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Abstract 
FORR is a learning and problem-solving architecture 
that capitalizes upon synergy among a variety of 
limitedly rational agents. It takes the position that many 
reasonable but imperfect decision-making agents can, 
when they agree upon a course of action, quickly make 
choices that are good enough and will improve with 
learning. Some FORR agents react quickly and 
correctly to a small amount of sensed information, 
others perform highly-restricted search, and still others 
react heuristically within time constraints. Their 
collaboration and interdependence on a range of 
experimental work in two domains are examined here. 

Introduction 
A rational agent does the right thing, that is, behaves in a 
way that will optimize its performance according to some 
external standard [Russell and Norvig, 1995]. The agent’s 
actions are based upon its perceptions and its domain 
knowledge. Because expertise in challenging domains re-
quires extensive, and possibly dynamic, domain-specific 
knowledge, a rational agent should be able to acquire 
knowledge as a consequence of its actions, that is, a rational 
agent should learn. Given perfect knowledge of actions and 
their outcomes in a domain, it is theoretically possible to 
simulate perfectly rational behavior, i.e., always to deduce 
the right thing logically. For real-world problems, however, 
such computation is usually intractable. 

This paper describes a learning and problem-solving ar-
chitecture called FORR (FOr the Right Reasons) that har-
nesses many different limitedly rational agents to achieve a 
domain-specific goal. These agents, called Advisors, are 
FORR’s “right reasons.” Each Advisor epitomizes one 
simplistic, practical, domain-specific rationale that supports 
expert decision making in the domain. The Advisors share a 
common store of useful knowledge that is potentially appli-
cable and probably correct. 

FORR’s thesis is that enough right reasons with enough 
useful knowledge will eventually do the right thing, i.e., if 
one can develop and properly coordinate enough Advisors, 
and give them access to enough reasonably accurate infor-
mation, a synergy among them will gradually result in better 
performance without sacrificing efficiency. This paper 
describes how two FORR-based programs represent 
knowledge, learn, and coordinate their limitedly rational 

agents. It also reports and discusses empirical results, 
related work, and the issues they highlight. 

Implementations  
FORR’s goal is the development of problem-solving exper-
tise. A FORR-based program works on tasks (problem-solv-
ing experiences where a sequence of actions is intended to 
reach a desirable world state) within a single domain (a set 
of related problem classes). Two FORR-based programs are 
used as examples throughout this paper: Hoyle takes as its 
domain two-person, perfect-information, finite-board games 
[Epstein, 1992a], and Ariadne does simulated robot path 
finding in rectangular, grid-based mazes [Epstein, 1995a]. 
FORR provides the framework for learning and problem 
solving, including the representation of knowledge, the con-
struction of experiments, and the collection of data. FORR, 
Ariadne, and Hoyle are all implemented in Common Lisp.  

For Hoyle, a problem class is a game, and a task is a con-
test at that game. To date, Hoyle has learned to play 18 dif-
ferent games either perfectly or as well as our best external 
expert programs. This expertise is achieved with the reten-
tion of small amounts of new knowledge (no more than 
.001% of its largest game graphs) and after practice in less 
than 100 contests. Although it has yet to tackle checkers or 
chess, many of Hoyle’s games have billions of states in their 
game trees. A challenging decision situation for Hoyle at 
nine-men’s morris is shown in Figure 1. 

In Ariadne, each maze (boundaries and obstructions) is a 
problem class, and a task (pair of locations for the robot and 
the goal) is a trip through that maze. Ariadne learns to find 
its way between pairs of locations in a maze represented as a 
rectangular grid with discrete internal obstructions, like the 
20 ∞ 20 maze that is 30% obstructed in Figure 2. A legal 
move passes through any number of unobstructed locations 
in a vertical or a horizontal line. The difficulty of a problem 
is measured as the minimum number of moves required to 
reach the goal. The robot senses, in any state, its own 
coordinates, the coordinates of the goal, the dimensions of 
the maze, and the distance north, south, east, and west to the 
nearest obstruction or to the goal. The robot does not sense 
while moving, only before a move. The robot knows the 
path it has thus far traversed, but it is not given, and does 
not construct, an explicit, detailed map of the maze. Instead, 
Ariadne learns descriptive, heuristic information about a 
particular maze from repeated problem solving in it. This 
domain is not amenable to traditional AI techniques [Korf, 
1990], but after 10 practice trips through a randomly-
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generated maze, Ariadne quickly solves complex problems 
requiring as many as 11 right-angle turns without a map. 

Knowledge and Learning in FORR  
Each FORR-based program begins with general knowledge 
intended only for its set of related problem classes, such as 
board games or mazes. The user prespecifies a variety of 
descriptive, domain-dependent information expected to be 
applicable to every problem class in the domain: problem 
class descriptions, useful knowledge, and Advisors. 

A problem class is defined in FORR as an instantiation of 
the problem frame. FORR’s basic problem frame includes 
domain-independent slots, such as the problem class name. 
The problem frame is also specialized with domain-
dependent slots that identify problem class features known 
in advance. For example, a game has marker types for each 
contestant, while a maze has boundary dimensions. 

The useful knowledge for each problem class is defined in 
FORR as an instantiation of the useful knowledge frame. 
FORR’s basic useful knowledge frame includes domain-
independent slots such as average task length. The useful 
knowledge frame is also specialized with domain-dependent 
slots that identify problem class features whose values are 
not known in advance (unlike those in the problem frame) 

but worth learning. For example, Hoyle learns good open-
ings and Ariadne learns dead-ends. Useful knowledge may 
be thought of as the right questions to ask about a problem 
class. Each item of useful knowledge has a relative learning 
schedule (e.g., after a decision or some set of decisions) and 
an appropriate learning algorithm. The slot specifies what to 
learn, while its associated learning algorithm specifies how 
to learn it. Any learning method may be employed in these 
algorithms. Hoyle, for example, learns some items of useful 
knowledge inductively, others deductively, and one with a 
graph-oriented variation of EBL [Epstein, 1990].  

An Advisor is an agent that epitomizes a domain-specific 
but problem-class-independent, decision-making rationale, 
such as “minimize the other contestant’s material” or “get 
closer to your destination.” An Advisor is implemented as a 
time-limited procedure whose input is the current state of 
the world, the current permissible actions from that state, 
and any learned useful knowledge about the current problem 
class. Each Advisor outputs any number of comments that 
support or discourage permissible actions. A comment lists 
the Advisor’s name, the action commented upon, and a 
strength, an integer from 0 to 10 that measures the intensity 
and direction of the Advisor’s opinion. For example, one 
comment for the state in Figure 2 from an Advisor that 
advocates small steps would be <Plod, (17, 6), 8>. Although 
there are no constraints on the nature of the comment-
generating procedures themselves, a FORR-based system is 
intended to sense the current state of the world and react 
with a rapid computation, i.e., to eschew extensive search. 

FORR models the transition from general expertise to 
specific expertise as the acquisition of useful knowledge 
[Epstein, 1994a]. From its experience, a FORR-based 
program specializes its domain-wide knowledge gradually 
for each problem class. The same Advisor, when confronted 
with the same state of the world, may comment differently 
as useful knowledge evolves. For example, Hoyle’s Open 
relies upon useful knowledge of good game openings, and 
Ariadne’s Quadro relies upon its knowledge of gates, 
transitions between quadrants in the layout. Increasingly 
accurate and complete useful knowledge enhances the value 
of each Advisors’ comments. 

How Rational Agents Work Together 
Not all rational agents are expected to be equally important. 
FORR partitions its Advisors into three tiers. Tiers 1 and 2 
are fundamentally reactive, while those in the intermediate 
tier 1.5 interact overtly with their environment. Advisors in 
Tier 1 reference only correct useful knowledge and their 
comments are trustworthy. They sense the current state of 
the world and whatever correct useful knowledge they have 
about the problem class; if they make a decision, it must be 
fast and correct. Hoyle has a tier-1 Advisor called Panic 
based upon the rationale “if the other contestant has an 
immediate a winning move, block it.” Ariadne has one 
called No Way based upon the rationale “do not enter a 
dead-end unless it could contain the goal.”  

In contrast, Advisors in Tier 2 are not necessarily correct 
in the full context of the state space. Each of them 
epitomizes a heuristic, private system of belief that can 
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Figure 1: A challenging nine men’s morris state black to move.  
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Figure 2: Ariadne’s robot R must move through the grid to the 
goal G in unidirectional steps through unobstructed locations 
without the map shown here. 
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make a valid argument for or against one or more actions. 
Neither their reasoning processes nor the useful knowledge 
on which they rely is guaranteed correct, and each has only 
a limited time for computation. Hoyle has a tier-2 Advisor 
called Material that advocates “maximize the number of 
your pieces on the board and minimize those of the other 
contestant.” Ariadne has one called Plod that represents 
“take a one-unit step, preferably toward the goal.” 

Advisors in tier 1.5 do highly-constrained, knowledge-
based, heuristic search. Each has a reactive trigger and a 
search procedure that generates and tests a highly-
constrained set of possible solution fragments. The trigger 
signals recognition that the Advisor may be pertinent to the 
current situation. The search procedure attempts to construct 
a solution fragment, a sequence of recommended decisions 
rather than a single reactive one, a digression from the 
“sense-compute-execute” loop. Ariadne, for example, has a 
tier-1.5 Advisor called Wander. Wander triggers when the 
robot’s recent locations represent a relatively small fraction 
of those in the maze. Wander’s search procedure can 
investigate as many as eight L-shaped paths (by moving one 
longest step in each direction and then testing for possible 
second steps) before it returns one as a solution fragment.  

 Figure 3 shows how FORR effects collaboration among 
its three tiers to make decisions. Tier-1 Advisors are con-
sulted in a predetermined, fixed order. Each Advisor may 
have absolute authority to make a decision alone, or veto 
power to eliminate a legal action from any further consider-
ation. Only when the first tier of a FORR-based system fails 
to make a decision does control default to tier 1.5. Tier 1.5 
is prioritized too; each Advisor in turn is given the 
opportunity to trigger. Once a tier-1.5 Advisor triggers, con-
trol is ceded to its search procedure with limited time to 

formulate and test possible solution fragments. The first 
solution fragment returned by a tier-1.5 Advisor is executed 
and then, regardless of the outcome, control is returned to 
tier 1. If no tier-1.5 Advisor triggers, or none produces a 
solution fragment, the second tier will make the decision. 
All tier-2 Advisors have an opportunity to comment before 
any decision is made. The decision they arrive at is the 
action with highest total strength; this represents a 
consensus of their opinions. (A tie is broken by random 
selection.) For example, in Figure 1 it is Hoyle’s turn to 
place a marker on the board, playing black, and white is in 
the midst of a fork (more than one threat, indicated by the 
bold lines, to make three in a row and thereby capture a 
black marker) that would give it a substantial advantage. 
Although a conventional game-playing program would 
require 5-ply search to detect the fork, Hoyle’s Advisors 
Greedy and Mobility selected a very strong move here (to 
24) that not only defeated the fork but also began another 
fork for black with only 2-ply lookahead.  

At no time do FORR’s Advisors actually dialogue with 
each other or with the external expert program available in 
some domains. (Hoyle, for example, learns against a 
different, hand-crafted, external expert program for each 
game.) If an external expert exists, FORR’s Advisors can 
only observe its behavior, not query it. Implicit interaction 
among Advisors is the sharing of a common useful 
knowledge base. Explicit interaction among Advisors comes 
when one with absolute authority prevents the others from 
commenting at all, when one with veto power prevents the 
support of an action by the others, when a tier-1.5 Advisor 
constructs a solution fragment before any tier-2 Advisors 
ever comment, or when a group of tier-2 Advisors’ com-
ments combine to override the others’ expressed opinions.  

Empirical Lessons on Limited Rationality 
In a series of ablation experiments with Ariadne, we have 
demonstrated an important synergy among correct reactivity 
in tier 1, heuristic search in tier 1.5, and heuristic reasoning 
in tier 2 [Epstein, 1995a]. Correct reactivity offers the com-
monsense inherent in any problem solving task, while 
heuristic reasoning offers quick expert rules of thumb that 
try to avoid search. Ariadne shows, however, that on 
occasion to react well one needs to know more about the 
problem space, i.e., to search it. Four of Ariadne’s five tier 
1.5 Advisors are triggered by lack of problem-solving 
progress. Effectively, when the available useful knowledge 
is inadequate to support the heuristic reasoners, Ariadne’s 
tier 1.5 sends out search agents that, as a side effect, learn. 
Not only do these agents attempt to extricate the robot, but 
they also cache any useful knowledge they acquire during 
search. After a tier-1.5 Advisor constructs a solution frag-
ment, all the Advisors have access to more knowledge and 
may be in a better position to use it. For example, Ariadne’s 
tier-1.5 Advisor Wander puts the robot where all the tier-2 
Advisors are more likely to make new, constructive com-
ments. In turn, heuristic reasoning agents often create situa-
tions in which heuristic search agents can produce important 
solution fragments. For example, Ariadne’s tier-2 Advisors 
Goal Row and Goal Column push the robot into situations 
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Figure 3: How FORR agents collaborate. 
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where Roundabout, a tier-1.5 Advisor for circumnavigating 
walls, can trigger.  

A FORR-based program begins learning in a problem 
class with a host of Advisors presumed to be limitedly ratio-
nal in the domain, but with no indication of their relative 
worth in the specific problem class. They need to be vali-
dated, i.e., to have their usefulness and trustworthiness con-
firmed in the current context. Despite the intended general-
ity of FORR’s rational agents, their degree of applicability 
varies from one problem class to another. Relevance valida-
tion attempts to eliminate Advisors that make no contribu-
tion in a particular problem class. FORR monitors the 
participation of each Advisor. Those that never comment 
(like Mobility in tic-tac-toe) are periodically proposed to a 
human supervisor as possibly irrelevant. With confirmation, 
FORR reduces computational overhead by no longer 
consulting them for that problem class [Epstein, 1994b]. 
Human monitoring is needed thus far because some 
Advisors are “slow starters,” i.e., need enough useful 
knowledge to comment. 

FORR addresses domains where a sequence of good deci-
sions is required to achieve the goal, but success or failure is 
not readily attributed to any particular decision. Credit and 
blame assignment are therefore directed to the Advisors 
responsible for good and bad decisions, rather than to the 
decisions themselves. In addition, some programs, such as 
Hoyle, learn pattern-based, problem-class-specific Advisors 
that summarize experience and should be gradually 
integrated into Figure 3 as they prove their worth [Epstein 
and Gelfand, 1995]. Although these learned Advisors are 
carefully constructed and filtered, they, too, need validation. 
Significance validation attempts to fit the behavior of a 
FORR-based program to an observable external expert agent 
and to avoid the behavior of a random one. If there is an ex-
ternal model of expertise, such as the hand-crafted programs 
Hoyle learns against, then the comments of the tier-2 
Advisors and the pattern-based Advisors are compared with 
the decisions of a random agent and of the external expert 
program. Advisors that underperform the random agent or 
contradict the external expert agent are blamed, and those 
that consistently agree with the external expert agent are 
rewarded [Epstein, 1994b]. In this way FORR learns 
problem-class-specific weights to emphasize the strengths 
of expert-like Advisors and to filter out weaker 
ones .  

We have experimented with a variety of agents in both 
Hoyle and Ariadne. Some critical mass of agents appears 
essential to success in these domains, particularly in the 
second tier. Prior to learning problem-class-specific 
Advisors, Hoyle has 23 agents, 7 in tier 1 and 16 in tier 2. 
Ariadne has 21 agents, 2 in tier 1, 5 in tier 1.5, and 14 in tier 
2. We have also tested agents that make random decisions. 
In a challenging game, such an agent playing alone will lose 
every contest; in a maze such an agent traveling alone fails 
to solve any of the more difficult problems.  

A perfectly rational external agent is an inadequate model 
from which to develop a robust, reasonable one. If there is 
an external model of expertise in the environment, such as 
another contestant at a two-person game, then the nature of 
that model has a substantial influence on the speed of 

FORR’s learning and the quality of the expertise it 
eventually develops [Epstein, 1994c]. This is not only 
because some FORR agents rely upon that external model as 
a paradigm (as when Hoyle’s Open replicates an opening it 
has seen an expert play), but also because the external 
model effectively guides the learner to the most important 
portions of the search space. Care must be taken, however, 
to permit the learner to explore on its own as well. 

Agents reason better from explicit concepts. Without 
explicit conceptual knowledge, a FORR-based program’s 
ability to develop expertise is substantially reduced 
[Epstein, 1992b]. Learning, at least for Hoyle, is reduced to 
rote memorization, destined to be intractable in a large 
search space. Learning is also essential to Ariadne’s ability 
to solve its more difficult problems; on the easier ones the 
program fares well enough without it [Epstein, 1995b]. 

Discussion 
FORR is a satisficing architecture, one that constructs “good 
enough” decisions; it is prepared to sacrifice theoretical op-
timality for evolving expertise. FORR’s Advisors are subop-
timal in several ways. Time and procedural constraints on 
search make them limitedly rational. For example, a 
“rational” game player would simply search the entire game 
tree, and a “rational” robot would exhaustively search its 
maze. Advisors’ strategic rationality (support and discour-
agement of particular actions) is restricted by the narrow-
ness of their individual perceptions. For example, Ariadne’s 
Plod only addresses the direction of a step, with no concern 
for the robot’s distance from the goal. Advisors’ epistemic 
rationality is questionable because they rely on useful 
knowledge without any guarantee of consistency or deduc-
tive closure. One might well argue that these are reasonable, 
rather than rational, agents. 

We have yet to encounter, however, any serious 
performance difficulties as a result. FORR’s robustness, we 
believe, is attributable to the multiplicity of reasonable 
agents and reasonable knowledge acquisition methods it has 
at its disposal. In Ariadne, for example, an extent is useful 
knowledge about a bounding rectangle for some area in a 
maze. Among the ways an extent may be learned are as a 
bottle and as a chamber. Each is a heuristic description for a 
region in which the robot has once been confined. If the 
robot is trapped there again, Advisors that reference either 
or both kinds of extents can help to extricate it.  

Reasonable agents also provide explanations people 
understand. For example, Ariadne’s tier-2 voting in a par-
ticular situation might be interpreted as “this is a good 
choice because it gets me closer to the goal, is a large step, 
and takes me to a location I have never been in on this trip.” 
Similarly, Hoyle’s refusal to make a particular move might 
be argued as “this is a poor choice because it reduces my 
potential mobility on my next move and is symmetric to a 
move I once explored with questionable results.” 

If expertise in a given domain can be represented as set of 
condition-action rules with a control structure based upon 
absolute authority and veto power, FORR can implement it 
as a collection of tier-1 Advisors. For most challenging 
domains, however, such perfect knowledge is unavailable. 
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One traditional AI alternative is to incorporate additional, 
heuristic rules into a system and then attempt to sequence 
and tune them. FORR’s tier-2 Advisors are actually sets of 
heuristic rules. The system is spared the burden of ordering 
or balancing those rules, simply because they all vote 
together. Thus tier 2 forms an action-value system, where 
actions are evaluated not on some absolute scale, but with 
respect to each other. The preference function is the 
combined vote from all the tier-2 Advisors.  

Hoyle and Ariadne are both faced with uncertainty, albeit 
for different reasons. Hoyle could theoretically explore the 
entire search space, but for most games that would take too 
long, particularly without game-specific hardware like that 
used by state-of-the-art chess machines [Anantharaman, et 
al., 1990; Berliner and Ebeling, 1989]. Ariadne, however, is 
hampered by its limited sensing ability. It cannot, for 
example, see around corners or detect the length of a wall 
unless it acts. So Hoyle, in some sense, chooses not to 
know, while Ariadne is helplessly ignorant. Both systems, 
however, successfully deal with uncertainty by satisficing. 

FORR’s global approach to a domain with a set of inde-
pendent knowledge sources is reminiscent of a distributed 
system. Each knowledge source is implemented as an agent 
(an Advisor) with a common goal but is heuristic, and its 
comments may be inaccurate. FORR’s agents do not negoti-
ate; they act together because the control structure of Figure 
3 forces their collaboration [Levesque, et al., 1990]. This 
coordination relies upon a high-level strategic plan for 
advice sharing, similar in spirit to that of Corkill and Lesser 
[Corkill and Lesser, 1983]. The plan, however, is partially 
predetermined and partially learned, and agents have 
carefully delineated interactions. Each FORR agent spends 
most of its time in computation rather than communication, 
as do those in DARES [Conry, et al., 1990]. Unlike 
DARES, however, lack of direct communication frees 
FORR’s individual agents to use powerful, even id-
iosyncratic, knowledge representations that support efficient 
reasoning from a particular viewpoint.  

Issues and Implications 
We foresee several important issues in our ongoing work. 
First, particularly with the automated acquisition of new 
Advisors, the assignment of Advisors to tiers and their 
prioritization within those tiers becomes an issue. This is 
more difficult in domains such as Ariadne’s, which have no 
external model as a standard of good performance. Second, 
the contribution of an Advisor in FORR should be a 
function of its computational cost, its reliability, and, 
perhaps, its transparency. All of these may be problem-
class-dependent and should be learned. Finally, automaticity 
is the gradual transition from high-level reasoning to rapid, 
compiled computation. If a new, learned, reactive Advisor 
compiles out knowledge that other, slower Advisors have, 
should it replace them? precede them? compete with them?  

Hoyle’s pattern-based, problem-class-specific Advisors 
are part of our research on the automated generation and ap-
plication of limitedly rational agents. Current research also 
includes the identification of domain-independent Advisors 
that FORR generates and provides, just as it provides the 

basic slots in the problem frame. Victory is such an Advisor. 
FORR is not ideal in every domain. Experience must be 

readily available and inexpensive, and the domain must be 
able to tolerate failure. An external model, while not 
essential, is helpful. The user must also be able to express 
reasonably correct and complete information about the 
domain through a problem class definition, Advisors, useful 
knowledge, and learning algorithms. Finally, satisficing 
must meet the user’s needs. 

For many intractable real-world problems, however, a 
suboptimal solution is acceptable, and there is evidence that 
people reason this way [Biswas, et al., 1995; Crowley and 
Siegler, 1993; Ratterman and Epstein, 1995]. Once the 
domain is well represented, FORR has proved to be a robust 
and adaptive approach to limitedly rational agency.  
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