

This paper appeared in the Proceedings of the AAAI Workshop on Computational Cognitive Modeling: Source of the Power,
1996. Portland, OR, AAAI.

The Creation of New Problem Solving Agents from Experience

with Visual Features

Susan L. Epstein
Department of Computer Science

Hunter College and the Graduate School of
The City University of New York

New York, NY 10021
epstein@roz.hunter.cuny.edu

Jack Gelfand
Department of Psychology

Princeton University
Princeton, NJ 08544
jjg@princeton.edu

Abstract

A significant source of power in a cognitive system is the
ability to represent task-based experience appropriately. As
people acquire skill in a cognitive task, they rely in part on
spatially-oriented reasoning. This paper describes a multi-
agent decision-making architecture that addresses a domain
of related problem classes. The architecture has a general
capacity to perform tasks in the domain, so that it can gain
experience within a specific problem class. It also has the
ability to generate new, problem-class-specific, spatially-
oriented reasoning agents from experience. Much of the
knowledge encapsulated by the correct new agents was
previously inexpressible in the program’s representation and,
in some cases, not readily deducible from the structure of the
problem class.

Introduction
There are many examples in human cognitive and motor
processing in which representation and sensory processing
are optimized through experience with the task (Gelfand,
Flax, Endres, Lane and Handelman 1992b; Gelfand, Flax,
Endres, Lane and Handelman 1992a; Gelfand, Handelman,
Lane and Epstein 1994). Often people are not aware of the
optimum representation from the initial statement of the
problem, or from early experience. Rather, humans
acquire these representations gradually, from repeated
exposure to them. One interesting domain where the
acquisition of spatially-oriented reasoning has substantial
impact is game playing.

Our work on pattern learning and its application were
inspired by repeated laboratory experiences with people, in
the context of many different games. College students
spoke about, reacted to, and relied upon familiar,
sometimes symmetrically transposed, patterns while
learning (Ratterman and Epstein 1995). Later they relied
heavily upon these patterns as a kind of compiled expertise.
Even six-year-olds describe their observation of expert
play and their own decisions in terms of the same kinds of
patterns (Ratterman and Epstein 1996).

Initial directions and rules given to novices are usually
statements of relations among a small number of pieces.
These rules may be spatial in nature, but are usually of the

lowest order. As game players become more expert, they
rely on higher-order, spatially derived strategies to direct
play. Advice from experts on how to analyze and play
games is repeatedly conveyed through spatially-oriented
concepts. Chess and checkers are discussed in terms of
controlling the center of the board, while control of the
edges is crucial in Othello (Samuel 1963; Lee and Mahajan
1988; Fine 1989; Gelfer 1991). Concepts such as shape and
thickness are fundamental to the game of Go (Iwamoto
1976; Yoshio 1991; Hideo 1992).

An important feature of any architecture that acquires
problem-class-specific skill is the ability to perform tasks
while learning. For a system to learn through experience, it
must be able to perform at some low level of competence
that supports the kind of experience required to achieve a
higher level of performance through practice. Many
cognitive models have such ability, and can perform tasks
in a serviceable fashion while mechanisms such as
chunking operate to provide a higher level of performance
with experience (Newell 1990). These systems, however,
typically have a complete set of knowledge for a particular
problem, and a knowledge representation initially
optimized for the problem class. This paper describes a
modular, multi-agent architecture with the capacity for
general performance, as well as the ability to generate
agents with problem-class-specific knowledge. The
experimental domain is game playing, and the problem-
class-specific agents it learns are for individual games.

Program Architecture

The architecture we discuss here is based on FORR, a
general architecture for learning and problem solving in a
broad domain of related problem classes (Epstein 1994a).
The instantiation of FORR for game playing is called
Hoyle (Epstein 1992). The use of a multi-agent architecture
is supported by evidence that humans integrate a variety of
strategies in order to accomplish problem solving (Crowley
and Siegler 1993; Biswas, Goldman, Fisher, Bhuva and
Glewwe 1995; Ratterman and Epstein 1995). The brain
appears to use a modular architecture to accomplish
integration of information (Ungerleider and Mishkin 1982;
DeYoe and Van Essen 1988). Additionally there is

evidence that different parts of the brain are activated when
decisions are being made about different strategic aspects
of chess (Nichelli, Grafman, Pietrini, Alway, Carton and
Miletich 1994).

A schematic diagram of this system is shown in Figure
1. A hierarchy of resource-limited procedures called
Advisors is provided with the current game state and legal
moves. Hoyle's Advisor hierarchy has two tiers. The first
tier sequentially attempts to compute a decision based upon
current knowledge, shallow (no more than 2-ply) search,
and simple inference. An example of this is Victory which
recommends a move that wins the contest immediately. If
the perfectly-correct, game-independent tier-1 Advisors
can select a move, they do so and the second tier is never
consulted. If no single decision is forthcoming, then the
second tier of heuristic but generally correct Advisors
collectively makes less reliable decisions based on a set of
individual, narrow heuristic viewpoints, such as Material's
“maximize the number of your playing pieces and
minimize your opponent's.” Based upon the strengths of
the Advisors’ responses, a simple arithmetic vote selects
the move.

A complete list of Advisors and their characteristics
appears in Table 1. As can be seen from Table 1, Advisors
can be categorized with respect to their generality and
learning capabilities. This organization allows the system
to function at an acceptable level of performance as it
learns to play a particular game. The first category is game-
playing agents that do not learn problem-class-specific
knowledge but have decision-making abilities in the
general game-playing domain. These Advisors are located
in the both the first and second tier, that is, some base their
decision on perfect knowledge, and some are general game
playing heuristics that participate in the voting process. In
the second category, Advisors can learn problem-class-
specific knowledge, represented as direct comparisons of
board states or moves.

In the third category, Advisors base their
recommendations on spatial configurations of pieces.
There are two levels of representation in the spatially-
oriented Advisors. On the first level is Patsy, an Advisor
that remembers and directly associates specific patterns
with wins, losses, or draws. On the second level is a set of
spatially-oriented agents, Advisors proceduralized from
spatial concepts. Each spatial concept is a generalization
over individual patterns, and each produces an individual
agent. The generation of these spatial Advisors is described
in the next section.

Learning to Use and Apply Patterns

In our work, a pattern is a visually-perceived regularity,
represented as a small geometric arrangement of marker
types (e.g., black, X) and unoccupied positions (blanks) in
a particular geographical location. An associative pattern
store provides a heuristically-organized database that links

patterns with contest outcome (win, loss, or draw). The
associative pattern store includes a set of templates, a
waiting list, a pattern cache and generated spatial concepts.

Figure 1: A schematic diagram of decision making in

Hoyle.

Figure 2 provides an overview of the system and the

development of pattern-based Advisors from the game-
specific associative pattern store. There are four stages
detailed here: associate, generalize, proceduralize, and
validate. Once patterns are identified, they are associated
with winning, losing, or drawing and stored in a pattern
queue. Patterns that persist over time and are identified
with a single consistent outcome move from the pattern
queue to the pattern cache. Patterns in the cache are
proceduralized via an associative pattern classifier, a new,
game-independent Advisor called Patsy. Periodic sweeps
through the pattern cache also attempt to generalize sets of
patterns into concepts. Each concept is proceduralized as
an individual, game-specific Advisor that is then validated
during subsequent learning.

Formulating Concepts

Generalization summarizes a set of detailed experiences
into a more useful and efficient representation. Currently,
the pattern cache is swept once every 10 contests during
learning, and Hoyle has two generalization rules to form
concepts. Patterns in a cache are said to agree when they
originate from the same template and pertain to the same
stage of the game. There are two generalization processes.
Given distinct agreeing patterns that have the same mover
and single, non-zero response, and are identical except in a

single position, Hoyle constructs a new pattern from the remaining positions. Given distinct agreeing patterns such

Table 1: Hoyle’s Advisors for Game Playing.

Name Tier Description Useful Learning
 Knowledge Strategy

General Game Playing Advisors - No Learning

Victory 1 Makes the winning move from the current state if there is one. None -
Enough Rope 1 Avoids blocking a losing move the non-mover would have if it None -
 were its turn now.
Candide 2 Formulates and advances naive offensive plans. None -
Challenge 2 Moves to maximize its number of winning lines or minimize None -
 the non-mover's.
Coverage 2 Maximizes the mover's markers' influence on predrawn game None -
 board lines or minimizes the non-mover's.
Material 2 Moves to increase the number of its pieces or decrease those None -
 of the non-mover.
Freedom 2 Moves to maximize the number of its subsequent immediate None -
 moves or minimize those of the non-mover.
Shortcut 2 Bisects the shortest paths between pairs of markers of the same None -
 contestant on game board lines.
Vulnerable 2 Reduces the non-mover's capture moves on two-ply lookahead. None -
Worries 2 Observes and destroys naive offensive plans of the non-mover. None -
Greedy 2 Moves to advance more than one winning line. None -

Advisors that learn domain specific knowledge

Wiser 1 Makes the correct move if the current state is remembered as a Significant states Deduction
 certain win.
Sadder 1 Resigns if the current state is remembered as a certain loss. Significant states Deduction
Don't Lose 1 Eliminates any move that results in an immediate loss. Significant states Deduction
Panic 1 Blocks a winning move the non-mover would have if it were Significant states Deduction
 its turn now.
Shortsight 1 Advises for or against moves based on a two-ply lookahead. Significant states Deduction
Anthropomorph 2 Moves as a winning or drawing non-Hoyle expert did. Expert moves Abduction
Cyber 2 Moves as a winning or drawing Hoyle did. Important contests Abduction
Leery 2 Avoids moves to a state from which a loss occurred, but where Play failure and Abduction
 limited search proved no certain failure. proof failure
Not Again 2 Avoids moving as a losing Hoyle did. Important contests Abduction
Open 2 Recommends previously-observed expert openings. Opening database Induction
Pitchfork 2 Advances offensive forks or destroys defensive ones. Forks EBL

Advisors that learn domain specific patterns and spatial heuristics

Patsy 2 Moves to recreate visual patterns credited for positive Visual patterns Associative
 outcomes in play, and to avoid those blamed for negative ones. pattern

 classifier

Spatial 2 Generalizes spatial heuristics from sets of patterns in Patsy’s Spatial Generalization
Heuristic pattern cache. concepts
Advisors

that interchanging the contestants' markers and changing
the mover transforms one to the other, Hoyle constructs a
new pattern with variable place holders.

Patsy
Spatial

Advisors

Spatial

Concepts

Pattern

Cache

Pattern

Queue

generalize

proceduralize

proceduralize

associate patterns

with outcomes

AWL

Algorithm

validate

Move
Feature

Detectors

Game

State
Figure 2: A schematic diagram of associative pattern

learning and spatial concept formation in our model.

Proceduralization

Proceduralization is the transformation of expert
knowledge into expert behavior. This is a non-trivial task
in AI (Mostow 1983). When there is much data or it
conflicts in its potential application, as with pattern
knowledge, interesting challenges arise. Each segment of
the associative pattern store therefore relates differently to
decision making. Patterns on the waiting list have no
impact on decision making at all. Patterns in the cache
serve as input to the associative pattern classifier, Patsy.
Pattern-based concepts become game-specific Advisors.

 The game-independent, tier-2 Advisor Patsy ranks legal
next moves based on the way the states they engender
match patterns in the cache. Patsy considers the set of
possible next states resulting from the current legal moves.
Each next state is compared with the patterns in the
appropriate, game-specific cache. No new patterns are
cached during this process. Each pattern is assigned a value
computed from the total number of won, lost and drawn
contests since the pattern was first seen. The strength of
Patsy's comment on each legal next move is a function of
the values of the patterns in the state to which it leads.

Thus Patsy encourages moves that lead to states
introducing patterns associated with a win or a draw for the
mover’s marker type, while it discourages moves that lead
to states introducing patterns associated with a loss.

Validation of New Advisors

Each concept is proceduralized as a new, tier-2, game-
specific Advisor. As these new, pattern-based Advisors are
introduced and Hoyle's skill develops further, some of
them may prove irrelevant, self-contradictory, or
untrustworthy, despite prior empirical evidence of their
validity. Credit/blame assignment in a domain such as this
is complex. At the end of a contest, it is difficult, even for
human experts, to pinpoint the move that won or lost. The
significant decision may have been early in play, or may
have been a set of moves rather than an individual one.
Rather than credit or blame a particular move, we have
chosen to credit or blame the Advisors that support expert-
like behavior. This approach holds the rationale behind
actions accountable, rather than the actions themselves.
Irrelevant and self-contradictory Advisors in a particular
game should have weight 0, and more trustworthy
Advisors should have higher weights than less trustworthy
ones. Empirical experience with Hoyle indicates that these
weights are problem-class specific and should therefore be
learned.

 With an external model of expertise as its performance
criterion, we use AWL, a modified version of the
perceptron-like Winnow (Littlestone 1988), to learn
problem-class-specific weights for tier-2 Advisors (Epstein
1994b). AWL runs at the end of every contest Hoyle plays
against an external (human or computer) expert. The
algorithm considers, one at a time, only those states in
which it was the expert's turn to move and Hoyle's first tier
would not have made a decision. For each such state, AWL
distinguishes among support and opposition for the expert's
recorded move and for other moves. Essentially, Hoyle
learns to what extent each of its Advisors simulates
expertise, as exemplified by the expert's moves. AWL
cumulatively adjusts the weights of tier-2 Advisors at the
end of each contest, and uses those weights to make
decisions throughout the subsequent contest.

Results

We have successfully implemented the integration of
spatially-oriented Advisors into Hoyle's second tier while
learning to play tic-tac-toe and lose tic-tac-toe. Lose tic-
tac-toe is played exactly like tic-tac-toe except the first
person to get three markers along any row, column or
diagonal loses. Tic-tac-toe is easy for Hoyle to learn, but
lose tic-tac-toe is considerably more difficult, both for

people (Ratterman and Epstein 1995) and for Hoyle. We
report primarily on the results for lose-tic-tac-toe in this
paper.

 In all the experiments described here, Hoyle alternately
moved first in one contest and second in the next. Such a
trial continued until Hoyle was said to have learned to play
a game because it could draw n consecutive contests in this
environment (met a behavioral standard of n). Since Hoyle
had already learned to play lose tic-tac-toe without visual
features, these experiments were intended to demonstrate
that game-dependent visual patterns exist and persist,
despite the non-determinism of the learning experience.
They also show that such patterns can be gathered without
a combinatoric explosion, and that the transition from
waiting list to pattern cache to concept and Advisor is
warranted. Furthermore, we show that new, game-specific
Advisors can be learned and managed appropriately, all
without reducing the program's ability to play well.

 The process of learning is sometimes influenced by
erroneous early experience and creates Advisors that do not
provide correct information. To support the smooth
integration of new Advisors into tier 2, the comment
strengths of the new Advisors spawned by the system are
discounted by an additional multiplier. This factor begins
at 0.1 and reaches 1.0 after the Advisor comments
appropriately 10 times. Meanwhile, the comments from
new Advisors are compared with the behavior of an expert
opponent, and their weights are adjusted by AWL.

Figure 3 shows three of the spatial concepts learned in
one run of lose tic-tac-toe which was continued until a
behavioral standard of 20 draws in a row was reached. If

an Advisor is described with α and β, the symbols are
interpreted as either α = X and β = O or α = O and β = X.

Figure 3: Some pattern-based Advisors learned for lose

tic-tac-toe. The mover for each Advisor is in the current
state; the pattern is matched for in the subsequent state.

 Advisor 1 advocates playing in an outside row (one that
does not include the center) where each contestant already
has one marker. Advisor 2 recommends that X play a
corner in a row where O already holds a corner. Advisor 3
is the horizontal and (through symmetry) vertical portion
of the heuristic "reflect through center" which has been
proven to be optimal play for X in lose tic-tac-toe (Cohen,
1972). Figure 4 shows how AWL adjusts the weights of
each of the three new spatial Advisors in Figure 3 on the
basis of their performance. The weight of Advisor 3
increases rapidly after its creation. Advisor 1 recommends
a correct but not frequently applicable action, and its
weight increases moderately. The weight of Advisor 2 on
the other hand begins to increase but then falls off

This paper appeared in the Proceedings of the AAAI Workshop on Computational Cognitive Modeling: Source of the Power,
1996. Portland, OR, AAAI.

3002001000

0

1.0

2.0

3.0

Contest
Number

W
e
ig

h
t

Advisor 1

Advisor 2

Advisor 3

Figure 4: The weights attributed to three learned, spatially-oriented Advisors during 250 consecutive learning contests

 rapidly as Hoyle finds it misleading and discounts it on the
basis of further experience.

Discussion

As a consequence of the overall process described in this
paper, Hoyle plays in a more spatially-oriented fashion
with experience. For the initial test of the operation of the
system as a whole we used simple games and made a
number of simplifications in the individual components of
the system. Future work includes more difficult games and
spatial concept formation based upon higher-order features
such as center, edge, perimeter, bounded regions, length,
and area. In addition, other spatial representations such as
threat and defense relationships (Levinson 1989). should be
explored in the context of this system.

Acknowledgements

We acknowledge helpful discussions with Ron Kinchla,
Philip Johnson-Laird and Nick Littlestone. This work was
supported by a grant from The James S. McDonnell
Foundation, NSF grant # 9423085 and PSC-Cuny grant
666318.

References

Biswas, G., S. Goldman, D. Fisher, B. Bhuva and G.
Glewwe. (1995). Assessing Design Activity in Complex
CMOS Circuit Design. In P. Nichols, S. Chipman et al
(Ed.), Cognitively Diagnostic Assessment (pp. 167-185).
Hillsdale, NJ: Lawrence Erlbaum.

Crowley, K. and R. S. Siegler (1993). Flexible Strategy
Use in Young Children’s Tic-Tac-Toe. Cognitive
Science, 17(4): 531-561.

DeYoe, E. and D. Van Essen (1988). Concurrent
Processing Streams in the Monkey Visual Cortex. Trends
in Neuroscience, 11: 219-226.

Epstein, S. L. (1992). Prior Knowledge Strengthens
Learning to Control Search in Weak Theory Domains. 7:
547-586.

Epstein, S. L. (1994a). For the Right Reasons: The FORR
Architecture for Learning in a Skill Domain. Cognitive
Science, 18(3): 479-511.

Epstein, S. L. (1994b). Identifying the Right Reasons:
Learning to Filter Decision Makers. In Proceedings of
the AAAI 1994 Fall Symposium on Relevance., 68-71.
New Orleans: AAAI.

Fine, R. (1989). The Ideas behind the Chess Openings.
(Ed.). New York: Random House.

Gelfand, J., M. Flax, R. Endres, S. Lane and D. Handelman
(1992a). Acquisition of Automatic Activity through
Practice: Changes in Sensory Input. In Proceedings of
the Tenth National Conference on Artificial Intelligence,
189-193. San Jose: AAAI Press.

Gelfand, J., M. Flax, R. Endres, S. Lane and D.
Handelman. (1992b). Senses, Skills, Reactions and
Reflexes: Learning Automatic Behaviors in Multi-
Sensory Robotic Systems. In G. Bekey and K. Goldberg
(Ed.), Neural Networks in Robotics (pp. 319-330).
Boston: Kluwer Academic.

Gelfand, J., D. Handelman, S. Lane and S. Epstein. (1994).
Adapting Human Functional Architectures and
Behaviors for Intelligent Machines. In J. Hendler (Ed.),
Handbook of Neuropsychology (pp. 361-376).
Amsterdam: Elsevier.

Gelfer, I. (1991). Positional Chess Handbook. (Ed.). New
York: Macmillan.

Hideo, O. (1992). Good Shape. In (Ed.), Opening Theory
Made Easy (pp. 62-111). San Jose, CA: Ishi Press.

Iwamoto, K. (1976). Go for Beginners. (Ed.). New York:
Random House.

Lee, K. F. and S. Mahajan (1988). A Pattern Classification
Approach to Evaluation Function Learning. 36(1): 1-26.

Levinson, R. A. (1989). A Self-Learning, Pattern-Oriented
Chess Program. In Proceedings of the Conference on
New Directions in Game-Tree Search, 2-11. Edmonton,
Canada:

Littlestone, N. (1988). Learning Quickly when Irrelevant
Attributes Abound: A New Linear-threshold Algorithm.
Machine Learning, 2: 285-318.

Mostow, D. J. (1983). Machine Transformation of Advice
into a Heuristic Search Procedure. In R. S. Michalski, J.
G. Carbonell et al (Ed.), Machine Learning: An Artificial
Intelligence Approach (pp. 367-403). Palo Alto: Tioga
Publishing.

Newell, A. (1990). Unified Theories of Cognition. (Ed.).
Cambridge, MA: Harvard University Press.

Nichelli, P., J. Grafman, P. Pietrini, D. Alway, J. Carton
and R. Miletich (1994). Brain Activity in Chess Playing.
Nature, 369: 191.

Ratterman, M. and S. L. Epstein (1995). Skilled like a
Person: A Comparison of Human and Computational
Game Playing. In Proceedings of the 17th Annual
Cognitive Science Conference, Pittsburgh: Lawrence
Erlbaum.

Ratterman, M. and S. L. Epstein (1996). The development
of game playing expertise in young children, in
preparation.

Samuel, A. L. (1963). Some Studies in Machine Learning
Using the Game of Checkers. In E. A. Feigenbaum and J.
Feldman (Ed.), Computers and Thought (pp. 71-105).
New York: McGraw-Hill.

Ungerleider, L. and M. Mishkin. (1982). Two Cortical
Visual Systems. In D. Ingle, M. Goodaleet al (Ed.),
Analysis of Visual Behavior (pp. 548-586). Cambridge:
MIT Press.

Yoshio. (1991). All about Thickness. (Ed.). Mountain
View, CA: Ishi Press.

