Too many
templates could overwhelm a learner, particularly one with a
small pattern cache. Too few templates could overlook
important patterns. Patsy must have enough time to test for
patterns with all its templates in the few seconds of
computing time allotted to it. The parameterized field of
view is a heuristic that must balance power with efficiency.
For now we set field of view to 4, because it seems to strike
that balance.

For the five men’s morris board with field of view 4,
Hoyle generates only 13 templates when it applies BPL to
the board in Figure 9: straight lines AB, AC, DE, BE, and
DF; the square DFNL; the diagonal DN; and the L’s BED,
EDH, ABE, BAG, EDL, and FDL. (Recall that templates
are unique up to the symmetries of the two-dimensional
plane, so that, for example, DN and FL are considered the
same template.) We have prototyped the instantiation of
BPL for several game boards and found that the number of
templates continues to be quite reasonable. (For nine men’s
morris, it is 18.)

It is important to understand that board-specific templates
are calculated only once, when Hoyle first encounters the
game board. Once the templates are identified, then the
patterns that are instantiations of them are learned at the
same time as any other useful knowledge. A pattern is an
instantiation of a template in one of four ways: all blanks,
all markers of the first contestant, all markers of the second
contestant, or all occupied by a specific configuration of
markers. The response associated with a pattern’s presence
is tabulated as a win for the first contestant, a win for the
second contestant, or a draw.

The new version of Patsy uses the board-specific
templates much the way the old version used the templates
in Figure 7, but with several important modifications:
• Ties are represented by recommending every move to a
highest-scoring state.
• Only two states per contest are used to generate the
patterns, the state in which each contestant made its last
non-forced move.
• Only patterns whose predictions are perfectly reliable are
retained. If a pattern enters the pattern database and its
response changes, it is discarded. This insistence on flawless
correlation expects that contestants eventually play very
well, else Hoyle will repeatedly discard a pattern that should
be learned but appears in a “misplayed” contest.
• Pattern matching is hierarchical, i.e., if a pattern is
matched to the current state, no attempt is made to match
any of its subpatterns. For example, in Figure 9, DFNL is a
BPL square. If an instantiation of DFNL were found with all
white markers, then the white L’s of the form FDL would be
ignored, since they are subpatterns of the square. Hierarchi-
cal pattern matching was essential to Hoyle’s ability to learn
the game; recommendations based on subpatterns as well as

patterns overemphasized the importance of a single large pattern, and adversely affected decision making.

draw draw
draw

draw draw
draw

draw draw

draw

black wins

black winswhite wins

Figure 10: Hoyle’s learned patterns for five men’s morris, with their responses.

The new version of Patsy is a more sophisticated Advisor,
and replaces the old one. At this writing, the new version of
Patsy has been tested for five men’s morris. Hoyle com-
puted the 13 templates and applied them to learn 12 pat-
terns, shown with their responses in Figure 10. The pairing
of states in the first and second lines of Figure 10 is deliber-
ate. Except for the rightmost pair, each pattern in the second
row may be derived from the pattern directly above it by in-
terchanging the colors of the markers and the result. The ad-
vantage that black seems to derive in the last pair may be re-
lated to the fact that black moves first in this game.

Patsy is no less fallible than any other second tier
Advisor. Although the patterns of Figure 10 have arisen in
every run, they are not perfect. One can, for example,
construct a game state including a “winning” pattern from
which the “winner” must inevitably lose the contest.

We have run preliminary tests on the full version of Hoyle
with and without Patsy. The program played five men’s
morris against the external expert program until Hoyle could
draw 10 consecutive contests. Then we turned learning off
and tested the program against the expert program and three
other programs of gradually decreasing ability. (See
(Epstein, 1993) for a full description of this process.) Hoyle
with Patsy learned to play well slightly faster, and
performed more reliably after training than Hoyle without
Patsy. Further testing is required to demonstrate the
statistical significance.

5. Discussion

All three new second-tier Advisors arose in the context of
the class called morris games, which includes versions for
up to 12 men on boards of various designs, like those in
Figure 2. To confirm that the new Advisors are game-inde-
pendent., we have tested Coverage and Shortcut on all the

games Hoyle had previously learned, we have tested the ear-
lier version of Patsy on those to which the Figure 7 tem-
plates are applicable, and we have tested the new version of
Patsy on three games played on different boards. The three
new Advisors in no way diminish the program’s ability to
learn and play the broad variety of games at which it had
previously excelled (Epstein, 1992b). In many of the games
all three were applicable and even gave excellent advice, al-
though there was no dramatic improvement in learning time.
(Recall that Hoyle already was able to learn these games
quite efficiently, usually in less than 100 contests.) Heuristic
Advisors are needed most in the middlegame, however,
where the large number of possible moves precludes search.

It has been our experience with more complex games,
where one would have many Advisors, that openings are
typically memorized, and that the endgame can be well-
played with Advisors that reason about known losing and
winning positions. Inspection reveals that Shortcut and
Coverage contribute to decisions only in the middlegame,
while Patsy works on the opening and middlegame. All
three new Advisors prove to filter the middlegame
alternatives to a few likely moves, ones that might then
benefit from limited search.

Current work includes extensions to other games. We are
now in the expert development cycle for other members of
the morris family: trique, nerenchi, murabaraba, and 11
men’s morris. We build an expert model, Hoyle learns to
defeat it, we observe and correct the model’s flaws, and then
we challenge Hoyle with the new version.

Unlike Morph’s patterns, Hoyle’s are purely visual, with-
out an underlying rationale (Levinson, et al., 1991). We plan
next to test a variety of off-the-shelf learning strategies (e.g.,
decision trees, neural nets) to learn pattern strengths for use
with the new version of Patsy. Future work also includes
fining the field of view value automatically, and augmenting
BPL so that it includes bounded regions in its language.

 (a) (b)

Figure 11: A pair of game boards for nine men’s morris.

6. Conclusions

Hoyle is an ongoing exploration of how general domain
expertise, like knowledge about how to play games, can be
applied to develop expertise rapidly in a specific subdomain,
like a particular game. The program is progressing through a
sequence of games ordered by human-estimated degree of
difficulty. At watersheds where knowledge must be added
to continue Hoyle’s progress through the list, it is important
to assess what was missing, and why it was relevant. Until
the morris games, there was little need for vision, except for
economy afforded by symmetry.

Predrawn lines on a game board are important, readily
accessible regularities that support better playing decisions.
People find it far simpler, for example, to learn to play on a
board with lines, like the one in Figure 11(a), than on a
board that only has small dots to mark legal positions, like
the one in Figure 11(b). The lines, we believe, serve as
heuristics to formulate plans and guide search.

Historical pattern data is demonstrably helpful in distin-
guishing good middlegame positions from mediocre ones.
The work on Patsy differs from other’s work in that it does
not address the strategic rationale behind the patterns, only
their presence (Levinson, et al., 1991).

The brevity of the code required to capitalize on these vi-
sual cues for a variety of problems argues for the limitedly
rational perspective of the FORR architecture. FORR facili-
tates the transparent introduction of new, good reasons for
making decisions. Testing a new Advisor is a simple task.

Finally, the improvement Shortcut, Coverage, and Patsy
have on skill development argues for the significance of
visual representations as an integral part of decision making.
Each of them demonstrably improves Hoyle’s ability to
learn to play well.

Acknowledgments

This presentation was improved by conversations with Ron
Kinchla and Stan Matwin, and by comments from several
anonymous referees. J. G. was partially supported by a grant
from the James S. McDonnell Foundation to the Human

Information Processing Group at Princeton University. S. L.
E. was partially supported by NSF Grant 9001936.

References

Berlin
er, H. (1992). Pattern Recognition Interacting with
Search (CMU-CS-92-211). Carnegie Mellon University.

Campbell, M. S. (1988). Chunking as an Abstraction
Mechanism, Ph.D. thesis. Carnegie Mellon.

Chase, W. G. & Simon, H. A. (1973). The Mind’s Eye in
Chess. In W. G. Chase (Ed.), Visual Information
Processing (pp. 215-281). New York: Academic Press.

de Groot, A. (1965). Thought and Choice in Chess. The
Hague: Mouton.

Epstein, S. L. (1992a). Capitalizing on Conflict: The FORR
Architecture. In Proceedings of the Workshop on
Computational Architectures for Supporting Machine
Learning and Knowledge Acquisition, Ninth International
Machine Learning Conference Aberdeen, Scotland.

Epstein, S. L. (1992b). Prior Knowledge Strengthens
Learning to Control Search in Weak Theory Domains.
International Journal of Intelligent Systems, 7, 547-586.

Epstein, S. L. (1993). Toward a Theory of Well-Guided
Search. In Proceedings of the AAAI Fall Symposium on
Games: Planning and Learning Raleigh.

Ericsson, K. A. & Smith, J. (1991). Prospects and Limits of
the Empirical Study of Expertise: An Introduction. In K.
A. Ericsson, & J. Smith (Ed.), Toward a General Theory
of Expertise - Prospects and Limits (pp. 1-38).
Cambridge: Cambridge University Press.

Fawcett, T. E. & Utgoff, P. E. (1991). A Hybrid Method for
Feature Generation. In Proceedings of the Eighth
International Workshop on Machine Learning (pp. 137-
141). Evanston: Morgan Kaufmann.

Flann, N. S. (1992). Correct Abstraction in Counter-
Planning: A Knowledge Compilation Approach, Ph.D.
thesis. Oregon State University.

George & Schaeffer. (1991). Chunking for Experience. In
D. F. Beal (Ed.), Advances in Computer Chess VI (pp.
133-147). London: Ellis Horwood.

Holding, D. (1985). The Psychology of Chess Skill.
Hillsdale, NJ: Lawrence Erlbaum.

Levinson, R. & Snyder, R. (1991). Adaptive Pattern-
Oriented Chess. In Proceedings of the Eighth
International Machine Learning Workshop (pp. 85-89).
Morgan Kaufmann.

Yee, R. C., Saxena, S., Utgoff, P. E. & Barto, A. G. (1990).
Explaining Temporal Differences to Create Useful
Concepts for Evaluating States. In Proceedings of the
Eighth National Conference on Artificial Intelligence (pp.
882-888). Boston, MA: AAAI Press.

