
 
 

Discovering Protein Clusters 

Susan L. Epstein,1, 2Xingjian Li,3Peter Valdez,2 Sofia Grayevsky,2 Eric Osisek,1Xi Yun,1and Lei Xie1, 2 
 

 Department of Computer Science 3Microsoft Online Services Division 
1The Graduate Center and 2Hunter College of The City University of New York Redmond, WA 98052 USA 
 New York, NY 10065 USA  
susan.epstein@hunter.cuny.edu, Xingjian.Li@microsoft.com, lei.xie, pvald, sgrayevs@hunter.cuny.edu; eosisek, xyun@gc.cuny.edu 

 
 
 
 

Abstract 
As biological data about genes and their interactions prolif-
erates, scientists have the opportunity to identify sets of pro-
teins whose interactions make them worthy of further inves-
tigation. This paper reports on a knowledge discovery tech-
nique to support that work. Foretell is an algorithm original-
ly designed to support search for solutions to constraint sat-
isfaction problems. Recent adaptations enable Foretell to de-
tect sets of genes that interact heavily with one another. We 
provide empirical results, and describe ongoing work on bi-
ological meaning and knowledge infusion from the user. 

Introduction 
This paper describes the integration of a local search me-
taheuristic with ongoing research in bioinformatics. The 
thesis of our work is that local search within a graph 
weighted by biological data can detect sets of closely inter-
acting genes responsible for observable biological charac-
teristics (e.g., cancer). The principal result reported here is 
that Foretell, an algorithm originally designed to support 
constraint solvers, hypothesizes meaningful relationships 
among sets of genes, relationships that are worthy of fur-
ther biological investigation.  

Systems biology seeks quantitative explanations for the 
simple principles that give rise to complex behaviors in bi-
ological systems. Although it is difficult to formulate 
mathematical equations to describe a biological system, 
boundary conditions are relatively easier to identify, state, 
and use. These constraints include evolutionary, chemical 
balancing, thermodynamic, capacity, temporal, and spatial 
restrictions. As a result, constraint-based modeling is an 
emerging paradigm for biological system models, particu-
larly metabolic networks (Ruppin et al., 2010). Nonethe-
                                                
Copyright © 2012, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved. 
 

less, the implementation of such models remains challeng-
ing, and little work has thus far applied a rigorous, practi-
cal, constraint-based solution to model biological systems.  

Omics data includes such knowledge bases as genomes 
(the hereditary information of an organism), proteomes 
(sets of expressed proteins), and metabolomes (small mol-
ecules that are intermediate products of metabolism). In-
teractome data includes experimentally determined and 
computationally predicted interactions. Such an interaction 
could be between a pair of proteins, between a protein and 
DNA, or between a protein and a ligand (small binding 
molecule). Gene annotations in databases such as FlyBase 
(Quilton et al., 2012) describe, to the best of current 
knowledge, the location of a gene on a chromosome and 
the role it plays in protein production and other cellular 
functions. The integration of gene annotations with interac-
tome and omics data can provide important insights into 
noisy and incomplete biological data (Subramanian et al., 
2005; Zhong et al., 2010).  
 The effects of genetic variants and molecular interac-
tions that contribute to a trait are functionally channeled by 
the cell’s regulatory or communication machinery. Thus, a 
genetic event (i.e., gene regulation and expression) impli-
cated in a trait should address sets of closely interacting 
genes. One representation in which to search for such a set 
of genes is a context-specific protein-protein interaction 
(PPI) network, a weighted graph that represents known in-
teractions between pairs of proteins in a genome (Califano 
et al., 2010).  

To address the open problem of detecting strong rela-
tionships among sets of functional states, our innovation is 
to use variants of the algorithm used by constraint solvers 
to speed search for feasible solutions to a problem. Such 
search is often expedited by detection and prioritization of 
heavily-constrained subgraphs in the graph. Foretell was 
designed to detect such subgraphs in graphs associated 



with constraint satisfaction problems (Li and Epstein, 
2010).  

The version of Foretell reported on here accepts a 
weighted graph that represents a PPI network for a particu-
lar organism as input, and searches within that graph for 
the genetic events it harbors, here called clusters. For Fore-
tell, a cluster is a subgraph dense with high-weight edges. 
Although cluster detection is NP-complete, Foretell has 
scaled well on other real-world problems (Li and Epstein, 
2010). Here we report for the first time on Foretell’s adap-
tation to support the discovery of molecular and cellular 
mechanisms of fundamental biological processes. 

In preliminary testing on the drosophila melanogaster 
(fruit fly) genome, Foretell quickly finds clusters compara-
ble to those found by a state-of-the-art algorithm specifi-
cally designed for cluster detection in PPI networks. The 
next section of this paper provides relevant background on 
constraint satisfaction and PPI networks. Subsequent sec-
tions describe Foretell, the adaptations necessary to apply 
it to PPIs, empirical results, and a blueprint for ongoing 
work. 

Background and related work 

Constraint satisfaction 
Intuitively, a constraint satisfaction problem (CSP) re-
quires a set of objects to satisfy a set of constraints. In par-
ticular, a binary CSP P = <X, D, C> is a set X of variables, 
each with an associated discrete domain in D, and a set C 
of constraints that describes how pairs of variables may be 
assigned values from their respective domains simultane-
ously. For example, the n-queens puzzle seeks to place n 

chess queens on an n × n chessboard so that no two share 
the same row, column, or diagonal. Analogously, protein-
protein docking seeks complementary interfaces between 
two proteins, A and B. It can be cast as an n-queens prob-
lem where the interface residues on protein A are viewed as 
the squares on the chessboard and the interface residues on 
B as the queens, with a set of energetic, evolutionary, and 
geometric constraints.  
 A solution to P assigns to each variable some value from 
its domain such that all of the constraints in C are satisfied. 
P can be represented by a constraint graph (as in Figure 
1(a)), where each node represents a variable, and each edge 
between two nodes represents a constraint between them. 
How hard it is to find a solution to P depends both on the 
topological structure of P’s constraint graph and on the in-
teractions among its constraints. 

Many modern constraint solvers do systematic back-
tracking, which sequentially assigns values to variables 
and validates the consistency of each assignment. Propa-
gation removes, from the domains of as-yet-unassigned 
variables, some values that are inconsistent with con-
straints in C under the current assignments. When a varia-
ble’s domain becomes empty under propagation (a wipe-
out), the solver backtracks. A constraint weight counts how 
often propagation along a constraint has led directly to a 
wipeout (Boussemart et al., 2004). Because many CSPs are 
intractable, solvers rely on search heuristics, many of 
which reference constraint weights. 

Graph structure is important for propagation and deci-
sion making during search. Related work references elabo-
rate structural graph features that might facilitate search for 
a solution to a CSP (e.g., (Cohen and Green, 2006; 
Dechter, 1990; Gottlob et al., 2000; Gyssens et al., 1994; 

   
 (a)  (b) 
 
Figure 1: Two visualizations of a package-routing constraint satisfaction problem. (a) All 650 nodes are plotted along the 
circumference of the circle, with 17,447 edges connecting them. Darker edges indicate more restrictive constraints. (b) Fore-
tell finds (circled) clusters: dense, highly-constrained, disjoint subgraphs that include only part of the original problem. Alt-
hough they are less restrictive than the intra-cluster edges, the density of the inter-cluster edges makes them appear more re-
strictive here. 



Pearson and Jeavons, 1997; Samer and Szeider, 2006; 
Weigel and Faltings, 1999)). Many of these approaches are 
primarily theoretical; others prove powerful on some indi-
vidual problems, but incur considerable computational 
overhead. All ignore the tightness of a constraint, the frac-
tion of possible value pairs that it excludes. In contrast, 
Foretell considers tightness when it detects structure. 

An important principle in systematic backtracking is to 
fail first, that is, to assign values first to those variables that 
will be most difficult to satisfy (Haralick and Elliott, 
1980). Because they are dense with tight edges, the clusters 
that Foretell detects should more often experience wipe-
outs. Thus clusters are subgraphs where a solver should fail 
first as well. When a solver does so, it substantially reduces 
its total search time, in some cases by an order of magni-
tude (Epstein and Wallace, 2006). Extensive study has 
made clear, however, that the weights Foretell relies on are 
crucial to its success, and that search does best when the 
graph’s constraint weights correctly anticipate difficulties 
later encountered during search (Li, 2011).  

The link to biological systems 
Constraint satisfaction is a feasible, novel, and elegant way 
to characterize allowable genetic, molecular, and cellular 
states under evolutionary, physical, genetic and environ-
mental constraints (Tsang, 1993). In the constraint graph 
for such a CSP, the nodes are allowable functional states 
(e.g., three-dimensional coordinates of a protein structure, 
or a dysregulated gene regulatory network), the constraints 
are edges, and the weight on an edge represents how re-
strictive its associated constraint is. Once cast as a CSP, a 
biological problem can be explored effectively by incorpo-
rating constraints available from experiments and domain 
knowledge. Moreover, it is possible to specify biological 
knowledge for search and for optimization separately, to 
support the extraction of biologically-meaningful results in 
a large search space.  

 PPI networks, where each node represents a gene, have 
been widely used to extract closely-interacting genes (Gao 
et al., 2009). Thus far, however, graph-clustering algo-
rithms for this purpose have been based purely on the con-
nectivity (unweighted or weighted edges) of the PPI net-
work, and therefore may not be biologically relevant. A bi-
ologically meaningful cluster is a set of genes that share 
similar pathways or functions, or physically interact with 
one another, much the way variables impact one another in 
CSP search. More meaningful clusters can be identified if a 
PPI incorporates other omics data (Chuang et al., 2007). 
Many algorithms have been developed to detect functional 
modules and integrate heterogeneous omics data (Califano 
et al., 2010). Nonetheless, three hurdles remain for effec-
tive, robust detection of functional modules that integrate 
such data. First, genetic regulation is a multivariable pro-

cess; few existing methods consider coordinated regulation 
by a combination of genes. Second, the inherent noisiness 
and incompleteness of biological data seriously impact the 
performance of most algorithms (Yosef et al., 2009). Final-
ly, biologists work from phenotypic data, descriptions of an 
organism determined both by its genome and by its envi-
ronment. Phenotypic data is heterogeneous, context-
specific, stochastic, and may vary significantly from one 
case of the same trait to another (Schadt, 2009). 

Three features of Foretell make it particularly suitable 
for biological data analysis: its robustness, its tolerance for 
missing data, and its ability to incorporate domain-specific 
knowledge. Foretell can address noisy, incomplete, dynam-
ic biological data, where not all existing constraints are 
known, and constraint tightness may be somewhat inaccu-
rate. Moreover, Foretell finds not only cliques (complete 
subgraphs where every pair of nodes is connected by an 
edge) as conventional cluster-detection algorithms do 
(Wang et al., 2010), but also finds near-cliques (subgraphs 
a few edges shy of a clique). Thus Foretell can contend 
with the dynamic and stochastic nature of biological sys-
tems where constraints and tightness vary over time, space, 
and environmental conditions. Finally, it is straightforward 
to integrate heterogeneous biological data into Foretell, 
through edge weights, node weights, and its scoring and 
preference functions. Other cluster-detection algorithms 
are more difficult to modify with biological knowledge; 
they cannot accept both node and edge weights (Clauset et 
al., 2004; Newman, 2004). 

Foretell 
Foretell was originally embedded in a CSP solver, where it 
sped search for solutions by the detection of clusters such 
as those in Figure 1(b) (Epstein et al., 2005). In CSPs, 
Foretell quickly detected sets of interacting nodes in large 
constraint graphs, and its search metaheuristic (described 
below) made it robust to noise. We therefore have recently 
constructed a new, standalone, modular version of Foretell, 
one appropriate for research on large-scale PPI networks.  

Foretell is based on Variable Neighborhood Search 
(VNS), a local search metaheuristic that explores increas-
ingly large search subspaces called neighborhoods (Hansen 
and Mladenovic, 2003; Hansen et al., 2004). (Note that a 
VNS neighborhood is different from the neighborhood of a 
node in a graph.) VNS has been successfully applied to 
many problems in optimization and search. In the follow-
ing discussion, the size of a cluster is the number of nodes 
it contains, and the pressure on a node is the sum of the 
weights on the edges on which it is incident. 

Figure 2 provides high-level pseudocode for the new 
version of Foretell, which accepts graphs in GML (Graph 
Modeling Language), a standard graph file format. For 



simplicity, we describe the input here as a graph and con-
trol. The latter is a set of parameters, including designa-
tions of the supporting functions seed, prefer, score, and 
terminate, and values for such constants as neighborhoods, 
the maximum number of local search subspaces. During a 
single run, Foretell identifies one cluster at a time, and re-
moves it from the graph before it searches for another. 
Thus, its clusters are disjoint. 

Foretell calls VNS to detect a single cluster. A new clus-
ter begins from a node selected by the seed function. VNS 
then applies SVT (Simplicial Vertex Test) to add to the 
cluster, one at a time, any node that has an edge to every 
node in the cluster and also has maximum pressure. VNS 
evaluates the worth of a cluster with the score function, 
records the top-scoring best-cluster and its best-score, and 
then iterates to try to improve upon best-score.  

To combat the plateau effect common in local search 
and to explore different portions of the search space, each 
VNS iteration except the first shakes (i.e., removes) from 
the current best-cluster some number of nodes (shake-out). 
After shaking, VNS repeatedly calls VND (Variable 
Neighborhood Descent) to revise a copy of the current 
best-cluster. If the revision improves on best-score, VNS 
updates best-cluster and best-score, and resets shake-out to 
1. While the size of the cluster is less than neighborhoods, 
shake-out counts how many consecutive times shake fol-
lowed by VND has failed to produce a higher score. Alt-
hough terminate requires shake-out to remain less than 
neighborhoods, VNS also revises neighborhoods so that 
larger clusters can continue to grow. 

VND tries to improve the best-score of the candidate 
cluster it receives from VNS. To do so, VND applies SVT 
to candidate, and then does local search to try to improve 
possible, a copy of candidate. One at a time VND greedily 
selects a node chosen by its preference function prefer, 
adds the node, and reapplies SVT. When no further greedy 
addition is available, VND updates candidate and best-
score, and assembles interchanges, actions that would re-
place a node in candidate with one or two nodes not in 
candidate. The likely function ensures that any interchange 
made to a cluster of n nodes will ensure a monotonically 
non-decreasing density. This is achieved if Foretell does 
not increase m (the number of missing edges that prevent 
that cluster from being a clique) by more than 

 

n
2
+

m
n−1

 (1) 

If a randomly-chosen swap from interchanges improves on 
best-score, VND revises candidate and best-score, and re-
turns to SVT followed by its greedy loop. 

Based on parameter values in control, the predicate ter-
minate determines when to stop VND’s local search, 
VNS’s cluster search, and Foretell itself. During execution, 
graph nodes are partitioned into three sets: those in the cur-

Foretell(graph, control) 
while terminate(graph, cluster, control) is false 
 cluster ← VNS(graph, control) 
 output cluster 
 remove cluster from graph 
 
VNS(graph, control) 
cluster ← seed(graph) 
best-cluster ← SVT(graph, cluster) 
best-score ← score(best-cluster) 
local-optimum ← 0 
shake-out ← 1 
while terminate(graph, cluster, control) is false  
     AND shake-out ≤ neighborhoods 
 candidate ← copy(best-cluster)  
 if shake-out ≠ 1 
   candidate ← shake(candidate, shake-out) 
 candidate ← VND(graph, control, candidate) 
 local-optimum ← score(candidate) 
 if local-optimum > best-score 
   best-cluster ← candidate 
   best-score ← local-optimum 
   shake-out ← 1  
   if size(candidate) ≥ neighborhoods 
    neighborhoods ← ceiling(0.1 * size(candidate)) 

else  
shake-out ← shake-out + 1 

return (best-cluster) 
 
VND(graph, control, candidate) 
while terminate(graph, cluster ,control) is false 
 candidate ← SVT(graph, candidate) 
 best-score ← score(candidate) 
 while terminate(graph, cluster, control) is false AND  
     prefer(graph, control, possible) ≠ ∅ 
   possible ← copy(candidate) 

new-node ← prefer(graph, control, possible) 
   possible ← include(possible, new-node) 
   possible ← SVT(graph, possible) 
   if score(possible) > best-score 
    candidate ← possible 
    best-score ← score(possible) 
 interchanges ← likely(graph, control, candidate) 
 if interchanges≠ ∅ 
   swap ← select(interchanges)  
   possible ← copy(candidate)     

possible ←apply(swap, possible) 
if score(possible) > best-score 

    best-score ← score(possible) 
    candidate ← possible  
return (candidate) 
 
Figure 2: Pseudocode for cluster discovery. 
 



rently developing cluster, those eligible to join it, and those 
excluded from it. Further details are available in (Li, 2011). 

Adaptation for PPIs 
Several changes to the original version of Foretell were re-
quired for PPIs. In a graph for a pairwise PPI network 
(henceforth, a network) each node represents a protein. An 
edge between two nodes indicates that the two proteins 
they represent are known to or predicted to interact with 
one another. 

A fundamental difference between a CSP and a network 
is in the edge weights. For CSPs, Foretell did preliminary 
search to determine edge weights. In a network, each edge 
instead has an input confidence level based on the confi-
dence score from STRING (Jensen et al., 2009). STRING 
is a database of known and predicted protein-protein asso-
ciations, both physical and functional. These associations 
are derived from high-throughput experimental data, litera-
ture mining, and predictions based on genomic context 
analysis. To assign confidence scores to the associations, 
STRING benchmarks them against a common reference 
set. Foretell computes edge weights as the confidence level 
of the interaction the edge represents, normalized in [0, 1]. 

Other changes to Foretell for PPIs identified new sup-
porting functions. Both seed and prefer are now user-
specified through control. For the work reported here, the 
seed function selects a maximum degree node, and breaks 
ties first by pressure and then randomly. The prefer func-
tion maximizes node pressure, and breaks ties on maxi-
mum node degree. Finally, we developed and tested sever-
al new score functions adapted from the CSP formulation, 
and selected a simple and effective one. For a cluster with 
n nodes and total edge weight T: 

 
score = 2T

n−1
 (2) 

Foretell also now supplies extensive data on the clusters 
it detects. This includes their contents (nodes and edges), 
density (percentage of possible edges that appear in the 
cluster), and average edge weight. Summary statistics 
across all clusters also provide data on coverage, the per-
centage of nodes and edges included in some cluster. This 
data is intended to support the user’s understanding of the 
impact of her choices for parameters in the control file 
(e.g., prefer and score). 

Experimental design and results 
We have begun to explore three genomes with Foretell: 
saccharomyces cerevisiae (baker’s yeast), drosophila mel-
anogaster (fruit fly), and homo sapiens (human). Network 
details appear in Table 1. All three are considerably larger 
than the largest CSP tested with Foretell, which had 650 
variables and 17,447 constraints. We report in detail here 
only on clusters detected by Foretell in the fruit-fly net-
work.  

The only control parameter explored here is cutoff, the 
maximum search time on an individual cluster. Parameters 
in control also include maximum total runtime to search 
for all clusters, minimum cluster size, and neighborhoods. 
There was no maximum total runtime enforced in these 
experiments, the minimum cluster size was set at 3, and 
neighborhoods was 10. 

Cutoff, the time allotted under terminate to find a single 
cluster, impacted Foretell’s consistency on CSPs (Li and 
Epstein, 2010) and proved to do so in this network as well. 
We tried a range of cutoff values from 1 to 15 minutes. 
One minute and two minutes produced unstable results, 
where different clusters and different numbers of clusters 
were produced from one run to the next. Values above 
eight minutes allowed Foretell to work harder on each 
cluster, but did not appreciably change the coverage. Iden-
tical or nearly identical sets of clusters were found for 10, 
12, and 15 minutes, with results similar in size and number 
to those for 3 minutes. Here we analyze the 114 clusters 
found under a 3-minute cutoff in one run. 

Foretell is selective; under any cutoff, it never clustered 
more than 15.45% of the nodes and 3.32% of the edges. 
Moreover, Foretell identifies dense clusters. Although the 
density of the full fruit fly network is 1.17%, many clusters 
are either cliques or near-cliques. Indeed, the average den-
sity of a Foretell-detected cluster in the fruit fly PPI was 
91.14%. The clusters also contain high-weight edges; 23 
clusters have average edge weight above 0.9 (on a scale, 
recall, from 0 to 1). Thus, in graphs based on known and 
predicted physical and functional protein-protein associa-
tions, Foretell found subsets of nodes that strongly interact 
with one another.  

The salience of the clusters of variables found by Fore-
tell in a constraint graph is demonstrated by the degree to 
which value assignment to those variables early in search 
improves performance — prescient clusters accelerate 
search. To evaluate the salience of a cluster of genes, how-
ever, we need metrics for the degree to which they are bio-
logically meaningful. A gene ontology (GO) similarity 
score can be computed for three categories: biological pro-
cess, cellular component, and molecular function. The GO 
similarity of a cluster measures the degree to which the 
genes in it describe known biological results. Figure 3 
shows the GO similarity score in each category for the 

Table 1: PPI networks for Foretell.  
 

Genome nodes edges density 
Yeast 4,757   97,617 0.86% 
Fruit fly 11,408    759,580 1.17% 
Human 13,757 1,013,580 1.07% 



clusters detected by Foretell in the fruit fly genome on a 
single run, using the Topological Clustering Semantic Sim-
ilarity metric (Jain and Bader, 2010). It also shows the re-
sults for SPICi, a state-of-the-art clustering algorithm spe-
cifically designed for clustering in PPI networks (Jiang and 
Singh, 2010). 

The results in Figure 3 overlap closely. Analysis indi-
cates that SPICi finds somewhat larger clusters, but that 
Foretell’s have higher average edge weights. Because bio-

logically meaningful clusters are more likely to both be 
large and have high average edge weight, the results from 
Foretell and SPICi should together prove informative to 
biologists.  

Finally, Table 2 compares the 10 fruit-fly clusters with 
highest average edge weights from Foretell to the 10 from 
SPICi. The proteins in clusters top-ranked by Foretell are 
more functionally related than those from SPICi, as indi-
cated by GO and biological pathway enrichment. Results 
on the clusters detected in the other genomes are currently 
under study. 

Discussion 
We emphasize that the results presented thus far are from a 
fully automated system, where we adjusted only a single 
parameter: the time to find one cluster. The selection 
mechanisms seed, prefer, and score that produced the re-
sults in the preceding section lack biological knowledge. 
They referenced only node degree and confidence level, a 
biological analog of search experience in a CSP. Here we 
simply cast a PPI network as a weighted graph, where 
nodes represent genes and edges represent relationships 
among them. Although Foretell is ready to accept biologi-
cally-meaningful versions of seed, prefer, score, and ter-
minate, tests with such functions are only now underway. 

The current version of Foretell is a more flexible tool for 
both skilled bioinformaticians and novice investigators. A 
significant change is that the human investigator can now 
exercise some control over what is valued during local 
search. Foretell provides a variety of options for the seed, 
prefer, score, and terminate functions; these options can be 
selected by name in the control file. Moreover, the investi-
gator can specify a particular seed node (that cannot be 
shaken from the cluster), or a customized seed function 
that describes properties of the seed. For example, one 
could predefine a set of biologically-meaningful variables 
(e.g., disease-causing genes), and have Foretell use them as 

 

 
 

 
Figure 3: Distributions of cluster average gene ontology 
similarity in the fruit fly, as constructed by SPICi and by 
one Foretell run for (a) biological process, (b) cellular 
component, and (c) molecular function. The horizontal axis 
shows the distribution of similarity scores (higher is bet-
ter); the vertical axis is the percentage of the top 30 clus-
ters with that score. 

Table 2: Enriched GOs and pathways in the top 10 clus-
ters found by Foretell and by SPICi in a weighted PPI 
graph for the fruit fly. Clusters are ranked by average edge 
weight; those ranked 2, 3, 5, and 8 by both algorithms had 
no enriched GOs and pathways. 
 

 
Cluster rank 

Enriched GOs Enriched pathways 
Foretell SPICi Foretell SPICi 

1 39 0 1 0 
4 3 0 0 0 
6 16 0 0 0 
7 0 0 1 0 
9 32 0 2 0 

10 79 0 0 0 
 



seeds from which to build clusters of variables that are 
connected to them with high-weight edges. The investiga-
tor can also specify a prefer function that characterizes 
which nodes are of particular interest, and a score function 
that describes significant features of a cluster (e.g., mini-
mum size, minimum or average edge weight).  

Foretell now provides values likely to be employed in 
user-created versions of prefer, score, and terminate, in-
cluding coverage, density, number of detected clusters, av-
erage cluster edge weight, and minimum degree. For ex-
ample, a seed function could mandate some minimum de-
gree, or a score function could enforce a minimum average 
edge weight and a minimum size. An investigator can also 
specify search time per cluster and per run, impose a limit 
on the number of nodes shaken out by VNS, and have ter-
minate halt a Foretell run after it has found some number 
of clusters.  

Foretell is non-deterministic. Because ties are broken at 
random, equal prefer values and equal score values may go 
unexplored. Foretell’s results should therefore be analyzed 
over multiple runs for both accuracy and consistency. 
(Eventually a tie-breaking function will be another parame-
ter, to facilitate further incorporation of biological data and 
knowledge.) Foretell is now embedded in an experiment 
loop, where each run identifies a full set of clusters. Met-
rics are currently under development to assess the con-
sistency and statistical significance of sets of identified 
clusters from one run to the next.  

Most existing PPI graph-clustering algorithms, including 
SPICi, cannot integrate multiple kinds of omics data direct-
ly; they use only edge weights to guide their search (Jiang 
and Singh, 2010). Foretell can use omics data as weights 
for nodes as well as for edges. A careful balance must be 
struck, however, between node weights and edge weights. 
Current work includes node weight computations based on 
gene expression profile data from heterogeneous samples 
using a signal-noise decomposition schema.  

Our current investigations address heavily-interacting 
subsets of genes in the PPI network for yeast. The well-
annotated biological pathway information for this organism 
should facilitate cluster evaluation. We have constructed 
several input graphs for yeast with different sets of 
weights, and have begun to search for and analyze clusters 
within them. We have begun to incorporate additional do-
main knowledge, such as differentially expressed genes, 
into the graph as node weights, and to address node 
weights in Foretell’s computations.  

Given Foretell’s output, we expect researchers to gener-
ate novel, testable hypotheses that may lead to new biolog-
ical discoveries. For example, the largest cluster Foretell 
found in a fruit fly run included 87 proteins highly in-
volved in forming a protein complex (false discovery rate 
p < 0.05). The missing edges in these clusters represent 
unknown relationships worthy of investigation. 

Conclusions 
Foretell can infuse search with human knowledge, and has 
proved fast enough for graphs as large as the PPI for the 
human genome. Detected clusters that are not cliques are 
of particular interest — each missing edge hypothesizes a 
relationship between a pair of genes, and thereby motivates 
a biological study to determine if that pair also functionally 
or physically interacts. Moreover, Foretell’s control mech-
anism makes it easy for relative novices in both computer 
science and biology to develop and test hypotheses about 
PPI networks.  

Foretell could support human understanding of other 
weighted graphs as well, including the real-world CSPs for 
which it was originally developed. Since biological prob-
lems can be generally formulated as CSPs, Foretell can be 
applied to a broad range of challenging issues in biology 
beyond PPI analysis. These include protein-protein dock-
ing, prediction of functional sites (clusters of residues that 
perform a specific function), and the alignment of multiple 
sequences that represent DNA, RNA, or proteins. In par-
ticular, the Encode and modEncode projects seek to identi-
fy all the functional elements in the genome sequences of 
human and other model organisms, including the fruit fly 
(http://www.genome.gov/10005107). Recent remarkable 
advances there continue to generate vast amounts of data 
that represent a complex network among not only genes (as 
in the PPI networks here) but also non-gene fragments of 
DNA. Constraint modeling offers a powerful paradigm 
within which to construct and analyze the genetic circuits 
that control biological systems. 

Meanwhile, Foretell integrates heterogeneous, noisy, 
and incomplete data into an effective and robust identifica-
tion of functional modules: clusters. Its non-determinism 
provides a bulwark against noise. To the best of our 
knowledge, this is the first constraint-inspired approach to 
the challenging combinatorial problem of functional mod-
ule detection in PPI networks.  
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