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Abstract

This paper describes an architecture that begins with enough general knowledge to play any board

game as a novice, and then shifts its decision-making emphasis to learned, game-specific, spatially-

oriented heuristics. From its playing experience, it acquires game-specific knowledge about both

patterns and spatial concepts. The latter are proceduralized as learned, spatially-oriented heuristics.

These heuristics represent a new level of feature aggregation that effectively focuses the program’s

attention. While training against an external expert, the program integrates these heuristics robustly.

After training it exhibits both a new emphasis on spatially-oriented play and the ability to respond to

novel situations in a spatially-oriented manner. This significantly improves performance against a

variety of opponents. In addition, we address the issue of context on pattern learning. The

procedures described here move toward learning spatially-oriented heuristics for autonomous

programs in other spatial domains.
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Introduction

There are many human cognitive and motor skills where representation and sensory processing are

optimized through experience with the task (Saitta, Neri, Bajo, Canas, Chaiklin, Esposito, et al. 1995).

Often neither the initial statement of the problem nor early experience provides people with an effective

and efficient representation. Rather, people acquire these representations gradually, from repeated

exposure to them. In this paper we describe an autonomous decision-making program that gradually

acquires representations from experience as people do, integrates them with high-level reasoning, and

then improves its performance as it shifts its reliance to these representations.

Spatially-oriented representations are useful for two-dimensional board games. Initial directions and

rules given to novices, however, are typically statements of relations among a few playing pieces. These

rules may be spatial in nature, but are usually of the lowest order. With experience, experts rely on

higher order, spatially-oriented strategies to direct play. Indeed, much advice from experts on how to

analyze and play board games is conveyed through spatially-oriented concepts. Chess and checkers are

discussed in terms of controlling the center of the board, while control of the edges is crucial in Othello

(Fine 1989; Gelfer 1991; Samuel 1963). Concepts such as shape and thickness are fundamental to the

game of Go (Ishida 1991; Otake 1992).

Our approach to learning spatially-oriented heuristics for game playing is based upon visual features

which people appear to perceive most easily. The human visual system is hierarchically organized and

has detectors for features of various orders (Kandel 1991; Zeki 1993). At the lowest end there are

detectors for lines and angles (Kandel 1991). It appears, in addition, based on cognitive psychological

measurements, that people also have detectors for combinations of these features (Goldstein 1989;
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Treisman 1986). Rather than consider all possible shapes and patterns, our work therefore begins with a

set of spatial arrangements of pieces that it processes: straight lines, L’s, triangles, squares, and diago-

nals. This particular set, represented in Figure 1(a), was chosen with grouping principles similar to those

used to construct Gestalt visual primitives (Goldstein 1989). Any one of these arrangements can be fitted

to a game board in several ways, as the L-shape is to the tic-tac-toe board in Figure 1(b). Playing pieces

instantiate those fitted shapes to form patterns, as Figure 1(c) instantiates the small L-shape in Figure

1(b). The central point of this paper is that an algorithm uses those simple shapes to filter through a

quantity of data, and manages to extract the salient strategic features in the two games reported here.

(a)

(b) (c)

Figure 1: (a) Spatial arrangements of game pieces processed in the algorithms described here. (b) The

L-shaped arrangement fitted to a game board two different ways. (c) A fitted L-shape instantiated to

produce a tic-tac-toe pattern.

The applications of spatially-oriented representations are by no means limited to game playing. Spatial

reasoning has been applied to manufacturing (Penev and Requicha 1997; Vandenbrande and Requicha

1993; Waco and Kim 1994), robot navigation (Kuipers and Levitt 1990), and geographical information

systems (Egenhofer and Mark 1995). Often, the salient spatial features in many applications such as

these are not known in advance, and the ability to learn them is essential to a high-performance system.

One could, in principle, reason spatially about a particular task and use axioms of spatial reasoning to

infer higher-order spatial concepts about the domain. The inherent complexity of these domains,

however, and the complexity of spatial inference itself, make it difficult to deduce higher-order spatial

knowledge from first principles. The purpose of this research is to provide a mechanism to use

experience as a way to focus attention on an application’s salient spatial knowledge. For example,

sophisticated manufacturing design tasks are initially stated in terms of the features of the individual
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parts or pairs of parts, but heuristics about the spatial relationships among groupings of components can

be discovered by performing the task. Similarly, when scheduling transportation resources, protocols are

initially formulated as utilization rules and tradeoffs among costs, but experience dictates that optimal or

nearly optimal solutions have particular spatial characteristics.

Any architecture that autonomously acquires skill in a specific problem class should be able to

perform tasks there while learning. For a system to learn through experience, it must be able to perform

at some low level of competence that supports the kind of experience required to achieve a higher level

of performance through practice. These systems, however, typically have a complete set of knowledge

for the particular problem class, as well as a knowledge representation initially optimized for it. In

contrast, the architecture described here retains its capacity for general baseline performance while it

introduces an additional representation that specializes its behavior to a particular problem class, in this

case an individual game.

This paper represents a substantial extension of prior work, where learned spatial knowledge was

isolated from other decision elements in the program (Epstein, Gelfand, and Lesniak 1996). Here we

directly integrate new spatial knowledge into decision making with an improved version of weight

learning. Previously, patterns were extracted only from final contest states; now they are extracted on

every move. As a result of these changes, we are able to demonstrate, for the first time, significantly im-

proved performance and a shift with experience to spatially-oriented play. The principal contribution of

this work is not a sophisticated spatial reasoning algorithm but rather the ability to learn and integrate

new spatial knowledge with other knowledge sources.

The Architecture

FORR (FOr the Right Reasons) is a general architecture for learning and problem solving in a broad

domain of related problem classes (Epstein 1994a). FORR solves problems with a mixture of Advisors,

procedural implementations of particular decision-making rationales. This approach is supported by ev-

idence that people integrate a variety of strategies to accomplish problem solving (Biswas, Goldman,

Fisher, Bhuva, and Glewwe 1995; Crowley and Siegler 1993; Ratterman and Epstein 1995). Because all

Advisors are not equally important or equally trustworthy, FORR organizes them into the two-tier

hierarchy of Figure 2. Advisors in tier 1 are guaranteed to be correct; they perform shallow (if any)

search and infer from perfect knowledge. Advisors in tier 2 are heuristic; they too are restricted in their

search depth, and any information they may rely upon is inductively generated.

Hoyle is the instantiation of FORR for game playing (Epstein 1992). As in Figure 2, the input to a

FORR-based program at any decision point is the current state of the world, a list of the legal actions

possible, and a collection of useful knowledge, information that is potentially applicable and probably

correct for a specific problem class. Useful knowledge is heuristic, learned from experience, and ex-

pected to enhance performance. Good openings are an example of useful knowledge for game playing.
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The other kinds of useful knowledge for game playing include significant states (ones certain to result in

a win for a particular contestant assuming perfect play on both sides), forks (two or more overlapping

simple plans belonging to the same participant, directed toward different desired states, and requiring

one or more common moves), expert moves (made by the other contestant in particular situations),

Hoyle’s moves (successfully made by the program in particular situations), dangerous states (ones that

could not be proved significant during limited learning time, but are suspect nonetheless), and the

pattern database described in the next section. Each kind of useful knowledge has its own learning

algorithm, triggered at the end of a contest or after a move. (See (Epstein 1992) for further details.)

Each of Hoyle’s Advisors is an individual procedure that receives as input the current state, a list of

legal moves to consider, and whatever useful knowledge Hoyle has acquired about a particular game

thus far. The output of an Advisor is any number of comments, each of the form

<Advisor, action, strength>.

General 
game-playing 

knowledge 
Advisors

Game-specific
learned 

knowledge 
Advisors

Associative
pattern 

knowledge 
Advisor

Generalized
spatial

heuristic
Advisors

acquired useful knowledge legal movescurrent state

Victory

Panic

Enough 
Rope

Tier 1:
Shallow search and inference
based on perfect knowledge

Absolute
decision ?

yes

no

make
move

Tier 2:
Heuristic opinions

w1 w2 wi wn–1 wn

Voting

Figure 2: A schematic of decision making in Hoyle.
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Strength is an integer in [0, 10] that indicates the attitude of the Advisor to the action, from firm

opposition (0) to strong support (10). Other than these I/O specifications and a fixed time limit within

which each must terminate, there is no uniformity imposed upon the Advisors’ structure. Advisors need

not reference useful knowledge and they do not learn; they simply generate opinions. Consider, for

example, the tier-2 Advisor Leery. Given the current state and its legal move options, it checks the

useful knowledge and comments against any move that would lead to a dangerous state. The more

reliable the dangerous state cache, the more reliable Leery’s comments will be.

Decision making in Hoyle considers each tier in turn. The first tier sequentially attempts to compute a

decision based upon current useful knowledge, no more than 2-ply search, and simple inference. For

example, Victory recommends a move that wins the contest immediately. If the perfectly-correct, game-

independent tier-1 Advisors can select a move, they do so, and the second tier is never consulted.

Otherwise the Advisors in tier 2 collectively make less reliable comments from individual, narrow

heuristic viewpoints, such as Material’s “maximize the number of your playing pieces and minimize the

number of your opponent’s.”

Table 1 categorizes Hoyle’s Advisors with respect to their generality and the useful knowledge on

which they rely. Each Advisor’s name is descriptive of its general game-playing perspective.

(Anthropomorph, for example, attempts to emulate the human opposition.) In the first category are

general game-playing decision makers that do not reference learned useful knowledge. In the second

category, Advisors are general game-playing decision-makers that reference learned useful knowledge

represented as explicit boards and moves. Advisors in the first two categories are located in both tiers,

that is, some are absolutely correct and others are heuristics that vote. Only one Advisor, Patsy, applies

general game-playing principles to learned, game-specific pattern associations based on visual

perception. Finally, some number (determined during execution) of learned, game-specific Advisors

(learned spatial Advisors) proceduralize spatial concepts based on visual perception. This organization

allows the system to function at an acceptable level of performance as it learns to play a particular game.

In tier 2 a move may be supported or opposed by many Advisors. Each tier-2 Advisor has a non-

negative weight (e.g., w1 in Figure 2) that reflects its relevance to and relative significance in a

particular game. When a decision must be made in tier 2, Hoyle selects the move with maximal support,

summing the product of the strength from each comment about the move with the weight of the

commenting Advisor.
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Empirical experience with Hoyle indicates that these weights are game specific and should therefore

be learned. Initially, the weight of each general game-playing Advisor is set to 1. After every contest

Hoyle plays against an expert, AWL (Algorithm for Weight Learning) considers, one at a time, only

those states in which it was the expert’s turn to move. For each such state, AWL distinguishes among

support and opposition for the expert’s recorded move and for other moves. AWL cumulatively adjusts

Table 1: Hoyle’s Advisors for Game Playing.
Name Tier Description Useful Knowl-

edge
General game-playing Advisors that do not rely on learned, game-specific knowledge
Victory 1 Makes winning move from current state if there is one. —
Enough Rope 1 Avoids blocking losing move non-mover would have if it were its

turn.
—

Candide 2 Formulates and advances naive offensive plans. —
Challenge 2 Moves to maximize its number of winning lines or minimize non-

mover’s.
—

Coverage 2 Maximizes mover’s influence on predrawn board lines or
minimizes non-mover’s.

—

Freedom 2 Moves to maximize number of its immediate next moves or
minimize non-mover’s.

—

Greedy 2 Moves to advance more than one winning line. —
Material 2 Moves to increase number of its pieces or decrease those of non-

mover.
—

Vulnerable 2 Reduces non-mover’s capture moves on two-ply lookahead. —
Worried 2 Observes and destroys naive offensive plans of non-mover. —
General game-playing Advisors that rely on learned, game-specific knowledge
Wiser 1 Makes correct move if current state is remembered as certain win. Significant

states
Sadder 1 Resigns if current state is remembered as certain loss. Significant

states
Don’t Lose 1 Eliminates any move that results in immediate loss. Significant

states
Panic 1 Blocks winning move non-mover would have if it were its turn

now.
Significant
states

Shortsight 1 Advises for or against moves based on two-ply lookahead. Significant
states

Anthropomorph 2 Moves as winning or drawing non-Hoyle expert did. Expert moves
Cyber 2 Moves as winning or drawing Hoyle did. Hoyle moves
Leery 2 Avoids moves to state from which loss occurred, but where

limited search proved no certain failure.
Dangerous
states

Not Again 2 Avoids moving as losing Hoyle did. Hoyle moves
Open 2 Recommends previously-observed expert openings. Opening

database
Pitchfork 2 Advances offensive forks or destroys defensive ones. Forks
General game-playing Advisor that relies on learned, game-specific spatial heuristics
Patsy 2 Supports or opposes moves based on their patterns’ associated

outcomes
Pattern cache

Learned game-specific Advisors that rely on learned, game-specific spatial concepts
Learned spatial
Advisors

2 Supports or opposes moves based on their creation or destruction
of a single pattern.

—
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the weights of tier-2 Advisors at the end of each contest, and uses those updated weights to make

decisions throughout the subsequent contest. Essentially, Hoyle learns to what extent each of its tier-2

Advisors simulates expertise, as exemplified by the expert’s moves. Eventually, irrelevant and self-

contradictory Advisors in a particular game should have weight 0, and more trustworthy Advisors

should have higher weights than less trustworthy ones. AWL is based upon Winnow, a fast, perceptron-

like learning algorithm (Blum 1997; Littlestone 1988).

In some ways, Hoyle is similar to a mixture of linear, independent, weighted experts, where each

Advisor is an expert with a particular decision-making point of view (Chatterjee and Chatterjee 1987;

Jacobs 1995). What distinguishes Hoyle from a simple mixture of experts is the hierarchical

organization of the underlying FORR architecture. Tier-1 makes decisions based on perfect information

and prevents the system from making obvious errors. A decision made in tier 1 also avoids any

additional computation that the experts in tier 2 would have required.

Learning and Applying Patterns

For Hoyle, a pattern is a visually-perceived regularity, represented as a small geometric arrangements of

playing pieces (e.g., black or X) and blanks (unoccupied positions) in a particular geographic location. A

move can create a pattern by providing some missing piece or blank, or, in games where pieces are not

permanently placed, destroy a pattern by removing one. When it first learns a new game, Hoyle

constructs a set of board-dependent templates as a filter for its perceived patterns: straight lines, L’s, tri-

angles, squares, and diagonals of a limited size composed of legal piece positions. The use of these

patterns was inspired by repeated laboratory experiences with people who relied upon familiar,

sometimes symmetrically transposed patterns while learning (Ratterman and Epstein 1995). When a

template is instantiated with some combination of pieces, blanks, and don’t care (#) symbols, it becomes

a pattern. (Further details on this process are available in (Epstein, Gelfand, and Lesniak 1996).)

The associative pattern store (a pattern queue, a pattern cache, and generated spatial concepts) is a

heuristically-organized database that links patterns with contest outcome  (win, loss, or draw). Figure 3 is

an overview of the development of Hoyle’s spatial orientation from the game-specific associative

pattern store. After each contest, the patterns newly created by each move are extracted with the tem-

plates. Next, patterns are associated with winning, losing, or drawing, and stored in a pattern queue. Pat-

terns that persist on the pattern queue over time and are identified with a single consistent outcome enter

the pattern cache.

Proceduralization is the transformation of expert knowledge into expert behavior. Patterns in the

cache are proceduralized with Patsy. Periodic sweeps through the pattern cache also attempt to

generalize sets of patterns into spatial concepts. Each concept is proceduralized as an individual, game-

specific, learned spatial Advisor, a heuristic that is then validated during subsequent learning. Because

pattern knowledge is extensive and contradictory, each segment of the associative pattern store relates
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differently to decision making. Queued patterns have no impact at all, cached patterns serve as input to

Patsy, and pattern-based concepts become game-specific, learned spatial Advisors. Both patterns and

learned Advisors are efficiently represented. A hierarchy from less to more specific speeds pattern

matching and supports subsumption testing. In addition, Hoyle normalizes with respect to the symme-

tries of the plane, thereby reducing matching costs.

Patsy considers the set of possible next states resulting from the current legal moves. Each next state is

compared with the patterns in the appropriate, game-specific cache. (No new patterns are cached during

this process.) Each pattern is assigned a value computed from the total number of won, lost and drawn

contests since the pattern was first seen. The strength of Patsy’s comment on each legal next move is a

function of the values of the patterns created by the move in the state to which it leads. Thus Patsy

encourages moves that lead to states introducing patterns associated with a win or a draw for the mover,

while it discourages moves that lead to states introducing patterns associated with a loss.

Generalization summarizes a set of detailed experiences into a more useful and efficient

representation. Each of Hoyle’s three generalization methods is represented as a procedure that

Pattern
filter

patterns

Pattern
queue

Pattern
cache

Spatial
concepts

Spatial
Advisors

associate patterns with outcomes

generalize

Patsy proceduralize

proceduralize

Game state Move

Figure 3: Hoyle’s model for spatial learning.
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processes existing patterns. After every 10 learning contests, these three generalization processes sweep

the pattern cache to form spatial concepts. Patterns agree when they originate from the same template.

As shown in the example of Figure 4, one generalization drops a position, a second variabilizes the

mover and all pieces, and a third variabilizes the mover and a single piece. During generalization, only

patterns with compatible associations may be combined. For example, a pattern must be associated with

both a win for X and with a win for O to be generalized as a win for the mover α. In addition, if a new

concept subsumes one that already exists, the more specific is eliminated. Each concept is pro-

ceduralized as a tier-2, game-specific, learned spatial Advisor.

Learning is sometimes subject to by erroneous early experience that creates learned spatial Advisors

that do not provide correct information. As Hoyle’s skill develops further and the learned spatial

Advisors are introduced into tier 2, some of them may prove irrelevant, self-contradictory, or untrust-

worthy, despite prior empirical evidence of their validity. To support their smooth integration into tier 2,

the weights of learned spatial Advisors are initially discounted by an additional multiplier. This factor

begins at 0.1 and reaches 1.0 after the learned spatial Advisor comments appropriately 10 times.

Results

Hoyle now learns pattern associations and game-specific spatial Advisors while it plays. The games we

used were tic-tac-toe and lose tic-tac-toe (played like tic-tac-toe but whoever gets three in a row,

column, or diagonal first loses). Both are draw games, that is, play between two perfect contestants

must, by the nature of the game graph, end in a draw. Because tic-tac-toe and lose tic-tac-toe have the

same board, they begin with the same templates. Tic-tac-toe is extremely easy for Hoyle to learn well,

Given distinct agreeing patterns

Pieces and movers are opposites Variabilize the mover and pieces

Different movers, pieces opposite 
in only one position 

Variabilize the mover and position

Drop the single differing position 

To construct a concept

Same mover and outcome
For X For X For X For X

For X For O For α

For X For O For *

X X O X OO X O
X O

X X O O O X α α β

X X O O X O * X O

Figure 4: Generalizing patterns into spatial concepts.
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and we expected no improvement; it was present only to demonstrate that weights, patterns, and learned

spatial Advisors were game-board independent. Lose tic-tac-toe is a far more difficult game to learn to

play well, both for people and for machines (Ratterman and Epstein 1995). It has been solved

mathematically (Cohen 1972) and the correct strategies for the two contestants are different. Thus it

forces the program to distinguish between patterns and concepts good for one contestant from those

good for both.

A run here  is learning followed by testing. On each run, Hoyle alternately moved first in one contest

and second in the next. During learning, the other contestant was a hand-coded perfect player for the

game being learned, one that always moved to secure the best possible outcome despite subsequent er-

ror-free play by the opposition, and chose from among equally good moves at random. After learning,

Hoyle was tested against three challengers: the same perfect player, a 10% random and 90% perfect

player, and a 70% random and 30% perfect player. Because Hoyle is non-deterministic (it breaks ties in

tier-2 voting by selecting a top-ranked move at random), data is averaged over 10 runs to form a single

experiment.. To begin, each experiment was run twice: once with a version of Hoyle that had AWL but

neither patterns nor learned spatial Advisors, and a second time with Hoyle including Patsy and any

learned spatial Advisors that emerge from the process in Figure 3. Improvements cited here are

statistically significant at the 95% confidence level.

Hoyle learns to value pattern-oriented play (i.e., Patsy and the learned spatial Advisors) highly. After

learning in 200 tic-tac-toe contests, 32.6% of all weight is assigned to Advisors that are pattern-oriented,

and Patsy and the best learned spatial Advisor always have the top two weights. In lose tic-tac-toe,

29.3% of all weight is assigned to Advisors that are pattern-oriented, and Patsy ranks second on all but

one run, where it ranks third. On 80% of the runs, Hoyle learned at least one spatial Advisor for lose tic-

tac-toe with weight at least one, and that Advisor ranked fifth on average. Learning new spatially-

oriented heuristics also reduces the number of contests Hoyle requires to develop consistent expert per-

formance. With patterns and the learned spatial Advisors, the program never lost at lose tic-tac-toe

during learning after contest 29.0, versus contest 56.0 without patterns and the learned spatial Advisors.

Because learned spatial Advisors are produced by induction, not all of them are correct. This is

especially true during early learning experience, when Hoyle is not yet playing well enough to exploit

good pattern knowledge. Figure 5 shows three learned spatial Advisors for lose tic-tac-toe, and how

AWL adjusted their weights based on their performance in one run of 200 contests. Advisor 1 is the

horizontal and (through symmetry) vertical portion of the heuristic “reflect through the center,” proved

optimal play for most situations in the game (Cohen 1972). The weight of Advisor 1 increases rapidly

after its creation. Advisor 2 advocates playing in a row that does not go through the center, where each

contestant already has one piece and the non-mover has a corner. Advisor 2 recommends a correct but

infrequently applicable action, and its weight increases moderately. Advisor 3 recommends a move into
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a side row between an O and a blank. The weight of Advisor 3 initially increases but then falls off

rapidly as Hoyle finds it misleading and discounts it on the basis of further experience.
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Two manifestations of Hoyle’s learned spatial orientation are its performance against different

opponents and its response in novel situations. Recall that Hoyle trains against a perfect player, which

should result in stereotyped movement in the game tree (Epstein 1994b). During testing, however, the

challengers with varying degrees of randomness in their responses introduce states in the game tree

provably never experienced by Hoyle during learning. Table 2 shows the performance improvements

pattern-oriented play offers. Note how Hoyle with patterns is better able to win and draw at lose tic-tac-

toe in most of the categories, despite the differences between its trainer and its challengers.

l

l l l l l l
l l

l
l

l
l

l
l

l
l

l l

m

mm m m m m m mm m m m m mm m m

n
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O  *
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αβ β

Mover β

# # #

 *
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Mover *

Figure 5: Three learned spatial Advisors for lose tic-tac-toe, and their weights during 200 consecutive

contests. The mover for each Advisor is in the current state; the pattern is matched for in the subsequent

state In an α−β Advisor, either α = X and β = O or α = O and β = X. In an * Advisor, * is either X or O

consistently.

Table 2: Average and standard deviation of performance with and without spatial orientation against

three challengers. Boldface is an improvement over play without patterns at the 95% confidence level.

Estimated optima are in italics.

Challenger Perfect Player 90% Perfect 30% Perfect

Wins+Draws Wins Wins+Draws Wins Wins+Draws Wins

Tic-tac-toe 100.0 — 100.0 16.4 100.0 80.7

Without patterns 100.0 (0.0) — 98.0 (4.0) 18.0 (7.5) 97.0 (6.4) 83.0 (11.9)

Pattern-oriented 100.0 (0.0) — 97.0 (6.4) 13.0 (12.8) 94.0 (4.9) 77.0 (13.5)

Context and weight ≥
1 only

100.0 (0.0) — 100.0 (0.0) 22.0 (16.6) 99.0 (3.0) 85.0 (11.2)

Lose tic-tac-toe 100.0 — 100.0 18.5 100.0 66.4

Without patterns 100.0 (0.0) — 96.0 (4.9) 18.0 (7.5) 73.0 (7.8) 54.0 (9.2)

Pattern-oriented 100.0 (0.0) — 98.0 (6.0) 18.0 (8.7) 92.0 (6.0) 49.0 (11.4)

Weight > 2 only 100.0 (0.0) — 99.0 (3.0) 18.0 (11.7) 96.0 (6.6) 68.0 (8.7)
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Figure 6 demonstrates how spatially-oriented play improves behavior in novel situations. The position

shown from lose tic-tac-toe never occurs during learning against the perfect player when Hoyle is X, but

arises often in testing against the other three challengers. Without the learned spatial Advisors, Hoyle

typically votes to move into a corner adjacent to O’s move. Advisor 1 of Figure 5, however, though it

has never experienced the specific instance of reflection through the center required here, swings the

vote to do so because of the generalization used in its concept formation algorithm. Thus Hoyle can

make correct decisions against the imperfect challengers in situations it has never seen during training. It

parlays inductive spatial generalizations into game playing expertise.

There is, however, a danger in learning heuristics reflected in Table 2 for tic-tac-toe. In the last five

categories, performance actually degrades with pattern-oriented play. Inspection revealed that Hoyle

overgeneralized on tic-tac-toe. On every run Hoyle learned only a single new spatial Advisor that ever

commented: “move into the corner of an empty row or column.” Let us call this Advisor Corner. On

every run Patsy had the highest weight, and Corner had the second highest. Corner reduced Hoyle’s

reliability and power against the imperfect challengers. Inspection revealed that Hoyle’s new errors all

stemmed from Corner’s incorrect response when playing O to a side-square opening by X, shown in

Figure 7. Because the perfect player always opens in the center or a corner, Hoyle had never

encountered this opening during learning. Without Patsy and Corner, Hoyle correctly plays the center.

Patsy, however, learned a specific pattern in the context of competition against a perfect player, a pattern

that does not always apply when the competition is not perfectly expert. Corner suffers from a similar

lack of context. Together, every time an imperfect challenger opens in a side square, Patsy and Corner

swing the vote in tier 2 to a corner not adjacent to X, a fatal error. (X will play the corner between its

first move and O. A sequence of forced moves then guarantees a win for X.)

The use of context should correct such problems with learned heuristics. In this case, the strength of a

 With New Advisors    
move vote
1 and 3 35.7
2 59.2
4 and 6 15.4
7 and 9 43.8

Without New Advisors    
move vote
1 and 3 34.8
2 15.3
4 and 6 12.8
7 and 9 43.0

X
O

X

XX

1 2 3

4 5 6

7 8 9

Figure 6: A learned spatial Advisor affects decision making.
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pattern is in large part determined by the environment in which it is experienced. Hoyle’s pattern

induction did detect an important tic-tac-toe pattern, but only for play against a perfect player. In other

words, the induction process overgeneralized to say “corners in empty rows or columns are good,”

whereas the more accurate statement would be “if someone already holds the center, corners in empty

rows or columns are good.” Thus heuristic learning is demonstrably context-dependent. When the

context changes, the automatic response to a heuristic (in this case playing the corner of an open

column) may be wrong.

Nonetheless, the Advisor Corner gives generally good advice. Rather than keep a list of caveats, our

preference is to broaden the context in which the pattern is learned, that is, to learn against all the chal-

lengers. We therefore also ran two high-weight experiments. In the first, for tic-tac-toe, Hoyle learned

new spatial Advisors as before but during testing only Advisors with weight at least 1 were permitted to

comment. This time the error in Figure 7 never occurred, and Hoyle’s performance actually improved in

three categories as Table 2 indicates. Hoyle simply needed additional knowledge to prevent the misuse

of the new spatial Advisor; knowledge it acquired with broader training. In the second high-weight

experiment, for lose tic-tac-toe, the weight minimum was 2 but we did not change the learning

environment, and performance was even stronger. Emphasis on its most reliable Advisors, of any kind,

clearly helps Hoyle play better.

Discussion

The use of heuristic, rather than absolutely correct, rationales in decision making is supported by

evidence that people satisfice, that is, they make decisions that are good enough (Simon 1981).

Although satisficing solutions are not always optimal, they may achieve a high level of expertise.

In people, perceptual salience appears to cue functional significance, directing human attention

(Tversky 1989). Psychologists hypothesize, therefore, that attention to salient parts could cue learning

about function (Tversky 1989). Without the don’t cares, Hoyle’s learned spatial Advisors are salient

parts of an image of the board state, and Hoyle learns how to use them. Indeed, these spatial features

with new heuristics

without new heuristics

 Figure 7: Voting for O’s first tic-tac-toe move, Patsy and a learned spatial Advisor incorrectly
select two corners.
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simulate some aspects of human visual cognition. As game players become more expert, they value

higher order, spatially-oriented representations as explanations and as strategies. Prior to this work, one

of our students, who built a perfect player for a game board with positions at the center and on the

circumference of a circle, eventually described “the death triangle,” a pattern she avoided at all costs.

Another student, building a perfect player for a grid-based game, developed a theorem that explained the

“power of the black L,” his key to understanding the problem. Neither game is included here, but the

features we describe would detect both patterns. Finally, in a separate study on five- and six-year old

children playing games, at least one subject gave a clear explanation of the significance (to him) of a

“Y” in tic-tac-toe (Ratterman and Epstein in preparation).

The language in which to represent spatial concepts is an important issue. One cannot predict in

advance precisely which spatial features are crucial, and therefore an ample potential vocabulary for

them is needed. Complete representations, however, are extraordinarily costly and not particularly

incisive. Patsy’s templates include only five possible shapes. Therein lie both their power and their

fallibility: power in that they focus attention on some salient shapes, and fallibility in that the language is

incomplete. A complete pattern language, say a boolean one on all possible pieces on all possible

locations such as ELF (Utgoff and Precup 1997), is unwieldy, and the patterns are not strategically

significant. As a result, it is unlikely to detect important concepts quickly. Current work involves

bootstrapping from these initial patterns to other shapes that prove important.

We do not claim that this program is a full cognitive model, but it does contain many appropriate

elements which enhance its performance as an autonomous learning program. For example, the

templates that filter perceived patterns and curtail a potential combinatoric explosion are not an ad hoc

device, but are inherent in the human perceptual system (Goldstein 1989). Future work includes more

difficult games and spatial concept formation based upon higher-order features such as center, edge,

perimeter, bounded regions, length and area. We are also aware that games like chess, in which each

contestant has several kinds of pieces, would require modifications to the pattern identification and

generalization techniques. To control costs, focus upon the more powerful pieces would probably be a

good approach.

There are other kinds of patterns that are not visually cued, such as threat and defense descriptions

(Levinson and Snyder 1991). We do not claim that people use only visual patterns, or only the patterns

representable in this study, but we do consider them an essential component of a robust game player. As

described here, Hoyle now attends to patterns when they are significant, and relies on other decision-

making factors when that is more appropriate.

This paper reports results for tic-tac-toe and lose tic-tac-toe. Although the latter is quite difficult for

people to learn (Ratterman and Epstein 1995) and has many possible patterns, our method found its

salient features using a highly restricted set of templates generated from shapes known to be perceived
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readily by people. It is our expectation that these shapes will continue to serve well as we scale up to

morris games, because a key element in strategic play there is the establishment of a mill, three identical

pieces in a row. One would therefore expect that the strategically important spatial features of morris

games would be accessible through a set of simple templates such as those used here. Indeed, even in

chess, all but one of the pieces (the knight) can only threaten squares that are physically accessible

directly from them. This results in strategic spatial relationships composed from relatively simple spatial

features. In larger problems, search-based approaches must be responsive to increases in branch factor

and state space size. Our method, however, relies on a family of heuristics instead of deep search. So

long as the number of learned spatial heuristics is well controlled, scaling up should remain manageable.
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