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ABSTRACT—Virtual screening based on protein-ligand 
docking is widely applied at the early stage of drug discovery. 
Scoring functions from a diverse set of existing protein-ligand 
docking tools, however, often poorly distinguish bioactive 
compounds from inactive ones. As a result, considerable effort 
has been devoted to the combination of multiple scoring 
functions for more reliable evaluation. State-of-the-art 
consensus scoring or ensemble learning methods assume each 
scoring function performs uniformly for all cases. Case-based 
meta-learning (CBML), the method we have developed, is 
fundamentally different. It identifies the best predictor for a 
specific new case based on its similarity to old cases and uses 
that method to predict rather than average the performance of 
all predictors. Our large-scale benchmark studies clearly 
indicate that CBML outperforms consensus-based scoring and 
significantly improves the performance of structure-based 
virtual screening. The CBML paradigm can be extended to 
other applications in bioinformatics and chemoinformatics for 
robust and reliable predictive modeling.  
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I. INTRODUCTION 

 The discovery of drug-like lead compounds that bind to a 
specific disease-causing protein (i.e. drug target) is a central 
task at the early stage of drug discovery. In vitro high-
throughput screening (HTS) is an established experimental 
technique for this purpose. HTS is not only costly and time- 
consuming, but also associated with high false-positive 
rates. In silico virtual high-throughput screening (VHTS) is 
an attractive alternative with the potential to save time, 
reduce costs, and improve the hit rate. When the three-
dimensional (3D) structure of a target protein is available, 
virtual screening based on protein-ligand docking (PLD) is 
widely applied to identify and optimize drug lead 

compounds. PLD is a molecular modeling technique that 
evaluates a ligand’s binding pose (e.g., orientations and 
conformations), and the strength of interaction once it is 
bound to a protein receptor or enzyme (e.g binding free 
energy). Many PLD programs explore the search space of 
possible orientations and conformations to identify those 
with the strongest binding (i.e., minimal binding free 
energy) in a protein-ligand complex. Binding free-energy 
prediction is thus critical for PLD, but most PLD software 
does it poorly. 
 To leverage state-of-the-art PLD software and to improve 
the performance of PLD-based VHTS, considerable effort 
has been devoted to the combination of multiple scoring 
functions [1-3]. These methods either average scores or 
take the majority opinion from a set of algorithms that 
predict the strength with which a protein will bind to a 
ligand. A fundamental shortcoming of consensus scoring 
and ensemble learning methods is their assumption that 
each scoring function performs uniformly well or uniformly 
poorly for all protein-ligand pairs (cases). In reality, this 
assumption does not hold. The protein-ligand interaction 
data used to train scoring functions is noisy and biased. 
Because each individual scoring function introduces its own 
systematic errors, a scoring function may perform 
dramatically differently on different cases. As a result, if 
most scoring functions are inaccurate on a case, consensus 
scoring will be too, even if some scoring function is highly 
reliable on that case. Another practical difficulty in PLD-
based VHTS is that no individual PLD program or 
combination of them can assess the quality of its prediction 
on a specific case. This hinders the application of PLD-
based VHTS in real drug discovery. 
 To address the above challenges, this paper introduces a 



novel algorithm, case-based meta-learning (CBML). The 
premise of CBML is that close predictive accuracy of a 
single scoring function on similar cases supports reasoning 
from a set of scoring functions about a new case. To predict 
on a new case, CBML identifies the most similar cases 
among its benchmarks, and selects the scoring function that 
performed best on them. The principal result reported here 
is that CBML significantly improves predictive accuracy on 
PLD-based VHTS. To the best of our knowledge, this is the 
first work that exploits case-based meta-learning to 
combine multiple protein-ligand docking programs for 
VHTS applications. Furthermore, we introduce a method to 
assess the reliability of case-based prediction. Although the 
ability to report such reliability is essential for hypothesis 
generation in biological discovery, it is rarely available 
from most chemoinformatics and bioinformatics methods. 
In summary, CBML is a promising tool that should support 
a broad range of applications in bioinformatics and 
chemoinformatics for reliable predictive modeling. 

II.  RELATED WORK 

 Our new method, CBML, addresses PLD-based VHS 
with a meta-learning method based on case-based reasoning 
(CBR), CBR is a machine-learning paradigm that retrieves 
and uses knowledge about previously experienced examples 
(i.e., cases) to solve a new problem. A recent CBR system, 
for example, diagnosed a patient based on diagnoses for the 
most similar previous patients [4]. 
 CBML differs from conventional ensemble learning. 
Ensemble learning applies a single algorithm to a subset of 
data to build multiple predictors and uses their consensus as 
its final prediction. CBML does not seek a consensus 
among multiple algorithms or predictors, but instead 
identifies the best single predictor for a specific case. 

III. METHODS 

PLD software 
The work reported here takes scoring functions from 

three orthogonal PLD tools: eHiTS [5], Autodock Vina [6], 
and Autodock [7]. Each has its own strategies for scoring. 
Although Autodock and Autodock Vina bear similar name, 
they have developed different scoring functions. 
Autodock’s scoring function applies a force-field-based 
approach derived from physical phenomena. Autodock 
Vina’s empirical scoring functions sum individual energy 
terms, and then train parameters on co-crystallized protein-
ligand complexes with experimentally determined binding 
affinities. Finally, eHiTS combines empirical and 
knowledge-based scores trained from known protein-ligand 
complexes. Because of their different algorithms and 
training data, PLD methods often have dramatically 
different performance on the same data set. No single 
method consistently outperforms the others. We do not 
include all available PLD tools in this study. Autodock and 

Autodock Vina are two of the most used open source 
docking tools. In recent benchmark studies, eHiTS was in 
general the best among 19 scoring functions [8], and ranked 
among the top 7 docking tools [9]. Thus eHiTS can serve as 
a baseline from which to evaluate CBML. If CBML 
outperforms eHiTS, it is likely that CBML would 
outperform other PLD tools as well.  

CBML algorithm 

 Each example here is a chemical compound, represented 
for CBML by its 2D fingerprint, which is calculated from 
openbabel [10]. The similarity metric between chemicals is 
defined by the Tanimoto coefficient. 
 Let F be a set of scoring functions, where each scoring 
function Fj ∈ F predicts score s(i, j) on chemical ci, and let 
p(i, j) denote the predictive accuracy of Fj on ci. CBML, our 
case-based meta-learning for example e, case set C, 
similarity metric d, and scoring functions F, appears in 
Algorithm 1.  
 Step 1 of Algorithm 1 assembles M, a set of cases most 
similar to the new example e. In step 2, each scoring 
function Fj predicts a score for e based on Fj’s predictions 
on M. The prediction of Fj for e is calculated as a linear 
combination of Fj’s scores for all the cases in M:  
 

  (1) 
 
where weight wi quantifies the similarity between e and ci. 
In this work, wi is determined by Tanimoto Coefficient, but 
another d or computation from properties of e alone would 
be a reasonable alternative. 
 Step 3 in Algorithm 1 combines the scores from all Fj in 
F on the cases in M to make a final prediction for e. In 
CBML, a prediction from a scoring function that performs 
better on M have more influence on the final prediction. Let 
p(M, j) denote a set-based performance measurement for 
the overall predictive accuracy of Fj on the cases in M. 
CBML emphasizes cases that are more similar to e, with the 
same weights used in equation (1): 
  

   (2) 
  
 Finally, we use a winner-take-all approach to combining 
the s(e,j) scores based on multiple predictions p(M, j), 
applicable to both discrete and continuous values: 
 

 Algorithm 1: CBML (e, C, d, F) 
(1) Select a subset M of cases in C most similar to e. 
(2) Calculate s(e,j) for all Fj ∈ F.  
(3) Combine s(e, j) for all Fj ∈ F to predict a score for e.  



   (3) 

Case base and benchmark 

     We test CBML on protein-ligand docking with examples 
drawn from DUD, a set of benchmarks for virtual screening 
[11]. Along with each ligand, DUD includes 36 decoys 
intended to challenge a PLD algorithm.  
     Typically, different PLD scoring functions predict on 
incomparable scales, a concern for a meta-predictor that 
relies upon multiple scoring functions. We therefore use a 
simple but robust rank-regression scoring mechanism that 
uniformly maps the raw scores from any Fj ∈ F to a 
normalized rank score. The scores from Fj thereby become 
independent of its scale; they reflect only the preference of 
Fj for one case over another. More formally, given a set C 
of n reference cases, CBML calculates rank-regression 
scores as follows. For each Fj ∈ F, CBML sorts the s(i,j) 
raw scores for ci ∈ C in ascending order, replaces the scores 
with their rank, and then normalizes that rank in [0,1]. Note 
that this process assigns smaller scores to higher-ranked 
cases, to coincide with the premise that a smaller binding-
energy score is better. The accuracy of the algorithm Fj on 
example ci is 
 

        (4) 

Experimental design 

 Each of our experiments has a predictor that predicts the 
score of a chemical e to a receptor. We examine the 
predictive accuracy of five predictors: three individual 
predictors (eHiTS, AutoDock Vina, AutoDock) and two 
meta-predictors, CBML and RankSum, detailed below.   
 For CBML, F was {eHiTS, AutoDock Vina, AutoDock}. 
We first computed the similarities between all pairs of 
chemicals in DUD for the same receptor, and recorded the 
five chemicals most similar to each chemical, with their 
scores. Next, we evaluated the three individual predictors 
with leave-one-out validation.  
 RankSum is a typical bioinformatics meta-predictor. Each 
individual predictor ranks chemicals with respect to their 
rank-regression score. To predict the score on example e, 
RankSum totals the ranks from the three predictors, where a 
lower score is better. Note that RankSum requires scores 
from all predictors for each chemical.  
 We measure the performance of a scoring function by its 
enrichment ratio, the ratio of the number of true positive 
(i.e., active) compounds to the number among compounds 
ranked in the top 5% overall.  

IV.   RESULTS and DISCUSSION 

CBML considerably outperforms both consensus 
scoring and individual predictors 

 We report first on CBML-1N, a simple but effective 
version of Algorithm 1, where M is only a single case c, the 
one most similar to e. Thus, to predict a score for e, CBML 
need only compute p(c, j) for each Fj ∈ F. As Figure 1 
shows, CBML-1N clearly outperforms both consensus 
scoring and each of the individual PLD tools. Nearly 70% 
of all receptors achieve an enrichment ratio above 40% with 
CBML-1N, almost twice the performance of RankSum.  
  The superior performance of CBML-1N comes from its 
ability to consider and exploit protein-ligand pairs case by 
case. Because CBML-1N identifies such chemical types, it 
can more accurately determine which predictor should be 
used to rank a specific chemical. Note, however, that an 
algorithm that always selects the best performer (here, 
eHiTS) cannot ever exceed that performance.  We believe 
that reliance on similar cases makes CBML more resilient 
than consensus scoring to occasional poor predictions from 
individual predictors. Of course, were all of F consistently 
poor on all examples, CBML would not succeed, but we 
assume that the individual predictors were proved 
successful to some degree by other researchers.  

CBML quantifies the confidence of predictions 

 A less addressed, unresolved issue in machine learning in 
general, and in PLD-based VHTS in particular, is how to 
quantify the reliability of the prediction. A reliable estimate 
of confidence in a prediction would greatly facilitate 
follow-up wet-lab experiments and decision making for 
VHTS. CBML provides a general framework for prediction 
confidence. 
 Our confidence analysis considers three kinds of 
predictions, based on chemical similarity and scoring 
function accuracy on M. Two chemicals are termed similar 
if and only if their similarity is greater than t1 (here, 0.8), 

 
Figure 1. Cumulative distribution of receptors vs. the 
enrichment ratio for chemicals ranked in the top 5%  



and dissimilar otherwise. A reliable predictor is one whose 
performance, as calculated by equation (4), is greater than t2 
(here, 0.9); otherwise it is unreliable. Together t1 and t2 
define three categories of predictive ability for a scoring 
function Fj that predicts on testing example e. A prediction 
has high confidence if e’s closest neighbor c is similar to e 
and Fj is reliable on c. A prediction has low confidence if c 
is dissimilar to e and Fj is unreliable on c. In all other 
situations cases, a prediction has normal confidence.  
 The superior prediction power of high-confidence 
CBML-1N (here called CBML-HC) spans all 34 receptors 
tested, as shown in Figure 1. The percentage of CBML-HC 
varies from one receptor to the next, but averages 46.4%. 
Thus, when a chemical is predicted as active with high 
confidence, it is very likely to be a real active compound, 
and worthy of further experimental validation. 
 The performance of low-confidence CBML provides a 
measurement of the underlying inaccuracy of CBML, 
which is separate from that of the PLD tool itself. If CBML 
cannot correctly identify the suitable cases, its performance 
degrades. Thus the accuracy of CMBL critically depends on 
the performance of its case similarity metric (measured here 
as the chemical fingerprint similarity). On the other hand, if 
CBML identifies the correct case, but no PLD tools perform 
well, neither will CBML. In such a situation, the inclusion 
of more PLD tools should increase CBML’s performance 
still further, as long as some PLD tool provides accurate 
scoring.   

VI.  CONCLUSION 

 CBML is a case-based meta-predictor, applied here to 
improve compound virtual screening using PLD. Results 
here suggest that CBML outperforms any individual PLD 
predictor, as well as conventional consensus scoring. 
Furthermore, a method is proposed to estimate reliability in 
CBML predictions. This approach makes it possible to 
apply PLD to solve real drug-discovery problems. In 
practice, experimental design can focus on high-confidence 
predictions, which promise a high success rate.  
 Given a domain-specific similarity metric that 
compensates for individual predictors by its focus on 
additional relevant features, CBML is applicable to other 
bioinformatics and chemoinformatics problems. Examples 
include protein structure prediction, protein-protein 
interaction, protein-nucleotide interaction, disease-causing 
mutation, and the functional roles of non-coding DNA.  
 Ligand-based VHTS (e.g., 3D Quantitative Structure-
Activity Relationship) is also widely applied in drug 
discovery. PLD-based and ligand-based VHTS use 
fundamentally different algorithms. Although it would be 
interesting to compare the performance of PLD-based 
methods with that of ligand-based methods in VHTS, such 
comparison is beyond the scope of this paper. It will be 
explored in future work.  
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