
42

Learning and discovery: one system’s search for mathematical knowledge

SUSAN L. EPSTEIN
Hunter College of the City University of New York, 695 Park Avenue, New York, NY 10021, U.S.A.

Received June 15, 1987
Revision accepted December 3, 1987

The Graph Theorist, GT, is a system that performs mathematical research in graph theory. From the definitions in its input
knowledge base, GT constructs examples of mathematical concepts, conjectures and proves mathematical theorems about con-
cepts, and discovers new concepts. Discovery is driven both by examples and by definitional form. The discovery processes
construct a semantic net that links all of GT’s concepts together.

Each definition is an algebraic expression whose semantic interpretation is a stylized algorithm to generate a class of graphs
correctly and completely. From a knowledge base of these concept definitions, GT is able to conjecture and prove such
theorems as “The set of acyclic, connected graphs is precisely the set of trees” and “There is no odd-regular graph on an odd
number of vertices.” GT explores new concepts either to develop an area of knowledge or to link a newly acquired concept
into a preexisting knowledge base. New concepts arise from the specialization of an existing concept, the generalization of an
existing concept, and the merger of two or more existing concepts. From an initial knowledge base containing only the defini-
tion of “graph,” GT discovers such concepts as acyclic graphs, connected graphs, and bipartite graphs.

Key words: discovery, machine learning, knowledge representation, concept definition, mathematics, graph theory.

Le ThCoricien des gyphes (TG, Graph Theorist) est un systkme qui effectue des recherches mathtmatiques B l’inttrieur de la
thtorie des graphes. A partir des dtfinitions dam sa base de connaissances, le TG construit des exemples de concepts
mathematiques, fait des conjectures, prouve des thtorkmes mathtmatiques 5 propos de concepts et dtcouvre de nouveaux con-
cepts. La dtcouverte est le rtsultat d’exemples et d’une forme dtfinitionnelle. Le processus de decouverte construit un rtseau
skmantique qui relie tous les concepts du TG.

Chaque definition est une expression algCbrique dont I’interprttation stmantique est un algorithme stylist pour produire cor-
rectement et entitrement une classe de graphes. A partir d’une base de connaissances de ces dtfinitions de concepts, le TG est
en mesure de faire des conjectures et de prouve des thtorkmes comme << L’ensemble de graphes acycliques, continus est
prtcistment I’ensemble d’arbres >, et << I1 n’y a pas de graphe impair normal sur un nombre impair de sommets >>. Le TG explore
de nouveaux concepts soit pour mettre au point un domaine de connaissances ou pour relier un concept nouvellement acquis
dans une base de connaissances qui existait auparavant. Les nouveaux concepts dtcoulent.de la sptcialisation et de la gtntrali-
sation d’un concept existant, ainsi que de la fusion de deux concepts existants ou plus. A partir d’une base de connaissances
initiale contenant seulement la definition de graphe, le TG dtcouvre des concepts c o m e les graphes acycliques, les graphes
continus et les graphes bipartites.

Mots clPs : dtcouverte, apprentissage automatique, reprtsentation des connaissances, definition de concept, mathtmatiques,
thtorie des graphes.

Cornput. Intell. 4, 42-53 (1988)

The Graph Theorist, GT, is a knowledge-intensive, domain-
specific learning system (Michalski 1986) that uses algorith-
mic class descriptions to discover new mathematical concepts
and relations among them. GT is based upon a set of powerful
representation languages for object classes discussed and
defined formally in Epstein (1983). A variety of well-defined
openitions can be coerced from these languages. In particular
they can be used to

generate correct examples of any class,
test whether or not an object belongs in a particular class,
reason about relations among classes.

The representation of a class in any of these languages is an
algebraic definition. Each definition has a semantic interpreta-
tion as a stylized algorithm that defines the class by generating
it coiTectly and completely. GT incorporates such definitions
as slots in its frame representation for a graph property. The
entire frame represents a concept.

G1‘ operates either independently or under interactive
guidance. It generates correct examples of any of its concepts,
constructs new concepts, and conjectures and proves relations
among concepts.

The first section of this paper places GT in the context of
previous work in machine learning and discovery. The second
section introduces a set of knowledge representation lan-
Pnnted 1st Canada / lmpnme au Canada

[Traduit par la revue]

guages, and the transition from the languages to algorithms
and then to the concepts for GT’s knowledge base. The next
sections describe the discovery of relations between concepts
in GT and the ways GT constructs new concepts. Subsequent
sections summarize GT’s discovery modes, and its results and
significance. The final section presents some open questions
and plans for future work.

1. Context and background
1.1. The representation of objects and classes

Given a set of objects in a domain, the task of inductively
inferring their natural classes and the relations among those
classes may be categorized as learning by discovery (Carbonell
et al. 1983). When the objects are many and highly detailed,
search over the domain usually requires heuristic guidance.

The most common heuristic is to select certain attributes of
the objects as relevant to the search and then to summarize
each object by describing certain .of its attribute values in a
feature vector. If an object exists in the real world, such a
description must be a generalization of it, since the description
is certain to omit some presumably irrelevant attributes, such
as surface temperature, molecular structure, or country of
origin. Even if an object does not have a counterpart in the
real world, a feature vector representation may impose a
loss of information. Consider, for example, a graph G on

EPSTEIN 43

25 vertices with 237 edges. G is a theoretical object consisting
by definition of only the list of its vertices and the list of
its edges. A feature vector representation of G, such as
(25,237,T,F,. . .), might detail the number of G’s vertices,
the number of its edges, whether or not it is connected,
whether or not it is planar, and so on. No matter how long the
feature vector, if G’s only defining characteristics (exactly
what are the vertices and edges) are omitted, in a system using
the feature vector representation, G becomes its attribute
values. If a system represents G as (25,237,T,F,. . .) and
subsequently needs to calculate the value of some graph
property not among the listed features, the computation,
although well defined on G, may be impossible from
(25,237,T,F, . . .).

The loss of detail incurred by a feature vector representation
is expected to be justified by an ability to support the efficient
computation of simple descriptions while maximizing inter-
class differences (Michalski and Stepp 1983). Once such rules
for classes have been inferred, however, the next task may be
to infer the relations among the classes. There is no guarantee
that the features that were relevant to class identification will
be equally useful in reasoning about the classes. For example,
the food chain domain of Nordhausen (1986) contains facts
about a variety of birds; within it, reasoning about hierarchical
relations requires the definition of new attributes, such as the
size of what a bird eats, to infer a classification tree. There are,
of course, underlying structural similarities between hawks
and owls that would also distinguish them from songbirds, but
those structural details were lost when the classes, hawks and
owls, were represented by their features. Thus an approxima-
tion must be discovered in place of the discarded details about
structural similarities.

Constraining the solution space to the vocabulary of the orig-
inal attributes has been repeatedly identified as a severe limita-
tion (for example, Stepp and Michalski 1986), and there has
been much recent interest in expanding the expressive power
of feature-based descriptions. The BACON programs (Langley
et al. 1983, 1986) postulate and calculate new numerical attri-
butes from the original ones. OPUS (Nordhausen 1986) postu-
lates and calculates new attributes as relational combinations
of the original ones. Other expansions are formed in STAHL
and GLAUBER (Langley et al. 1986), in Lee and Ray (1986),
and in Laird (1986).

Even when the representation of a concept is not explicitly a
feature vector, inadequacies in the description language pre-
sent research challenges. STABB (Utgoff 1986) creates dis-
junctions of existing attributes to expand LEX’s solution
space. CLUSTERB (Stepp and Michalski 1986) uses either
numerical combinations or logical operators to create new
attributes. PI (Thagard and Holyoak 1985) combines frames
containing production rules. Other efforts (Emde et al. 1983)
use mathematical properties, such as transitivity, to combine
relational attributes.

GT takes an alternative approach to the detection of relations
among object classes. It presupposes a concise class descrip-
tion that, unlike feature vectors, has no loss of detail and yet
expedites search. The commonality among objects in a class is
based not on a set of attributes, but on inherent structural simi-
larities in the objects’ construction. The class description is
really a nondeterministic generation algorithm that produces
the object class. The structural uniformity imposed upon the
algorithms themselves then supports discovery of relations
between classes. Of course, not every domain encourages such

class descriptions or expects a rich set of relations among the
resultant classes.

1.2 . Mathematics as a domain for discovery
Machine learning uses both data and theories to drive its

models of scientific discovery. Much important work in
machine learning (for example, Laird (1986), Langley et al.
(1983, 1986), Lee and Ray (1986), Michalski and Stepp
(1981, 1983), Shapiro (1981), and Stepp and Michalski
(1986)) constructs concepts to explain empirical data, data
either input or encountered in the course of task execution.
Such data-driven discovery is designed to infer explanations
for factual input and is based upon observation and inductive
inference, in domains where partial information and real-world
noise are the norm.

The theoretical sciences concern themselves with highly
detailed objects, objects already bound into classes by strong
structural similarities. Mathematics, in particular, has many
classes of objects already clearly delineated by definitions. In
modelling such domains, the origin of these classes (what
Michalski (1986) calls constructive induction) and the relations
among them should be the focus of attention. In theory-driven
discovery, search heuristics postulate statements and then run
experiments to validate those statements. Mathematics is a
scientific domain with noise-free data and clear criteria (e.g.,
proofs and counterexamples) to validate and invalidate
theories. For centuries, the clarity and certainty of the inherent
relations among its classes have lured mathematicians with
prospects of discovery.

One outstanding example of computer discovery in mathe-
matics was Lenat’s AM (Lenat 1976). AM began with,a set of
115 frames, each representing a mathematical concept. A
frame consisted of fixed slots containing information on
examples, hierarchical pointers, conjectures about such
pointers, and heuristics attached to the concept. The definitive
slot in an AM concept, however, was the predicate in the defi-
nition, a LISP testing algorithm that ruled on whether or not
an object was a member of the class. Some of AM’S initial
(i.e., input) concepts were for activities defined on those
classes, such as set-insert or list-intersect. Examples for a class
were generated by applying seemingly appropriate operators.
For example, if an operatorfwere defined on the classes A and
B withf: A - B , and if C were a subset of B , AM might have
selected some examples a , , a2, . . . , a, of A , constructed
(f (a,), f (a,), . . . , f (a,,), all of which would have belonged to
B , and then examined them to see if they were indeed
examples of C, or merely in B - C. This uncertainty in the
generation of examples, and the need to check them with the
testing algorithm, occurred because an AM definition for a
class of mathematical objects could only confirm membership
in a class, not produce elements of it.

AM explored its fundamental frames under the guidance of
243 heuristic rules. It generated (and then checked) examples
of the concepts, observed simple statistical regularities in their
classification, conjectured about relations among them, and
defined new frames (concepts) for subsequent exploration.
AM developed a new concept by small modifications to the
LISP function that served as the definition of an existing con-
cept. Thus the LISP code for TEST, to check whether or not an
example was a member of some class D , would be modified to
create a new algorithm TEST’ for membership in a (presum-
ably) different class D‘. The definition of a new AM concept
did not differ greatly from its parent concept; only small

4 4 COMPUT. INTELL. VOL. 4 , 1988

changes could be guaranteed to produce executable code, and
AM was, after all, not intended to be an expert in automated
programming.

Dwovery in AM was inductive inference, driven not only
by empirical evidence, but also by the heuristic rules that origi-
nated example generation and evaluated the results. This
discovery was driven both by data (the generated examples and
the initial concepts) and by theory (the heuristics for mathe-
matical research behavior). Beginning only with set-theoretic
concepts, such as bag and union, AM included among its dis-
coveries natural numbers, primes, and the fundamental
theorem of arithmetic. Lenat believed that AM did not go on to
explore other areas of mathematics because its heuristics (i.e.,
theory) were not as relevant to other subject matter. (This
motivated his subsequent work on EURISKO, a system that
discovers new heuristics as well.) Ostensibly, AM’S attention
during search was focused by what tasks AM had recently
completed and by each concept’s worth, a numerical measure
of “interestingness. ’ ’ When Lenat experimented with varia-
tions in the originally-input worth values for the first 115 con-
cepts, AM did not pursue radically different goals. Initially
this was attributed to the strength of the heuristics. Only later
(Lenat 1984; Ritchie and Hanna 1984) was it generally recog-
nized that the path of discoveIy was pronouncedly affected by
the programming language itself. AM developed new testing
algorithms by modifications to other algorithms, i.e., to LISP
code. Because the syntax of the class definitions carried a
semantic bias toward certain structures (such as ordered sets),
AM was fated to explore and discover in a somewhat predeter-
mined fashion.

Despite its attraction to LISP-like structures, AM was a suc-
cessful program. Indeed, AM may be said to model some
intuition on the part of the research mathematician as to a rep-
resentation language (LISP) well suited for exploration in a
particular direction (number theory). AM certainly suggests
that if knowledge about a domain can be semantically encoded
into the class definition, then it can be harnessed to drive
mathematical discovery.

GT encodes the semantics of graph theory into class defini-
tions in a more transparent and flexible fashion, one that sup-
ports both inductive and deductive reasoning. These semantics
subsequently motivate both conjecture and proof, generate
guaranteed examples of a class, and permit the introduction of
new descriptions into class definitions. (Recall that AM was
never able to prove its conjectures, to generate new examples
certain to be in a specified class, or to introduce radically new
descriptions into class definitions.) GT’s discovery process is
highly constrained exhaustive search. Although the space of all
possible classes of graphs is large, the representation language
is able to control and focus exploration through it in a variety
of ways. When it begins with an extremely general definition
and explores specialized versions of it fairly exhaustively, GT
is similar to META-DENDRAL (Buchanan and Mitchell
1978). Both programs survive a generate-and-test strategy
because their representations encourage what Michalski (1983)
calls conceptual data analysis.

2. Concept description in GT
GT derives much of its power from a set of representation

languages whose theoretical formulation is detailed rigorously
in Epstein (1983) and summarized in Epstein (1987). The
treatment of the representation here is informal and describes
only selected, implemented segments of the theory. For

example, GT currently supports only undirected, unlabeled
graphs, but coding provisions have been made for directed and
labeled graphs, and the theoretical framework supports them.

Figure I portrays the development of a GT concept from the
representation languages. An expression in one of these lan-
guages is an algebraic definition for a class of graphs. Any
such expression has a semantic interpretation as a stylized
algorithm that defines the class by generating it correctly and
completely. One expression fills the definition slot in each GT
concept frame. This section provides some fundamental graph
terminology and describes the algebraic definitions, their uni-
form semantic interpretation, and the concept frames.

Let V be an arbitrary, finite set of elements (vertices),
and let E be any subset (edges) of the Cartesian product
V x V. Then the ordered pair G = (V,E) is said
to be afinite graph or, more simply, a graph. If IVl = n and
E = ((x ,y) 1 x,y E V, x # y} then G = (V,E) is said to be
complete and is denoted here as K,,. If x E V but there is no
edge (x,y) or (y ,x) in E, x is said to be isolated.

Let U be the universe of all finite graphs. Then any subset
P of U is said to designate a graph property p and, for G in P ,
G is said to have property p . (The distinction between the
property p and the class P is syntactic, not semantic. The
context will dictate which is used.) Any algorithmic definition
of the graph property p must specify the set P precisely.
In particular, if an algorithm claims to generate P , that algo-
rithm must be both correct (i.e., every generated graph must
be in P) and complete (i.e., for each graph in P there must be a
finite sequence of steps executed by the algorithm with final
output G).

In GT, a concept is a frame representing a graph property
and knowledge associated with it. (This representation was
inspired by Michener’s work (1978).) A slightly edited
example of an initial GT frame for the concept ACYCLIC
appears in Fig. 2. The slots of the frame include a list of
examples, knowledge about hierarchical relations with other
concepts, historical information on the ways the concept has
been manipulated, and a description of the origin of the prop-
erty. (Entries of “nil” for relations are statements of partial
knowledge, to be read as “none discovered yet.”) The frame
also includes a definition of the graph property in a specific,
three-part formulation.

In GT, a definition of a graph property is an ordered triple
(f,S,u). S is the seed set, a set of one or more minimal graphs
(seeds), each of which has the property in question. (Typically
the seed set is finite and GT lists its elements.) The seed set in
the example of Fig. 2 for ACYCLIC contains only a single
graph, K,. The operatorfin the definition describes the way(s)
any graph with the given property may be transformed to con-
struct another graph with the same property. An operator in GT
is built from the set of primitives listed in Table 1. There is a
primitive to add the vertex x (Ax), to add the edge between .r
and y (Aq), to delete the vertex x (DJ, and to delete the edge
between x and y (0,). These primitives may be concatenated
into terms (such as A,& to denote sequential operation from
right to left. Terms may be summed (as in A , + A,.&) to repre-
sent alternative actions. Thus the operator A, + A,$, for
ACYCLIC is read “either add a vertex x or else add a vertex z
and then an edge from y to 2. ’ ’ The selector u in the definition
describes the restrictions for binding the variables appearing in
the operator f to the vertices and edges in a graph. Selector
descriptions for vertices and edges appear in Table 2 . The cur-
rent valid selector descriptions for a vertex describe whether or

Representation
Languages

L

Algebraic r- Definit ions

Stylized Concept
Frames Algorithms

I

Property name: ACYCLIC
Number-of-seeds: 1
Seed-set: { K , }
Function: A, + A,,A;
Sigma: y E V, x,z @ V
Origin: input
Example-list: (K ,)
Extremal-cases: (K ,)
Delta-pairs: ((1 0)(1 1))

Subsumes: nil
Cannot-be-shown-to-subsume: nil

Subsumed-by: nil
Cannot-be-shown-subsumed-by: nil

Is-equivalent-to: nil
Cannot-be-shown-equivalent-to: nil

Merger-created-with: nil
Merger-explored-with: nil

Has-been-generalized: nil
Has-been-specialized: nil
Variables-have-been-identified: nil
Iteration-has-been-forced: nil

Algorithmic Mathematical
Definitions Knowledge Base

FIG. 1. The formulation of a GT concept.

FIG. 2. Initial representation of ACYCLIC.

not it is in the graph, its distinctness from another specific
vertex symbol, its degree (number of neighbors), and whether
or not its degree is the maximum among the degrees of all the
vertices in the graph. The current valid edge selector descrip-
tions in GT are of two kinds: whether or not the edge is in
the graph, and whether its endpoints are distinct. Selector
descriptions may be empty, i.e., need not constrain binding at
all. In the example of Fig. 2, the selector for ACYCLIC is
read “where y is in the vertex set, and x and z are not in the
vertex set.”

The semantic interpretation of such a three-part definition
for a graph property p is a single, uniform algorithm called a
p-generator. A f-generator capitalizes on the underlying com-
monality of its class, the view of the set P as one or more
prototypes (seeds) that can be methodically transformed (under
f and u) to produce exactly those graphs in the class. The
f-generator may be thought of as an automaton that is started
by the input of any graph in its seed set S. ACYCLIC, for
zxample, would permit only K , . The P-generator then iterates
an undetermined number of times. On each iteration the selec-
tor u chooses vertices and (or) edges with respect to the current
graph G, and then the operator modifies G, using those choices

35

to produce a new G. ACYCLIC,.on each iteration, either adds
a new vertex x to the graph, or adds a new vertex z and an edge
from an old vertex y to z.

Thus the algorithm for generating the class P of graphs is

Accept G in S
Output G
Until u fails do

Output G
G -fu(G)

Halt

Under all possible initial choices from S and all possible itera-
tions offsubject to u, the output of this algorithm is precisely
P , that is, if the superscript i denotes “iterate i times,”

P = U(fu)’(S)

The graphs in Fig. 3 illustrate several possible iterations of the
definition of ACYCLIC; each pictured graph is output by the
algorithm and is acyclic. The definition generates the infinite
class of acyclic graphs; it will never halt because bindings for
the variables in u can be found on each iteration.

The content of the following three general texts is taken as
graph theory: Ore (1962), a classical development in elegant
mathematical fashion; Harary (1972), a broad overview of
topics presented as definitions and theorems; and Bondy and
Murty (1976), an algorithmic approach. There is some evi-
dence that p-generators may exist for every P in I/, or at leaat
for every interesting P in graph theory. At this writing, more
than 40 properties of varying difficulty have been selected
from the three benchmark texts and described correctly and
completely as p-generators (Epstein 1983). They appear
in Table 3. Three graph properties (self-complementary ,
uniquely k-colorable, and k-edge-colorable) have been
expressed and proved correct but lack completeness proofs,
although no counterexamples are known. Current research
suggests that a more extensive knowledge of graph theory
would resolve such difficulties.

The use of p-generators as property definitions entails
several kinds of nondeterminism. Any graph in the seed set IS
an acceptable input; any binding satisfying u is valid; any term
in f suffices for an iteration. In addition, many different
sequences of iterations will construct isomorphic graphs, and
more than one definition may be written for certain properties.
(GT stores equivalent definitions as separate properties with
connecting links.) This ostensible indefiniteness and redun-
dancy is tolerated because the property definitions preserve
detail in a concise and flexible format.

46 COMPUT. INTELL. VOL. 4 , 1988

TABLE 1 . Primitive GT operators

Symbol Application Interpretation

Ax
A,
Dx
Dly

Operator
Operator
Operator
Operator

Add vertex x to the graph: V - V U { x }
Add edge xy to the graph: E - E U (xy}
Delete vertex x from the graph: V - V - (x }
Delete edge xy from the graph: E - E - (xy}

TABLE 2. GT selector descriptions

Symbol --
X E V

X f Y
d(x) == n
d(x) == max

x $ v

x y E E
x y 4 E --

Application Interpretation

x is a vertex in the graph
x is a vertex not in the graph
x and y are distinct vertices
x’s degree is n, a nonnegative integer
x’s degree is the largest in the gmph
xy is an edge in the graph
xy is an edge not in the graph

Selector
Selector
Selector
Selector
Selector
Selector
Selector

3. Relations between concepts in GT
As Michalski has observed (Michalski 1983), inductive

inference from examples does not preserve truth but only fal-
sity. Although research mathematicians devote much time to
example generation, and infer conjectures about relations
among mathematical ideas based on these examples, inductive
inference is only a tool. Rarely is a conjecture considered a
result worthy of publication, and then only when extensive
attempts at proof and disproof have failed. Mathematicians
prefer to explore in the context of certainty; for them a conjec-
ture should be proved or disproved relatively soon after it
arises. GT, therefore, constructs both conjectures and proofs.

Graph theory, as it appears in the three benchmark texts
cited above, is primarily about graph properties and the rela-
tions among them. Conjectures and theorems in graph theory
frequently take one of the following forms:

Type I: If a graph has property p , then it has property q.
Type 2: A graph has property p if and only if it has prop-

Type 3: If a graph has property p and property q, then it

0 Type 4: It is not possible for a graph to have both property

GT has two fundamental. proof procedures for manipulating
graph properties to prove such theorems. The first procedure
tests for subsumption. Property p for class P subsumes prop-
erty y for class Q if and only if P 2 Q, i.e., every graph with
property q also has property p , so that q is a special case of p .
Theorem type 1 is a statement that q subsumes p , Theorem
type 2 is a statement that p and q are equivalent, i.e., that p
subsumes q and q subsumes p . The second procedure con-
structs mergers. The merger of a property p for class P with a
property q for class Q results in a new property representing
P n Q, the set of graphs with both properties. Theorem type 3
is a statement that property r subsumes the merger of p and q.
Theorem type 4 is a statement that the merger of p and q is
empty, i.e., that no graph can have both properties simultane-
ously The remainder of this section describes how subsump-
tion IS tested and how mergers are constructed using the
(f ,~ ,a) representation.

erty 4.

has property r .

p and property q.

3.1. Proof of subsumption
At this writing, GT has only one method of proving sub-

sumption. Given property p1 = (fi,Sl,ul), property p 2 =
(f2,S2,u2), and a conjecture that pI subsumes p 2 , GT attempts
to show that

of2 is subsumed by fi, that is, fi is a special case of f l .

(Extended definitions for operator subsumption appear in
Epstein (1983).)

Every graph in S2 has property pl.
u2 is subsumed by ul, that is, u2 is more restrictive than ul.

(Extended definitions for selector subsumption appear in
Epstein (1983).)
Because there are usually only a few known seeds, GT checks
the list of examples forp l against S2. If any graph G in S2 is not
known to have p l , GT generates a limited number of new
examples o f p , and searches for G there. Because seed grdphs
are extremal cases, and because a natural metric exists on most
GT definitions, the search is readily controlled and usually
successful. (Alternative techniques exist for infinite seed sets
and certain other situations.) Matching for the subsumption
testing of the operators and selectors is done by a recursive
backtracking algorithm that generates a restricted set of candi-
dates.

The following example of subsumption testing illustrates the
subsumption procedure. For

ACYCLIC = (A , + A,,J,, {Kl}, [y 6 V , x,z E V1)

TREE = (ApqAq, {KI}, [P E v, 4 $- VI)

and

and the conjecture “ACYCLIC subsumes TREE,” GT must
show that KI, the seed for TREE, is an acyclic graph and also
that, under some matching, the ACYCLIC operator “covers”
the TREE operator while satisfying the TREE selection con-
straints. First, KI is on the list of acyclic graphs because it is
the seed for ACYCLIC. Second, the matcher notes that every
term in the TREE operator Apdfq (there is only one in this
example) is covered by some term, namely A&,, in the
ACYCLIC operator. Finally, the matcher observes that under
the matching of p with y and q with z , the selector constraints
(that p is in V and q is not) are enforced. Thus GT proves that
ACYCLIC subsumes TREE or, more formally, “Every tree is
an acyclic graph.”

3.2. Proofs involving mergers
GT currently has four algorithms for merger. Given property

pI = (fi,Sl,aI) and property p2 = (ft,S2,u2), GT attempts to
construct the mergerp = (f,S,u) of p , and p 2 . The first three
algorithms are fairly straithforward:

If p 1 subsumes p2, the merger is simply p2. For example,
the merger of ACYCLIC and TREE is simply TREE.

When fi subsumes A and every seed in S2 has property pi,
the merger is (fi,&,u), where u is u1 and u2, but eliminates

TABLE 3. Graph properties representable as P-generators

graph
edgeless graph
connected graph
biconnected graph
acyclic graph
k-connected graph
tree
loopfree graph
chain
cycle
star
wheel
complete graph
Eulerian graph
graph with n vertices
graph with rn edges
pinwheel
nonplanar graph
k-factorable
even-regular graph
odd-regular graph

graph on even number of vertices
graph on odd number of vertices
graph with even number of edges
graph with odd number of edges
graph of minimum degree k
graph with k components
graph with counted vertices
graph with counted edges
graph with calculated maximum degree
bipartite graph
complete bipartite graph
k-vertex-covered graph
k-independent graph
k-colored graph
k-chromatic graph
graph with vertex covering number k
graph with circumference k
graph with edge covering number k
graph with a k-factor
Hamiltonian graph
planar graph

any references to variables not in f2. For example, the
merger of

STAR = (Ax#,, { K I , ~ } , [x E v, Y 4 v, 4 x 1 = maxl)

and ACYCLIC is simply STAR.

the merger is (f2,S,a2), where
When f l subsumesf2, c1 subsumes a,, and S is nonempty,

S = {G I G E S2 fl PI} U {G 1 G E SI n PZ}

For example, the merger of

PI = (A , + A y A {Kl, K41, [x $ v, Y E V1)

~2 = (ArsAs , { K I T ~ 3 } 7 [r E v, s 6 V])

p = (A,,& {Kl> K3), [u E v, v 4 VI)

with

where clearly K3 E PI but K4 @ P , is

based on matching y with r as u and z with s as v.

The fourth, and most interesting, of GT’s merger algorithms
deals with the cases that do not fit these categories. Let n be the
number of vertices in a graph and m be the number of edges.
Each iteration of the p-generator effects a change (An) in the
number of vertices and a change (Am) in the number of edges.
GT calculates the An and Am values for each term in the prop-
erties to be merged. A delta pair (An, Am) is the ordered pair
of the changes for a term in a property; it captures some
aspects of the minimal effect of one iteration of ap-generator.
For example, the only delta pair for

TREE = (ApqAq, { K i } , [P E v7 4 6 vl)
is (l , l) , meaning that on each iteration one vertex and one
edge are added to the graph. For

ODD-VERTICES

= (A A + A,,, { K l } , [r,s $ v, t,u E v, r + SI)
the delta pairs are (2,O) and (0,l). For a merger, GT seeks a
minimal positive integer solution to that system of equations

EPSl X I N 47

FIG. 3. GT iterations of ACYCLIC.

which asserts that some number of repetitions of the delta pair
for each term in one property is equivalent to some repetitions
of the delta pairs in the second property. In the example, let 01

represent the number of applications of the single term in
TREE, let p represent the number of applications of the first
term in ODD-VERTICES, and let p represent the number
of applications of the second. GT seeks the positive minimal
integer solutions to:

la = 20 + Op (An)

la = 00 + lp (Am)

The answer, CY = p = 2 and p = 1, indicates that in the merger
both An and Am will be 2. Each of the properties is special-
ized by the repetition of appropriate terms to meet these
requirements:

TREE’ = (AxyAyA,,A,, {KI}, [x , ~ E v, Y,V 4 v1)
ODD-VERTICES‘ = (ArA&gl,,, { K , } ,

[r,s 4 v, t , z , p , q E v, r f sl)

When GT attempts a merger of TREE’ and ODD-VERTICES’
it discovers that the first is really a special case of the second,
under the matching of r and z with y, s and q with v , t with x,
and p with u . (An extremely limited form of commutativity

, is used here to shift operators of the form A, to the right when
the vertex does not appear elsewhere in the term.) Thus the
merger is

ODD-TREE = (A.ry4yAuvA,, {KI},

[x,u E v, y,v 6 v, Y # 4)
Upon inspection, this property is clearly correct and complete,
with An = Am = 2.

GT has discovered, among other merger properties, TREE
as ACYCLIC mergered with CONNECTED, and COM-
PLETE-BIPARTITE as COMPLETE merged with BIPAR-
TITE.

Some of the most interesting of GT’s proofs are merger
failures. Consider, for example, GT’s discovery that a graph
that is odd-regular (every vertex of degree d , and d is odd) can-
not have an odd number of vertices. GT looks first for a com-
mon seed. Since none is evident, GT generates some examples
to expand its list of graphs with an odd number of vertices,
hoping to find one which it recognizes as odd-regular. When
this effort fails, GT considers the possibility that there is no
common seed, and examines the changes to m and n wrought
by the operators. GT recognizes that ODD-NUM-
BER-OF-VERTICES begins with one vertex and adds two
vertices at a time, so that n is always odd. GT recognizes that
ODD-REGULAR begins with an even number of vertices (the
seed is K2) and adds an even number of vertices at a time, so
that n is always even. This disparity is the reason GT gives in
its proof there can never be a seed for the merger, and thus the
property has no example, i.e., is impossible.

48 COMPUT. INTELL. VOL. 4. 1988

4. Construction of new concepts in GT
GT definitions transparently display both the changes they

force upon objects (in the operator f) and the preconditions
they require (in the selector a). This separation encourages the
development of completely and correctly defined new concepts
whose relations to their parent concepts do not require proof.
GT currently has three methods for constructing new concepts
from known ones: specialization, generalization, and merger.

4.1. New concepts discovered b y specialization
When property PI subsumes property p 2 , every graph with

property p2 also has property p1. Thus p2 may be viewed as a
specialization ofpl . To specialize from a definition of the form
(f,S,u), GT performs one of the following actions:

constrain the seed set,
constrain the operator,
constrain the selector.

When GT discovers property p2 as a specialization of property
pl , the facts that P2 is a subset of PI , and PI a superset of P2,
are recorded in GT’s knowledge base. The specialization
techniques described here are those currently implemented;
others are under development.

GT constrains a seed set by using a proper subset of it. Con-
sider once again the property

1’1 = (4 + A y z 4 { K , , K4), Ex 4 V, y E VI)
The definition pI begins with a complete graph, either K , or
K4. On any iteration, p either adds an isolated vertex x to the
graph or adds a vertex z and an edge yz from a vertex y in the
graph to z . One specialization of p1 is

1’3 = (A , + AyzA;, {K4}, Ix $ V , Y E VI)
created by eliminating KI from the seed set of P I . Every graph
generated by p3 begins with a seed from pI (namely, K4),
iterates according to the definition of p l , and, therefore, has
propt:rty p I . There are, however, graphs (for example, K2 and
K3) that are in PI but not in P3. Thusp3 is a proper subset ofpl .

An operator may be constrained in two ways. First, a term
may be eliminated from the operator (with irrelevant con-
straints removed from the selector). For example,

174 = (AYY;AZ, {KI? & I 9 [Y E VI>

constructs only the connected p1 graphs. One may prove p4 a
specialization ofpl by the argument used forp, above. Second
and less obviously, recall that a p-generator assumes iteration.
Thus any forced repetition of terms from the operator forms a
special case of the operator. (The selector requires readily
computable additions.) Consider

1’5 = (Ad, +AtAyzAz, {KI, K4}, [x,w,t @ v, Y E V])
Property p 5 adds either a pair of isolated vertices or an edge
and two vertices (at least one of which is new) on each itera-
tion. Property p5 begins with a seed from p l , and each of its
terms is equivalent to a finite number of iterations ofp l ; there-
fore, p 5 is a specialization of p,.

GT constrains the selector of a graph property by making the
binding restrictions more detailed, either by the addition of a
constraint or the identification of variables. As an example of
the first, consider

1’6 = + {KI, K4}7 [x,z V, y E V1)
Using the argument employed for p 3 , p6 is seen to be a spe-

cialization of p1; P6 is that subset of P, that is acyclic every-
where except possibly in a single K4 subgraph. Additional
constraints must always be consistent with the definition of a
graph, and never obviously make binding impossible. (For
example, x E V would not be added when the selector already
specifies x $! V .) As an example of the second selector special-
ization, identification of variables, consider

P7 = (4 + AyyA,, {Kl? K4)? [x $ v, y E VI)
Here GT has selected two variables in pl, y and z, whose
u-descriptions do not contradict each other, and has made them
identical.

Figure 4 shows how GT applies specialization to discover
new concepts in graph theory. Initially, the knowledge base
consists only of line 1, the p-generator for all finite graphs.
The more interesting properties have been selected for the
figure from the trace, and some have been renamed for the
figure. First, the general definition of a graph is specialized by
forced repetition to produce PROPERTY4 and PROP-
ERTY-6. The identification of variables in PROPERTY4 pro-
duces PROPERTY-14. Constraining u in PROPERTY-14
produces TREE and CONNECTED. On another exploration
branch, the identification of variables in PROPERTY-6 pro-
duces PROPERTY-30. Constraining u in PROPERTY-30 pro-
duces ACYCLIC.

A loop is an edge from a vertex to itself. In another dis-
covery sequence, GT constructs

BIPARTITE = (A, + A,Ay + A,,, { Kl} ,

[X,Y $ v, w,z E V , ww E E, zz $! El)
For BIPARTITE, GT has partitioned the vertices of the graph
into two sets, one with loops and one without; edges are drawn
only between one vertex with a loop and one without.

4.2. New concepts discovered b y generalization
A property p2 is said to be a generalization of a property pI if

and only if PI is a subset of P2, i.e., every graph with property
pI also has propertyp2. Because “p2 is a generalization o fp l”
is equivalent to “PI is a specialization ofp,,” the construction
of generalizations is fairly obvious from the preceding discus-
sion. To generalize a concept, GT may

expand the seed set,
expand the operator,
relax the selector.

To expand a seed set, GT adds another graph or set of graphs
to it. To expand an operator, GT adds new terms or splits exist-
ing ones (the inverse of forced iteration). To relax the selector,
GT removes details from the binding restrictions in u. Each of
the examples of specialization in Sect. 4.1 may be read, in
reverse, as an example of generalization. When GT discovers a
new concept p2 as a generalization of a concept pl , the facts
that P2 is a superset of P,, and PI a subset of P2, are recorded
in the knowledge base.

Why would GT need to know how to generalize at all? GT
models a variety of research behaviors, one of which is the
appropriate insertion of new information into a pre-existing
knowledge base. A new property is generalized until it can be
linked into GT’s relational hierarchy. For example, when
given

STAR = (A.TAy, {KI ,~} , [x E V, Y 4 v, 4x1 = maxl)

the concept is generalized until it is identified with one already

EPSTEIN 49

Property

(2) PROPERTY-4: (A&:, { K , } , [x,y E V])
(1) IS-A-GRAPH: (A q + A : , { K l } , [X,Y E V])

(3) PROPERTY-6: PqA, + A,, {Kl) , [X J E V])
(4) PROPERTY-14: (Ax,A,, { K i } , [X E V])
(5) TREE: (A,:A,, {Ki}, [x E V, z 4 V1)
(6) CONNECTED: (A,A,, { K i } , [x E V , z V])

(8) ACYCLIC: (AxLAL + A , , { K i } , [x E V, z 4 VI)
(7) PROPERTY-30: (A,A, + A,, { K l } , [X E V])

Origin
Given
Forced repetition in (1)
Forced repetition in (1)
Identify variables in (2)
Restrict binding in (4)
Restrict binding in (4)
Identify variables in (3)
Restrict binding in (7)

__

FIG. 4. GT discovers new concepts: a trace.

in the knowledge base. Directed to relax STAR’S binding con-
straints, GT produces three new property definitions, one of
which differs from TREE only in its seed. When directed to
relax the constraints once again, GT produces two definitions,
one of which differs from line 4 of Fig. 4. only in its seed. GT
eventually recognizes stars as a special case of connected
graphs, discovering trees along the way. A second motivation
for concept generalization is the conjecture and proof of rela-
tions among properties. When a property is highly detailed, the
entailed matching can be expensive. Reasoning about a more
general case, which typically has a simpler form, may be much
more efficient. For example, if A is a special case of B and B is
disjoint from C, A will also be disjoint from C. Often GT’s dis-
covery and proof that B is disjoint from C is faster.

4.3. New concepts discovered by merger
As noted in Sect. 3.2, GT has several techniques to construct

the merger of two properties. The merger of property p1 with
property p2 represents the intersection of P , with P , and is
readily computable in most instances. GT has discovered trees,
for example, by constructing the merger of ACYCLIC and
CONNECTED.

5 . Discovery modes and search
Up to this point, GT has been described as a system that rep-

resents graph theory concepts as frames and has the ability to
generate examples, conjecture and prove theorems, and con-
struct new concepts. This section details the spectrum of GT’s
operational modes, from those where GT takes the least initia-
tive to those where GT appears totally self-directed.

In the first of its operational modes, GT simply performs
under interactive guidance: the user specifies a database of ini-
tial concepts and example graphs, and then directs GT to a spe-
cific task, called a project. Possible projects are

generate some examples of property p ,
test to see if property pI subsumes property p2,
test to see if property pI is equivalent to property p2,
construct the merger of property p 1 with property p,,
generalize property p ,
specialize property p .

Each project is performed according to the algorithms
described above. The nondeterminism discussed in Sect. 2
may produce different traces or even different outcomes for
different executions of the same project (e.g., different
examples may be generated), but the theorem proving algo-
rithms always produce consistent results.

In its first mode, GT follows external directives to formulate
and execute projects, ones presumably based on the user’s
expectation that such investigations will result in additional

Property P Property Q --
Universe U

FIG. 5. Potential set-theoretic relations between two classes

mathematical knowledge. In its second mode, GT formulates
its own projects and places them on its agenda. In this mode
the user specifies the kind of project GT is to suggest: example
generation, subsumption, equivalence, merger, generalization,
or specialization. Clearly the set of GT-originated project types
is identical to those posable by the user in the first mode. The
user may also indicate a focus for these formulated projects,
i.e., a property that is considered particularly interesting. If a
focus is designated, then each conjecture will involve i t . In its
second mode, once GT formulates the projects, the user desig-
nates tasks to be executed.

Given a knowledge base of k properties, there are potentially
2k2 + k projects on the first pass, i .e., before newly created
properties participate in project formulation. How does GT
limit search through such a space? The human mathematician
has two primary sources of evidence on which to base project
formulation: definitions and examples. Unlike AM whose
cumbersome LISP code limited it to conjectures based solely
upon exampl?s, GT is capable of reasoning both from
p-generator definitiom and from specific graphs, either seeds
or generated examples. (The latter is an example of what
Thagard and Holyoak (1985) call “instance-based generaliza-
tion. ”) These two sources support the formulation of projects
in a variety of ways.

When presented with a definition for a concept, most mathe-
maticians immediately construct examples. Thus GT recom-
mends a project to generate examples of any property for
which it lists “too few” (as determined by a global variable)
examples.

A mathematician presented with nonempty classes P and Q
from a universe U is trained to explore potential relations
between the classes by examining whether or not each of the
labeled regions in Fig. 5 is empty. GT models this strategy
with conjectures about subsumption and merger. The standard
mathematical questions, and their GT equivalents, are

50 COMPUT. INTELL. VOL. 4. 1988

Is p a subset of Q? GT explores this by a conjecture that q
subsumes p .

Is P a superset of Q? GT explores this by a conjecture that
p subsumes q.

Is P equal (equivalent) to Q? GT explores this by two con-
jectures, that p subsumes q and that q subsumes p.

Are P and Q disjoint (mutually exclusive)? GT explores
this by a suggestion to merge p and q.

Thus the theorems that GT conjectures are statements about
set-theoretic relations between classes of graphs. The analysis
of Fig. 5 may, of course, be extended to more than two sets.
For example, either set may be replaced by the set R n S .
Since GT can use merger to construct R f l S, GT conjectures
encompass all four of the theorem types at the beginning of
Sect. 3.

The first two mathematical questions, on subset/superset
conjectures, are based upon both seeds and definitions. If a
seed forp is already on record in GT as a seed for some other
property q, a subsethperset relation may exist between P
and Q. GT examines such (p , q) pairs for additional support-
ing evidence from the property definitions. In particular, GT
looks for:

a degree of similarity in the seed sets for p and q (in
decreasing order of significance: equal sets, one a subset of the
other, a nonnull intersection);

seeds of property p that are known to have the prop-

a degree of similarity between the operators forp and q
(i.e., which primitives are employed and in what groupings).

The strong focus on seeds is justified both by their role as
prototypes and by efficiency; seeds tend to be small and few in
number.

Before GT’s heuristics explore the third mathematical ques-
tion, the equivalence o f p and q, they require that the two asso-
ciated subsumptions have been either proved or conjectured.
Alternative definitions (characterizations) of classes are com-
mon in mathematics because they support conjecture and,
thewfore, research. GT demonstrates such use of alternative
definitions. Consider, for example, the class of graphs known
as chains, some examples of which appear in Fig. 6. GT has
two different definitions of chain:

erty q;

and

GT

Based on the operators, CHAINl suggests that a chain may be
a cycle, and CHAIN, suggests that a chain may be a tree. GT
formulates and investigates both conjectures, and discovers
that the first is incorrect and the second correct.

The fourth mathematical question, a conjecture about dis-
jointness, is really a conjecture that a merger will fail. Thus a
conjecture in GT about the disjointness of p and q is expressed
as a plan to merge p and q. If the seed sets forp and q are dis-

a 0 A - - - - a
FIG. 6. Some examples of chains.

joint, the possibility of the disjointness of P and Q will be con-
jectured in the form of a plan to attempt the merger ofp and q.

Projects to generalize and specialize are motivated either by
the fact that the concept is a focus or by a dearth of projects on
the agenda. In such circumstances GT formulates a project to
generalize or specialize a property if it has never done so.

In its second mode, GT makes its own suggestions for
appropriate projects and leaves the choice to the user. In its
third mode, GT not only suggests projects for its agenda, but
also selects and executes them. Unless some difficulty arises
(e.g., an unsolvable system of equations during merger or an
unsuccessful search for a common seed), there is no interaction
with the user. Projects are ranked (based on the kind of sup-
porting evidence and any focus specified by the user), sorted in
the agenda, and executed in order. The third mode is surpris-
ingly well-controlled because the kinds of conjectures made
are dependent upon the knowledge base itself. For example,
the priority is always to construct links between existing prop-
erties. Only when those possibilities have been exhausted will
GT turn to inventing new ones. This determined effort to con-
struct a net of properties results in the early identification of
equivalent properties, and helps to control the combinatoric
explosion. The third mode can perform as a model of knowl-
edge acquisition. If GT is given a pre-existing knowledge base
of concepts and one additional concept as a focus, GT will
generalize and (or) specialize the focus concept until it is able
to link it into the knowledge base. Thus knowledge acquisition
consists of the construction of intermediate concepts linked to
both the focus concept and the knowledge base.

6. Results and significance
According to Michalski’s characterization of learning sys-

tems (Michalski 1986), GT learns both by observation (of its
input examples and definitions) and by discovery (upon con-
struction of new examples and properties). GT expands its
knowledge about a concept by generating examples of it and
by determining its relation to other concepts. GT inductively
infers conjectures from examples and definitions, and also
proves deductively from the same definitions. GT formulates
examples of known concepts and also defines and explores
new concepts.

GT transforms its representation about a concept in the
knowledge base. Figure 7 displays the ACYCLIC frame both
before and after one of GT’s runs. No specific tasks were
input, only the general directive to explore the knowledge
base. GT formulates its own conjectures and then attempts to
construct proofs for them based on the structure of the defini-
tions. The modifications to the representation for ACYCLIC
constitute learning as defined in Michalski (1986). Clearly GT
learns how ACYCLIC relates to other concepts, and constructs
and stores additional examples of acyclic graphs. GT learns
about graph theory by conjecturing and exploring simple rela-
tions among graph properties.

GT is able to conjecture theorems in graph theory. Conjec-
ture is driven by extremal examples and definitions. Example-

EPSTEIN 51

Initial formulation After execution

Property name: ACYCLIC
Number-of-seeds: 1
Seed-set: { K, }
Function: A, + A,A,
Sigma: y E V , x,z @ V
Origin: input
Example-list: (K,)
Extremal-cases: (K ,)
Delta-pairs: ((1 0)(1 1))

Subsumes: nil
Cannot-be-shown-to-subsume: nil

Subsumed-by: nil
Cannot-be-shown-subsumed-by: nil

Is-equivalent-to: nil
Cannot-be-shown-equivalent-to: nil

Merger-created-with: nil
Merger-explored-with: nil

Has-been-generalized: nil
Has-been-specialized: nil
Variables-have-been-identified: nil
Itemtion-has-been-forced: nil

ACYCLIC
1
{Kl)
A, + A,A,
y E v, x,z $ v

(K ,)
((1 0)(1 1))

input
(ACYCLIC-3, ACYCLIC-2, K ,)

(ACYCLIC-MERGED-WITH-CONNECTED CHAIN TREE)
(CONNECTED .EQUIV-CONNECTED)

(IS-A-GRAPH)
(CONNECTED EQUIV-CONNECTED CHAIN TREE

ACY CLIC-MERGED-WITH-CONNECTED)

nil
(CHAIN TREE CONNECTED IS-A-GRAPH EQUIV-CONNECTED)

(CONNECTED)
(CHAIN TREE)

nil
T
T
T

Frc. 7. What GT learns about ACYCLIC.

driven discovery is based upon prototypical graphs (seeds) that
are extremal cases of individual properties and therefore likely
to be rich in associations. Definition-driven discovery focuses
upon the transformations that change one graph with a property
into another graph with the same property. The requirement
that a definition be complete effectively limits such trans-
formations to minimal changes. For example, a connected
graph may be transformed by adding a new vertex with one
edge to an old vertex. Requiring that the new vertex be con-
nected to more than one old vertex would create a different,
more restricted, set of graphs. The minimality of these changes
and the limited vocabulary of operator primitives make rela-
tions between the transformations in the definitions more read-
ily apparent.

GT is able to prove theorems in graph theory that it has con-
jectured. Proofs rely heavily on a procedure to test for sub-
sumption and a procedure for merger to represent graphs with
more than one property. Running on a Symbolics 3675 in Sym-
bolics Common Lisp, GT successfully conjectures and proves,
among other theorems, the following:

Every tree is acyclic.
Every tree is connected.
The set of acyclic, connected graphs is precisely the set of

There are no odd-regular graphs on an odd number of ver-

GT discovers new mathematical concepts by syntactic
changes whose semantics are well understood and accessible to
the program. The key in GT is a more transparent and flexible
class definition, one that generates guaranteed examples, con-
structs efficient intersections, and creates from a broad
descriptive vocabulary. These concepts form a rich knowledge
base conducive to further mathematical discovery. From the
examples and definitions of Sect. 4, the following is evident:

trees.

tices.

Theorem
The heuristics used by GT to constrain/relax any definition

of a graph property P construct valid specializations/generali-
zations of P.

This theorem guarantees that the definitions GT constructs are,
in fact, graph properties. It also justifies the hierarchical links
GT inserts during the discovery process.

Since GT’s knowledge base may be initialized as any set of
graph properties, a concept may be discovered in more than
one way. In one experiment, GT begins only with the defini-
tion of a graph and the heuristics described here, and dis-
covers, among other concepts, acyclic graphs, connected
graphs, bipartite graphs, trees, and stars. GT is able to incor-
porate all of these correctly into its hierarchical knowledge
structure. A demonstration during which all of these dis-
coveries take place requires approximately 3.5 minutes of
elapsed time. In another experiment, GT begins with a small
initial knowledge base of concept definitions, links them
together and then generalizes the focus concept “star” until it
is able to link it into its knowledge base. During the elapsed
time (less than 1 minute) required to do this, GT also discovers
“tree. ”

When GT “invents” a new property definition, it is sub-
jected to careful scrutiny before a concept frame is created for
it. Many generated definitions are trivial, i.e., they may iterate
only once or twice, or even be limited entirely to their seed set.
Other definitions, intended as a specialization of some parent
concept, may very quickly produce many more examples than
were known for the parent. Still other definitions, intended as
generalizations of some parent concept, may produce only
graphs already known as examples of the parent. All of these
constructs are deemed uninteresting and rejected as potential
concepts.

Some of GT’s discovery paths are a bit surprising. For

52 COMPUT. INTELL. VOL. 4. 1988

example, although TREE is a special case of CONNECTED,
definitions for both concepts appear during a single exploration
cycle. In another unanticipated action, when STAR is being
generalized, GT moves backwards, first to TREE and then to a
definition for “connected graphs with loops,” skipping over
ACYCLIC and CONNECTED completely. Even well-
planned inductive leaps do not always arrive where expected.

Exhaustive search, rather than a burden, seems to be one of
GT’s strengths. The richness of the semantic network it con-
structs is due to its extensive exploration. In the META-
DENDRAL tradition, GT can afford exhaustive search
because its representation is highly controlled. The property
definitions support reasoning without recourse to empirical
data. GT’s design, however, does not advocate the abandon-
ment of inductive inference from empirical data in the model-
ling of a scientific research domain. Indeed, GT “doodles”
graphs as a spur to inquiry. Rather, GT’s design suggests that
abstract reasoning about a class from a correct, complete defi-
nition is a powerful complement to inductive inference.

What is the scientific significance of this particular domain-
specific discovery system? First, GT integrates a variety of
artificial intelligence techniques to provide greater power.
Unlike its machine learning predecessors, GT combines both
exaniples and theory to drive discovery. Unlike theorem
provers, GT produces its own conjectures. Second, GT formu-
lates a new and general approach to the representation of math-
ematical information, one that is not limited to graph theory.
GT’s approach to mathematical data enables the encoding,
organization, and manipulation of the heterogeneous knowl-
edge typical of mathematical texts. In particular, the recursive
(f,S,a) representation shows how an infinite class of mathe-
matical objects can be described as a property to support rea-
sonirig about them as a collection. The same representation
imposes a uniformity that enables reasoning about theorems,
the relations among concepts, and enables the description of
results as concepts, collections of information. Finally, GT
sho*s how a semantic network of those concepts can be an
effective organization of information to support proof con-
struction. None of this approach is philosophically limited to
graph theory; it should be extensible to other mathematical
domains, and perhaps even other scientific domains.

Although its example-generation technique could be
extremely useful, GT is not intended as a practical tool for
researchers in graph theory. Instead, GT is intended to provide
insight into the mathematical research process itself. When its
exhaustive search strategy eventually weakens in the face of
more demanding tasks, GT can be enhanced to model behav-
iors that people used to support research. Two examples of this
potential for growth are isomorphism and counterexamples.
The recognition of two objects, in particular, two graphs, as
“fundamentally equivalent” is nontrivial, yet essential to con-
trol the size of GT’s knowledge base. A better recognition
algorithm for isomorphic graphs is under development.
Counterexamples are extremely significant to mathematicians;
GT is currently being modified to retain them and take advan-
tage of the information they provide.

7. Future work
Lenat’s work with AM convinced him that, as the research

area within mathematics changed (from, say, set theory to
number theory), new discovery heuristics were required (Lenat
1983). GT is designed to work within a single area of mathe-
matics; no need for new heuristics is anticipated. Instead,

plans for GT’s future development are based upon the power
and flexibility of the p-generator representation.

Michalski’s and Dietterich’s work (Dietterich and Michalski
1983; Michalski 1983) on generalization rules for concept
acquisition provide some excellent suggestions for concept dis-
covery in GT. GT already embodies both selective and con-
structive generalization techniques, such as the ‘‘dropping
condition’ ’ rule (as selector relaxation) and the “closing inter-
val” rule (as a merger heuristic). Other rules currently under
consideration and (or) development include extending refer-
ence, counting arguments, and internal disjunction. GT’s
descriptive ability lies in the number and nature of the primi-
tive operators permitted in f and of the selector descriptions
permitted in u. As the set of such operators and descriptions is
extended, a lattice of descriptive languages (detailed in Epstein
(1983)) can be constructed. Such an “extended” language
offers additional alternatives, and ordinarily has greater
expressive power (as measured by the number of graph prop-
erties it defines) than GT’s current representation. In turn,
operations with an extended language are likely to require
more computer resources. Within the discovery framework
described here, plans exist to extend the p-generator language
for the representation of directed graphs and, eventually, for
labeled graphs. These extensions will also provide a testbed for
the study of performance under representational shifts.

The key to the most interesting specializations, those involv-
ing additional descriptions in a, is the language in which those
descriptions may be written. Utgoff (1986) warns that, unless
the [+]language is extensible, GT may not be able to access
many interesting ideas. Ways to have GT extend the
a-language itself are currently being studied. Despite sub-
stantial empirical support, the existence of a definition of the
form (f,S,a) for every property p remains an open question.

At the moment, GT has a variety of small knowledge bases
of input concepts and search has been exhaustive within the list
of generated conjectures. GT’s discovery is thus primarily
theory-driven, based as it is on definitional structure. As the
input knowledge base increases, however, and as GT becomes
more proficient at discovering interesting concepts of its own,
control during search will become an issue. GT now numer-
ically rates the projects on its agenda based on supporting evi-
dence, in a fashion similar to AM, although it does not assign
“worths” to individual concepts. GT has a threshold for rating
values, and only executes the projects that meet it. In anticipa-
tion of a combinatoric explosion, work is under way to use
additional example-based reasoning, particularly counter-
examples, to evaluate the agenda and guide search. Thus dis-
covery will derive additional data-driven support, while
maintaining its theory-driven component. GT’s knowledge
base will be expanded with more concepts gleaned from the
benchmark texts. Mathematicians studying interesting sets of
graph properties are invited to submit them to GT. The shell of
GT is a domain-independent research tool for recursive prop-
erty description. Work is underway to apply this shell to math-
ematical domains other than graph theory. Finally, extensions
to this shell are currently under development to model a variety
of other research behaviors.

Acknowledgements
The author thanks N. S. Sridharan for his thoughtful discus-

sions and comments, Virginia Teller for her careful attention to
clarity and detail, and an anonymous referee for very useful
comments on an earlier draft of this paper. This research was

EPSTEIN 53

supported in part by NSF grant no. DCR-8514395

BONDY, J., and MURTY, U. 1976. Graph theory with applications.
North-Holland, New York, NY.

BUCHANAN, B. G., and MITCHELL, T. M. 1978. Model-directed
learning of production rules. In Pattern-directed inference systems.
Edited by D. A. Waterman and F. Hayes-Roth. Academic Press,
New York, NY, pp. 297-312.

CARBONELL, J. G., MICHALSKI, R. S . , and MITCHELL, T. M. 1983.
An overview of machine learning. In Machine learning: an arti-
ficial intelligence approach. Edited by R. S. Michalski, J. G.
Carbonell, and T. M. Mitchell. Tioga Publishing, Palo Alto, CA,

DIETTERICH, T. G., and MICHALSKI, R. S. 1983. A comparative
review of selected methods for learning from examples. In
Machine learning: an artificial intelligence approach. Edited by
R. S. Michalski, J. G. Carbonell, and T. M. Mitchell. Tioga Pub-
lishing, Palo Alto, CA, pp. 41-81.

EMDE, W., HABEL, C. U., and ROLLING, C.-R. 1983. The discovery
of the equator or concept driven learning. Proceedings of the
Eighth International Joint Conference on Artificial Intelligence,
Karlsmhe, Germany, pp. 455-458.

EPSTEIN, S. L. 1983. Knowledge representation in mathmematics: a
case study in graph theory. Ph.D. dissertation, Department of
Computer Science, Rutgers University, New Brunswick, NJ.

1987. Languages for problem solving in graph theory. In The
role of language in problem solving 2. Edited by J. C. Boudreaux,
B. W. Hamill, and R. N. Jernigan. North-Holland, New York,

pp. 3-23.

NY, pp. 261-300.
HARARY, F. 1972. Graph theory. Addison-Wesley, Reading, MA.
LAIRD, P. G. 1986. Inductive inference by refinement. Proceedings

of the Fifth National Conference on Artificial Intelligence, Phila-
delphia, PA, pp. 472-476.

LANGLEY, P., BRADSHAW, G. L., and SIMON, H. A. 1983. Redis-
covering chemistry with the BACON system. In Machine learning:
an artificial intelligence approach. Edited by R. S. Michalski, J. G.
Carbonell, and T. M. Mitchell. Tioga Publishing, Palo Alto, CA,

LANGLEY, P., ZYTKOW, J. M., SIMON, H. A., and BRADSHAW, G. L.
1986. The search for regularity: four aspects of scientific dis-
covery. In Machine learning: an artificial intelligence approach,
Vol. 11. Edited by R. S. Michalski, J. G. Carbonell, and T. M.
Mitchell. Tioga Publishing, Palo Alto, CA, pp. 425-469.

LEE, W. D., and RAY, S. R. 1986. Rule refinement using the prob-
abilistic generator. Proceedings of the Fifth National Joint Con-
ference on Artificial Intelligence, Philadelphia, PA, pp. 442 -447.

LENAT, D. B. 1976. AM: an artificial intelligence approach to
discovery in mathematics. Ph. D. dissertation, Department of Com-
puter Science, Stanford University, Stanford, CA.

pp. 307-329.

1983. The role of heuristics in learning by discovery: three
case studies. In Machine learning: an artificial intelligence
approach. Edited by R. S . Michalski, J. G. Carbonell, and T. M.
Mitchell. Tioga Publishing, Palo Alto, CA, pp. 243-306.

1984. Why AM and EURISKO appear to work. Artificial
Intelligence, 23(3): 249-268.

MICHALSKI, R. S. 1983. A theory and methodology of inductive
learning. In Machine learning: an artificial intelligence approach.
Edited by R. S. Michalski, J . G. Carbonell, and T. M. Mitchell.
Tioga Publishing, Palo Alto, CA, pp. 83 - 134.

1986. Understanding the nature of learning: issues and
research directions. In Machine learning: an artificial intelligence
approach, Vol. 11. Edited b y R. S . Michalski, J. G. Carbonell, and
T. M. Mitchell. Tioga Publishing, Palo Alto, CA, pp. 3-25.

MICHALSKI, R. S., and STEPP, R. E. 1981. Concept-based clustering
versus numerical taxonomy. Technical Report 1073, Department
of Computer Science, UniveAy of Illinois, Urbana, IL.

1983. Learning from observation: conceptual clustering. In
Machine learning: an artificial intelligence approach. Edited by
R. S. Michalski, J. G. Carbonell, and T. M. Mitchell. Tioga Pub-
lishing, Palo Alto, CA, pp. 331-363.

MICHENER, E. R. 1978. Understanding understanding mathematics.
MIT, Artificial Intelligence Laboratory, Technical Report A1

NORDHAUSEN, B. 1986. Conceptual clustering using relational infor-
mation. Proceedings of the Fifth National Conference on Artificial
Intelligence, Philadelphia, PA, pp. 508 -5 12.

ORE, 0. 1962. Theory of graphs. American Mathematical Society
Colloquium Publications, Volume 38. American Mathematical
Society, Providence, RI.

RITCHIE, G. D., and H A N N A , F. K . 1984. AM: a case study in A1
methodology. Artificial Intelligence, 23(3): 269 -294.

SHAPIRO, E. Y. 1981. An algorithm that infers theories from facts.
Proceedings of the Seventh International Joint Conference on Arti-
ficial Intelligence, Vancouver, B.C., pp. 446-45 I .

STEPP, R. E., and MICHALSKI, R. S. 1986. Conceptual clustering:
inventing goal-oriented classifications of structured objects. In
Machine learning: an artificial intelligence approach, Vol. 11.
Edited by R. S. Michalski, J . G. Carbonell, and T. M. Mitchell.
Tioga Publishing, Palo Alto, CA, pp. 471 -498.

THAGARD, P., and HOLYOAK, K. 1985. Discovering the wave theory
of sound: inductive inference in the context of problem solving.
Proceedings of the Ninth International Joint Conference on Arti-
ficial Intelligence, Los Angeles, CA, pp. 610-612.

UTGOFF, P. E. 1986. Shift of bias for inductive concept learning. In
Machine learning: an artificial intelligence approach, Vol. 11.
Edited by R. S. Michalski, J. G. Carbonell, and T. M. Mitchell.
Tioga Publishing, Palo Alto, CA, pp. 107 - 148.

MEMO-488, LOGO MEMO-50.

