
This paper appeared in the proceedings of AAAI-98.

Toward Design as Collaboration

Susan L. Epstein

Department of Computer Science
Hunter College and The Graduate School of The City University of New York

New York, NY 10021 USA
epstein@roz.hunter.cuny.edu

Abstract
In design, multiple disparate goals must be addressed
simultaneously. It is the thesis of this work that problems in
two-dimensional layout design can be solved by col-
laboration among single-goal, intelligent agents, each re-
sponsible for a class of objects and responsive to explicit
metrics. In this model, each agent produces conflict-free de-
signs for its own class of objects, and then, when objects
conflict with each other in the combined design, the agents
that own those objects address the conflicts. A limitedly ra-
tional implementation demonstrates its efficacy for park
layout design in the two-dimensional plane.

Two-dimensional Layout Design
Design problems typically entail large search spaces and
multiple, ill-defined goal tests (Goel and Pirolli 1989). As
a result, design has been regarded as a domain (CAD/
CAM) in which computers assist people rather than work
alone. This paper’s primary contributions are a model for
autonomous two-dimensional layout design as collabora-

 Copyright 1998, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

tion among a set of agents, and a limitedly rational archi-
tecture for this model. Drawing upon research on human
experts, the model devotes considerable effort to the selec-
tion of an initial high-quality state likely to include multi-
ple constraint violations, and then seeks to remove them.

The problem in two-dimensional layout design is to posi-
tion a set of two-dimensional objects within a prespecified
outline to meet a set of restrictions (criteria). In the park
design problem of Table 1, for example, 13 objects must be
located precisely on a grid. Criteria that must be satisfied
are called constraints. In Table 1, only the object criteria
and C5 are constraints. Table 1’s task is non-trivial; about
1.3 × 1026 placements abide by the object constraints.

A solution to a two-dimensional layout design problem
positions all the objects and satisfies all the constraints.
Typically there are many solutions; it is the multiple,
vague goal tests make design problems particularly diffi-
cult (Goel and Pirolli 1992). Those tests are represented
here as non-required criteria called principles. (There are 7
in Table 1.) Principles are important to a designer, but in
some unspecified combination. As a result, design is not an
optimization problem, yet designers speak of solutions that
are “better” or “worse” (Goel and Pirolli 1992). Thus in a

Table 1: A park design problem.
Task: Place on a 20 × 40 discrete grid the following objects:

PF1: a 7 × 7 playing field P1: a 5 × 3 pond B1: a 5 × 10 building F1: a 6 × 7 forest R1: a road of width 1
PF2: a 5 × 2 playing field P2: a 3 × 2 pond B2: a 2 × 2 building F2: a 4 × 2 forest R2: a road of width 1
PF3: a 5 × 2 playing field R3: a road of width 1

R4: a road of width 1
Goal: Satisfy all constraints and respond to all principles as well as possible.
Object constraints:

PF1 boundary is ≥ 0.1 away from all edges.
PF3 center is within 0.8 of the park’s center.
B1 boundary is against some edge.
B2 center is within 0.5 of the park’s center.
P1 boundary is ≥ 0.3 away from all edges.
P2 center is within 0.3 of the park’s center.
F1 center is within 0.4 of the park’s center.
F2 boundary is within 0.1 of some edge.
R1 runs from the eastern grid edge.
R2 runs from the western grid edge.
R3 runs from the northern grid edge.
R4 runs from the southern grid edge.
R1, R2 , R3 , and R4 are connected.

Intra-class principles:
C1: Total road length should be small.
C2: Fields should not adjoin each other.
C3: Ponds’ centers should be ≤ .2 of the grid apart.
C4: Buildings’ centers should be ≤ .6 of the grid apart.

Inter-class constraint:
C5: Objects may not overlap.

Inter-class principles:
C6: Buildings should be adjacent to roads.
C7: Every building should have a view, i.e., be within 2

units of a pond or forest.
Secondary inter-class principle:

C8: Minimize the total Manhattan distance of all empty
grid positions to their nearest road.

building
field

pond
forest
road

Figure 1: An initial state with 6 conflicts for Table 1.

two-dimensional layout design problem, how well a solu-
tion meets all the principles becomes a metric on its qual-
ity. The goal is to find a high-quality solution.

Object Categories and a Collaborative Model
Two-dimensional layout design problems usually catego-
rize the objects to be instantiated (Goel and Pirolli 1992).
Table 1, for example, partitions its objects into five classes,
sets of functionally and/or structurally similar objects:
ponds, playing fields, forests, buildings, and roads. (The
remainder of the park is intended to be open grassy space.)
Design criteria can be categorized with respect to these
classes. An object criterion describes how a single object
relates to the grid, such as “the boundary of B1 is against
some edge.” An intra-class criterion restricts two or more
objects of the same class. For example, in Table 1 the in-
tra-class criterion “Total road length should be small” de-
scribes a desirable property for the set of roads. An inter-
class criterion restricts two or more objects of different
classes. For example, in Table 1 the inter-class criterion
“Buildings should be adjacent to roads” describes how
each building should relate to some road.

To cast two-dimensional layout design as a state space
search, let a description that positions every objects be a
complete state; otherwise it is a partial state. In addition,
let a state be legal if it violates no constraints; otherwise it
is illegal. A two-dimensional layout design problem can
then be addressed as search for a path from a partial, legal
state through a space of legal states to a complete legal
state. Using this single-goal approach, a designer would lo-
cate one object at a time on the grid until all objects were
present, and backtrack as necessary. (Constraint satisfac-
tion programming, CSP, is addressed in the final section.)

Human design experts, however, do not search this way.
They consider a set of objects or parts of objects and how
they relate to each other, typically in an illegal state
(Schraagen 1993). In addition, a human expert’s first state
is likely to be a compendium of a number of legal partial
states, each for an entire class of objects (Schraagen 1993).
Since there are usually many different possible states, the
human designer selects, both initially and during search,
states that meet metrics for good design. A metric applica-
ble to legal partial states and limited to a single agent’s
objects is an intra-class principle. A metric applicable to
complete states and pertaining to objects of more than one
agent is an inter-class principle.

In light of the human approach, this paper proposes a
collaborative model that addresses two-dimensional layout
design as a task for a set of agents, each of which advo-
cates on behalf of a single object class. For example, five
separate agents would collaborate on the problem in Table
1. Problem solving in this model is search for a path
through a space that also includes both illegal and partial
states. This collaborative model for two-dimensional layout
design begins search from an initial state that respects the
principles of each agent. Each agent produces an ideal
framework, a legal partial state for all its objects that is

highly-rated by its principles. For Table 1, where C1 is the
only all-road principle, one ideal road framework is four
orthogonal roads from the center of the grid to the edges.
The union of the agents’ ideal frameworks is a complete,
initial state, such as Figure 1, and likely to be illegal.

Since agents produce legal partial states, a conflict arises
in this model only when two or more agents violate an in-
ter-class constraint, as when objects overlap in Figure 1. A
conflict is uniquely identified by its set of objects. There
are 6 distinct conflicts in Figure 1: between the large field
and the large pond, the large field and the eastern road, the
small forest and the large building, the large forest and the
western road, a small field and the southern road, and the
strip contested by the large pond, the large field, and the
eastern road.

Collaboration among agents in this model can be either
explicit or implicit. Explicit collaboration would be negoti-
ation over a conflict. Implicit collaboration is achieved by
the influence of shared inter-class principles on decision
making. For now, the latter is the primary focus. Consider,
for example, the conflict between the large building and
the small forest in Figure 1. One way to resolve it is to re-
locate either or both objects. When the forest agent consid-
ers a forest relocation, it will prefer those that abide by C7.
The building agent, meanwhile, will prefer building reloca-
tions that abide by C4, C6, and C7. (Consideration of the
secondary principle C8 is postponed, as discussed later.)
Because the strength with which each agent suggests a re-
location reflects how well that proposal meets the agent’s
principles, the strongest suggestion represents a decision
that best addresses both mutual and individual goals.

The CD Architecture and FLO
CD (Collaborative Design) is a limitedly rational architec-
ture which applies the collaborative model to two-dimen-
sional layout design problems. The CD program for park
design is called FLO, after park designer Frederick Law
Olmstead. Although CD is not restricted to parks, for clar-
ity the examples here are all drawn from runs with FLO. A
CD-based system begins with partially specified objects al-
ready categorized into classes. CD’s task is to specify them
fully. For example, Table 1 restricts each object’s location
in the grid; a solution locates all of them precisely.

CD assigns the full specification of the objects in any

preprocessing

conflicts
remain?

no output
solution

initial state

revised? no halt

Agent 2 Agent n

notification

evaluate

proposals

identify conflicts

Figure 2: An overview of the CD solution process.

Table 2: Procedures available to a CD agent
Type Role

Originator Propose conflict resolution
Commentator Evaluation metric
Secondary commentator High-cost evaluation metric

agent 1 agent 2 agent n

problem

combine

ideal
frameworks

combined ideals

select best

candidate

offenders

new ideal frameworks

analyze conflicts

resolicit

initial state

… … …

select best

Figure 3: Initial state construction in CD.

one class to a limitedly rational agent. The current problem
state describes the objects’ specifications, and represents
the agent’s environment. Each agent computes and exe-
cutes responses to that environment in the form of propos-
als that specify its own objects further or differently and
abide by constraints.

Figure 2 sketches the CD solution process (trial). When
a problem is first presented, CD constructs an initial state.
Objects that conflict there notify their respective agents.
An agent whose object is in conflict with another’s tries to
construct proposals, recommendations that address the
conflict. A proposal includes the agent’s name, the conflict
it addresses, the action it proposes, and comments on how
well the proposal abides by the agent’s principles.

Until some state is conflict-free or there are no propos-
als, CD selects the proposal that has the best comments and
addresses the most severe conflict. In FLO, that is the con-
flict that involves the most objects and the most grid loca-
tions, and engenders the fewest proposals. Implementation
of the selected proposal creates a new state, and the cycle
in Figure 2 repeats. CD is non-deterministic because ties
among equally good choices are made at random. Typi-
cally, therefore, CD runs multiple trials, and all the agents
evaluate each output solution.

Throughout a trial, each CD agent has access to three
kinds of procedures, listed in Table 2. An originator is re-
stricted to a single agent and formulates proposals to ad-
dress a conflict in which its agent’s object is involved. A
commentator evaluates how well the state resulting from a
proposal will satisfy a particular metric. A commentator re-
stricted to a single agent represents an intra-class principle;
a commentator shared among a set of agents represents an
inter-class principle. FLO’s road agent, for example, has a
C1 commentator to support short roads, and a C6 commen-
tator (shared with the building agent) to encourage roads

near buildings. A secondary commentator, such as C8,
also applies a metric to a state, but one so costly that its
application is restricted to preprocessing and solution eval-
uation only. The remainder of this section details the con-
struction of the initial state and proposal generation.

The initial state
CD devotes substantial effort to construction of an initial
state, as diagrammed in Figure 3. To begin, each agent
produces several ideal frameworks, descriptions including
only that agent’s objects and their locations. In this phase,
an agent considers only its own objects and abides by all
relevant constraints. The agent rates each of its ideal
frameworks with its commentators of both kinds, and for-
wards the top-rated ones.

CD uses the best ideal frameworks from each agent to
produce several complete states. Each is a combined ideal,
the union of one ideal framework from each agent. Figure
1 was a combined ideal, the union of an ideal framework
for Table 1 from each of FLO’s five agents.

The combined ideal with the fewest conflicts is called
the candidate. In a candidate, any agent that has more than
x% of its resources in conflict is labeled an offender. For
example, all but the building agent are 25% offenders in
Figure 1. From its store of ideal frameworks, each offender
offers several highly-rated alternatives. CD replaces the of-

building
field

pond
forest
road

Figure 4: A revision of Figure 1 with 5 conflicts.

commentator2

Agent A

originator 1 originator 2 originator n

… … …

voting

commentator 1 commentatork

ratings… … …

proposals

proposals

current state conflicts

Figure 5: Proposal solicitation from a CD agent.

fender’s ideal framework in the candidate with whichever
alternative produces the fewest conflicts. For example,
FLO substituted another forest ideal framework in Figure 1
to produce the new combined ideal in Figure 4, with 5
conflicts instead of 6. Every offender is given only one op-
portunity to resubmit ideal frameworks. CD uses the initial
state only as a good starting point, and then goes on to ad-
dress the remaining conflicts differently.

Proposal generation and limited rationality
As in Figure 2, until the current state is a solution, objects
notify their agents when they are involved in one or more
conflicts. Each notified agent formulates a set of proposals
to address those conflicts. An agent may propose either to
resolve (eliminate) a conflict between two objects or to
ameliorate (reduce the number of objects in) a conflict
among three or more objects. In the state of Figure 4, for
example, two agents reacted to the conflict involving a
small field and the southern road. The field agent proposed
relocating the field so that it did not conflict with any other
object, and the road agent proposed either relocating the
southern road or diverting it around the field. Conflicts
among more than two agents may be ameliorated first, and
then resolved. For example, the pond agent might propose
to ameliorate the three-agent conflict over the strip in Fig-
ure 4 by relocating the pond. If that proposal were imple-
mented, the large field would then conflict only with the
eastern road, and, in the next cycle, the road agent and the
field agent could address that reduced conflict. CD always
prefers resolution, however, to amelioration.

There are usually more ways to resolve or ameliorate a
conflict than a design system should explore. To control
the number of proposals, a CD originator suggests only
constraint-abiding actions that involve its own objects. For
each agent, FLO has one originator that relocates one of
that agent’s objects. For example, in Figure 4 the western
road could shift to any of the other 19 rows. All but 5 of
those, however, would still conflict with some other object.
Rather than propose many substandard relocations, the
road agent’s originators enforce relevant constraints. Thus
in Figure 4 any road relocation proposal would shift the
western road to a clear row and connect it to at least one
other road. An originator is forbidden to propose an action
that would return to an equivalent prior state. Each agent
may have any number of originators. In addition to its five

relocators, FLO has a road originator that reroutes a spe-
cific road around a specific object.

On two-dimensional layout design problems, even con-
straint-abiding originators are likely to generate far too
many proposals. Therefore CD makes each agent limitedly
rational by imposing two prespecified limits: one on its to-
tal computation time per cycle, and another on the number
of proposals it may produce about any one state.

After an agent’s originators produce their proposals, its
commentators rate how well each prospective new state
would meet the agent’s principles. Unlike ideal framework
construction, comment construction affords the agent a
view of the entire state, not just its own objects. Although
commentators are not subject to resource constraints the
way originators are, care must be taken to guard against
system slowdown from those that are resource-hungry. For
example, although an efficient implementation discourages
roads along the edges of the grid, the commentator for
Table 1’s C8 is still costly enough to substantially degrade
system performance. C8 would slow down any system
whenever it was evaluated. It is more economical, there-
fore, to exclude it during search. Such a secondary com-
mentator is applied with the ordinary commentators only to
rate combined ideals during generation (“select best” in
Figure 3) and to compare solutions (“evaluate” in Figure
2). Empirically, however, high-quality solutions are less
likely as more commentators are made secondary; only the
most costly should be relegated to this category.

Empirical Results and Discussion
Several performance measures apply in two-dimensional
layout design. The system should be able to address multi-
ple problems. Solutions should be achieved quickly and fit
criteria well. Easier problems should be easier to solve.
Speed can be measured as elapsed problem-solving (clock)
time, or as number of decision cycles.

Figure 6: FLO’s best solution to the small problem.

building
field

pond
forest
road

(a)

(b)
Figure 7: Two solutions to the problem in Table 1.

Table 3: Partial specification of a small park design problem. See Table 1 for intra-class and inter-class principles.
Task: Place on a 10 × 20 discrete grid the following objects:

PF: a 4 × 2 playing field B: a 3 × 3 building R1: a road of width 1 R3: a road of width 1
P: a 4 × 3 pond F: a 2 × 1 forest R2: a road of width 1 R4: a road of width 1

Goal: Satisfy all constraints and respond to all principles as well as possible.
Object constraints:

PF center is within 0.8 of the park’s center. F center is within 0.1 of some edge. R3 runs from the northern grid edge.
B center is within 0.5 of the park’s center. R1 runs from the eastern grid edge. R4 runs from the southern grid edge.
P center is within 0.2 of the park’s center. R2 runs from the western grid edge. R1, R2 , R3 , and R4 are connected.

CD and FLO are both implemented in Common Lisp.
All combined ideals, initial and intermediate states, plus
proposals and ratings, can be made transparent to the user.
FLO was tested on both the larger problem of Table 1 and
on the small problem partially specified in Table 3. Both
problems use the intra-class and inter-class principles in
Table 1. Each run consisted of 10 trials on the same prob-
lem. The results shown in Table 4 are averaged over 10
runs, where “size” counts complete states conforming to all
object constraints. Figure 6 shows the top-rated solution to
the small problem; it satisfies all the criteria of Table 1.

Table 4: Results on 10 trials for two problems with FLO.
Small problem Larger problem

Size 3.9 × 1011 1.3 × 1026
Offenders 2.20 1.36
Solutions 9.3 7.3
Cycles to solution 2.1 10.0
Time per trial 7.33 seconds 136.9 seconds

In a typical trial on the larger problem, the combined
ideals ranged from 19 to 6 conflicts; the best was Figure 1,
with 4 offenders. Only the forest agent’s alternative ideal
framework improved that candidate, making the initial
state Figure 4 with 5 conflicts. After 4 revisions (the last
solved 2 conflicts), FLO arrived at the solution in Figure
7(a), with a road bent around the southernmost field. An-
other solution from the same run, Figure 7(b), rates lower
because the large building has a poor view. The remainder
of this section addresses the primary issues in two-
dimensional layout design within the collaborative model
envisioned here: search, optimality, speed, and generality.

Search
CD executes a satisficing search guided by explicit princi-

ples through the space of complete states. CD finds highly-
rated solutions so quickly in so large a space because it
prunes search several ways. Search begins with a state a
highly-rated by the commentators and with the prospect of
a short solution path (number of conflicts). The originators
prevent searching some predictably illegal states, while
limited rationality controls the branch factor. The commen-
tators bias search in the direction of highly-rated states.
Agents proffer only high-rated proposals, and one that
promises to resolve some most severe conflict is chosen.

On a finite number O of objects in a finite grid, CD is
guaranteed to halt. The system does not cycle through the
same set of states (shift one or more objects back and forth
repeatedly) because the originators do not make such pro-
posals. In addition, each object is treated as if it has finitely
many possible locations on the grid, so that there are
finitely many proposals to consider. Let C be the number
of conflicts in the initial state, and obj(ci) be the number of
objects involved in conflict ci. Clearly obj(ci) ≤ O for i = 1,
2, …, C . Since CD never introduces new conflicts, and
since it either halts or reduces or ameliorates at least one

conflict on each iteration, the maximum number of itera-
tions before it halts is:

obj ci – 1∑
i = 1

C
 < O ⋅ C

OC is an overestimate of the distance to solution, since a
single proposal can resolve more than one conflict.

Like many satisficing systems, CD is not guaranteed to
find a solution. This is why a run is a set of trials, as it of-
ten is in hill climbing. During some trials, an illegal state
engenders no proposals, so the program produces no solu-
tion. Typically these are “nearly good enough” states with
only one or two conflicts remaining. Four approaches to
these states are under investigation. First, under limited ra-
tionality, a constructive proposal may be overlooked. CD
could provide originators with increasing resource limits if
a state has only a few conflicts remaining, in a kind of iter-
ative broadening. Second, after the initial state, CD never
proposes to introduce additional conflicts. It could allow an
originator to introduce a proposal that addresses one con-
flict at the price of introducing another that is expected to
be easier to resolve. Care would be required to preserve
halting. Third, CD never violates object criteria, but human
designers frequently do (e.g., cost overruns). CD could
modify an object’s description (e.g., size or shape) within
some prespecified limits. Finally, CD’s proposal system
supports collaboration based on shared principles, but does
not provide for direct communication between agents. It
could also have agents negotiate a mutual conflict together.

Optimality and high-quality solutions
As discussed in the introduction, the two-dimensional lay-
out designer must satisfy only constraints and may merely
“do well” on principles. Since CD does hill-climbing only
on constraints, a solution is guaranteed to be optimal only
with respect to them. FLO, for example, only guarantees
no overlap in a solution to a park problem.

The use of a single non-object constraint in FLO was de-
liberate. All the principles are goals in design, but making
more of them required is not necessarily constructive. That
further constrains the generators, and runs the risk of find-
ing too few proposals within the resource limits. Thus there
is no guarantee that any commentator will rate an eventual
solution highly, only that the solution process will prefer to
pass through states the commentator rates more highly than
some alternatives, all other decision factors being equal.
Enough trials (say 10) seem to guarantee a variety of high-
quality solutions from which to select.

Uncertainty about an optimal value for a criterion is
characteristic of design problems, but it prevents identifi-
cation of an optimal design. C8, for example, is normed on
an overestimate; its maximum value is unknown. As a re-
sult, solutions can only be better than others, as Figure 7(a)
is on C8, never “best.”

Human designers typically tinker with their solutions. In
Figure 7(a), for example, lowering the western road one
unit is likely to improve the C8 rating without impacting
the other ratings. A tweaking phase is therefore planned for

CD, where a solution will be repeatedly improved by hill-
climbing through legal states. Additional or refined princi-
ples could also further improve the designs of Figure 7.

Speed
Including illegal states substantially enlarges the search
space. CD’s ideal framework is a highly-rated, albeit ille-
gal, initial state. To test the impact of a refined initial state,
FLO was run on the small problem using a single com-
bined ideal without testing for offenders. Compared to the
data reported above, there was a 51% reduction in the
number of solutions, running time approximately tripled,
and the number of iterations to a solution increased by
81%. Clearly, some computational effort on the initial
state is worthwhile, but how much does it merit?

In extensive empirical testing, a variety of values for pa-
rameter settings were tried on the small problem, measur-
ing both total computation time and the fraction devoted to
construction of the initial state. Number of ideal frame-
works generated (1–10), number of combined ideals (1–8),
percentage of conflicted resources defining an offender
(25-75%), and number of alternatives submitted by an of-
fender (1-5) were tested in many combinations, varying
one at a time. In these experiments the initial state almost
always needed revision. Up to 6 or 7, more combined ideal
frameworks made it more likely that the problem would be
solved and that the overall solution time would be low, but
it also increased the percentage of total computation time
devoted to the initial state. Lower percentages for the of-
fender definition also improved the number of solutions,
without any impact on either time. Finally, the number of
alternatives submitted by an offender appeared to have lit-
tle impact as long as it was at least 3. Under the settings
used here (10 ideal frameworks, 7 combined ideals, 3 al-
ternatives from 25% offenders), FLO devoted 36% of its
computation time to the initial state on the small problem,
and 21.3% on the larger problem.

Could FLO have done as well with smaller resource lim-
its on the originators? Table 4’s data was generated with
limits of 10 seconds and 10 proposals, but some origina-
tors (notably the road agent’s) used far less. In a run where
the originators were held to 5 seconds and 5 proposals,
FLO solved the larger problem about as often and the solu-
tions were about the same quality. At the 95% confidence
level for statistical significance, however, problem solving
required more time (166.0 seconds) because the commenta-
tors spent considerably more time evaluating the proposals.

AI research has long recognized that a generate-and-test
approach like CD’s derives power when intelligence is
moved from the tester into the generator. In an earlier ver-
sion, originators proposed relocations whether or not they
produced a conflict, and thereby substantially slowed the
program. Forcing the roads to interconnect is a kind of em-
bedded intelligence, too. Additional domain-specific rou-
tines (e.g., one that would perceive large chunks of “clear”
space quickly and investigate relocation alternatives within
them) could further speed performance.

In a parallel implementation, CD agents and shared

commentators would be relegated to separate processors,
and proposals computed quickly would be considered first.
Caution would be advised, however, since a quickly devel-
oped proposal is often to a conflict that is easier to resolve,
one less worthy of immediate attention.

If the grid is made larger, the number of alternative loca-
tions for objects of the same size increases, so that an intu-
itively easier problem (the same size objects in more space)
could require more computation (more proposals to gener-
ate and comment upon). CD’s limited rationality prevents
this. Although such limited rationality could make it more
difficult to discover a solution, the quality of FLO’s solu-
tions as rated by the commentators does not deteriorate,
and it solves problems much faster with these limits in
place. Preliminary testing on a still larger problem in a
30 × 90 grid indicates that FLO should scale nicely.

Two speedup techniques applied here are domain-de-
pendent. First, certain symmetries of the two-dimensional
plane produce equally valid object placement for ideal
frameworks with relatively little additional computation
time. Therefore, FLO symmetrically transforms an offend-
ing ideal framework and any proffered alternatives to pro-
duce more alternatives quickly. Second, relocators site an
object according to its alternatives. Because its object cri-
teria are static, FLO can compute all possible locations for
an object as constrained by its object criteria only once,
when the problem is defined.

Generality
CD is not limited to parks; it is intended for many two-di-
mensional layout domains. The design criteria for build-
ings, for example, also includes object criteria (e.g., room
dimensions), intra-class criteria (e.g., “keep the plumbing
along a central core” or “provide electrical power to every
room,”) and inter-class criteria (e.g., “do not place an outlet
too near running water”). A variety of other domains is un-
der active consideration.

Within any domain, CD is highly modular. It accommo-
dates any number of object classes and their agents, any
grid size, and any number of objects. Each agent may have
any number of originators and commentators, each with its
own resource limits. Thus, if the solutions are unsatisfac-
tory with respect to some unelucidated principle, it is easy
enough to add it.

If, on the other hand, solutions are unsatisfactory with
respect to some principles P already present, there are sev-
eral ways to give them more influence. CD normalizes
each commentator’s ratings in a range before they are sub-
mitted. Thus one could bias the system with a higher range
for P. If, for example, road costs are a particular concern,
increase C1’s range. Similarly, CD normalizes the proposal
strengths of each agent in a range, so one could assign a
higher range to an agent that included P. If, for example,
playing fields are the park’s primary function, increase the
field agent’s range. Alternatively, CD runs multiple trials
on a problem. One could rate those solutions on P and
identify the best, or further perturb the solution top-rated
by P in ways that P preferred.

This proposed model and the CD architecture are likely
to succeed only if the design space meets the following
conditions:
• Objects are readily categorizable.
• Each principle quantifies a single aspect of good design.
• Non-secondary commentators are relatively efficient.
• There are easy to find ideal frameworks for each class.
• There are many solutions of varying quality.

These are all typical of two-dimensional layout design
space, although other design spaces may also fit this de-
scription. If ideal frameworks score equally under some
perturbation (e.g., the symmetries applied in FLO), or static
object criteria conserve originator time, so much the better.

Related and Future Work
An underlying assumption in CD is that explicit knowledge
can control the combinatorics of search in a very large
space, an assumption shared by human designers. Although
CD is not intended as a full cognitive model of the human
design process, it does simulate many features identified by
psychological studies of experts in architecture, mechanical
engineering, and instructional design (Goel and Pirolli
1992). Like these human experts, CD has distinct problem
solving phases (ideal frameworks, initial state, iteration),
decomposition into modules (object classes and their
agents), incremental development with limited commit-
ment, little deductive inference, and a variety of evaluation
methods (CD’s commentators and secondary commenta-
tors) not traditional in many other AI domains.

CD is a satisficing architecture; like people, it solves
problems “well enough” rather than optimally (Simon
1981). There is ample support in the psychology literature
for satisficing behavior in a variety of domains and for
multiple rationales like CD’s commentators (Biswas,
Goldman, Fisher, Bhuva, and Glewwe 1995; Crowley and
Siegler 1993). Failure-driven conflict resolution, such as
the repeated refinements described for CD, has proved suc-
cessful in a variety of other domains (Collins, Birnbaum,
and Krulwich 1989).

Because it requires a group of logically distinct process-
ing agents to address the same problem, CD can be classi-
fied as distributed AI, in particular as a multi-agent system
(Bond and Gasser 1988). The architecture seeks to realize
collective system properties (good design) within a fixed
environment (Durfee and Rosenschein 1994). CD is a step
toward organizational cognition, where individual agents
are responsive both to their own objects and those of other
agents (Gasser 1993). CD is also an example of distributed
constraint satisfaction, a newly-emerging research area
(Armstrong and Durfee 1997). AI in design has received
substantial attention (e.g., (Gero and Sudweeks 1996)), but
the collaborative model for two-dimensional layouts pre-
sented here is novel to the best of the author’s knowledge.

Although preliminary indications are that CD and FLO
are efficient, a comparison of these results with those of
other methods, particularly CSP, is in order. Each FLO ob-
ject would be represented as a variable whose possible val-

ues represented its legal alternative locations. The overlap
constraint renders the graph complete. CSP could also play
an important role in the formulation of ideal frameworks.
Economics-based negotiation is another likely method to
consider (Pennock and Wellman 1996). In FLO, the re-
sources are the distinct grid squares for which agents
would compete. The author hopes to attract specialists in
both areas to these problems. Although other techniques
exist, most notably in operations research and numerical
methods, their cost for these problems appears prohibitive.

Two of Olmstead’s New York City parks (Central Park
and Prospect Park, often cited as examples of outstanding
design) are intended as further test cases. FLO soon will
have originators to rotate objects and to interchange the lo-
cations of same-class objects. Several commentators that
encourage additional aesthetic properties, such as even
distribution of vacant space, are also under development.

 CD agents are reactive; they sense conflicts in the grid
and respond to them with proposals. An intention shared
among agents is thus far represented only as a common
decision making principle. An important next step is to en-
able CD agents to communicate directly with one another.
This should be particularly valuable in situations where
only joint action (for example, shifting objects of different
classes simultaneously) will resolve a conflict.

CD is a direct descendant of FORR, a general architec-
ture for learning and problem solving (Epstein 1994). CD
can be thought of as a set of FORR-based agents, each of
which has a set of FORR-like Advisors (the procedures of
Table 2). A CD agent, however, has originators so that it is
not compelled to comment on all possible actions as a
FORR-based agent is. FORR’s more sophisticated learning
and search approaches should eventually migrate to CD.

Meanwhile, this paper has shown how a collaborative
model for two-dimensional layout design can both con-
strain search and impose aesthetic design criteria. The
model capitalizes on collaboration among agents to clarify
the process description, to organize search, and to find a
good initial state. The CD architecture provides a limitedly
rational version of this model which distinguishes between
a resource-limited search for good ideas (originators) and
good reasons to support them (commentators). CD makes
conflict and collaboration transparent to the user, solves
easier problems more quickly, and produces a variety of
high-quality solutions even though it tolerates constraint
violations during search. FLO, the implementation for park
design, is fast, modular, and offers a broad set of high-
quality solutions.

Acknowledgments
This work was supported in part by NSF grant #9423085,
PSC-CUNY #666318. Thanks to Jack Gelfand and the
anonymous reviewers for their constructive suggestions.

References
Armstrong, A. and Durfee, E. H. 1997. Dynamic
Prioritization of Complex Agents in Distributed Constraint

Satisfaction Problems. In Proceedings of the Fifteenth In-
ternational Joint Conference on Artificial Intelligence,
620-625. Morgan Kaufmann.

Biswas, G., Goldman, S., Fisher, D., Bhuva, B. and
Glewwe, G. 1995. Assessing Design Activity in Complex
CMOS Circuit Design. In P. Nichols, S. Chipman, & R.
Brennan (Ed.), Cognitively Diagnostic Assessment, Hills-
dale, NJ: Lawrence Erlbaum.

Bond, A. H. and Gasser, L. 1988. An Analysis of Problems
and Research in DAI. In A. H. Bond, & L. Gasser (Ed.),
Readings in Distributed AI, 3-35. CA: Morgan Kaufmann.

Collins, G., Birnbaum, L. and Krulwich, B. 1989. An
Adaptive Model of Decision-Making in Planning. In Pro-
ceedings of the Eleventh International Joint Conference on
Artificial Intelligence, 511-516. Morgan Kaufmann.

Crowley, K. and Siegler, R. S. 1993. Flexible Strategy Use
in Young Children’s Tic-Tac-Toe. Cognitive Science, 17
(4): 531-561.

Durfee, E. H. and Rosenschein, J. S. 1994. Distributed
Problem Solving and Multi-Agent Systems: Comparisons
and Examples. In Proceedings of the Thirteenth Interna-
tional Distributed AI Workshop, 94-104.

Epstein, S. L. 1994. For the Right Reasons: The FORR Ar-
chitecture for Learning in a Skill Domain. Cognitive Sci-
ence, 18 (3): 479-511.

Gasser, L. 1993. Social Knowledge and Social Action:
Heterogeneity in Practice. In Proceedings of the Thirteenth
International Joint Conference on Artificial Intelligence,
751-757. Chambéry, France: Morgan Kaufmann.

Gero, J. S. and Sudweeks, F. (1996). Artificial Intelligence
in Design ‘96. Kluwer Academic Publishers,

Goel, V. and Pirolli, P. 1989. Motivating the Notion of
Generic Design within Information Processing Theory:
The Design Problem Space. AI Magazine, 10 : 19-36.

Goel, V. and Pirolli, P. 1992. The Structure of Design
Problem Spaces. Cognitive Science, 16 : 395-429.

Pennock, D. M. and Wellman, M. 1996. Toward a Market
Model for Bayesian Inference. In Proceedings of the
Twelfth Conference on Uncertainty in Artificial Intelli-
gence, 405-413.

Schraagen, J. M. 1993. How Experts Solve a Novel Prob-
lem in Experimental Design. Cognitive Science, 17 (2):
285-309.

Simon, H. A. 1981. The Sciences of the Artificial (second
ed.). Cambridge, MA: MIT Press.

