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Abstract 
Although people rely heavily on visual cues during problem 
solving, it is non-trivial to integrate them into machine 
learning. This paper reports on three general methods that 
smoothly and naturally incorporate visual cues into a 
hierarchical decision algorithm for game learning: two that 
interpret predrawn straight lines on the board, and one that 
uses an associative pattern database for pattern recognition. 
They have been integrated into Hoyle, a game learning 
program that makes decisions with a hierarchy of modules 
representing individual rational and heuristic agents. One 
method relies upon a bounded pattern language for visual 
features, called BPL. As a direct result, the program now 
learns to play more difficult games faster and better. 

1. Introduction 

Since the early work of Chase and Simon, researchers have 
noted that expert chess players retain thousands of patterns 
(Holding, 1985). There has been substantial additional work 
on having a program learn specific patterns for chess 
(Berliner, 1992; Campbell, 1988; Flann, 1992; Levinson & 
Snyder, 1991). There is conflicting evidence as to whether 
or not expert game players learn to play solely by as-
sociating appropriate moves with key patterns detected on 
the board, but it is believed that pattern recognition is an 
important part of a number of different strategies exercised 
in expert play (Holding, 1985). Learned visual cues have 
also been derived from goal states with a predicate calculus 
representation (Fawcett & Utgoff, 1991; Yee, Saxena, 
Utgoff & Barto, 1990).  

This work integrates both the pattern recognition and the 
explanatory heuristics that experts use into a program called 
Hoyle that learns to play two-person, perfect information, 
finite board games. Hoyle is based on a learning and prob-
lem-solving architecture for skills called FORR, predicated 
upon multiple rationales for decision making (Epstein, 
1992a). Hoyle learns to play in competition against a hand-
crafted, external expert program for each specific new 
game. As in the schematic of Figure 1, whenever it is 
Hoyle’s turn to move, a hierarchy of resource-limited 
procedures called Advisors is provided with the current 

game state, the legal moves, and any useful knowledge 
(described below) already acquired about the game. There 
are 23 heuristic Advisors in two tiers. The first tier 
sequentially attempts to compute a decision based upon 
correct knowledge, shallow search, and simple inference, 
such as Victory’s “make a move that wins the contest 
immediately.” If no single decision is forthcoming, then the 
second tier collectively makes many less reliable 
recommendations based upon narrow viewpoints, like 
Material’s “maximize the number of your markers and min-
imize the number of your opponent’s.” Based on the Advi-
sors’ responses, a simple arithmetic vote selects a move. 
Further details on Hoyle are available in (Epstein, 1992b).  

A FORR-based program learns from its experience to 
make better decisions based on acquired useful knowledge. 
Useful knowledge is expected to be relevant to future play 
and is probably correct in the full context of the game tree. 
Each item of useful knowledge is associated with at least 
one learning algorithm whose learning strategy (or 
strategies, like explanation-based learning or induction) vary 
with the item. The learning algorithms are highly selective  
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Figure 1: How Hoyle makes decisions. 



 

 

Advisor Tier Relevant Information Useful Knowledge Learning Strategy 

Victory 1 Next move is a win Significant states Deduction 

Panic 1 Null move heuristic detects a loss Significant states Deduction 

Leery 2 Questionable move Play failure and proof failure Abduction 

Pitchfork 2 Applicable fork Fork knowledge base Explanation-based learning 

Open 2 Reliable opening Opening knowledge base Induction 

Patsy 2 Pattern associated with win or loss Pattern knowledge base Associative pattern classifier 

Table 1: Examples of Hoyle’s Advisors. These procedures are general rationales that reference one or more items of useful 
knowledge, each supported by its own learning strategy.

about what they retain, may generalize, and may choose to 
discard previously acquired knowledge. Individual Advisors 
apply current useful knowledge to construct their 
recommendations. Examples of Hoyle’s Advisors, along 
with their useful knowledge and its associated learning 
strategy, appear in Table 1.  

There is an important distinction drawn in this paper 
between thinking and seeing in game playing. By “thinking” 
we mean the manipulation of symbolic data, such as “often-
used opening gambit;” by “seeing” we mean inference-free, 
explanation-free reaction to visual stimuli. This acquired 
“sight” is compiled expert knowledge. Hoyle “sees” through 
visual cues integrated into its decision-making process with 
three new Advisors in the second tier. Consistent with 
Hoyle’s limited rationality, these Advisors react to lines and 
clusters of markers without any human interpretation of 
their significance and without reasoning. The three are a 
step toward the construction of a system that both uses and 
learns visual cues. They provide powerful performance 
gains and promise a natural integration with learning. The 
first two new Advisors rely on predrawn lines on the game 
board; other notices patterns of markers. Although the 
descriptions of these Advisors are presented in the context 
of a single family of games, Section 5 extends the results to 
Hoyle’s entire domain. 

2. Using Predrawn Lines 

Morris games have been played for centuries throughout the 
world on boards similar to those in Figure 2. We use them 
as examples here because their substantial search spaces 
(ranging from 9 million to 776 billion states) provide 
interesting challenges. For clarity, we distinguish carefully 
here between a game (a board, markers, and a set of rules) 
and a contest (one complete experience at a game, from an 
initially empty board to some state where the rules terminate 
play). We refer to the predrawn straight lines visible in 
Figure 2 simply as lines. Any location where a marker may 
legitimately rest is called a legal position or simply a 
position. (In morris games, the intersection of two or more 
lines is a position.) A position without a marker on it is said 
to be empty. Although the program draws pictures like those 
in Figure 2 for output, the internal, computational 
representation of any game board is a linear list of position 
values (e.g., black or white or blank) along with the identity 
of the mover and whether the contest is in the placing or 
sliding stage. The program also makes obvious representa-
tional transformations to and from a two-dimensional array 
to normalize computations for symmetry, but the array has 
no meaningful role in move selection. The game definition 
includes a list of predrawn lines and the positions on them.  

A morris game has two contestants, black and white, each 
with an equal number of markers. A morris contest has two 
stages: a placing stage, where initially the board is empty,  

  

       
 (a) (b)  (c) 

Figure 2: Some morris boards with (a) 16 positions for five or six men’s morris, and 24 positions for (b) nine men’s morris 
and for (c) 11 men’s morris. The darkened line segments represent the metric unit discussed in Section 4. 
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Figure 3: A five men’s morris state with white to move in 
the placing or the sliding stage. 

and the contestants alternate placing one of their markers on 
any empty position, and a sliding stage, where a turn 
consists of sliding one’s marker along any line drawn on the 
game board to an immediately adjacent empty position. A 
marker may not jump over another marker or be lifted from 
the board during a slide. Three markers of the same color on 
immediately adjacent positions on a line form a mill. Each 
time a contestant constructs a mill, she captures (removes) 
one of the other contestant’s markers that is not in a mill. 
Only if the other contestant’s markers are all in mills, does 
she capture one from a mill. (There are local variations that 
permit capture only during the sliding stage, permit hopping 
rather than sliding when a contestant is reduced to three near 
a contest’s end, and so on.) The first contestant reduced to 
two markers, or unable to move, loses.  

 
2.1 The Coverage Algorithm Intuitively, a marker 
offensively offers the potential to group others along lines it 
lies on (juxtaposition) and to facilitate movement there 
(mobility), while it defensively obstructs the opposition’s 
ability to do the same. Intuitively: 
• the coverage of a marker represents the positions over 
which it has potential influence to cluster and move 
• the cover of a contestant represents the combined 
influence of her markers 
• the cover difference between two contestants represents 
those positions over which the first has potential influence 
and the second does not. 

More formally, when a marker is placed on any position 
on a line, it is said to affect all the positions on that line, in-
cluding its own. The coverage of a position is the multiset 
of all distinct positions that it affects. A multiset is a set in 
which each element may appear more than once. An 
element that appears more than once is preceded by a count 
of the number of its occurrences. Thus {a, 2 ⋅ b} denotes a 
set of one a and 2 b’s. A multiset can represent repeated as 
well as singular influence, a helpful way to describe the 
relative potential of positions. 

A marker positioned where two lines meet induces two 
copies of its position in its coverage. Thus the coverage of  

Figure 4: A five men’s morris state with white to move in 
the sliding stage. 

the marker on 3 in Figure 3, for example, is {1, 2, 2 ⋅ 3, 10, 
16}. A set of markers belonging to a single contestant P 
produces a cover, a multiset denoted  

CP = {c1 ⋅ v1, c2 ⋅ v2,…, cn ⋅ vn} 
that lists the positions v1, v2,…, vn that P’s markers affect 
and the number of times ci which each vi is so affected. CP 
is the union of the coverages of the positions where P has 
markers. In Figure 3, for example, the white cover is  

CW ={2 ⋅ 1, 2, 3, 2 ⋅ 4, 5, 2 ⋅ 6, 2 ⋅ 7, 2 ⋅ 8, 9, 11, 13, 14}. 
The cover difference C ~ D of   
 C={c1 ⋅ v1, c2 ⋅ v2,… , cn ⋅ vn}  
and  D= {d1 ⋅ w1, d2 ⋅ w2,… , dm ⋅ wm}  
is defined to be the multiset  

C ~ D = {x ⋅  y | y = vi for some i = 1, 2,…, n; x ⋅ y ∈ C; 
y ≠ wj for any j = 1, 2,…, m}.  

Cover difference is not commutative. In Figure 3, for 
example, CB ~ CW = {10, 12, 15, 2 ⋅ 16} while CW ~ CB = 
∅. 

The Coverage algorithm attempts to spread its markers 
over as many positions as possible, particularly positions 
already covered by the other contestant, and tries to do so on 
positions that are multiply covered (i.e., ci > 1) by the other 
contestant. Assume, without loss of generality, that it is 
white’s turn to move. In the placing stage, Coverage rec-
ommends a move to every empty position ci ⋅ v i 
∈ CB ~ CW where ci >1. If there are no such positions, it 
recommends a move to every position in CB ~ CW where 
ci = 1. If there are no such positions of either kind, it recom-
mends a move to every empty position where ci > 1. For 
example, in Figure 3 with White to move in the placing 
stage, CB ~ CW = {10, 12, 15, 2 ⋅ 16} so Coverage 
recommends a move to 16.  

In the sliding stage, Coverage recommends each legal 
move that increases | vi |, the number of the mover’s distinct 
covered positions. Let (p,q) denote a sliding move from 
position p to position q. In Figure 4 the legal moves (1,7), 
(9,6), (9,13), (10,3), (10,16), (14,7) change | vi | by -1, +2, 
0,0, 0, -1, respectively, so Coverage recommends (9,6). In 
the sliding stage, however, one’s cover can also decrease. 
Therefore, Coverage also recommends each legal slide to a  
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Figure 5: Another five men’s morris state with white to 
move in the sliding stage. 

position ci ⋅ vi ∈ CB where ci >1 but for which ci ≤1 in CW 
In Figure 5, for example, where the legal moves are (2,3), 
(6,9), (8,4), (8,7), (10,3), (10,9), (14,7), and (14,15), and 

CB = {2 ⋅ 1, 2 ⋅ 2, 2 ⋅ 3, 2 ⋅ 4, 2 ⋅ 5, 6, 7, 8, 10, 3 ⋅ 11, 
3 ⋅ 12, 2 ⋅ 13, 2 ⋅ 14, 2 ⋅ 15, 2 ⋅ 16} 

CW = {2 ⋅ 1, 2 ⋅ 2, 2 ⋅ 3, 2 ⋅ 4, 2 ⋅ 5, 2 ⋅ 6, 2 ⋅ 7, 2 ⋅ 8, 2 ⋅ 9, 
2 ⋅ 10, 11, 13, 2 ⋅ 14, 15, 2 ⋅ 16} 

those positions are 11, 12, 13, 15, so Coverage can only 
recommend (14,15).  

 
2.2 The Shortcut algorithm The Shortcut algorithm 
addresses long-range ability to move, and does so without 
forward search into the game graph. We take the standard 
definitions from graph theory for adjacency, path, and path 
length. The algorithm for Shortcut begins by calculating the 
non-zero path lengths between pairs of same-color markers, 
including that from a marker to itself. For example, in 
Figure 6 the shortest paths between the white markers on 2 
and 20 are [2, 5, 6, 14, 21, 20], [2, 3, 15, 14, 21, 20], and [2, 
5, 4, 11, 19, 20]. Next, the algorithm selects those pairs for 
which the shortest non-zero length path between them is a 
minimum. It then retains only those shortest paths that meet 
the following criteria: every empty position lies on some 
line without a marker of the opposite color, and at least one 
position on the path lies at the intersection of two such lines. 
All three paths identified for Figure 6 are retained because 
of positions 5, 14, and 5, respectively. Shortcut recommends 
a placing or sliding move to the middlemost point(s) of each 
such path. In Figure 6, Shortcut therefore recommends 
moves to the midpoints 6 and 14, 15 and 14, and 4 and 11. 
This algorithm, styled as spreading activation, is very fast. 
 
2.3 Results with Coverage and Shortcut When predrawn 
board lines are taken as visual cues for juxtaposition and 
mobility, Hoyle learns to play challenging games faster and 
better. Prior to Coverage, Hoyle never played five men’s 
morris very well. There are approximately 9 
million possible board positions in five men’s morris with 
an average branch factor of about 6. After 500 learning 
contests Hoyle was still losing roughly 85% of the time. 
Once Coverage was added,  

Figure 6: A placing state in nine men’s morris, white to 
move. 

 
however, Hoyle’s decisions improved markedly. (Shortcut 
was not part of this experiment.) Data averages results 
across five runs. With Coverage, Hoyle played better faster; 
after 32.75 contests it had learned well enough to draw 10 in 
a row. The contests averaged 33 moves, so that the program 
was exposed during learning to at most 1070.5 different 
states, about .012% of the search space. From that 
experience, the program was judged to simulate expert play 
while explicitly retaining data on only about .006% of the 
states in the game graph.  

In post-learning testing, Hoyle proved to be a reliable, if 
imperfect, expert at five men’s morris. When the program 
played 20 additional contests against the model with 
learning turned off, it lost 2.25 of them. Thus Hoyle after 
learning is 88.75% reliable at five men’s morris, still a 
strong performance after such limited experience and with 
such limited retention in so large a search space. Additional 
testing displayed increasing prowess against decreasingly 
skilled opposition, an argument that expertise is indeed 
being simulated.  

There are approximately 20 million states in akidada 
(referred to here as “six men’s morris”). Although it has a 
substantially larger search space than five men’s morris, 
akidada is played on the same board. Given the crowding 
that results, the game is actually somewhat easier to learn. 
With Coverage and Shortcut Hoyle learns to play expert-
level akidada in 14 contests on average.  

With a search space about 16,000 times larger than that of 
five men’s, nine men’s morris is a more strenuous test of 
Hoyle’s ability to learn to play well. Because there is no 
definition of expert outcome for this game, we chose simply 
to let the program play 50 contests against the model.  

Without Coverage and Shortcut, Hoyle lost every contest. 
With them both, however, there was a dramatic 
improvement. Inspection showed that the program played as 
well as a human expert in the placing stage of the last 10 
contests. During those 50 contests, which averaged 60 
moves each, it lost 24 times, drew 17 times, and won nine 
times. (Some minor corrections to the model are now 
underway.) The first of those wins was on the 27th contest,   
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Figure 7. A template set used by the original version of the pattern classifier for a 3 × 3 grid. 

and four of them were in the last six contests, suggesting 
that Hoyle was learning to play better. With the addition of 
less than 200 lines of game-independent code for the two 
new visually-cued Advisors, Hoyle was able to learn to 
outperform expert system code that was more than 11 times 
its length and restricted to a single game. The morris family 
includes versions for 6, 9, 11, and 12 men, with different 
predrawn lines. At this writing, Hoyle is learning them all 
rapidly. 

It should be noted that neither Coverage nor Shortcut ap-
plies useful knowledge; instead, they direct the learning 
program’s experience to the parts of the game graph where 
the key information lies, highly-selective knowledge that 
distinguishes an expert from a novice (Epstein, 1993; Erics-
son & Smith, 1991). If this knowledge is concisely located, 
as it appears to be in the morris games, and the learner can 
harness it, as Hoyle’s learning algorithms do, the program 
learns to play quickly and well. As detailed here, this gen-
eral improvement comes at a mere fraction of the develop-
ment time for a traditional game-specific expert system. 

 

3. Learning Patterns 

One of the authors is an expert game-player. Initially he was 
asked to learn one new game every week. so that we might 
develop, for each new game, a perfect player algorithm to 
serve as Hoyle’s opposition during learning. The games we 
gave him were progressively more difficult. It is a habit in 
our laboratory to sketch the game board on a piece of paper 
and then use coins to represent the markers. One week, 
when he arrived to report his progress, the game “board” 
was so well used that the coins had worn translucent paths 
on the paper. A protocol follows. 

I played this game for a very long time. At first I 
played it with a friend, but then, after a few hours, he 
tired of it, so I played it by myself. I played it a long, 
long time, for many hours. After a while I began to 
notice that patterns appeared. [When queried, he 
described these as small clusters of same-colored 
markers forming a V-like or L-like shape.] After an 
even longer time, I began to notice that, once these 
patterns appeared, something happened. I would win, 
maybe, or lose. Maybe not right away, but after a few 
moves. Then I figured out why those patterns made 
this happen, and here is the algorithm. 

It was not the (correct) algorithm we were now interested 
in, but this remarkable description of learning. An 

accomplished game player was confronted with a task in 
which he could not bring his usual expertise to bear. As he 
persisted, some mental process collected visual cues for 
him, a process he had not consciously initiated. But once 
that process had results, and he noticed them, he could use 
those visual cues to play well and even to calculate why 
those visual cues were correct. If it worked for our expert, it 
could work for a machine. 

Of course, game learning with pattern recognition is not 
new. De Groot proposed, and Chase and Simon refined, a 
recognition-association model to explain chess skill (Chase 
& Simon, 1973; de Groot, 1965). Despite a thoughtful 
refutation of their recognition-association theory, the idea of 
patterns as chunks in experts’ memories has persisted 
(Holding, 1985). MACH integrated chunks identified by 
human master chess players from grandmaster games, into 
the evaluation function of Phoenix (George & Schaeffer, 
1991). With this addition, Phoenix made better moves but 
no longer played in real time. Levinson modified chunks to 
include empty squares and threat-defense relations 
(Levinson, et al., 1991). His chess-learning program, 
Morph, learns and stores about 5000 patterns that it uses to 
play chess.  

The novelty of the approach described in this section is 
that it integrates a real-time, low-level pattern learner into a 
high-level reasoning framework. Our premise is that visual 
patterns are not a primary reasoning device (an argument 
Holding supports with substantial empirical evidence) but 
that they are an important fallback device, just as they were 
in the protocol.  

Hoyle, as a limitedly rational program, deliberately avoids 
exhaustive search and complete storage of its experience. 
Therefore when Hoyle learns patterns, it retains only a small 
number of those encountered during play, ones with strong 
empirical evidence of their significance. The program uses a 
heuristically-organized, fixed-size database to associate 
small geometrical arrangements of markers on the board 
with winning and losing. The associative pattern database is 
a new item of useful knowledge.  

The pattern database is constructed from templates by the 
pattern classifier, an associated learning algorithm. A 
template is a partial description of the location of markers 
on the board. A “?” in a template represents an X, an O, or 
an empty space; “#” is the don’t care symbol. A sample 
template set for a 3 × 3 grid is shown in Figure 7. The 
middlemost template, for example, could be instantiated as 
“X’s on the endpoints of some diagonal.” The templates in 
Figure 7 were chosen from experience; more general 
methods for their construction appear in the next section.  



 

At the end of each contest, the pattern classifier matches 
every state against a set of templates, adjusting for all the 
symmetries of the two-dimensional plane. A pattern is an 
instantiation of a template, e.g., X’s in the corners of a 
diagonal. The pattern database consists of those patterns 
which have appeared at least twice during play. Most states 
match one or more templates several ways and therefore 
make multiple contributions to the pattern database. Each 
pattern also records pattern strengths: the number of 
contests in which it participated in a win, a loss, and a draw.  

It is important to forget in the pattern database, primarily 
to discount novice-like play during the early learning of a 
game. There will be winning contests, and patterns 
associated with them, that were due to the learner’s early 
errors. We have therefore implemented two ways to forget 
in the pattern database. First, when the database is full and a 
new entry should be made, the least recently used entry is 
eliminated. Second, at the end of every contest, the pattern 
strengths are multiplied by 0.9. Thus a pattern is a gener-
alization over a class of states: those that have recently 
occurred with some frequency and contain simple 
configurations of markers. The pattern classifier forms cate-
gories (winning, drawing or losing) based on observed game 
states and associates responses to the observed states by 
learning during play.  

Patsy is an Advisor that ranks legal next moves based on 
their fit with the pattern database. Patsy looks at the set of 
possible next states resulting from the current legal moves. 
Each next state is compared with the pattern level of the 
database. A matched winning pattern awards the state a +2, 
a matched drawing pattern a +1, and a matched losing 
pattern a -2. A state’s score is the total of its pattern values 
divided by the number of patterns in the cache. Patsy 
recommends the move whose next state has the highest such 
score. Ties were broken by random selection. 

To show Patsy’s contribution to game learning, the 
Advisor was tested first with a severely pared-down version 
of Hoyle that had only two of the original Advisors, Victory 
and Panic, plus Patsy. The pattern store was limited to 30.  
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Figure 8. The performance of a pared-down version of 

Hoyle, with and without Patsy. 
Three 50-contest tournaments between a perfect tic-tac-toe 
player and this program were run to assess its performance. 
The perfect player was a look-up table of correct moves. 
The average cumulative number of wins and draws for the 
learning program is plotted against contest number in Figure 
8. The graph compares the pared-down version’s average 
performance, with and without Patsy, against the perfect 
contestant’s. Clearly the pared-down version performed 
consistently better with Patsy.  

This experiment showed that a pattern recognition 
component could be a smoothly integrated, contributing 
element of a game playing system. A simple game was 
chosen to facilitate debugging the pattern classifier and 
measuring performance against an absolute standard. More 
than two Advisors would have obscured the contribution of 
the pattern-associative component.  

Patsy was then tested, again with the templates of Figure 
7, in the full version of Hoyle on nine different games 
defined on a 3 × 3 grid (e.g., lose tic-tac-toe, les pendus, 
marelle). Once again the pattern database was limited to 30. 
There was no degradation of prior performance, i.e., the 
games that Hoyle had been able to learn to play expertly 
without Patsy it could also learn to play just as quickly and 
well with Patsy. In addition, statistics indicated that Hoyle 
frequently judged Patsy among the most significant of its 
Advisors for learning such a game, i.e., an Advisor whose 
recommendations agreed with expert play more often than 
those of most Advisors. The extension of Patsy to more 
difficult games, where it is expected to make an important 
contribution, appears in the next section. 

4. Identifying Board-Specific Templates  

Although Patsy does eventually contribute to good move 
choices, its original templates were for a specific game 
board (a 3 × 3 grid) and predetermined by people. Our new 
version of Patsy has a template generator that is applied to 
deduce templates from the topology of the board.  

Hoyle now calculates the templates for Patsy when it 
encounters a new game. These templates are detected as 
instantiations of a feature language with a visual bias called 
BPL (Bounded Pattern Language). Let the version of the 
game board drawn for output, as in Figure 2, be called the 
picture. The program constructs a metric graph whose 
nodes are the legal positions for markers, e.g., in morris 
games the intersection points of predrawn lines. There is an 
edge between a pair of nodes in the metric graph if and only 
if it is sometimes legal to move a marker in one turn from 
one of the corresponding positions to the other, e.g., in 
morris games the metric graph’s edges correspond to 
predrawn line segments. Each edge is labeled with the 
Euclidean distance between its two positions that is 
measurable from the picture. The metric graph for five 
men’s morris appears in Figure 9, with letters to identify the 



 

nodes. Now Hoyle computes the metric unit for the game 
board, the smallest label in the metric graph. (Each game  
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Figure 9: The metric graph for five men’s morris.  

board in Figure 2 has a single bold line that represents an 
instance of its metric unit.) Next the program finds 
instantiations of the BPL expressions. A BPL expression is 
a class of shapes with ?’s in its required positions and #’s in 
its irrelevant (“don’t care”) ones.  

There are five valid expressions in BPL: straight lines, 
squares, diagonals, L’s and triangles (the equivalent of the 
V’s in the protocol). Each is defined below; examples list 
the vertices in Figure 9 that are identified with ?’s to form 
the appropriate shape. BPL takes a single field of view 
parameter that determines the area over which a template 
may extend. Field of view has been set to 4 in the following 
definitions. The valid BPL expressions are 
• A BPL straight line is a predrawn straight line segment in 
the picture whose endpoints are no more than 4 metric units 
apart. A BPL straight line may include more than two posi-
tions. The endpoints, and no other points, are marked by a ?.  
• A BPL square, with any orientation, is a square whose 
vertices are positions and whose edges are predrawn straight 
line segments in the picture. A BPL square labels its 4 
vertices, and no other points, with ?’s. Every pair of vertices 
of a BPL square are no more than 4 metric units apart.  
• Given a square whose vertices are positions and whose 
edges may or may not be predrawn in the picture, a BPL 
diagonal is any contiguous segment on a diagonal of such a 
square, such that the endpoints of the segment are no more 
than 4 metric units apart. A BPL diagonal may include more 
than two positions. The endpoints, and no other points, are 
marked by a ?.  
• A BPL L is a pair of perpendicular line segments that form 
a single right angle in the picture. The three endpoints of the 
line segments must be positions, and every pair of such 
positions must be no more than 4 metric units apart. The 
two “legs” of a BPL L may be different lengths. A BPL L 
may include more than three positions. The three endpoints 
of the line segments, and no other points, are marked by a ?.  
• A BPL triangle is a triangle whose vertices are positions, 
all three of whose edges are predrawn in the picture, and 
along which every pair of positions is no more than 4 metric 
units apart. The sides of a BPL triangle may be different 

lengths. The three vertices of a BPL triangle, and no other 
points, are marked by a ?.  

 A board-specific template is an instantiation of a BPL 
expression. The concern is, of course, that there not be too 
many board-specific templates, nor too few. Too many 
templates could overwhelm a learner, particularly one with a 
small pattern cache. Too few templates could overlook 
important patterns. Patsy must have enough time to test for 
patterns with all its templates in the few seconds of 
computing time allotted to it. The parameterized field of 
view is a heuristic that must balance power with efficiency. 
For now we set field of view to 4, because it seems to strike 
that balance. 

For the five men’s morris board with field of view 4, 
Hoyle generates only 13 templates when it applies BPL to 
the board in Figure 9: straight lines AB, AC, DE, BE, and 
DF; the square DFNL; the diagonal DN; and the L’s BED, 
EDH, ABE, BAG, EDL, and FDL. (Recall that templates 
are unique up to the symmetries of the two-dimensional 
plane, so that, for example, DN and FL are considered the 
same template.) We have prototyped the instantiation of 
BPL for several game boards and found that the number of 
templates continues to be quite reasonable. (For nine men’s 
morris, it is 18.) 

It is important to understand that board-specific templates 
are calculated only once, when Hoyle first encounters the 
game board. Once the templates are identified, then the 
patterns that are instantiations of them are learned at the 
same time as any other useful knowledge. A pattern is an 
instantiation of a template in one of four ways: all blanks, 
all markers of the first contestant, all markers of the second 
contestant, or all occupied by a specific configuration of 
markers. The response associated with a pattern’s presence 
is tabulated as a win for the first contestant, a win for the 
second contestant, or a draw. 

The new version of Patsy uses the board-specific 
templates much the way the old version used the templates 
in Figure 7, but with several important modifications: 
• Ties are represented by recommending every move to a 
highest-scoring state. 
• Only two states per contest are used to generate the 
patterns, the state in which each contestant made its last 
non-forced move. 
• Only patterns whose predictions are perfectly reliable are 
retained. If a pattern enters the pattern database and its 
response changes, it is discarded. This insistence on flawless 
correlation expects that contestants eventually play very 
well, else Hoyle will repeatedly discard a pattern that should 
be learned but appears in a “misplayed” contest. 
• Pattern matching is hierarchical, i.e., if a pattern is 
matched to the current state, no attempt is made to match 
any of its subpatterns. For example, in Figure 9, DFNL is a 
BPL square. If an instantiation of DFNL were found with all 
white markers, then the white L’s of the form FDL would be 
ignored, since they are subpatterns of the square. Hierarchi-
cal pattern matching was essential to Hoyle’s ability to learn 
the game; recommendations based on subpatterns as well as 



 

patterns overemphasized the importance of a single large pattern, and adversely affected decision making. 
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Figure 10: Hoyle’s learned patterns for five men’s morris, with their responses. 

The new version of Patsy is a more sophisticated Advisor, 
and replaces the old one. At this writing, the new version of 
Patsy has been tested for five men’s morris. Hoyle com-
puted the 13 templates and applied them to learn 12 pat-
terns, shown with their responses in Figure 10. The pairing 
of states in the first and second lines of Figure 10 is deliber-
ate. Except for the rightmost pair, each pattern in the second 
row may be derived from the pattern directly above it by in-
terchanging the colors of the markers and the result. The ad-
vantage that black seems to derive in the last pair may be re-
lated to the fact that black moves first in this game. 

Patsy is no less fallible than any other second tier 
Advisor. Although the patterns of Figure 10 have arisen in 
every run, they are not perfect. One can, for example, 
construct a game state including a “winning” pattern from 
which the “winner” must inevitably lose the contest.  

We have run preliminary tests on the full version of Hoyle 
with and without Patsy. The program played five men’s 
morris against the external expert program until Hoyle could 
draw 10 consecutive contests. Then we turned learning off 
and tested the program against the expert program and three 
other programs of gradually decreasing ability. (See 
(Epstein, 1993) for a full description of this process.) Hoyle 
with Patsy learned to play well slightly faster, and 
performed more reliably after training than Hoyle without 
Patsy. Further testing is required to demonstrate the 
statistical significance. 

5. Discussion  

All three new second-tier Advisors arose in the context of 
the class called morris games, which includes versions for 
up to 12 men on boards of various designs, like those in 
Figure 2. To confirm that the new Advisors are game-inde-
pendent., we have tested Coverage and Shortcut on all the 

games Hoyle had previously learned, we have tested the ear-
lier version of Patsy on those to which the Figure 7 tem-
plates are applicable, and we have tested the new version of 
Patsy on three games played on different boards. The three 
new Advisors in no way diminish the program’s ability to 
learn and play the broad variety of games at which it had 
previously excelled (Epstein, 1992b). In many of the games 
all three were applicable and even gave excellent advice, al-
though there was no dramatic improvement in learning time. 
(Recall that Hoyle already was able to learn these games 
quite efficiently, usually in less than 100 contests.) Heuristic 
Advisors are needed most in the middlegame, however, 
where the large number of possible moves precludes search.  

It has been our experience with more complex games, 
where one would have many Advisors, that openings are 
typically memorized, and that the endgame can be well-
played with Advisors that reason about known losing and 
winning positions. Inspection reveals that Shortcut and 
Coverage contribute to decisions only in the middlegame, 
while Patsy works on the opening and middlegame. All 
three new Advisors prove to filter the middlegame 
alternatives to a few likely moves, ones that might then 
benefit from limited search. 

Current work includes extensions to other games. We are 
now in the expert development cycle for other members of 
the morris family: trique, nerenchi, murabaraba, and 11 
men’s morris. We build an expert model, Hoyle learns to 
defeat it, we observe and correct the model’s flaws, and then 
we challenge Hoyle with the new version.  

Unlike Morph’s patterns, Hoyle’s are purely visual, with-
out an underlying rationale (Levinson, et al., 1991). We plan 
next to test a variety of off-the-shelf learning strategies (e.g., 
decision trees, neural nets) to learn pattern strengths for use 
with the new version of Patsy. Future work also includes 
fining the field of view value automatically, and augmenting 
BPL so that it includes bounded regions in its language.   



 

    
 
 (a) (b) 

Figure 11: A pair of game boards for nine men’s morris.  

6. Conclusions 

Hoyle is an ongoing exploration of how general domain 
expertise, like knowledge about how to play games, can be 
applied to develop expertise rapidly in a specific subdomain, 
like a particular game. The program is progressing through a 
sequence of games ordered by human-estimated degree of 
difficulty. At watersheds where knowledge must be added 
to continue Hoyle’s progress through the list, it is important 
to assess what was missing, and why it was relevant. Until 
the morris games, there was little need for vision, except for 
economy afforded by symmetry.  

Predrawn lines on a game board are important, readily 
accessible regularities that support better playing decisions. 
People find it far simpler, for example, to learn to play on a 
board with lines, like the one in Figure 11(a), than on a 
board that only has small dots to mark legal positions, like 
the one in Figure 11(b). The lines, we believe, serve as 
heuristics to formulate plans and guide search.  

Historical pattern data is demonstrably helpful in distin-
guishing good middlegame positions from mediocre ones. 
The work on Patsy differs from other’s work in that it does 
not address the strategic rationale behind the patterns, only 
their presence (Levinson, et al., 1991).  

The brevity of the code required to capitalize on these vi-
sual cues for a variety of problems argues for the limitedly 
rational perspective of the FORR architecture. FORR facili-
tates the transparent introduction of new, good reasons for 
making decisions. Testing a new Advisor is a simple task. 

Finally, the improvement Shortcut, Coverage, and Patsy 
have on skill development argues for the significance of 
visual representations as an integral part of decision making. 
Each of them demonstrably improves Hoyle’s ability to 
learn to play well.  
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