
HOYLE is a program designed to learn to play any two-person, perfect
information game.  HOYLE derives much of its power from a set of
knowledge sources, called Advisors, that recommend and advise against
moves and plans during play.  This paper describes HOYLE's task, the
nature of its Advisors, its blackboard architecture, and its control
mechanisms.  The discussion highlights important issues in learning to
control such a blackboard system.  At its current stage of development,
HOYLE learns to control the blackboard to play seven games expertly.
Empirical results are provided on five of these games for four different
control paradigms.

The AI approach to game playing has thus far been to build a program that plays only a

single game, and plays it very well.  (For example, Samuel, 1963, 1967;  Rosenbloom,

1982;  Berliner, 1980;  Anantharaman, Campbell, & Hsu, 1990;  Chen, 1989.)  HOYLE,

the program under development described here,  differs from traditional game playing

programs in three ways:  

• it is able to play any of a broad class of games correctly, i.e., according to the rules

• it improves its performance through a variety of learning paradigms

• it avoids extensive forward search into the game tree.  

Instead of search, HOYLE uses a broad range of instantiable, game-independent

approaches to the move selection problem.  HOYLE's initial success is directly attributable

to expert knowledge sources, called Advisors, and their interface through a blackboard

system (Nii, 1986).  The blackboard uses a variety of control mechanisms to integrate these

diverse problem solvers into a common framework.  The first section of this paper

describes HOYLE's domain and task.  Section 2 sketches HOYLE's knowledge sources;

Section 3 explains the blackboard architecture and its control mechanisms.  Section 4

highlights important issues in learning to control such a blackboard system, and provides
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empirical results for four control paradigms.  The final section summarizes the current

results.  

1.  The Task

Informally, a game consists of some material (e.g., a board, playing pieces), a roster of

participants, and a list of rules.  One complete experience at a game, from the initial board

state to the termination of the process, is called a contest.   The rules describe how the

participants are to take turns affecting the position and/or status of the material (e.g.,

removing pieces from the board or changing their location) until some rule terminates the

contest.  When the contest terminates, the rules declare which participant has won or that

the contest was a draw.

For the games in HOYLE's domain, there are three fundamental assumptions.  First,

there are exactly two participants:  Player (the one who moves first) and Opponent.  Player

and Opponent are the roles in a two-person game.  Second, all information about the game

is disclosed and equally available to all the participants (e.g., no closed hands, no uncertain

outcomes as with dice), i.e., it is a perfect information game.  Finally, the game can be

represented as a finite, directed graph (the game graph) in which a node (state) both

identifies the participant whose turn it is (the mover) and describes a possible arrangement

of the material.  The participant who is not the mover in a state is referred to here as the

non-mover.

An expert at a game should be able to take the role of either Player or Opponent and

consistently maximize that role within the game graph.  Consistency is important;  the

expert must perform well over a long sequence of contests (a tournament).  This does not

mean that the expert should always win, or even never lose;  many popular games (e.g.,

tic-tac-toe) result in a draw when played by experts.  Rather, an expert should consistently

win when possible, failing that draw, and lose as rarely as the nature of the game permits.

In addition, in games where there is a final score for each participant, an expert should win

by a large margin, and lose by a small one.  This definition of expertise deliberately ignores

the skill level of any other participant, and instead defines the strength of a strategy with

respect to the game itself.  True expertise is perfectly backed up knowledge from the entire

game graph.  

HOYLE is intended to solve several different kinds of problems.  On the highest level,

HOYLE is a program to learn to play any two-person, perfect information game.  The

program learns about an individual game by playing contests of it, against either HOYLE

itself, a programmed expert, or a human participant.  HOYLE has two goals:  to learn as

much as possible about the nature of the game, and to play expertly.  During a contest,

HOYLE is repeatedly faced with the task of selecting its next move.  The smallest unit for
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solution elements is a move;  moves may be organized into plans, and future research will

organize the plans into higher-level structures.  Implicitly, a solution interval is a

contiguous portion of a contest.

The input to HOYLE for a game is a set of procedures that define the game by describing

and displaying its material and rules.  The program has no heuristics for symmetry.

HOYLE's task is to learn to play each game very well, ideally with true expertise.  

2.  The Advisors

HOYLE was originally inspired by the team of consultants that chess grandmasters

sometimes confer with during important matches.  These people discuss and analyze a

contest with the grandmaster;  their role is to provide a variety of perspectives.  Although

each of them has studied chess for many years and they share much common knowledge,

often one consultant will see a contest differently.  The consultants are collaborating

experts;  they share and argue their views with the expectation that they will improve

performance both in the specific contest and at the game in general.  

Like the grandmaster, HOYLE has a panel of knowledge sources, called Advisors, that

participate in play.   No Advisor is a full-fledged consultant, however.  Instead, each one

epitomizes a different, specialized perspective on game playing in general, a weak theory

for the domain.  An Advisor takes a fairly narrow, but rational, view of the move selection

problem, one found generally applicable by experienced game players.  Each Advisor is

implemented as a procedure with a time limit.  An Advisor can post only plans (sets of

moves) or opinions about moves on the blackboard.  Advisors have access to each other's

plans and opinions only through the blackboard.  At the moment there are 20 game-

independent Advisors in various stages of implementation.  Their names are descriptive:

Victory, Panic, Sadder, Wiser, Don't-Lose, Enough-Rope, Pitchfork, Open, Candide,

Worried, Shortsight, Sneak, Feinter, Anthropomorph, Not-Again, Cyber, Spotter,

Challenge, Greedy, and Wild.  

Between contests of a particular game, HOYLE seeks and selectively caches information

from play traces to aid move selection.  HOYLE makes this information available to its

Advisors in libraries that are gradually instantiated based on its experience.  Thus an

Advisor may make different comments about a state in a later contest from the comments it

made about the same state in an earlier contest.  (See (Epstein, 1989) for a more detailed

discussion.)
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3.  The Blackboard, Priority Classes, and Control

HOYLE's blackboard contains an encoding of the current game board, the identity of the

mover, and the HOYLE libraries for the game.  When it is HOYLE's turn to move in a

contest, one of the game-defining procedures computes all the legal moves from the current

state and posts them on the blackboard.  Once the legal moves are posted, Advisors may be

called upon to post plans (sets of moves) and comments about moves on the blackboard.  

For any state where HOYLE is mover, an Advisor may make any number of comments,

each with a strength from 0 (adamant opposition) to 10 (insistent support).  Comment

strengths are only intended to reflect relative value within an individual Advisor's expertise;

they are not intended to reflect any absolute standard with respect to the opinions of other

Advisors.  Consider, for example, the state in Figure 1 from a tic-tac-toe contest where

HOYLE as Player (X's) is the mover.  The legal moves from this state are the squares 2, 6,

7, 8, and 9.  Each Advisor evaluates these alternatives independently, from its own narrow

perspective.  The Advisor Panic looks to see whether the non-mover has a sure win on his

next move.  In Figure 1, Panic would insist that a move in square 6 is the only way to

prevent a win by Opponent.  This comment could cite as support the threat of the O's in
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Figure 1 .  A state in a tic-tac-toe trial.  Player (X's) is mover.  The Advisors are called
upon for move recommendations on this state.

squares 4 and 5, and would have maximum strength, since a win by a reasonably

observant Opponent across the second row on the next turn is virtually certain.  Another

Advisor, Worried, looks for longer-range wins for the non-mover.  In Figure 1, Worried

would suggest moves in both square 2 and square 8, since Opponent could win in the

second column after two turns.  Worried also suggests moves in squares 7, 8, and 9, to

prevent Opponent's eventual win in the third row.  The comments about the third row

would have a lesser strength than those about the second column because they project a

longer contest.  Victory is another Advisor;  it looks for a certain win for itself on the

current move.  In Figure 1, Victory would insist that a move in square 2 is the best choice,

because Player will win immediately.  Some of the more sophisticated Advisors employ

iterative deepening, selective extension (Anantharaman, Campbell, & Hsu, 1990), and the



Epstein

null move heuristic (Goetsch & Campbell, 1988), recommend plans, suggest psychological

gambits, and defend against primitive models of the opposing participant.  

As in the example of Figure 1, the Advisors rarely agree, but HOYLE must select a move

based upon the advice they post on its blackboard.  (Like a person, HOYLE need not have

a particular strategy, or even a plan, when it makes a move.)  HOYLE's control structure

has two segments:  a weak theory for the domain of two-person, perfect information games

and a learning module.  

One aspect of HOYLE's weak theory recognizes that all Advisors are not created equal,

i.e., that in all games some Advisors are always more important than others.  The Advisors

are therefore grouped into priority classes called tiers.  When it is HOYLE's turn to move,

it consults the tiers in turn.  If any tier produces an absolute recommendation or reduces the

posted legal moves to a single one, none of the subsequent tiers will be consulted.  This

hierarchical consultation system  encapsulates general knowledge about game playing,

knowledge that does not have to be relearned for each game.  The tiers capture such

commonsense rules as "If you can move to a win immediately, do it" and "If you cannot

win now and are about to lose on the other participant's next turn, block the move that

threatens you."  

The classification of an Advisor is determined by the nature of its problem solving

expertise.  Tier 1 Advisors must always be quickly and absolutely correct in their opinions.

This restricts them to the ability to win (Victory) or avoid sure loss (Don't-Lose) on a

single move, or to recognize the current state and recall its certain outcome from previous

experience (Sadder and Wiser).  Tier 2 Advisors are permitted somewhat more time in

which to produce absolutely correct opinions, based on a two-ply lookahead in the game

tree.  They search for nearby wins and losses (Panic, Shortsight), or leave opportunity for

the other participant to err (Enough-Rope).  The difference between Tier 1 and Tier 2 is

primarily in the resource requirements of the individual Advisors.  Within both of these

tiers the Advisors are consulted in a fixed, game-independent order that is part of HOYLE's

weak theory.

The control learning module refers only to the broad spectrum of heuristic Advisors in

Tier 3, whose relationships may not be game-independent.  Some of the Advisors (e.g.,

Pitchfork) may not be relevant to every game.  To speed the construction of their opinions,

some Advisors (e.g., Candide) deliberately overlook data that should be relevant.  Some

are partially (e.g., Pitchfork) or completely (e.g., Opening) dependent on the game

libraries.  All of the Tier 3 Advisors have the opportunity to offer opinions before any

decision is made.  At this time, control learning is directed only to move selection, as

discussed below.
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 Recall that an Advisor can make one or more comments on a state, that a comment can be

for a move or against it, and that every comment has a weight associated with it.  For any

given state, denote the opinion of Advisor A about move m as A(m), where

0 ≤ A(m) ≤ 10.

A smoothed comment, denoted as σ(A(m)), has intent rather than strength.  This

transformation is defined by

σ(A(m)) =   
-1 if A(m) < 5
0 if A(m) = 5

+1 if A(m) > 5

Smoothing is a form of scaling that permits meaningful summation of comments on a

move, e.g., a group of comments against a move is expressed as the sum of negative

numbers.

If a move has not been chosen prior to Tier 3, all the advice from the tier is combined,

according to the frequency and weight of the comments for and against each move.

HOYLE currently has four paradigms to integrate the expertise available on the blackboard

in Tier 3.  

• Paradigm 1:  Every Advisor expresses every comment with its associated strength.  The

selected move m is the one whose A(m) sum across the Advisors is a maximum, i.e.,

maxm A(m)∑
A

• Paradigm 2:  All comments are smoothed, i.e., are -1, 0, or +1.  The selected move m is

the one whose σ(A(m)) sum across the Advisors is a maximum, i.e.,

maxm σ(A(m))∑
A

• Paradigm 3:  Every Advisor A gets a single weighted vote v(A).  For each Advisor

A, comments A(m) for all moves m are ranked by strength and the strongest  (furthest from

5 in absolute value) is selected.  If there is more than one strongest comment for an

Advisor, one is chosen at random as v(A).  The selected move is the one whose v(A) sum

across A is a maximum, i.e.,

maxm A(m)∑
A

χm(v(A))  where χm(v(A)) = { 
1  if v(A) = m
0  otherwise

• Paradigm 4:  Every Advisor A gets a single smoothed vote σ(v(A)).  For each Advisor A,

comments A(m) for all moves m are ranked by strength;  a strongest is then selected and

smoothed.  If there are multiple top-ranking comments for an Advisor, one is chosen at

random as σ(v(A)).  The selected move is the one whose σ(v(A)) sum across A is a

maximum, i.e.,
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maxm σ(A(m))∑
A

 χm(v(A))  where χm(v(A)) = { 
1  if v(A) = m
0  otherwise

Each of these approaches has some justification.  Paradigm 1 thoroughly considers every

carefully constructed expert opinion.  The Advisors, however, do not purport to separate

game-playing knowledge into mutually exclusive classes.  To the extent that the Advisors

overlap, they may comment the same move for the same underlying reason;  Paradigm 1

will overemphasize any such intersection in expertise.  Paradigm 2, although it retains the

multiplicity of comments from Paradigm 1, is deliberately formulated to ignore the

comments' strengths.  Advisors can only support (+1), oppose (-1), or be indifferent to (0)

a move.  Although the strengths constructed within a single Advisor carry important intra-

Advisor knowledge (e.g., threats further away are of less concern to Worried than closer

ones), there is no reason to expect that they will scale properly for inter-Advisor debate in

every game.  Thus Paradigm 2 captures only the overall sense the Advisors have about

each move.  Paradigm 3 retains the comment strengths, but forces each Advisor to express

a single preference.  This approach is intended to minimize the potential distortion in

Paradigm 1 due to overlap of expertise, but it creates another difficulty:  when an Advisor

has both positive and negative advice to give, one kind of comment is certain to be

discarded.  Finally, Paradigm 4 restricts each Advisor to a single comment with direction

rather than strength.  This approach smooths what may be inaccurately scaled and repetitive

data, and constructs a coarse survey of the Advisors.  

4.  Learning Control

The games in HOYLE's current testbed are culturally diverse and quite varied:  tic-tac-toe,

lose tic-tac-toe, two versions of three-dimensional tic-tac-toe, tsoro yematatu (Zaslavsky

1982), pong hau k'i, and achi (Bell 1969).  They were chosen because they span a variety

of cultures, and therefore probably capture some aspects of game playing that people find

particularly intriguing.  Their game graphs lack the complexity of chess or Go, but some of

them offer the challenge of cycles and stage transitions, and at least one of the game graphs

has over a billion nodes.   

  HOYLE learns to play well through competition in a tournament against an expert for each

game.  Many of HOYLE's Advisors can be instantiated by this play, i.e., the program

selectively extracts knowledge from the contests and stores it for their subsequent

reference.  HOYLE's initial research (Epstein, 1989) used Paradigm 1 for control of Tier 3

in all its tournaments, and learned to play all seven games extremely well.  
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4.1  Issues

Recent research has identified three significant issues in learning to control HOYLE's

blackboard:

• What is the best control strategy for learning?  One of the paradigms might learn faster

than another, or not at all.  There may, for example, be hidden biases in the assigned

weights that favor one Advisor over another once the comments are forwarded to the

blackboard.

•  Is there a difference between a good control strategy for learning a task and a good

control strategy for executing that task?  Once the program has extracted knowledge from a

tournament and has learned to play very well under one paradigm, another paradigm might

then play as well or even better.  This is particularly likely if the learning was incomplete

initially, i.e., HOYLE did not learn to play perfectly.

• In a broad domain, does the relative significance of expert perspectives vary from one

instance to another?  For specific games, some Advisors' comments may be more

significant than others'.  Perhaps a comment should be weighted not only by the strength

its Advisor assigns, but also by the value that Advisor has had in other contests of the same

game.   (Note that this is different from "other contests at any game," which formulated the

tiers.)  Such credit assignment has ample precedent in the machine learning literature (See,

for example, Langley, 1985;  Mitchell, Utgoff, & Banerji, 1983;  Pazzani, 1987.)

The empirical study described below has addressed these questions for five games:  tic-

tac-toe, lose tic-tac-toe, achi, pong hau k'i, and tsoro yematatu.

4.2 Experiment 1

To address the first issue, that of the best control strategy for learning, each of the

paradigms was used to learn against an expert program, one that offers a randomized

variety of high-quality play without exhaustive search.  Because HOYLE learns by

selective memorization and generalization of its experience, there is no way to determine at

what point all the knowledge to play a particular game with true expertise has been

acquired.  A behavioral standard is set instead:  for the purpose of this experiment, a game

is considered learned when the outcome in 10 consecutive contests against an expert

program matches true expertise.  Because the expert program is non-deterministic, learning

speed may vary.  Therefore, five runs for each paradigm are averaged to provide a measure

of learning speed.  (Examination of HOYLE's libraries indicates that under different

paradigms, and even on different runs, different knowledge is acquired for the same

game.)  The results of Experiment 1 appear in Table 1.
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Clearly some paradigms are far faster at learning these games than others.  In particular,

Paradigm 1 seems to be a generally effective mechanism for learning these five games.

Table 1 also demonstrates that the learning of even a relatively easy game can be notably

delayed by the choice of a control strategy.  (Note the performance for achi under Paradigm

2, for example.)  An unanticipated result was the ability to distinguish difficult, i.e.,

requiring on average many contests to learn, games from easy ones.  Although the

researchers intuitively knew which games were more difficult, particularly without

knowledge of symmetry, Experiment 1 confirms that lose tic-tac-toe is by far the most

difficult to learn of the five.

4.3 Experiment 2

To study the possibility that the best learning strategy may not be the best playing strategy,

two versions of HOYLE using different control paradigms are pitted against each other, in

tournaments of 100 contests each, for every game under consideration.  Because this

experiment is intended to measure post-learning performance, both versions share a

common knowledge base, one acquired during the first experiment, but left unchanged by

experience in the second experiment.  The results appear in Tables 2 through 6.  The entry

"a, b, c" for the row labeled i and the column labeled j means that Paradigm i won a

matches, drew b matches, and lost c matches against Paradigm j.  For example, for two

perfect players in a game where true expertise draws, the entry should be 0, 100, 0.  

Experiment 2 demonstrates that a strategy apparently successful in the first experiment

may still have much to learn in the second, i.e., may not yet be a true expert.  Inspection of

the traces reveals that such uneven play is caused by paradigms whose decisions force the

exploration of different, possibly less promising, regions of the game tree.  For example,

Tic-tac-toe Lose

tic-tac-toe

Achi Pong

hau k'i

Tsoro

yematatu

Paradigm 1 21.6 73.2 10.0 10.0 10.0

Paradigm 2 19.8 143.2 25.2 10.0 10.0

Paradigm 3 28.6 230.2 10.0 10.0 10.0

Paradigm 4 24.2 211.2 16.0 10.0 10.0

Average  23.6 164.45 15.3 10.0 10.0
Table 1 . Experiment 1.  Number of contests HOYLE played until it learned each game
under four different control paradigms.  A game is considered learned when HOYLE plays
as an expert would in 10 consecutive contests.
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Table 2 .  Experiment 2.  Testing playing control strategies against each other in tic-tac-toe.

in its learning phase against the expert program in tic-tac-toe, Paradigm 1 only encounters

openings in the center or in a corner.  When confronted by another paradigm in this

experiment with a different opening, a weak opening the training program and human

experts would avoid, Paradigm 1 loses.  Under normal circumstances, HOYLE would

learn from each loss, but in this experiment, where relative strengths are tested, the

numbers gauge post-learning robustness in the face of imperfect opposition.  In tic-tac-toe,

the various versions of HOYLE present these new, potential, but unrealized, learning

experiences to each other fairly infrequently.

Table 3.  Experiment 2.  Testing playing control strategies against each other in lose tic-tac-
toe.

The extreme results for lose tic-tac-toe in Table 3, however, where only 17% of all

contests end in a draw as perfect play would, suggest that the behavioral standard for

learning was insufficient, i.e., that Experiment 2 was run prematurely.  Lose tic-tac-toe

demands a complex strategy that, without knowledge of symmetry, requires a tournament

experience of at least 90 contests.  The non-deterministic nature of the learning process

clearly did not provide HOYLE with enough experience;  it had played almost 200 contests

before Experiment 2 began, but they had not provided all the data HOYLE needed to play

expertly.  

Pong hau k'i, on the other hand, is quite a simple game for HOYLE.  Its small cyclic

game graph is readily dealt with, typically by the Advisors. Table 4 indicates that HOYLE

found nothing more to learn about pong hau k'i in this experiment.

 

Tic-tac-toe Paradigm 2 Paradigm 3 Paradigm 4

Paradigm 1 0, 100, 0 2, 92, 6 4, 95, 1

Paradigm 2 - 3, 94, 3 1, 97, 2

Paradigm 3 - - 4, 93, 3

Lose tic-tac-toe Paradigm 2 Paradigm 3 Paradigm 4

Paradigm 1 45, 17, 38 46, 11, 43 41, 14, 45

Paradigm 2 - 47, 16, 37 33, 22, 45

Paradigm 3 - - 33, 24, 43
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Table 4.  Experiment 2.  Testing playing control strategies against each other in pong hau
k'i.

Table 5 shows that achi, whose first stage is quite similar to tic-tac-toe, also had an

incomplete learning experience in Experiment 1.  In particular, the programmed achi

expertalways opens in the center;  only Paradigms 3 and 4 risk the other openings, to the

surpriseof Paradigms 1 and 2.  The results are not as dramatic for those of lose tic-tac-toe,

but not as robust as those for tic-tac-toe.

Table 5 .  Experiment 2.  Testing playing control strategies against each other in achi.

Table 6, for tsoro yematatu, is identical to that for pong hau k'i.  This was an

unanticipated result, because most people find this a far more challenging game than pong

hau k'i.  The table indicates that, once learned, any of the paradigms is as good as any

other for tsoro yematatu.

Table 6 .  Experiment 2.  Testing playing control strategies against each other in tsoro
yematatu.

In general, results in Experiment 2 may be somewhat exaggerated by the fact that learning

is turned off during these tests.  Thus the various versions of HOYLE may be repeatedly

confounded by weaker playing that they would, under normal circumstances, quickly learn

to combat.

4.4 Experiment 3

Pong hau k'i Paradigm 2 Paradigm 3 Paradigm 4

Paradigm 1 0, 100, 0 0, 100, 0 0, 100, 0

Paradigm 2 - 0, 100, 0 0, 100, 0

Paradigm 3 - - 0, 100, 0

Achi Paradigm 2 Paradigm 3 Paradigm 4

Paradigm 1 0, 100, 0 12, 72, 16 19, 61, 20

Paradigm 2 - 9, 74, 17 16, 73, 11

Paradigm 3 - - 20, 64, 16

Tsoro yematatu Paradigm 2 Paradigm 3 Paradigm 4

Paradigm 1 0, 100, 0 0, 100, 0 0, 100, 0

Paradigm 2 - 0, 100, 0 0, 100, 0

Paradigm 3 - - 0, 100, 0
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The third issue, whether expert perspectives have different relative importance in different

games, is more complex.  Only a simple study of it is offered here.  Using the traces of the

contests from the first experiment, HOYLE reviews its cached knowledge and determines

which of the 13 Advisors in Tier 3 would have made any meaningful contribution to

successful play.  In tic-tac-toe, for example, Candide, Worried, and Greedy ranked as the

most consistently relevant (having a comment to make) and significant (consistently

agreeing with the move choices of the non-losing participants).  After the first experiment,

each of the paradigms challenges the expert program once again, but this time with the

irrelevant Advisors eliminated and the comment weights of the three most significant ones

doubled.  Table 7 displays the results of such rematches in tournaments of 20 contests each

against the same expert programs.  HOYLE was permitted to learn during these

tournaments.  Elimination of irrelevant Advisors provided the expected substantial

computational speed-up, since each Advisor has its own time allotment.  In most cases,

doubling of the comment weights appears, to have no significant post-learning impact on

play performance against an expert.  In lose tic-tac-toe, however, under Paradigm 4

HOYLE appears to lose too much information, either because the game is difficult or

because it is partially learned.  Traces indicate that under Paradigm 4 in this experiment for

lose tic-tac-toe HOYLE attempted a variety of unusual openings that necessarily led to its

defeat.

The overall strength of the results in Table 7, and the variation in the choice of most

significant Advisors from one game to the next, supports the following inductive

statements about the fundamental nature of these games.  For tic-tac-toe the most significant

are Candide, Worried, and Greedy.  This suggests that tic-tac-toe can be played naively:

attempt to forward (Candide) multiple (Greedy) plans and block (Worried) simple ones,

without elaborate strategic contingencies.  Even the opening is properly dictated this way.

For lose tic-tac-toe, pong hau k'i, and achi, the three most significant Advisors are

Tic-tac-toe Lose

tic-tac-toe

Achi Pong

hau k'i

Tsoro

yematatu

Paradigm 1 20 20 20 20 20

Paradigm 2 20 20 20 20 20

Paradigm 3 18 20 18 20 20

Paradigm 4 20 13 20 20 20
Table 7 . Results of Experiment 3.  After learning, the number of contests HOYLE played
as an expert would have in 20 consecutive contests against an expert program.
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Pitchfork, Open, and Shortsight.  This suggests that simple lookahead (Shortsight) and the

correct opening (Open) are key in these games, and that the ways plans overlap (Pitchfork)

are important.  Finally, the three most significant Advisors for tsoro yematatu are Candide,

Worried, and Anthropomorph.  This suggests that simple imitation of observed expert

behavior (Anthropomorph) is most important, along with naive planning and anticipation,

to expert play at this game.

5. Conclusion

Against  a behavioral standard, HOYLE has learned to play seven different games expertly

with a blackboard system.  Four paradigms are postulated here for control of this

blackboard.  Empirical evaluation on five of these games indicates:

• Each game is learnable under at least one blackboard control paradigm against an expert.

All the games are readily learnable under Paradigm 1, but some are learned as quickly, and

apparently as well, under simpler controls.

• Once learned, each game can be controlled expertly either by the paradigm under which it

was learned or under others.  Expertise can be enhanced by playing different control

structures against each other, that is, the program can continue to explore different portions

of the game graph and continue to learn by varying its control strategy in play against itself.

This suggests that "learned" might be better defined by knowledge stability,  rather than by

a behavioral standard, and that expertise should be developed first against an expert and

then against players of lesser skill.

• All the control paradigms may be safely improved through the elimination of Advisors

that did not contribute to the decision-making process during the learning phase of a

particular game.

• Different games rely more heavily on different knowledge sources.  The relevant

knowledge sources do not necessarily reflect human intuition about the games.

• The performance of control paradigms with primitive weighting of significant Advisors

provides no visible performance change for a well-learned game.  For at least one game,

however, restricting Advisors to a single, smoothed comment substantially reduces post-

learning playing skill.

Future research will include the consideration of alternative control paradigms and the

automation of these experiments as part of HOYLE's discovery process.
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