

Discovering Protein Clusters

Susan L. Epstein,1, 2Xingjian Li,3Peter Valdez,2 Sofia Grayevsky,2 Eric Osisek,1Xi Yun,1and Lei Xie1, 2

 Department of Computer Science 3Microsoft Online Services Division
1The Graduate Center and 2Hunter College of The City University of New York Redmond, WA 98052 USA
 New York, NY 10065 USA
susan.epstein@hunter.cuny.edu, Xingjian.Li@microsoft.com, lei.xie, pvald, sgrayevs@hunter.cuny.edu; eosisek, xyun@gc.cuny.edu

Abstract
As biological data about genes and their interactions prolif-
erates, scientists have the opportunity to identify sets of pro-
teins whose interactions make them worthy of further inves-
tigation. This paper reports on a knowledge discovery tech-
nique to support that work. Foretell is an algorithm original-
ly designed to support search for solutions to constraint sat-
isfaction problems. Recent adaptations enable Foretell to de-
tect sets of genes that interact heavily with one another. We
provide empirical results, and describe ongoing work on bi-
ological meaning and knowledge infusion from the user.

Introduction
This paper describes the integration of a local search me-
taheuristic with ongoing research in bioinformatics. The
thesis of our work is that local search within a graph
weighted by biological data can detect sets of closely inter-
acting genes responsible for observable biological charac-
teristics (e.g., cancer). The principal result reported here is
that Foretell, an algorithm originally designed to support
constraint solvers, hypothesizes meaningful relationships
among sets of genes, relationships that are worthy of fur-
ther biological investigation.

Systems biology seeks quantitative explanations for the
simple principles that give rise to complex behaviors in bi-
ological systems. Although it is difficult to formulate
mathematical equations to describe a biological system,
boundary conditions are relatively easier to identify, state,
and use. These constraints include evolutionary, chemical
balancing, thermodynamic, capacity, temporal, and spatial
restrictions. As a result, constraint-based modeling is an
emerging paradigm for biological system models, particu-
larly metabolic networks (Ruppin et al., 2010). Nonethe-

Copyright © 2012, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

less, the implementation of such models remains challeng-
ing, and little work has thus far applied a rigorous, practi-
cal, constraint-based solution to model biological systems.

Omics data includes such knowledge bases as genomes
(the hereditary information of an organism), proteomes
(sets of expressed proteins), and metabolomes (small mol-
ecules that are intermediate products of metabolism). In-
teractome data includes experimentally determined and
computationally predicted interactions. Such an interaction
could be between a pair of proteins, between a protein and
DNA, or between a protein and a ligand (small binding
molecule). Gene annotations in databases such as FlyBase
(Quilton et al., 2012) describe, to the best of current
knowledge, the location of a gene on a chromosome and
the role it plays in protein production and other cellular
functions. The integration of gene annotations with interac-
tome and omics data can provide important insights into
noisy and incomplete biological data (Subramanian et al.,
2005; Zhong et al., 2010).
 The effects of genetic variants and molecular interac-
tions that contribute to a trait are functionally channeled by
the cell’s regulatory or communication machinery. Thus, a
genetic event (i.e., gene regulation and expression) impli-
cated in a trait should address sets of closely interacting
genes. One representation in which to search for such a set
of genes is a context-specific protein-protein interaction
(PPI) network, a weighted graph that represents known in-
teractions between pairs of proteins in a genome (Califano
et al., 2010).

To address the open problem of detecting strong rela-
tionships among sets of functional states, our innovation is
to use variants of the algorithm used by constraint solvers
to speed search for feasible solutions to a problem. Such
search is often expedited by detection and prioritization of
heavily-constrained subgraphs in the graph. Foretell was
designed to detect such subgraphs in graphs associated

with constraint satisfaction problems (Li and Epstein,
2010).

The version of Foretell reported on here accepts a
weighted graph that represents a PPI network for a particu-
lar organism as input, and searches within that graph for
the genetic events it harbors, here called clusters. For Fore-
tell, a cluster is a subgraph dense with high-weight edges.
Although cluster detection is NP-complete, Foretell has
scaled well on other real-world problems (Li and Epstein,
2010). Here we report for the first time on Foretell’s adap-
tation to support the discovery of molecular and cellular
mechanisms of fundamental biological processes.

In preliminary testing on the drosophila melanogaster
(fruit fly) genome, Foretell quickly finds clusters compara-
ble to those found by a state-of-the-art algorithm specifi-
cally designed for cluster detection in PPI networks. The
next section of this paper provides relevant background on
constraint satisfaction and PPI networks. Subsequent sec-
tions describe Foretell, the adaptations necessary to apply
it to PPIs, empirical results, and a blueprint for ongoing
work.

Background and related work

Constraint satisfaction
Intuitively, a constraint satisfaction problem (CSP) re-
quires a set of objects to satisfy a set of constraints. In par-
ticular, a binary CSP P = <X, D, C> is a set X of variables,
each with an associated discrete domain in D, and a set C
of constraints that describes how pairs of variables may be
assigned values from their respective domains simultane-
ously. For example, the n-queens puzzle seeks to place n

chess queens on an n × n chessboard so that no two share
the same row, column, or diagonal. Analogously, protein-
protein docking seeks complementary interfaces between
two proteins, A and B. It can be cast as an n-queens prob-
lem where the interface residues on protein A are viewed as
the squares on the chessboard and the interface residues on
B as the queens, with a set of energetic, evolutionary, and
geometric constraints.
 A solution to P assigns to each variable some value from
its domain such that all of the constraints in C are satisfied.
P can be represented by a constraint graph (as in Figure
1(a)), where each node represents a variable, and each edge
between two nodes represents a constraint between them.
How hard it is to find a solution to P depends both on the
topological structure of P’s constraint graph and on the in-
teractions among its constraints.

Many modern constraint solvers do systematic back-
tracking, which sequentially assigns values to variables
and validates the consistency of each assignment. Propa-
gation removes, from the domains of as-yet-unassigned
variables, some values that are inconsistent with con-
straints in C under the current assignments. When a varia-
ble’s domain becomes empty under propagation (a wipe-
out), the solver backtracks. A constraint weight counts how
often propagation along a constraint has led directly to a
wipeout (Boussemart et al., 2004). Because many CSPs are
intractable, solvers rely on search heuristics, many of
which reference constraint weights.

Graph structure is important for propagation and deci-
sion making during search. Related work references elabo-
rate structural graph features that might facilitate search for
a solution to a CSP (e.g., (Cohen and Green, 2006;
Dechter, 1990; Gottlob et al., 2000; Gyssens et al., 1994;

 (a) (b)

Figure 1: Two visualizations of a package-routing constraint satisfaction problem. (a) All 650 nodes are plotted along the
circumference of the circle, with 17,447 edges connecting them. Darker edges indicate more restrictive constraints. (b) Fore-
tell finds (circled) clusters: dense, highly-constrained, disjoint subgraphs that include only part of the original problem. Alt-
hough they are less restrictive than the intra-cluster edges, the density of the inter-cluster edges makes them appear more re-
strictive here.

Pearson and Jeavons, 1997; Samer and Szeider, 2006;
Weigel and Faltings, 1999)). Many of these approaches are
primarily theoretical; others prove powerful on some indi-
vidual problems, but incur considerable computational
overhead. All ignore the tightness of a constraint, the frac-
tion of possible value pairs that it excludes. In contrast,
Foretell considers tightness when it detects structure.

An important principle in systematic backtracking is to
fail first, that is, to assign values first to those variables that
will be most difficult to satisfy (Haralick and Elliott,
1980). Because they are dense with tight edges, the clusters
that Foretell detects should more often experience wipe-
outs. Thus clusters are subgraphs where a solver should fail
first as well. When a solver does so, it substantially reduces
its total search time, in some cases by an order of magni-
tude (Epstein and Wallace, 2006). Extensive study has
made clear, however, that the weights Foretell relies on are
crucial to its success, and that search does best when the
graph’s constraint weights correctly anticipate difficulties
later encountered during search (Li, 2011).

The link to biological systems
Constraint satisfaction is a feasible, novel, and elegant way
to characterize allowable genetic, molecular, and cellular
states under evolutionary, physical, genetic and environ-
mental constraints (Tsang, 1993). In the constraint graph
for such a CSP, the nodes are allowable functional states
(e.g., three-dimensional coordinates of a protein structure,
or a dysregulated gene regulatory network), the constraints
are edges, and the weight on an edge represents how re-
strictive its associated constraint is. Once cast as a CSP, a
biological problem can be explored effectively by incorpo-
rating constraints available from experiments and domain
knowledge. Moreover, it is possible to specify biological
knowledge for search and for optimization separately, to
support the extraction of biologically-meaningful results in
a large search space.

 PPI networks, where each node represents a gene, have
been widely used to extract closely-interacting genes (Gao
et al., 2009). Thus far, however, graph-clustering algo-
rithms for this purpose have been based purely on the con-
nectivity (unweighted or weighted edges) of the PPI net-
work, and therefore may not be biologically relevant. A bi-
ologically meaningful cluster is a set of genes that share
similar pathways or functions, or physically interact with
one another, much the way variables impact one another in
CSP search. More meaningful clusters can be identified if a
PPI incorporates other omics data (Chuang et al., 2007).
Many algorithms have been developed to detect functional
modules and integrate heterogeneous omics data (Califano
et al., 2010). Nonetheless, three hurdles remain for effec-
tive, robust detection of functional modules that integrate
such data. First, genetic regulation is a multivariable pro-

cess; few existing methods consider coordinated regulation
by a combination of genes. Second, the inherent noisiness
and incompleteness of biological data seriously impact the
performance of most algorithms (Yosef et al., 2009). Final-
ly, biologists work from phenotypic data, descriptions of an
organism determined both by its genome and by its envi-
ronment. Phenotypic data is heterogeneous, context-
specific, stochastic, and may vary significantly from one
case of the same trait to another (Schadt, 2009).

Three features of Foretell make it particularly suitable
for biological data analysis: its robustness, its tolerance for
missing data, and its ability to incorporate domain-specific
knowledge. Foretell can address noisy, incomplete, dynam-
ic biological data, where not all existing constraints are
known, and constraint tightness may be somewhat inaccu-
rate. Moreover, Foretell finds not only cliques (complete
subgraphs where every pair of nodes is connected by an
edge) as conventional cluster-detection algorithms do
(Wang et al., 2010), but also finds near-cliques (subgraphs
a few edges shy of a clique). Thus Foretell can contend
with the dynamic and stochastic nature of biological sys-
tems where constraints and tightness vary over time, space,
and environmental conditions. Finally, it is straightforward
to integrate heterogeneous biological data into Foretell,
through edge weights, node weights, and its scoring and
preference functions. Other cluster-detection algorithms
are more difficult to modify with biological knowledge;
they cannot accept both node and edge weights (Clauset et
al., 2004; Newman, 2004).

Foretell
Foretell was originally embedded in a CSP solver, where it
sped search for solutions by the detection of clusters such
as those in Figure 1(b) (Epstein et al., 2005). In CSPs,
Foretell quickly detected sets of interacting nodes in large
constraint graphs, and its search metaheuristic (described
below) made it robust to noise. We therefore have recently
constructed a new, standalone, modular version of Foretell,
one appropriate for research on large-scale PPI networks.

Foretell is based on Variable Neighborhood Search
(VNS), a local search metaheuristic that explores increas-
ingly large search subspaces called neighborhoods (Hansen
and Mladenovic, 2003; Hansen et al., 2004). (Note that a
VNS neighborhood is different from the neighborhood of a
node in a graph.) VNS has been successfully applied to
many problems in optimization and search. In the follow-
ing discussion, the size of a cluster is the number of nodes
it contains, and the pressure on a node is the sum of the
weights on the edges on which it is incident.

Figure 2 provides high-level pseudocode for the new
version of Foretell, which accepts graphs in GML (Graph
Modeling Language), a standard graph file format. For

simplicity, we describe the input here as a graph and con-
trol. The latter is a set of parameters, including designa-
tions of the supporting functions seed, prefer, score, and
terminate, and values for such constants as neighborhoods,
the maximum number of local search subspaces. During a
single run, Foretell identifies one cluster at a time, and re-
moves it from the graph before it searches for another.
Thus, its clusters are disjoint.

Foretell calls VNS to detect a single cluster. A new clus-
ter begins from a node selected by the seed function. VNS
then applies SVT (Simplicial Vertex Test) to add to the
cluster, one at a time, any node that has an edge to every
node in the cluster and also has maximum pressure. VNS
evaluates the worth of a cluster with the score function,
records the top-scoring best-cluster and its best-score, and
then iterates to try to improve upon best-score.

To combat the plateau effect common in local search
and to explore different portions of the search space, each
VNS iteration except the first shakes (i.e., removes) from
the current best-cluster some number of nodes (shake-out).
After shaking, VNS repeatedly calls VND (Variable
Neighborhood Descent) to revise a copy of the current
best-cluster. If the revision improves on best-score, VNS
updates best-cluster and best-score, and resets shake-out to
1. While the size of the cluster is less than neighborhoods,
shake-out counts how many consecutive times shake fol-
lowed by VND has failed to produce a higher score. Alt-
hough terminate requires shake-out to remain less than
neighborhoods, VNS also revises neighborhoods so that
larger clusters can continue to grow.

VND tries to improve the best-score of the candidate
cluster it receives from VNS. To do so, VND applies SVT
to candidate, and then does local search to try to improve
possible, a copy of candidate. One at a time VND greedily
selects a node chosen by its preference function prefer,
adds the node, and reapplies SVT. When no further greedy
addition is available, VND updates candidate and best-
score, and assembles interchanges, actions that would re-
place a node in candidate with one or two nodes not in
candidate. The likely function ensures that any interchange
made to a cluster of n nodes will ensure a monotonically
non-decreasing density. This is achieved if Foretell does
not increase m (the number of missing edges that prevent
that cluster from being a clique) by more than

n
2
+

m
n−1

 (1)

If a randomly-chosen swap from interchanges improves on
best-score, VND revises candidate and best-score, and re-
turns to SVT followed by its greedy loop.

Based on parameter values in control, the predicate ter-
minate determines when to stop VND’s local search,
VNS’s cluster search, and Foretell itself. During execution,
graph nodes are partitioned into three sets: those in the cur-

Foretell(graph, control)
while terminate(graph, cluster, control) is false
 cluster ← VNS(graph, control)
 output cluster
 remove cluster from graph

VNS(graph, control)
cluster ← seed(graph)
best-cluster ← SVT(graph, cluster)
best-score ← score(best-cluster)
local-optimum ← 0
shake-out ← 1
while terminate(graph, cluster, control) is false
 AND shake-out ≤ neighborhoods
 candidate ← copy(best-cluster)
 if shake-out ≠ 1
 candidate ← shake(candidate, shake-out)
 candidate ← VND(graph, control, candidate)
 local-optimum ← score(candidate)
 if local-optimum > best-score
 best-cluster ← candidate
 best-score ← local-optimum
 shake-out ← 1
 if size(candidate) ≥ neighborhoods
 neighborhoods ← ceiling(0.1 * size(candidate))

else
shake-out ← shake-out + 1

return (best-cluster)

VND(graph, control, candidate)
while terminate(graph, cluster ,control) is false
 candidate ← SVT(graph, candidate)
 best-score ← score(candidate)
 while terminate(graph, cluster, control) is false AND
 prefer(graph, control, possible) ≠ ∅
 possible ← copy(candidate)

new-node ← prefer(graph, control, possible)
 possible ← include(possible, new-node)
 possible ← SVT(graph, possible)
 if score(possible) > best-score
 candidate ← possible
 best-score ← score(possible)
 interchanges ← likely(graph, control, candidate)
 if interchanges≠ ∅
 swap ← select(interchanges)
 possible ← copy(candidate)

possible ←apply(swap, possible)
if score(possible) > best-score

 best-score ← score(possible)
 candidate ← possible
return (candidate)

Figure 2: Pseudocode for cluster discovery.

rently developing cluster, those eligible to join it, and those
excluded from it. Further details are available in (Li, 2011).

Adaptation for PPIs
Several changes to the original version of Foretell were re-
quired for PPIs. In a graph for a pairwise PPI network
(henceforth, a network) each node represents a protein. An
edge between two nodes indicates that the two proteins
they represent are known to or predicted to interact with
one another.

A fundamental difference between a CSP and a network
is in the edge weights. For CSPs, Foretell did preliminary
search to determine edge weights. In a network, each edge
instead has an input confidence level based on the confi-
dence score from STRING (Jensen et al., 2009). STRING
is a database of known and predicted protein-protein asso-
ciations, both physical and functional. These associations
are derived from high-throughput experimental data, litera-
ture mining, and predictions based on genomic context
analysis. To assign confidence scores to the associations,
STRING benchmarks them against a common reference
set. Foretell computes edge weights as the confidence level
of the interaction the edge represents, normalized in [0, 1].

Other changes to Foretell for PPIs identified new sup-
porting functions. Both seed and prefer are now user-
specified through control. For the work reported here, the
seed function selects a maximum degree node, and breaks
ties first by pressure and then randomly. The prefer func-
tion maximizes node pressure, and breaks ties on maxi-
mum node degree. Finally, we developed and tested sever-
al new score functions adapted from the CSP formulation,
and selected a simple and effective one. For a cluster with
n nodes and total edge weight T:

score = 2T

n−1
 (2)

Foretell also now supplies extensive data on the clusters
it detects. This includes their contents (nodes and edges),
density (percentage of possible edges that appear in the
cluster), and average edge weight. Summary statistics
across all clusters also provide data on coverage, the per-
centage of nodes and edges included in some cluster. This
data is intended to support the user’s understanding of the
impact of her choices for parameters in the control file
(e.g., prefer and score).

Experimental design and results
We have begun to explore three genomes with Foretell:
saccharomyces cerevisiae (baker’s yeast), drosophila mel-
anogaster (fruit fly), and homo sapiens (human). Network
details appear in Table 1. All three are considerably larger
than the largest CSP tested with Foretell, which had 650
variables and 17,447 constraints. We report in detail here
only on clusters detected by Foretell in the fruit-fly net-
work.

The only control parameter explored here is cutoff, the
maximum search time on an individual cluster. Parameters
in control also include maximum total runtime to search
for all clusters, minimum cluster size, and neighborhoods.
There was no maximum total runtime enforced in these
experiments, the minimum cluster size was set at 3, and
neighborhoods was 10.

Cutoff, the time allotted under terminate to find a single
cluster, impacted Foretell’s consistency on CSPs (Li and
Epstein, 2010) and proved to do so in this network as well.
We tried a range of cutoff values from 1 to 15 minutes.
One minute and two minutes produced unstable results,
where different clusters and different numbers of clusters
were produced from one run to the next. Values above
eight minutes allowed Foretell to work harder on each
cluster, but did not appreciably change the coverage. Iden-
tical or nearly identical sets of clusters were found for 10,
12, and 15 minutes, with results similar in size and number
to those for 3 minutes. Here we analyze the 114 clusters
found under a 3-minute cutoff in one run.

Foretell is selective; under any cutoff, it never clustered
more than 15.45% of the nodes and 3.32% of the edges.
Moreover, Foretell identifies dense clusters. Although the
density of the full fruit fly network is 1.17%, many clusters
are either cliques or near-cliques. Indeed, the average den-
sity of a Foretell-detected cluster in the fruit fly PPI was
91.14%. The clusters also contain high-weight edges; 23
clusters have average edge weight above 0.9 (on a scale,
recall, from 0 to 1). Thus, in graphs based on known and
predicted physical and functional protein-protein associa-
tions, Foretell found subsets of nodes that strongly interact
with one another.

The salience of the clusters of variables found by Fore-
tell in a constraint graph is demonstrated by the degree to
which value assignment to those variables early in search
improves performance — prescient clusters accelerate
search. To evaluate the salience of a cluster of genes, how-
ever, we need metrics for the degree to which they are bio-
logically meaningful. A gene ontology (GO) similarity
score can be computed for three categories: biological pro-
cess, cellular component, and molecular function. The GO
similarity of a cluster measures the degree to which the
genes in it describe known biological results. Figure 3
shows the GO similarity score in each category for the

Table 1: PPI networks for Foretell.

Genome nodes edges density
Yeast 4,757 97,617 0.86%
Fruit fly 11,408 759,580 1.17%
Human 13,757 1,013,580 1.07%

clusters detected by Foretell in the fruit fly genome on a
single run, using the Topological Clustering Semantic Sim-
ilarity metric (Jain and Bader, 2010). It also shows the re-
sults for SPICi, a state-of-the-art clustering algorithm spe-
cifically designed for clustering in PPI networks (Jiang and
Singh, 2010).

The results in Figure 3 overlap closely. Analysis indi-
cates that SPICi finds somewhat larger clusters, but that
Foretell’s have higher average edge weights. Because bio-

logically meaningful clusters are more likely to both be
large and have high average edge weight, the results from
Foretell and SPICi should together prove informative to
biologists.

Finally, Table 2 compares the 10 fruit-fly clusters with
highest average edge weights from Foretell to the 10 from
SPICi. The proteins in clusters top-ranked by Foretell are
more functionally related than those from SPICi, as indi-
cated by GO and biological pathway enrichment. Results
on the clusters detected in the other genomes are currently
under study.

Discussion
We emphasize that the results presented thus far are from a
fully automated system, where we adjusted only a single
parameter: the time to find one cluster. The selection
mechanisms seed, prefer, and score that produced the re-
sults in the preceding section lack biological knowledge.
They referenced only node degree and confidence level, a
biological analog of search experience in a CSP. Here we
simply cast a PPI network as a weighted graph, where
nodes represent genes and edges represent relationships
among them. Although Foretell is ready to accept biologi-
cally-meaningful versions of seed, prefer, score, and ter-
minate, tests with such functions are only now underway.

The current version of Foretell is a more flexible tool for
both skilled bioinformaticians and novice investigators. A
significant change is that the human investigator can now
exercise some control over what is valued during local
search. Foretell provides a variety of options for the seed,
prefer, score, and terminate functions; these options can be
selected by name in the control file. Moreover, the investi-
gator can specify a particular seed node (that cannot be
shaken from the cluster), or a customized seed function
that describes properties of the seed. For example, one
could predefine a set of biologically-meaningful variables
(e.g., disease-causing genes), and have Foretell use them as

Figure 3: Distributions of cluster average gene ontology
similarity in the fruit fly, as constructed by SPICi and by
one Foretell run for (a) biological process, (b) cellular
component, and (c) molecular function. The horizontal axis
shows the distribution of similarity scores (higher is bet-
ter); the vertical axis is the percentage of the top 30 clus-
ters with that score.

Table 2: Enriched GOs and pathways in the top 10 clus-
ters found by Foretell and by SPICi in a weighted PPI
graph for the fruit fly. Clusters are ranked by average edge
weight; those ranked 2, 3, 5, and 8 by both algorithms had
no enriched GOs and pathways.

Cluster rank

Enriched GOs Enriched pathways
Foretell SPICi Foretell SPICi

1 39 0 1 0
4 3 0 0 0
6 16 0 0 0
7 0 0 1 0
9 32 0 2 0

10 79 0 0 0

seeds from which to build clusters of variables that are
connected to them with high-weight edges. The investiga-
tor can also specify a prefer function that characterizes
which nodes are of particular interest, and a score function
that describes significant features of a cluster (e.g., mini-
mum size, minimum or average edge weight).

Foretell now provides values likely to be employed in
user-created versions of prefer, score, and terminate, in-
cluding coverage, density, number of detected clusters, av-
erage cluster edge weight, and minimum degree. For ex-
ample, a seed function could mandate some minimum de-
gree, or a score function could enforce a minimum average
edge weight and a minimum size. An investigator can also
specify search time per cluster and per run, impose a limit
on the number of nodes shaken out by VNS, and have ter-
minate halt a Foretell run after it has found some number
of clusters.

Foretell is non-deterministic. Because ties are broken at
random, equal prefer values and equal score values may go
unexplored. Foretell’s results should therefore be analyzed
over multiple runs for both accuracy and consistency.
(Eventually a tie-breaking function will be another parame-
ter, to facilitate further incorporation of biological data and
knowledge.) Foretell is now embedded in an experiment
loop, where each run identifies a full set of clusters. Met-
rics are currently under development to assess the con-
sistency and statistical significance of sets of identified
clusters from one run to the next.

Most existing PPI graph-clustering algorithms, including
SPICi, cannot integrate multiple kinds of omics data direct-
ly; they use only edge weights to guide their search (Jiang
and Singh, 2010). Foretell can use omics data as weights
for nodes as well as for edges. A careful balance must be
struck, however, between node weights and edge weights.
Current work includes node weight computations based on
gene expression profile data from heterogeneous samples
using a signal-noise decomposition schema.

Our current investigations address heavily-interacting
subsets of genes in the PPI network for yeast. The well-
annotated biological pathway information for this organism
should facilitate cluster evaluation. We have constructed
several input graphs for yeast with different sets of
weights, and have begun to search for and analyze clusters
within them. We have begun to incorporate additional do-
main knowledge, such as differentially expressed genes,
into the graph as node weights, and to address node
weights in Foretell’s computations.

Given Foretell’s output, we expect researchers to gener-
ate novel, testable hypotheses that may lead to new biolog-
ical discoveries. For example, the largest cluster Foretell
found in a fruit fly run included 87 proteins highly in-
volved in forming a protein complex (false discovery rate
p < 0.05). The missing edges in these clusters represent
unknown relationships worthy of investigation.

Conclusions
Foretell can infuse search with human knowledge, and has
proved fast enough for graphs as large as the PPI for the
human genome. Detected clusters that are not cliques are
of particular interest — each missing edge hypothesizes a
relationship between a pair of genes, and thereby motivates
a biological study to determine if that pair also functionally
or physically interacts. Moreover, Foretell’s control mech-
anism makes it easy for relative novices in both computer
science and biology to develop and test hypotheses about
PPI networks.

Foretell could support human understanding of other
weighted graphs as well, including the real-world CSPs for
which it was originally developed. Since biological prob-
lems can be generally formulated as CSPs, Foretell can be
applied to a broad range of challenging issues in biology
beyond PPI analysis. These include protein-protein dock-
ing, prediction of functional sites (clusters of residues that
perform a specific function), and the alignment of multiple
sequences that represent DNA, RNA, or proteins. In par-
ticular, the Encode and modEncode projects seek to identi-
fy all the functional elements in the genome sequences of
human and other model organisms, including the fruit fly
(http://www.genome.gov/10005107). Recent remarkable
advances there continue to generate vast amounts of data
that represent a complex network among not only genes (as
in the PPI networks here) but also non-gene fragments of
DNA. Constraint modeling offers a powerful paradigm
within which to construct and analyze the genetic circuits
that control biological systems.

Meanwhile, Foretell integrates heterogeneous, noisy,
and incomplete data into an effective and robust identifica-
tion of functional modules: clusters. Its non-determinism
provides a bulwark against noise. To the best of our
knowledge, this is the first constraint-inspired approach to
the challenging combinatorial problem of functional mod-
ule detection in PPI networks.

Acknowledgements
This work was supported in part by the National Science
Foundation under IIS-0811437, CNS-0958379, and CNS-
0855217. Dr. Li’s work was performed while at The Grad-
uate Center of The City University of New York.

References
Boussemart, F., F. Hemery, C. Lecoutre and L. Sais 2004.
Boosting systematic search by weighting constraints. In
Proceedings of ECAI-2004, 146-149. IOS Press.
Califano, A., A. Butte, S. Friend, T. Ideker and E. E. Schadt
2010. Integrative Network-based Association Studies: Leveraging
cell regulatory models in the post-GWAS era. Nature Procedings
713.

Chuang, H. Y., E. Lee, Y. T. Liu, D. Lee and T. Ideker 2007.
Network-based classification of breast cancer metastasis. Mol
Syst Biol 3: 140.
Clauset, A., M. E. J. Newman and C. Moore 2004. Finding
community structure in very large networks. Physical Review E
70(6): 066111.
Cohen, D. A. and M. J. Green 2006. Typed Guarded
Decompositions for Constraint Satisfaction. In Proceedings of
Principles and Practice of Constraint Programming -- CP2006,
122-136. Nantes, Springer Verlag.
Dechter, R. 1990. Enhancement schemes for constraint
processing: backjumping, learning and cutset decomposition.
Artificial Intelligence 41: 273-312.
Epstein, S. L., E. C. Freuder and R. J. Wallace 2005. Learning to
Support Constraint Programmers. Computational Intelligence
21(4): 337-371.
Epstein, S. L. and R. J. Wallace 2006. Finding Crucial
Subproblems to Focus Global Search. In Proceedings of ICTAI-
2006, 151-159. Washington, D.C., IEEE.
Gao, L., P. G. Sun and J. Song 2009. Clustering algorithms for
detecting functional modules in protein interaction networks. J
Bioinform Comput Biol 7: 217-242.
Gottlob, G., N. Leone and F. Scarcello 2000. A Comparison of
Structural CSP Decomposition Methods. Artificial Intelligence
124(2): 243-282.
Gyssens, M., P. G. Jeavons and D. A. Cohen 1994. Decomposing
constraint satisfaction problems using database techniques.
Artificial Intelligence 66(1): 57-89.
Hansen, P. and N. Mladenovic 2003. Variable Neighborhood
Search. Handbook of Metaheuristics. Glover, F. W. and G. A.
Kochenberger. Berlin, Springer: 145-184.
Hansen, P., N. Mladenovic and D. Urosevic 2004. Variable
neighborhood search for the maximum clique. Discrete Applied
Mathematics 145: 117-125.
Haralick, R. M. and G. L. Elliott 1980. Increasing tree search
efficiency for constraint satisfaction problems. Artificial
Intelligence 14: 263-314.
Jain, S. and G. D. Bader 2010. An improved method for scoring
protein-protein interactions using semantic similarity within the
gene ontology. BMC Bioinformatics 11(562).
Jensen, L. J., M. Kuhn, M. Stark, S. Chaffron, C. Creevey, J.
Muller, T. Doerks, P. Julien, A. Roth, M. Simonovic, P. Bork and
C. von Mering 2009. STRING 8--a global view on proteins and
their functional interactions in 630 organisms. Nucleic Acids Res
37D: 412-416.
Jiang, P. and M. Singh 2010. SPICi: A fast clustering algorithm
for large biological networks. Bioinformatics 26(8): 1105-1111.

Li, X. 2011. Structure-based Search to Solve Constraint
Satisfaction Problems. Computer Science. New York, The
Graduate Center of The City University of New York. Ph.D.
thesis.
Li, X. and S. L. Epstein 2010. Learning cluster-based structure to
solve constraint satisfaction problems. Annals of Mathematics
and Artificial Intelligence.
Newman, M. E. J. 2004. Analysis of weighted networks. Physical
Review E 70(5): 056131.
Pearson, J. and P. G. Jeavons 1997. A Survey of Tractable
Constraint Satisfaction Problems. London, Royal Holloway
University of London.
Quilton, P., S. E. St. Pierre, J. Thurmond and F. Consortium
2012. FlyBase 101 – the basics of navigating FlyBase. Nucleic
Acids Res 40: D706-14.
Ruppin, E., J. A. Papin, L. F. de Figueiredo and S. Schuster 2010.
Metabolic reconstruction, constraint-based analysis and game
theory to probe genome-scale metabolic networks. Curr Opin
Biotechnol 21(4): 502-10.
Samer, M. and S. Szeider 2006. Constraint Satisfaction with
Bounded Treewidth Revisited. In Proceedings of Principles and
Practice of Constraint Programming -- CP2006, 499-513.
Nantes, Springer Verlag.
Schadt, E. E. 2009. Molecular networks as sensors and drivers of
common human diseases. Nature 461(7261): 218-23.
Subramanian, A., P. Tamayo, V. K. Mootha, S. Mukherjee, B. L.
Ebert, M. A. Gillette, A. Paulovich, S. L. Pomeroy, T. R. Golub,
E. S. Lander and J. P. Mesirov 2005. Gene set enrichment
analysis: a knowledge-based approach for interpreting genome-
wide expression profiles. Proc Natl Acad Sci U S A 102(43):
15545-50.
Tsang, E. P. K. 1993. Foundations of Constraint Satisfaction.
London, Academic Press.
Wang, J., M. Li, Y. Deng and Y. Pan 2010. Recent advances in
clustering methods for protein interaction networks. BMC
Genomics 11 Suppl 3: S10.
Weigel, R. and B. Faltings 1999. Compiling Constraint
Satisfaction Problems. Artificial Intelligence 115: 257-287.
Yosef, N., L. Ungar, E. Zalckvar, A. Kimchi, M. Kupiec, E.
Ruppin and R. Sharan 2009. Toward accurate reconstruction of
functional protein networks. Mol Syst Biol 5: 248.
Zhong, H., X. Yang, L. M. Kaplan, C. Molony and E. E. Schadt
2010. Integrating pathway analysis and genetics of gene
expression for genome-wide association studies. Am J Hum Genet
86(4): 581-91.

