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The Graph Theorist, GT, is a system that performs mathematical research in graph theory. From the definitions in its input 
knowledge base, GT constructs examples of mathematical concepts, conjectures and proves mathematical theorems about con- 
cepts, and discovers new concepts. Discovery is driven both by examples and by definitional form. The discovery processes 
construct a semantic net that links all of GT’s concepts together. 

Each definition is an algebraic expression whose semantic interpretation is a stylized algorithm to generate a class of graphs 
correctly and completely. From a knowledge base of these concept definitions, GT is able to conjecture and prove such 
theorems as “The set of acyclic, connected graphs is precisely the set of trees” and “There is no odd-regular graph on an odd 
number of vertices.” GT explores new concepts either to develop an area of knowledge or to link a newly acquired concept 
into a preexisting knowledge base. New concepts arise from the specialization of an existing concept, the generalization of an 
existing concept, and the merger of two or more existing concepts. From an initial knowledge base containing only the defini- 
tion of “graph,” GT discovers such concepts as acyclic graphs, connected graphs, and bipartite graphs. 
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Le ThCoricien des gyphes (TG, Graph Theorist) est un systkme qui effectue des recherches mathtmatiques B l’inttrieur de la 
thtorie des graphes. A partir des dtfinitions dam sa base de connaissances, le TG construit des exemples de concepts 
mathematiques, fait des conjectures, prouve des thtorkmes mathtmatiques 5 propos de concepts et dtcouvre de nouveaux con- 
cepts. La dtcouverte est le rtsultat d’exemples et d’une forme dtfinitionnelle. Le processus de decouverte construit un rtseau 
skmantique qui relie tous les concepts du TG. 

Chaque definition est une expression algCbrique dont I’interprttation stmantique est un algorithme stylist pour produire cor- 
rectement et entitrement une classe de graphes. A partir d’une base de connaissances de ces dtfinitions de concepts, le TG est 
en mesure de faire des conjectures et de prouve des thtorkmes comme << L’ensemble de graphes acycliques, continus est 
prtcistment I’ensemble d’arbres >, et << I1 n’y a pas de graphe impair normal sur un nombre impair de sommets >>. Le TG explore 
de nouveaux concepts soit pour mettre au point un domaine de connaissances ou pour relier un concept nouvellement acquis 
dans une base de connaissances qui existait auparavant. Les nouveaux concepts dtcoulent.de la sptcialisation et de la gtntrali- 
sation d’un concept existant, ainsi que de la fusion de deux concepts existants ou plus. A partir d’une base de connaissances 
initiale contenant seulement la definition de graphe, le TG dtcouvre des concepts c o m e  les graphes acycliques, les graphes 
continus et les graphes bipartites. 

Mots clPs : dtcouverte, apprentissage automatique, reprtsentation des connaissances, definition de concept, mathtmatiques, 
thtorie des graphes. 

Cornput. Intell. 4, 42-53 (1988) 

The Graph Theorist, GT, is a knowledge-intensive, domain- 
specific learning system (Michalski 1986) that uses algorith- 
mic class descriptions to discover new mathematical concepts 
and relations among them. GT is based upon a set of powerful 
representation languages for object classes discussed and 
defined formally in Epstein (1983). A variety of well-defined 
openitions can be coerced from these languages. In particular 
they can be used to 

generate correct examples of any class, 
test whether or not an object belongs in a particular class, 
reason about relations among classes. 

The representation of a class in any of these languages is an 
algebraic definition. Each definition has a semantic interpreta- 
tion as a stylized algorithm that defines the class by generating 
it coiTectly and completely. GT incorporates such definitions 
as slots in its frame representation for a graph property. The 
entire frame represents a concept. 

G1‘ operates either independently or under interactive 
guidance. It generates correct examples of any of its concepts, 
constructs new concepts, and conjectures and proves relations 
among concepts. 

The first section of this paper places GT in the context of 
previous work in machine learning and discovery. The second 
section introduces a set of knowledge representation lan- 
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guages, and the transition from the languages to algorithms 
and then to the concepts for GT’s knowledge base. The next 
sections describe the discovery of relations between concepts 
in GT and the ways GT constructs new concepts. Subsequent 
sections summarize GT’s discovery modes, and its results and 
significance. The final section presents some open questions 
and plans for future work. 

1. Context and background 
1.1.  The representation of objects and classes 

Given a set of objects in a domain, the task of inductively 
inferring their natural classes and the relations among those 
classes may be categorized as learning by discovery (Carbonell 
et al. 1983). When the objects are many and highly detailed, 
search over the domain usually requires heuristic guidance. 

The most common heuristic is to select certain attributes of 
the objects as relevant to the search and then to summarize 
each object by describing certain .of its attribute values in a 
feature vector. If an object exists in the real world, such a 
description must be a generalization of it, since the description 
is certain to omit some presumably irrelevant attributes, such 
as surface temperature, molecular structure, or country of 
origin. Even if an object does not have a counterpart in the 
real world, a feature vector representation may impose a 
loss of information. Consider, for example, a graph G on 
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25 vertices with 237 edges. G is a theoretical object consisting 
by definition of only the list of its vertices and the list of 
its edges. A feature vector representation of G, such as 
(25,237,T,F,. . .), might detail the number of G’s vertices, 
the number of its edges, whether or not it is connected, 
whether or not it is planar, and so on. No matter how long the 
feature vector, if G’s only defining characteristics (exactly 
what are the vertices and edges) are omitted, in a system using 
the feature vector representation, G becomes its attribute 
values. If a system represents G as (25,237,T,F,. . .) and 
subsequently needs to calculate the value of some graph 
property not among the listed features, the computation, 
although well defined on G, may be impossible from 
(25,237,T,F, . . .). 

The loss of detail incurred by a feature vector representation 
is expected to be justified by an ability to support the efficient 
computation of simple descriptions while maximizing inter- 
class differences (Michalski and Stepp 1983). Once such rules 
for classes have been inferred, however, the next task may be 
to infer the relations among the classes. There is no guarantee 
that the features that were relevant to class identification will 
be equally useful in reasoning about the classes. For example, 
the food chain domain of Nordhausen (1986) contains facts 
about a variety of birds; within it, reasoning about hierarchical 
relations requires the definition of new attributes, such as the 
size of what a bird eats, to infer a classification tree. There are, 
of course, underlying structural similarities between hawks 
and owls that would also distinguish them from songbirds, but 
those structural details were lost when the classes, hawks and 
owls, were represented by their features. Thus an approxima- 
tion must be discovered in place of the discarded details about 
structural similarities. 

Constraining the solution space to the vocabulary of the orig- 
inal attributes has been repeatedly identified as a severe limita- 
tion (for example, Stepp and Michalski 1986), and there has 
been much recent interest in expanding the expressive power 
of feature-based descriptions. The BACON programs (Langley 
et al. 1983, 1986) postulate and calculate new numerical attri- 
butes from the original ones. OPUS (Nordhausen 1986) postu- 
lates and calculates new attributes as relational combinations 
of the original ones. Other expansions are formed in STAHL 
and GLAUBER (Langley et al. 1986), in Lee and Ray (1986), 
and in Laird (1986). 

Even when the representation of a concept is not explicitly a 
feature vector, inadequacies in the description language pre- 
sent research challenges. STABB (Utgoff 1986) creates dis- 
junctions of existing attributes to expand LEX’s solution 
space. CLUSTERB (Stepp and Michalski 1986) uses either 
numerical combinations or logical operators to create new 
attributes. PI (Thagard and Holyoak 1985) combines frames 
containing production rules. Other efforts (Emde et al. 1983) 
use mathematical properties, such as transitivity, to combine 
relational attributes. 

GT takes an alternative approach to the detection of relations 
among object classes. It presupposes a concise class descrip- 
tion that, unlike feature vectors, has no loss of detail and yet 
expedites search. The commonality among objects in a class is 
based not on a set of attributes, but on inherent structural simi- 
larities in the objects’ construction. The class description is 
really a nondeterministic generation algorithm that produces 
the object class. The structural uniformity imposed upon the 
algorithms themselves then supports discovery of relations 
between classes. Of course, not every domain encourages such 

class descriptions or expects a rich set of relations among the 
resultant classes. 

1.2 .  Mathematics as a domain for discovery 
Machine learning uses both data and theories to drive its 

models of scientific discovery. Much important work in 
machine learning (for example, Laird (1986), Langley et al. 
(1983, 1986), Lee and Ray (1986), Michalski and Stepp 
(1981, 1983), Shapiro (1981), and Stepp and Michalski 
(1986)) constructs concepts to explain empirical data, data 
either input or encountered in the course of task execution. 
Such data-driven discovery is designed to infer explanations 
for factual input and is based upon observation and inductive 
inference, in domains where partial information and real-world 
noise are the norm. 

The theoretical sciences concern themselves with highly 
detailed objects, objects already bound into classes by strong 
structural similarities. Mathematics, in particular, has many 
classes of objects already clearly delineated by definitions. In 
modelling such domains, the origin of these classes (what 
Michalski (1986) calls constructive induction) and the relations 
among them should be the focus of attention. In theory-driven 
discovery, search heuristics postulate statements and then run 
experiments to validate those statements. Mathematics is a 
scientific domain with noise-free data and clear criteria (e.g., 
proofs and counterexamples) to validate and invalidate 
theories. For centuries, the clarity and certainty of the inherent 
relations among its classes have lured mathematicians with 
prospects of discovery. 

One outstanding example of computer discovery in mathe- 
matics was Lenat’s AM (Lenat 1976). AM began with,a set of 
115 frames, each representing a mathematical concept. A 
frame consisted of fixed slots containing information on 
examples, hierarchical pointers, conjectures about such 
pointers, and heuristics attached to the concept. The definitive 
slot in an AM concept, however, was the predicate in the defi- 
nition, a LISP testing algorithm that ruled on whether or not 
an object was a member of the class. Some of AM’S initial 
(i.e., input) concepts were for activities defined on those 
classes, such as set-insert or list-intersect. Examples for a class 
were generated by applying seemingly appropriate operators. 
For example, if an operatorfwere defined on the classes A and 
B withf: A - B ,  and if C were a subset of B ,  AM might have 
selected some examples a , ,  a2, . . . , a, of A ,  constructed 
(f (a,), f (a,), . . . , f (a,,), all of which would have belonged to 
B ,  and then examined them to see if they were indeed 
examples of C, or merely in B - C. This uncertainty in the 
generation of examples, and the need to check them with the 
testing algorithm, occurred because an AM definition for a 
class of mathematical objects could only confirm membership 
in a class, not produce elements of it. 

AM explored its fundamental frames under the guidance of 
243 heuristic rules. It generated (and then checked) examples 
of the concepts, observed simple statistical regularities in their 
classification, conjectured about relations among them, and 
defined new frames (concepts) for subsequent exploration. 
AM developed a new concept by small modifications to the 
LISP function that served as the definition of an existing con- 
cept. Thus the LISP code for TEST, to check whether or not an 
example was a member of some class D ,  would be modified to 
create a new algorithm TEST’ for membership in a (presum- 
ably) different class D‘. The definition of a new AM concept 
did not differ greatly from its parent concept; only small 
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changes could be guaranteed to produce executable code, and 
AM was, after all, not intended to be an expert in automated 
programming. 

Dwovery in AM was inductive inference, driven not only 
by empirical evidence, but also by the heuristic rules that origi- 
nated example generation and evaluated the results. This 
discovery was driven both by data (the generated examples and 
the initial concepts) and by theory (the heuristics for mathe- 
matical research behavior). Beginning only with set-theoretic 
concepts, such as bag and union, AM included among its dis- 
coveries natural numbers, primes, and the fundamental 
theorem of arithmetic. Lenat believed that AM did not go on to 
explore other areas of mathematics because its heuristics (i.e., 
theory) were not as relevant to other subject matter. (This 
motivated his subsequent work on EURISKO, a system that 
discovers new heuristics as well.) Ostensibly, AM’S attention 
during search was focused by what tasks AM had recently 
completed and by each concept’s worth, a numerical measure 
of “interestingness. ’ ’ When Lenat experimented with varia- 
tions in the originally-input worth values for the first 115 con- 
cepts, AM did not pursue radically different goals. Initially 
this was attributed to the strength of the heuristics. Only later 
(Lenat 1984; Ritchie and Hanna 1984) was it generally recog- 
nized that the path of discoveIy was pronouncedly affected by 
the programming language itself. AM developed new testing 
algorithms by modifications to other algorithms, i.e., to LISP 
code. Because the syntax of the class definitions carried a 
semantic bias toward certain structures (such as ordered sets), 
AM was fated to explore and discover in a somewhat predeter- 
mined fashion. 

Despite its attraction to LISP-like structures, AM was a suc- 
cessful program. Indeed, AM may be said to model some 
intuition on the part of the research mathematician as to a rep- 
resentation language (LISP) well suited for exploration in a 
particular direction (number theory). AM certainly suggests 
that if knowledge about a domain can be semantically encoded 
into the class definition, then it can be harnessed to drive 
mathematical discovery. 

GT encodes the semantics of graph theory into class defini- 
tions in a more transparent and flexible fashion, one that sup- 
ports both inductive and deductive reasoning. These semantics 
subsequently motivate both conjecture and proof, generate 
guaranteed examples of a class, and permit the introduction of 
new descriptions into class definitions. (Recall that AM was 
never able to prove its conjectures, to generate new examples 
certain to be in a specified class, or to introduce radically new 
descriptions into class definitions.) GT’s discovery process is 
highly constrained exhaustive search. Although the space of all 
possible classes of graphs is large, the representation language 
is able to control and focus exploration through it in a variety 
of ways. When it begins with an extremely general definition 
and explores specialized versions of it fairly exhaustively, GT 
is similar to META-DENDRAL (Buchanan and Mitchell 
1978). Both programs survive a generate-and-test strategy 
because their representations encourage what Michalski (1983) 
calls conceptual data analysis. 

2. Concept description in GT 
GT derives much of its power from a set of representation 

languages whose theoretical formulation is detailed rigorously 
in Epstein (1983) and summarized in Epstein (1987). The 
treatment of the representation here is informal and describes 
only selected, implemented segments of the theory. For 

example, GT currently supports only undirected, unlabeled 
graphs, but coding provisions have been made for directed and 
labeled graphs, and the theoretical framework supports them. 

Figure I portrays the development of a GT concept from the 
representation languages. An expression in one of these lan- 
guages is an algebraic definition for a class of graphs. Any 
such expression has a semantic interpretation as a stylized 
algorithm that defines the class by generating it correctly and 
completely. One expression fills the definition slot in each GT 
concept frame. This section provides some fundamental graph 
terminology and describes the algebraic definitions, their uni- 
form semantic interpretation, and the concept frames. 

Let V be an arbitrary, finite set of elements (vertices), 
and let E be any subset (edges) of the Cartesian product 
V x V. Then the ordered pair G = (V,E) is said 
to be afinite graph or, more simply, a graph. If IVl = n and 
E = ( (x ,y)  1 x,y E V,  x # y} then G = (V,E) is said to be 
complete and is denoted here as K,,. If x E V but there is no 
edge (x,y) or (y ,x)  in E, x is said to be isolated. 

Let U be the universe of all finite graphs. Then any subset 
P of U is said to designate a graph property p and, for G in P ,  
G is said to have property p .  (The distinction between the 
property p and the class P is syntactic, not semantic. The 
context will dictate which is used.) Any algorithmic definition 
of the graph property p must specify the set P precisely. 
In particular, if an algorithm claims to generate P ,  that algo- 
rithm must be both correct (i.e., every generated graph must 
be in P )  and complete (i.e., for each graph in P there must be a 
finite sequence of steps executed by the algorithm with final 
output G). 

In GT, a concept is a frame representing a graph property 
and knowledge associated with it. (This representation was 
inspired by Michener’s work (1978).) A slightly edited 
example of an initial GT frame for the concept ACYCLIC 
appears in Fig. 2. The slots of the frame include a list of 
examples, knowledge about hierarchical relations with other 
concepts, historical information on the ways the concept has 
been manipulated, and a description of the origin of the prop- 
erty. (Entries of “nil” for relations are statements of partial 
knowledge, to be read as “none discovered yet.”) The frame 
also includes a definition of the graph property in a specific, 
three-part formulation. 

In GT, a definition of a graph property is an ordered triple 
(f,S,u). S is the seed set, a set of one or more minimal graphs 
(seeds), each of which has the property in question. (Typically 
the seed set is finite and GT lists its elements.) The seed set in 
the example of Fig. 2 for ACYCLIC contains only a single 
graph, K,. The operatorfin the definition describes the way(s) 
any graph with the given property may be transformed to con- 
struct another graph with the same property. An operator in GT 
is built from the set of primitives listed in Table 1. There is a 
primitive to add the vertex x (Ax), to add the edge between .r 
and y (Aq), to delete the vertex x (DJ, and to delete the edge 
between x and y (0,). These primitives may be concatenated 
into terms (such as A,& to denote sequential operation from 
right to left. Terms may be summed (as in A ,  + A,.&) to repre- 
sent alternative actions. Thus the operator A, + A,$, for 
ACYCLIC is read “either add a vertex x or else add a vertex z 
and then an edge from y to 2. ’ ’  The selector u in the definition 
describes the restrictions for binding the variables appearing in 
the operator f to the vertices and edges in a graph. Selector 
descriptions for vertices and edges appear in Table 2 .  The cur- 
rent valid selector descriptions for a vertex describe whether or 
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Property name: ACYCLIC 
Number-of-seeds: 1 
Seed-set: { K , }  
Function: A, + A,,A; 
Sigma: y E V,  x,z @ V 
Origin: input 
Example-list: ( K , )  
Extremal-cases: ( K , )  
Delta-pairs: ((1 0)(1 1)) 

Subsumes: nil 
Cannot-be-shown-to-subsume: nil 

Subsumed-by: nil 
Cannot-be-shown-subsumed-by: nil 

Is-equivalent-to: nil 
Cannot-be-shown-equivalent-to: nil 

Merger-created-with: nil 
Merger-explored-with: nil 

Has-been-generalized: nil 
Has-been-specialized: nil 
Variables-have-been-identified: nil 
Iteration-has-been-forced: nil 

Algorithmic Mathematical 
Definitions Knowledge Base 

FIG. 1.  The formulation of a GT concept. 

FIG. 2. Initial representation of ACYCLIC. 

not it is in the graph, its distinctness from another specific 
vertex symbol, its degree (number of neighbors), and whether 
or not its degree is the maximum among the degrees of all the 
vertices in the graph. The current valid edge selector descrip- 
tions in GT are of two kinds: whether or not the edge is in 
the graph, and whether its endpoints are distinct. Selector 
descriptions may be empty, i.e., need not constrain binding at 
all. In the example of Fig. 2, the selector for ACYCLIC is 
read “where y is in the vertex set, and x and z are not in the 
vertex set.” 

The semantic interpretation of such a three-part definition 
for a graph property p is a single, uniform algorithm called a 
p-generator. A f-generator capitalizes on the underlying com- 
monality of its class, the view of the set P as one or more 
prototypes (seeds) that can be methodically transformed (under 
f and u) to produce exactly those graphs in the class. The 
f-generator may be thought of as an automaton that is started 
by the input of any graph in its seed set S. ACYCLIC, for 
zxample, would permit only K ,  . The P-generator then iterates 
an undetermined number of times. On each iteration the selec- 
tor u chooses vertices and (or) edges with respect to the current 
graph G, and then the operator modifies G, using those choices 
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to produce a new G. ACYCLIC,.on each iteration, either adds 
a new vertex x to the graph, or adds a new vertex z and an edge 
from an old vertex y to z. 

Thus the algorithm for generating the class P of graphs is 

Accept G in S 
Output G 
Until u fails do 

Output G 
G -fu(G) 

Halt 

Under all possible initial choices from S and all possible itera- 
tions offsubject to u, the output of this algorithm is precisely 
P ,  that is, if the superscript i denotes “iterate i times,” 

P = U(fu)’(S) 

The graphs in Fig. 3 illustrate several possible iterations of the 
definition of ACYCLIC; each pictured graph is output by the 
algorithm and is acyclic. The definition generates the infinite 
class of acyclic graphs; it will never halt because bindings for 
the variables in u can be found on each iteration. 

The content of the following three general texts is taken as 
graph theory: Ore (1962), a classical development in elegant 
mathematical fashion; Harary (1972), a broad overview of 
topics presented as definitions and theorems; and Bondy and 
Murty (1976), an algorithmic approach. There is some evi- 
dence that p-generators may exist for every P in I/, or at leaat 
for every interesting P in graph theory. At this writing, more 
than 40 properties of varying difficulty have been selected 
from the three benchmark texts and described correctly and 
completely as p-generators (Epstein 1983). They appear 
in Table 3.  Three graph properties (self-complementary , 
uniquely k-colorable, and k-edge-colorable) have been 
expressed and proved correct but lack completeness proofs, 
although no counterexamples are known. Current research 
suggests that a more extensive knowledge of graph theory 
would resolve such difficulties. 

The use of p-generators as property definitions entails 
several kinds of nondeterminism. Any graph in the seed set IS 
an acceptable input; any binding satisfying u is valid; any term 
in f suffices for an iteration. In addition, many different 
sequences of iterations will construct isomorphic graphs, and 
more than one definition may be written for certain properties. 
(GT stores equivalent definitions as separate properties with 
connecting links.) This ostensible indefiniteness and redun- 
dancy is tolerated because the property definitions preserve 
detail in a concise and flexible format. 
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TABLE 1 .  Primitive GT operators 

Symbol Application Interpretation 

Ax 
A, 
Dx 
Dly 

Operator 
Operator 
Operator 
Operator 

Add vertex x to the graph: V - V U { x }  
Add edge xy to the graph: E - E U (xy} 
Delete vertex x from the graph: V - V - ( x }  
Delete edge xy from the graph: E - E - (xy} 

TABLE 2. GT selector descriptions 

Symbol -- 
X E V  

X f Y  
d(x) == n 
d(x) == max 

x $ v  

x y E E  
x y 4 E  -- 

Application Interpretation 

x is a vertex in the graph 
x is a vertex not in the graph 
x and y are distinct vertices 
x’s degree is n,  a nonnegative integer 
x’s degree is the largest in the gmph 
xy is an edge in the graph 
xy is an edge not in the graph 

Selector 
Selector 
Selector 
Selector 
Selector 
Selector 
Selector 

3. Relations between concepts in GT 
As Michalski has observed (Michalski 1983), inductive 

inference from examples does not preserve truth but only fal- 
sity. Although research mathematicians devote much time to 
example generation, and infer conjectures about relations 
among mathematical ideas based on these examples, inductive 
inference is only a tool. Rarely is a conjecture considered a 
result worthy of publication, and then only when extensive 
attempts at proof and disproof have failed. Mathematicians 
prefer to explore in the context of certainty; for them a conjec- 
ture should be proved or disproved relatively soon after it 
arises. GT, therefore, constructs both conjectures and proofs. 

Graph theory, as it appears in the three benchmark texts 
cited above, is primarily about graph properties and the rela- 
tions among them. Conjectures and theorems in graph theory 
frequently take one of the following forms: 

Type I: If a graph has property p ,  then it has property q. 
Type 2: A graph has property p if and only if it has prop- 

Type 3: If a graph has property p and property q, then it 

0 Type 4: It is not possible for a graph to have both property 

GT has two fundamental. proof procedures for manipulating 
graph properties to prove such theorems. The first procedure 
tests for subsumption. Property p for class P subsumes prop- 
erty y for class Q if and only if P 2 Q, i.e., every graph with 
property q also has property p ,  so that q is a special case of p .  
Theorem type 1 is a statement that q subsumes p ,  Theorem 
type 2 is a statement that p and q are equivalent, i.e., that p 
subsumes q and q subsumes p .  The second procedure con- 
structs mergers. The merger of a property p for class P with a 
property q for class Q results in a new property representing 
P n Q, the set of graphs with both properties. Theorem type 3 
is a statement that property r subsumes the merger of p and q. 
Theorem type 4 is a statement that the merger of p and q is 
empty, i.e., that no graph can have both properties simultane- 
ously The remainder of this section describes how subsump- 
tion IS tested and how mergers are constructed using the 
( f ,~ ,a)  representation. 

erty 4. 

has property r .  

p and property q. 

3.1. Proof of subsumption 
At this writing, GT has only one method of proving sub- 

sumption. Given property p1 = (fi,Sl,ul), property p 2  = 
(f2,S2,u2), and a conjecture that pI subsumes p 2 ,  GT attempts 
to show that 

of2 is subsumed by fi, that is, fi is a special case of f l .  

(Extended definitions for operator subsumption appear in 
Epstein (1983).) 

Every graph in S2 has property pl. 
u2 is subsumed by ul, that is, u2 is more restrictive than ul. 

(Extended definitions for selector subsumption appear in 
Epstein (1983).) 
Because there are usually only a few known seeds, GT checks 
the list of examples forp l  against S2. If any graph G in S2 is not 
known to have p l ,  GT generates a limited number of new 
examples o f p ,  and searches for G there. Because seed grdphs 
are extremal cases, and because a natural metric exists on most 
GT definitions, the search is readily controlled and usually 
successful. (Alternative techniques exist for infinite seed sets 
and certain other situations.) Matching for the subsumption 
testing of the operators and selectors is done by a recursive 
backtracking algorithm that generates a restricted set of candi- 
dates. 

The following example of subsumption testing illustrates the 
subsumption procedure. For 

ACYCLIC = ( A ,  + A,,J,, {Kl}, [y  6 V ,  x,z E V1) 

TREE = (ApqAq, {KI},  [ P  E v, 4 $- VI) 

and 

and the conjecture “ACYCLIC subsumes TREE,” GT must 
show that KI, the seed for TREE, is an acyclic graph and also 
that, under some matching, the ACYCLIC operator “covers” 
the TREE operator while satisfying the TREE selection con- 
straints. First, KI is on the list of acyclic graphs because it is 
the seed for ACYCLIC. Second, the matcher notes that every 
term in the TREE operator Apdfq (there is only one in this 
example) is covered by some term, namely A&,, in the 
ACYCLIC operator. Finally, the matcher observes that under 
the matching of p with y and q with z ,  the selector constraints 
(that p is in V and q is not) are enforced. Thus GT proves that 
ACYCLIC subsumes TREE or, more formally, “Every tree is 
an acyclic graph.” 

3.2. Proofs involving mergers 
GT currently has four algorithms for merger. Given property 

pI = (fi,Sl,aI) and property p2 = (ft,S2,u2), GT attempts to 
construct the mergerp = (f,S,u) of p ,  and p 2 .  The first three 
algorithms are fairly straithforward: 

If p 1  subsumes p2, the merger is simply p2. For example, 
the merger of ACYCLIC and TREE is simply TREE. 

When fi subsumes A and every seed in S2 has property pi, 
the merger is (fi,&,u), where u is u1 and u2, but eliminates 



TABLE 3. Graph properties representable as P-generators 

graph 
edgeless graph 
connected graph 
biconnected graph 
acyclic graph 
k-connected graph 
tree 
loopfree graph 
chain 
cycle 
star 
wheel 
complete graph 
Eulerian graph 
graph with n vertices 
graph with rn edges 
pinwheel 
nonplanar graph 
k-factorable 
even-regular graph 
odd-regular graph 

graph on even number of vertices 
graph on odd number of vertices 
graph with even number of edges 
graph with odd number of edges 
graph of minimum degree k 
graph with k components 
graph with counted vertices 
graph with counted edges 
graph with calculated maximum degree 
bipartite graph 
complete bipartite graph 
k-vertex-covered graph 
k-independent graph 
k-colored graph 
k-chromatic graph 
graph with vertex covering number k 
graph with circumference k 
graph with edge covering number k 
graph with a k-factor 
Hamiltonian graph 
planar graph 

any references to variables not in f2. For example, the 
merger of 

STAR = (Ax#,, { K I , ~ } ,  [x E v, Y 4 v, 4 x 1  = maxl) 

and ACYCLIC is simply STAR. 

the merger is (f2,S,a2), where 
When f l  subsumesf2, c1 subsumes a,, and S is nonempty, 

S = {G I G E S2 fl PI} U {G 1 G E SI n PZ} 

For example, the merger of 

PI = ( A ,  + A y A  {Kl, K41, [x $ v, Y E V1) 

~2 = (ArsAs ,  { K I T  ~ 3 } 7  [r E v, s 6 V]) 

p = (A,,& {Kl> K3), [u E v, v 4 VI) 

with 

where clearly K3 E PI but K4 @ P ,  is 

based on matching y with r as u and z with s as v. 

The fourth, and most interesting, of GT’s merger algorithms 
deals with the cases that do not fit these categories. Let n be the 
number of vertices in a graph and m be the number of edges. 
Each iteration of the p-generator effects a change (An) in the 
number of vertices and a change (Am) in the number of edges. 
GT calculates the An and Am values for each term in the prop- 
erties to be merged. A delta pair (An,  Am) is the ordered pair 
of the changes for a term in a property; it captures some 
aspects of the minimal effect of one iteration of ap-generator. 
For example, the only delta pair for 

TREE = (ApqAq, { K i } ,  [ P  E v7 4 6 vl) 
is ( l , l ) ,  meaning that on each iteration one vertex and one 
edge are added to the graph. For 

ODD-VERTICES 

= ( A A  + A,,, { K l } ,  [r,s $ v, t,u E v, r + SI) 
the delta pairs are (2,O) and (0,l). For a merger, GT seeks a 
minimal positive integer solution to that system of equations 
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FIG. 3. GT iterations of ACYCLIC. 

which asserts that some number of repetitions of the delta pair 
for each term in one property is equivalent to some repetitions 
of the delta pairs in the second property. In the example, let 01 

represent the number of applications of the single term in 
TREE, let p represent the number of applications of the first 
term in ODD-VERTICES, and let p represent the number 
of applications of the second. GT seeks the positive minimal 
integer solutions to: 

la  = 20 + Op (An) 

la  = 00 + lp (Am) 

The answer, CY = p = 2 and p = 1, indicates that in the merger 
both An and Am will be 2. Each of the properties is special- 
ized by the repetition of appropriate terms to meet these 
requirements: 

TREE’ = (AxyAyA,,A,, {KI},  [ x , ~  E v, Y,V 4 v1) 
ODD-VERTICES‘ = (ArA&gl,,, { K , }  , 

[r,s 4 v, t , z , p , q  E v, r f sl) 

When GT attempts a merger of TREE’ and ODD-VERTICES’ 
it discovers that the first is really a special case of the second, 
under the matching of r and z with y, s and q with v ,  t with x, 
and p with u .  (An extremely limited form of commutativity 

, is used here to shift operators of the form A, to the right when 
the vertex does not appear elsewhere in the term.) Thus the 
merger is 

ODD-TREE = (A.ry4yAuvA,, {KI}, 

[x,u E v, y,v 6 v, Y # 4) 
Upon inspection, this property is clearly correct and complete, 
with An = Am = 2. 

GT has discovered, among other merger properties, TREE 
as ACYCLIC mergered with CONNECTED, and COM- 
PLETE-BIPARTITE as COMPLETE merged with BIPAR- 
TITE. 

Some of the most interesting of GT’s proofs are merger 
failures. Consider, for example, GT’s discovery that a graph 
that is odd-regular (every vertex of degree d ,  and d is odd) can- 
not have an odd number of vertices. GT looks first for a com- 
mon seed. Since none is evident, GT generates some examples 
to expand its list of graphs with an odd number of vertices, 
hoping to find one which it recognizes as odd-regular. When 
this effort fails, GT considers the possibility that there is no 
common seed, and examines the changes to m and n wrought 
by the operators. GT recognizes that ODD-NUM- 
BER-OF-VERTICES begins with one vertex and adds two 
vertices at a time, so that n is always odd. GT recognizes that 
ODD-REGULAR begins with an even number of vertices (the 
seed is K2) and adds an even number of vertices at a time, so 
that n is always even. This disparity is the reason GT gives in 
its proof there can never be a seed for the merger, and thus the 
property has no example, i.e., is impossible. 
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4. Construction of new concepts in GT 
GT definitions transparently display both the changes they 

force upon objects (in the operator f) and the preconditions 
they require (in the selector a). This separation encourages the 
development of completely and correctly defined new concepts 
whose relations to their parent concepts do not require proof. 
GT currently has three methods for constructing new concepts 
from known ones: specialization, generalization, and merger. 

4.1. New concepts discovered b y  specialization 
When property PI subsumes property p 2 ,  every graph with 

property p2 also has property p1. Thus p2 may be viewed as a 
specialization ofpl .  To specialize from a definition of the form 
(f,S,u), GT performs one of the following actions: 

constrain the seed set, 
constrain the operator, 
constrain the selector. 

When GT discovers property p2 as a specialization of property 
pl ,  the facts that P2 is a subset of PI ,  and PI a superset of P2, 
are recorded in GT’s knowledge base. The specialization 
techniques described here are those currently implemented; 
others are under development. 

GT constrains a seed set by using a proper subset of it. Con- 
sider once again the property 

1’1 = (4 + A y z 4  { K , ,  K4), Ex 4 V,  y E VI) 
The definition pI  begins with a complete graph, either K ,  or 
K4. On any iteration, p either adds an isolated vertex x to the 
graph or adds a vertex z and an edge yz from a vertex y in the 
graph to z .  One specialization of p1 is 

1’3 = ( A ,  + AyzA;, {K4}, Ix $ V ,  Y E VI) 
created by eliminating KI from the seed set of P I .  Every graph 
generated by p3 begins with a seed from pI (namely, K4), 
iterates according to the definition of p l ,  and, therefore, has 
propt:rty p I .  There are, however, graphs (for example, K2 and 
K3) that are in PI but not in P3. Thusp3 is a proper subset ofpl .  

An operator may be constrained in two ways. First, a term 
may be eliminated from the operator (with irrelevant con- 
straints removed from the selector). For example, 

174 = (AYY;AZ, {KI? & I 9  [Y E VI> 

constructs only the connected p1 graphs. One may prove p4 a 
specialization ofpl  by the argument used forp, above. Second 
and less obviously, recall that a p-generator assumes iteration. 
Thus any forced repetition of terms from the operator forms a 
special case of the operator. (The selector requires readily 
computable additions.) Consider 

1’5 = (Ad, +AtAyzAz, {KI, K4}, [x,w,t @ v, Y E V ] )  
Property p 5  adds either a pair of isolated vertices or an edge 
and two vertices (at least one of which is new) on each itera- 
tion. Property p5 begins with a seed from p l ,  and each of its 
terms is equivalent to a finite number of iterations ofp l ;  there- 
fore, p 5  is a specialization of p,. 

GT constrains the selector of a graph property by making the 
binding restrictions more detailed, either by the addition of a 
constraint or the identification of variables. As an example of 
the first, consider 

1’6 = + {KI, K4}7 [x,z V,  y E V1) 
Using the argument employed for p 3 ,  p6 is seen to be a spe- 

cialization of p1; P6 is that subset of P, that is acyclic every- 
where except possibly in a single K4 subgraph. Additional 
constraints must always be consistent with the definition of a 
graph, and never obviously make binding impossible. (For 
example, x E V would not be added when the selector already 
specifies x $! V . )  As an example of the second selector special- 
ization, identification of variables, consider 

P7 = (4 + AyyA,, {Kl? K4)? [x $ v, y E VI) 
Here GT has selected two variables in pl, y and z, whose 
u-descriptions do not contradict each other, and has made them 
identical. 

Figure 4 shows how GT applies specialization to discover 
new concepts in graph theory. Initially, the knowledge base 
consists only of line 1, the p-generator for all finite graphs. 
The more interesting properties have been selected for the 
figure from the trace, and some have been renamed for the 
figure. First, the general definition of a graph is specialized by 
forced repetition to produce PROPERTY4 and PROP- 
ERTY-6. The identification of variables in PROPERTY4 pro- 
duces PROPERTY-14. Constraining u in PROPERTY-14 
produces TREE and CONNECTED. On another exploration 
branch, the identification of variables in PROPERTY-6 pro- 
duces PROPERTY-30. Constraining u in PROPERTY-30 pro- 
duces ACYCLIC. 

A loop is an edge from a vertex to itself. In another dis- 
covery sequence, GT constructs 

BIPARTITE = (A, + A,Ay + A,,, { Kl} , 

[X,Y $ v, w,z E V ,  ww E E, zz $! El) 
For BIPARTITE, GT has partitioned the vertices of the graph 
into two sets, one with loops and one without; edges are drawn 
only between one vertex with a loop and one without. 

4.2.  New concepts discovered b y  generalization 
A property p2  is said to be a generalization of a property pI if 

and only if PI is a subset of P2, i.e., every graph with property 
pI also has propertyp2. Because “p2 is a generalization o fp l”  
is equivalent to “PI is a specialization ofp,,” the construction 
of generalizations is fairly obvious from the preceding discus- 
sion. To generalize a concept, GT may 

expand the seed set, 
expand the operator, 
relax the selector. 

To expand a seed set, GT adds another graph or set of graphs 
to it. To expand an operator, GT adds new terms or splits exist- 
ing ones (the inverse of forced iteration). To relax the selector, 
GT removes details from the binding restrictions in u. Each of 
the examples of specialization in Sect. 4.1 may be read, in 
reverse, as an example of generalization. When GT discovers a 
new concept p2 as a generalization of a concept pl ,  the facts 
that P2 is a superset of P,,  and PI a subset of P2, are recorded 
in the knowledge base. 

Why would GT need to know how to generalize at all? GT 
models a variety of research behaviors, one of which is the 
appropriate insertion of new information into a pre-existing 
knowledge base. A new property is generalized until it can be 
linked into GT’s relational hierarchy. For example, when 
given 

STAR = (A.TAy, {KI ,~} ,  [x E V,  Y 4 v, 4x1 = maxl) 

the concept is generalized until it is identified with one already 
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Property 

( 2 )  PROPERTY-4: (A&:, { K , } ,  [x,y E V ] )  
(1) IS-A-GRAPH: ( A q + A : ,  { K l } ,  [X,Y E V ] )  

(3) PROPERTY-6: PqA,  + A,, {Kl) ,  [ X J  E V ] )  
(4) PROPERTY-14: (Ax,A,, { K i } ,  [X  E V ] )  
(5 )  TREE: (A,:A,, {Ki}, [x E V,  z 4 V1) 
(6) CONNECTED: (A,A,, { K i } ,  [x E V ,  z V ] )  

(8) ACYCLIC: (AxLAL + A , ,  { K i } ,  [x E V,  z 4 VI) 
(7)  PROPERTY-30: (A,A, + A,, { K l } ,  [X E V ] )  

Origin 
Given 
Forced repetition in (1) 
Forced repetition in (1) 
Identify variables in ( 2 )  
Restrict binding in (4) 
Restrict binding in (4) 
Identify variables in (3) 
Restrict binding in (7) 

__ 

FIG. 4. GT discovers new concepts: a trace. 

in the knowledge base. Directed to relax STAR’S binding con- 
straints, GT produces three new property definitions, one of 
which differs from TREE only in its seed. When directed to 
relax the constraints once again, GT produces two definitions, 
one of which differs from line 4 of Fig. 4. only in its seed. GT 
eventually recognizes stars as a special case of connected 
graphs, discovering trees along the way. A second motivation 
for concept generalization is the conjecture and proof of rela- 
tions among properties. When a property is highly detailed, the 
entailed matching can be expensive. Reasoning about a more 
general case, which typically has a simpler form, may be much 
more efficient. For example, if A is a special case of B and B is 
disjoint from C, A will also be disjoint from C. Often GT’s dis- 
covery and proof that B is disjoint from C is faster. 

4.3. New concepts discovered by  merger 
As noted in Sect. 3.2, GT has several techniques to construct 

the merger of two properties. The merger of property p1 with 
property p2  represents the intersection of P ,  with P ,  and is 
readily computable in most instances. GT has discovered trees, 
for example, by constructing the merger of ACYCLIC and 
CONNECTED. 

5 .  Discovery modes and search 
Up to this point, GT has been described as a system that rep- 

resents graph theory concepts as frames and has the ability to 
generate examples, conjecture and prove theorems, and con- 
struct new concepts. This section details the spectrum of GT’s 
operational modes, from those where GT takes the least initia- 
tive to those where GT appears totally self-directed. 

In the first of its operational modes, GT simply performs 
under interactive guidance: the user specifies a database of ini- 
tial concepts and example graphs, and then directs GT to a spe- 
cific task, called a project. Possible projects are 

generate some examples of property p ,  
test to see if property pI subsumes property p2, 
test to see if property pI is equivalent to property p2, 
construct the merger of property p 1  with property p,, 
generalize property p ,  
specialize property p .  

Each project is performed according to the algorithms 
described above. The nondeterminism discussed in Sect. 2 
may produce different traces or even different outcomes for 
different executions of the same project (e.g., different 
examples may be generated), but the theorem proving algo- 
rithms always produce consistent results. 

In its first mode, GT follows external directives to formulate 
and execute projects, ones presumably based on the user’s 
expectation that such investigations will result in additional 

Property P Property Q -- 
Universe U 

FIG. 5. Potential set-theoretic relations between two classes 

mathematical knowledge. In its second mode, GT formulates 
its own projects and places them on its agenda. In this mode 
the user specifies the kind of project GT is to suggest: example 
generation, subsumption, equivalence, merger, generalization, 
or specialization. Clearly the set of GT-originated project types 
is identical to those posable by the user in the first mode. The 
user may also indicate a focus for these formulated projects, 
i.e., a property that is considered particularly interesting. If a 
focus is designated, then each conjecture will involve i t .  In its 
second mode, once GT formulates the projects, the user desig- 
nates tasks to be executed. 

Given a knowledge base of k properties, there are potentially 
2k2 + k projects on the first pass, i .e.,  before newly created 
properties participate in project formulation. How does GT 
limit search through such a space? The human mathematician 
has two primary sources of evidence on which to base project 
formulation: definitions and examples. Unlike AM whose 
cumbersome LISP code limited it to conjectures based solely 
upon exampl?s, GT is capable of reasoning both from 
p-generator definitiom and from specific graphs, either seeds 
or generated examples. (The latter is an example of what 
Thagard and Holyoak (1985) call “instance-based generaliza- 
tion. ”) These two sources support the formulation of projects 
in a variety of ways. 

When presented with a definition for a concept, most mathe- 
maticians immediately construct examples. Thus GT recom- 
mends a project to generate examples of any property for 
which it lists “too few” (as determined by a global variable) 
examples. 

A mathematician presented with nonempty classes P and Q 
from a universe U is trained to explore potential relations 
between the classes by examining whether or not each of the 
labeled regions in Fig. 5 is empty. GT models this strategy 
with conjectures about subsumption and merger. The standard 
mathematical questions, and their GT equivalents, are 
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Is p a subset of Q? GT explores this by a conjecture that q 
subsumes p .  

Is P a superset of Q? GT explores this by a conjecture that 
p subsumes q. 

Is P equal (equivalent) to Q? GT explores this by two con- 
jectures, that p subsumes q and that q subsumes p. 

Are P and Q disjoint (mutually exclusive)? GT explores 
this by a suggestion to merge p and q. 

Thus the theorems that GT conjectures are statements about 
set-theoretic relations between classes of graphs. The analysis 
of Fig. 5 may, of course, be extended to more than two sets. 
For example, either set may be replaced by the set R n S .  
Since GT can use merger to construct R f l  S, GT conjectures 
encompass all four of the theorem types at the beginning of 
Sect. 3.  

The first two mathematical questions, on subset/superset 
conjectures, are based upon both seeds and definitions. If a 
seed forp is already on record in GT as a seed for some other 
property q, a subsethperset relation may exist between P 
and Q. GT examines such ( p , q )  pairs for additional support- 
ing evidence from the property definitions. In particular, GT 
looks for: 

a degree of similarity in the seed sets for p and q (in 
decreasing order of significance: equal sets, one a subset of the 
other, a nonnull intersection); 

seeds of property p that are known to have the prop- 

a degree of similarity between the operators forp  and q 
(i.e., which primitives are employed and in what groupings). 

The strong focus on seeds is justified both by their role as 
prototypes and by efficiency; seeds tend to be small and few in 
number. 

Before GT’s heuristics explore the third mathematical ques- 
tion, the equivalence o f p  and q,  they require that the two asso- 
ciated subsumptions have been either proved or conjectured. 
Alternative definitions (characterizations) of classes are com- 
mon in mathematics because they support conjecture and, 
thewfore, research. GT demonstrates such use of alternative 
definitions. Consider, for example, the class of graphs known 
as chains, some examples of which appear in Fig. 6. GT has 
two different definitions of chain: 

erty q; 

and 

GT 

Based on the operators, CHAINl suggests that a chain may be 
a cycle, and CHAIN, suggests that a chain may be a tree. GT 
formulates and investigates both conjectures, and discovers 
that the first is incorrect and the second correct. 

The fourth mathematical question, a conjecture about dis- 
jointness, is really a conjecture that a merger will fail. Thus a 
conjecture in GT about the disjointness of p and q is expressed 
as a plan to merge p and q. If the seed sets forp and q are dis- 

a 0 A - - - - a 
FIG. 6. Some examples of chains. 

joint, the possibility of the disjointness of P and Q will be con- 
jectured in the form of a plan to attempt the merger ofp and q. 

Projects to generalize and specialize are motivated either by 
the fact that the concept is a focus or by a dearth of projects on 
the agenda. In such circumstances GT formulates a project to 
generalize or specialize a property if it has never done so. 

In its second mode, GT makes its own suggestions for 
appropriate projects and leaves the choice to the user. In its 
third mode, GT not only suggests projects for its agenda, but 
also selects and executes them. Unless some difficulty arises 
(e.g., an unsolvable system of equations during merger or an 
unsuccessful search for a common seed), there is no interaction 
with the user. Projects are ranked (based on the kind of sup- 
porting evidence and any focus specified by the user), sorted in 
the agenda, and executed in order. The third mode is surpris- 
ingly well-controlled because the kinds of conjectures made 
are dependent upon the knowledge base itself. For example, 
the priority is always to construct links between existing prop- 
erties. Only when those possibilities have been exhausted will 
GT turn to inventing new ones. This determined effort to con- 
struct a net of properties results in the early identification of 
equivalent properties, and helps to control the combinatoric 
explosion. The third mode can perform as a model of knowl- 
edge acquisition. If GT is given a pre-existing knowledge base 
of concepts and one additional concept as a focus, GT will 
generalize and (or) specialize the focus concept until it is able 
to link it into the knowledge base. Thus knowledge acquisition 
consists of the construction of intermediate concepts linked to 
both the focus concept and the knowledge base. 

6. Results and significance 
According to Michalski’s characterization of learning sys- 

tems (Michalski 1986), GT learns both by observation (of its 
input examples and definitions) and by discovery (upon con- 
struction of new examples and properties). GT expands its 
knowledge about a concept by generating examples of it and 
by determining its relation to other concepts. GT inductively 
infers conjectures from examples and definitions, and also 
proves deductively from the same definitions. GT formulates 
examples of known concepts and also defines and explores 
new concepts. 

GT transforms its representation about a concept in the 
knowledge base. Figure 7 displays the ACYCLIC frame both 
before and after one of GT’s runs. No specific tasks were 
input, only the general directive to explore the knowledge 
base. GT formulates its own conjectures and then attempts to 
construct proofs for them based on the structure of the defini- 
tions. The modifications to the representation for ACYCLIC 
constitute learning as defined in Michalski (1986). Clearly GT 
learns how ACYCLIC relates to other concepts, and constructs 
and stores additional examples of acyclic graphs. GT learns 
about graph theory by conjecturing and exploring simple rela- 
tions among graph properties. 

GT is able to conjecture theorems in graph theory. Conjec- 
ture is driven by extremal examples and definitions. Example- 
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Initial formulation After execution 

Property name: ACYCLIC 
Number-of-seeds: 1 
Seed-set: { K,  } 
Function: A, + A,A, 
Sigma: y E V ,  x,z @ V 
Origin: input 
Example-list: (K,)  
Extremal-cases: (K , )  
Delta-pairs: ((1 0)(1 1)) 

Subsumes: nil 
Cannot-be-shown-to-subsume: nil 

Subsumed-by: nil 
Cannot-be-shown-subsumed-by: nil 

Is-equivalent-to: nil 
Cannot-be-shown-equivalent-to: nil 

Merger-created-with: nil 
Merger-explored-with: nil 

Has-been-generalized: nil 
Has-been-specialized: nil 
Variables-have-been-identified: nil 
Itemtion-has-been-forced: nil 

ACYCLIC 
1 
{Kl) 
A, + A,A, 
y E v, x,z $ v 

( K , )  
((1 0)(1 1)) 

input 
(ACYCLIC-3, ACYCLIC-2, K , )  

(ACYCLIC-MERGED-WITH-CONNECTED CHAIN TREE) 
(CONNECTED .EQUIV-CONNECTED) 

(IS-A-GRAPH) 
(CONNECTED EQUIV-CONNECTED CHAIN TREE 

ACY CLIC-MERGED-WITH-CONNECTED) 

nil 
(CHAIN TREE CONNECTED IS-A-GRAPH EQUIV-CONNECTED) 

(CONNECTED) 
(CHAIN TREE) 

nil 
T 
T 
T 

Frc. 7. What GT learns about ACYCLIC. 

driven discovery is based upon prototypical graphs (seeds) that 
are extremal cases of individual properties and therefore likely 
to be rich in associations. Definition-driven discovery focuses 
upon the transformations that change one graph with a property 
into another graph with the same property. The requirement 
that a definition be complete effectively limits such trans- 
formations to minimal changes. For example, a connected 
graph may be transformed by adding a new vertex with one 
edge to an old vertex. Requiring that the new vertex be con- 
nected to more than one old vertex would create a different, 
more restricted, set of graphs. The minimality of these changes 
and the limited vocabulary of operator primitives make rela- 
tions between the transformations in the definitions more read- 
ily apparent. 

GT is able to prove theorems in graph theory that it has con- 
jectured. Proofs rely heavily on a procedure to test for sub- 
sumption and a procedure for merger to represent graphs with 
more than one property. Running on a Symbolics 3675 in Sym- 
bolics Common Lisp, GT successfully conjectures and proves, 
among other theorems, the following: 

Every tree is acyclic. 
Every tree is connected. 
The set of acyclic, connected graphs is precisely the set of 

There are no odd-regular graphs on an odd number of ver- 

GT discovers new mathematical concepts by syntactic 
changes whose semantics are well understood and accessible to 
the program. The key in GT is a more transparent and flexible 
class definition, one that generates guaranteed examples, con- 
structs efficient intersections, and creates from a broad 
descriptive vocabulary. These concepts form a rich knowledge 
base conducive to further mathematical discovery. From the 
examples and definitions of Sect. 4, the following is evident: 

trees. 

tices. 

Theorem 
The heuristics used by GT to constrain/relax any definition 

of a graph property P construct valid specializations/generali- 
zations of P. 

This theorem guarantees that the definitions GT constructs are, 
in fact, graph properties. It also justifies the hierarchical links 
GT inserts during the discovery process. 

Since GT’s knowledge base may be initialized as any set of 
graph properties, a concept may be discovered in more than 
one way. In one experiment, GT begins only with the defini- 
tion of a graph and the heuristics described here, and dis- 
covers, among other concepts, acyclic graphs, connected 
graphs, bipartite graphs, trees, and stars. GT is able to incor- 
porate all of these correctly into its hierarchical knowledge 
structure. A demonstration during which all of these dis- 
coveries take place requires approximately 3.5 minutes of 
elapsed time. In another experiment, GT begins with a small 
initial knowledge base of concept definitions, links them 
together and then generalizes the focus concept “star” until it 
is able to link it into its knowledge base. During the elapsed 
time (less than 1 minute) required to do this, GT also discovers 
“tree. ” 

When GT “invents” a new property definition, it is sub- 
jected to careful scrutiny before a concept frame is created for 
it. Many generated definitions are trivial, i.e., they may iterate 
only once or twice, or even be limited entirely to their seed set. 
Other definitions, intended as a specialization of some parent 
concept, may very quickly produce many more examples than 
were known for the parent. Still other definitions, intended as 
generalizations of some parent concept, may produce only 
graphs already known as examples of the parent. All of these 
constructs are deemed uninteresting and rejected as potential 
concepts. 

Some of GT’s discovery paths are a bit surprising. For 
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example, although TREE is a special case of CONNECTED, 
definitions for both concepts appear during a single exploration 
cycle. In another unanticipated action, when STAR is being 
generalized, GT moves backwards, first to TREE and then to a 
definition for “connected graphs with loops,” skipping over 
ACYCLIC and CONNECTED completely. Even well- 
planned inductive leaps do not always arrive where expected. 

Exhaustive search, rather than a burden, seems to be one of 
GT’s strengths. The richness of the semantic network it con- 
structs is due to its extensive exploration. In the META- 
DENDRAL tradition, GT can afford exhaustive search 
because its representation is highly controlled. The property 
definitions support reasoning without recourse to empirical 
data. GT’s design, however, does not advocate the abandon- 
ment of inductive inference from empirical data in the model- 
ling of a scientific research domain. Indeed, GT “doodles” 
graphs as a spur to inquiry. Rather, GT’s design suggests that 
abstract reasoning about a class from a correct, complete defi- 
nition is a powerful complement to inductive inference. 

What is the scientific significance of this particular domain- 
specific discovery system? First, GT integrates a variety of 
artificial intelligence techniques to provide greater power. 
Unlike its machine learning predecessors, GT combines both 
exaniples and theory to drive discovery. Unlike theorem 
provers, GT produces its own conjectures. Second, GT formu- 
lates a new and general approach to the representation of math- 
ematical information, one that is not limited to graph theory. 
GT’s approach to mathematical data enables the encoding, 
organization, and manipulation of the heterogeneous knowl- 
edge typical of mathematical texts. In particular, the recursive 
(f,S,a) representation shows how an infinite class of mathe- 
matical objects can be described as a property to support rea- 
sonirig about them as a collection. The same representation 
imposes a uniformity that enables reasoning about theorems, 
the relations among concepts, and enables the description of 
results as concepts, collections of information. Finally, GT 
sho*s how a semantic network of those concepts can be an 
effective organization of information to support proof con- 
struction. None of this approach is philosophically limited to 
graph theory; it should be extensible to other mathematical 
domains, and perhaps even other scientific domains. 

Although its example-generation technique could be 
extremely useful, GT is not intended as a practical tool for 
researchers in graph theory. Instead, GT is intended to provide 
insight into the mathematical research process itself. When its 
exhaustive search strategy eventually weakens in the face of 
more demanding tasks, GT can be enhanced to model behav- 
iors that people used to support research. Two examples of this 
potential for growth are isomorphism and counterexamples. 
The recognition of two objects, in particular, two graphs, as 
“fundamentally equivalent” is nontrivial, yet essential to con- 
trol the size of GT’s knowledge base. A better recognition 
algorithm for isomorphic graphs is under development. 
Counterexamples are extremely significant to mathematicians; 
GT is currently being modified to retain them and take advan- 
tage of the information they provide. 

7. Future work 
Lenat’s work with AM convinced him that, as the research 

area within mathematics changed (from, say, set theory to 
number theory), new discovery heuristics were required (Lenat 
1983). GT is designed to work within a single area of mathe- 
matics; no need for new heuristics is anticipated. Instead, 

plans for GT’s future development are based upon the power 
and flexibility of the p-generator representation. 

Michalski’s and Dietterich’s work (Dietterich and Michalski 
1983; Michalski 1983) on generalization rules for concept 
acquisition provide some excellent suggestions for concept dis- 
covery in GT. GT already embodies both selective and con- 
structive generalization techniques, such as the ‘‘dropping 
condition’ ’ rule (as selector relaxation) and the “closing inter- 
val” rule (as a merger heuristic). Other rules currently under 
consideration and (or) development include extending refer- 
ence, counting arguments, and internal disjunction. GT’s 
descriptive ability lies in the number and nature of the primi- 
tive operators permitted in f and of the selector descriptions 
permitted in u. As the set of such operators and descriptions is 
extended, a lattice of descriptive languages (detailed in Epstein 
(1983)) can be constructed. Such an “extended” language 
offers additional alternatives, and ordinarily has greater 
expressive power (as measured by the number of graph prop- 
erties it defines) than GT’s current representation. In turn, 
operations with an extended language are likely to require 
more computer resources. Within the discovery framework 
described here, plans exist to extend the p-generator language 
for the representation of directed graphs and, eventually, for 
labeled graphs. These extensions will also provide a testbed for 
the study of performance under representational shifts. 

The key to the most interesting specializations, those involv- 
ing additional descriptions in a, is the language in which those 
descriptions may be written. Utgoff (1986) warns that, unless 
the [+]language is extensible, GT may not be able to access 
many interesting ideas. Ways to have GT extend the 
a-language itself are currently being studied. Despite sub- 
stantial empirical support, the existence of a definition of the 
form (f,S,a) for every property p remains an open question. 

At the moment, GT has a variety of small knowledge bases 
of input concepts and search has been exhaustive within the list 
of generated conjectures. GT’s discovery is thus primarily 
theory-driven, based as it is on definitional structure. As the 
input knowledge base increases, however, and as GT becomes 
more proficient at discovering interesting concepts of its own, 
control during search will become an issue. GT now numer- 
ically rates the projects on its agenda based on supporting evi- 
dence, in a fashion similar to AM, although it does not assign 
“worths” to individual concepts. GT has a threshold for rating 
values, and only executes the projects that meet it. In anticipa- 
tion of a combinatoric explosion, work is under way to use 
additional example-based reasoning, particularly counter- 
examples, to evaluate the agenda and guide search. Thus dis- 
covery will derive additional data-driven support, while 
maintaining its theory-driven component. GT’s knowledge 
base will be expanded with more concepts gleaned from the 
benchmark texts. Mathematicians studying interesting sets of 
graph properties are invited to submit them to GT. The shell of 
GT is a domain-independent research tool for recursive prop- 
erty description. Work is underway to apply this shell to math- 
ematical domains other than graph theory. Finally, extensions 
to this shell are currently under development to model a variety 
of other research behaviors. 
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