Optimistic Problem Solving

Susan L. Epstein

Computer Science Department, Hunter College and The Graduate Center of The City University of New York
695 Park Avenue, New York, NY 10065, USA
susan.epstein@hunter.cuny.edu

Abstract

People are optimistic about problem solving. This paper
identifies hallmarks of optimistic human problem solving
and how people control for the errors it often engenders. It
describes an architecture that permits a controlled version of
optimistic problem solving and recounts experiments with it
in three very different domains. Results indicate that, con-
trolled for error, optimistic problem solving is a robust ap-
proach to a variety of challenging problems.

Introduction

Young children regularly tackle new problems expecting to
succeed; they reuse decisions, rely on the familiar, and
jump to conclusions. Such optimistic problem solving is
quite different from traditional artificial intelligence pro-
grams with their insistence on proof, many trials, and ex-
tensive computation. This paper characterizes and analyzes
optimistic problem solving, and offers examples of its im-
pact in three very different domains. Particularly notewor-
thy are recent successes on difficult constraint satisfaction
problems.

People make decisions and solve problems optimisti-
cally because it is ecologically rational, that is, computa-
tionally reasonable given their environment (Gigerenzer
and Goldstein, 2002). The novelty, unpredictability, and
breadth of experience inherent in the real world, and the
need to respond to it in real time, demand more efficiency
and less rigor. As computers tackle increasingly realistic
tasks, ecological rationality becomes an important issue.

In contrast, global state-space search (hereafter, search)
is a classical Al paradigm for problem solving. It moves
from one state (description of the world) to another by se-
lecting an action. Such search begins at an initial state and
halts when it arrives at a state that satisfies some set of goal
criteria. Unless it halts at a goal, a complete search method
guarantees to visit every state. In a space of manageable
size, complete search is tractable and foolproof, but it was
developed for static, deterministic domains (e.g., chess). In
more ambitious domains, complete search is often prohibi-
tively expensive.

The next two sections of this paper assemble further ob-

Copyright © 2008, Association for the Advancement of Artificial Intelli-
gence (wWww.aaai.org). All rights reserved.

servations about how people solve problems and control
for error. Subsequent sections describe how one architec-
ture capitalizes on these ideas, and recounts results in three
domains: game playing, path finding, and constraint
satisfaction.

Hallmarks of Optimism

Human problem solving has several hallmarks that distin-
guish it from search.

People expect to succeed. At the end of the day, most
urban workers head home without checking the news to
see if a power failure or a massive tidal wave has disabled
mass transit. Assuming the unexceptional simplifies deci-
sion making. A rule like “To get home, take the subway” is
almost always right. In contrast, some programs prove that
an intended approach will solve the problem before execut-
ing the steps that comprise it. That would entail not only
verifying that the subway is running, but that it will con-
tinue to do so and that particular trains will make all their
scheduled stops, a computationally infeasible task. Heuris-
tics are the Al version of people’s optimistic rules, and the
foundation of this paper.

People prefer to think less. Together with skill, compu-
tational speed is prized by people as a form of expertise
(D'Andrade, 1991). A generally reliable rule like “Take the
subway” conserves resources on almost every occasion. In
contrast, search works hard to assure that its solution is
correct: it looks at all the alternatives and plans for many
contingencies. Two automated, somewhat primitive forms
of thinking less are bounded rationality, which limits the
resources available during computation, and anytime algo-
rithms, which are interruptible but expected to deliver in-
creasingly better solutions across time (Zilberstein, 1996).

People store and reuse old decisions. Once people
learn a successful approach to a familiar problem, they re-
use it. Only if traveling conditions change are people likely
to reconsider “Take the subway.” Reuse extends to por-
tions of a solution as well. Expert chess players, for exam-
ple, reuse old openings and agree on previously computed
endgame outcomes to skip the final moves. Human experts
under time constraints do situation-based reasoning, where
procedures trigger in a familiar context, and produce a set
of decisions (Klein and Calderwood, 1991). Placed in a

novel transportation facility, for example, our experienced
subway rider will try to pay a fare, without checking to see
if transport is free. Al has reused old decisions in case-
based reasoning, in memoization, and in large knowledge
bases (Hsu, 2002; Schaeffer et al., 2005), but rarely to the
extent that people do.

People rely on familiarity when making decisions.
There is an extensive literature on human preference for
familiar choices, even when the context of a decision is
different (Gigerenzer and Goldstein, 2002; Goldstein and
Gigerenzer, 2002). Fast and frugal reasoning is an exten-
sively studied, somewhat extreme example of human reli-
ance on the familiar (Gigerenzer and Goldstein, 1996). It
has been documented in people, particularly under time
pressure. Fast and frugal reasoning can be paraphrased as
“I once encountered this choice, reasoned about it (possi-
bly in a different context), and now choose it once again.”
This is not case-based reasoning, because the only context
is the choice set. It is as if one were choosing a mode of
transportation in a foreign city: “They have a subway and |
take one at home so I will do it here.” High-level pseu-
docode for fast and frugal reasoning appears in Figure 1.
Given a set of choices and a set of heuristics that return
boolean values, it uses only one heuristic at a time to select
one choice from among many. The basic heuristic for fast
and frugal reasoning is simple recognition — it prefers the
familiar. If more than one choice is recognized, a pair of
recognized choices is selected at random. Next, a heuristic
is selected and used to compare the two. If the heuristic
prefers one of the pair to the other, the preferred choice is
returned; otherwise another heuristic is chosen and the
comparison is repeated on the same pair. Strategies people
use to select a heuristic include random choice, the heuris-
tic that most recently succeeded in breaking a tie, or the
heuristic known to work best on the current problem set
(Take the Best). In contrast, search typically treats the deci-
sion at each node as an entirely new computation.

People focus their attention. Chess grandmasters and
Go masters visually attend to very few moves before they

Fast-and-frugal(choices, heuristics)
familiar < Recognized(choices)

If |familiar| =1
then return familiar
else

chosen < J
pair < randomly choose 2 from familiar
Do until |chosen| =1
heuristic <« Strategy(heuristics)
chosen < prefer(heuristic, pair)
return chosen

Figure 1: Pseudocode for fast and frugal reasoning. Given a set
of choices and a set of heuristics, this algorithm selects a single
choice. The strategy for heuristic selection is key.

choose one, far fewer than weaker players (Holding, 1985;
Kojima and Yoshikawa, 1998). In contrast, complete
search uses ordering heuristics that sequence choices based
on some metric, but it does not eliminate them from con-
sideration.

People combine multiple heuristics to make deci-
sions. While designing circuits or playing games, people
use several heuristics simultaneously (Biswas et al., 1995;
Ratterman and Epstein, 1995). In contrast, search that re-
lies on multiple heuristics typically prioritizes them
(Minton et al., 1995; Nareyek, 2003), reserves the more
costly for harder problems (Borrett, Tsang and Walsh,
1996), or regards its heuristics as a portfolio of procedures
that compete or alternate on the same problem (Gagliolo
and Schmidhuber, 2007; Gomes and Selman, 2001;
Streeter, Golovin and Smith, 2007).

Controlling for Error

Optimistic problem solving runs the risk of error. In par-
ticular, reuse of past computation is unsafe, because the
current state of the world may not be sufficiently similar to
the state in which that decision was originally formulated.
For example, recent flooding or brownouts make the sub-
way a less attractive alternative.

Optimism is different from naiveté, and people want to
succeed. To control for the errors that their own optimistic
problem solving engenders, people have important com-
pensatory behaviors:

People evaluate their own behavior and adjust it ac-
cordingly. Human self-awareness includes perpetual per-
formance evaluation. This evaluation is categorized by task
similarity, that is, transportation decisions are different
from chess moves. Self-judged poor performance is a
strong motivation for behavioral change. Adaptive pro-
grams judge and change their own behavior too.

People evaluate their knowledge sources for trust-
worthiness. Even three and four year-old children monitor
the accuracy of information from individual sources and
use it to guide subsequent learning (Birch, Vauthier and
Bloom, 2008). Despite their teachers’ instructions, elemen-
tary school children often develop their own peculiar
“rules” for how to subtract multi-digit numbers (Siegler
and Crowley, 1994). When they do so, they incorporate
only one such rule at a time into their existing algorithm,
and use it determinedly until corrected. In contrast, pro-
grams often merely accept their heuristics at face value.

People learn from their mistakes. In the rainy season,
getting wet every day soon loses its humor — people carry
an umbrella. Although people may regard a few repetitions
of the same error as humorous, they quickly label many re-
peated errors “unintelligent.” People expect to learn how to
avoid a particular repeated error. In contrast, search simply
backtracks out of its mistakes.

Quadrant 2 Quadrant 1

1 2 3 4 5 6 7 8 9 10 11 1213 14 15 16 17 18 19 20

© ® N e G R W N =

-
=)

-
jry

-
N

-
w

-
S

-
@

-
o

-
<

-
©

-
©

[N
=]

1 2 3 4 5 67 8 9 1011 1213 14 15 16 17 18 19 20
Quadrant 3 Quadrant 4
Figure 2: A maze problem for Ariadne, where the robot R must
reach the goal G. Each decision chooses a location on a vertical
or horizontal line from the robot to the nearest (shaded) walls.
The robot in this state has 8 possible moves and will require 12
to reach the goal.

People integrate perception with reasoning. People
bring to bear a full range of input modalities when problem
solving, including vision, hearing, and smell. For example,
people consider prowess at blindfolded chess remarkable
because they believe vision is integral to a process that
“sees” future game positions and examines them for flaws.
Search represents some descriptive version of perception
within the state description.

From Optimism to Architecture

We explore optimistic reasoning here with FORR (FOr the
Right Reasons), an architecture for learning and problem
solving (Epstein, 1992). FORR serves as a system shell.
To produce a FORR-based program for a domain, one
specifies a set of decision procedures (Advisors), a set of
problems, and some knowledge to acquire.

We reference three FORR-based programs here, each of
which learns to perform expertly in its domain. Hoyle is a
game player with 19 different two-dimensional, finite-
board games. Ariadne is a simulated robot pathfinder for
two-dimensional mazes like that in Figure 2. ACE (the
Adaptive Constraint Engine) solves binary constraint satis-
faction problems (CSPs). A binary CSP is a set of vari-
ables, each with a domain of values it can assume, and a
set of constraints that restrict the way pairs of the variables
can hold values simultaneously. Many CSP heuristics are

based on the constraint graph, which represents variables
as nodes and constraints as edges between them.

To solve a problem in its domain, a FORR-based pro-
gram repeatedly makes decisions (e.g., moves in Hoyle or
Ariadne, the selection of a variable or a value for it in
ACE). Each decision incorporates advice from many Advi-
sors. An Advisor either comments on individual choices or
does situation-based reasoning. Other than input and out-
put, no uniformity is imposed on Advisors; they are simply
procedures. Every Advisor accepts as input the current
state, the choices available to it, and any knowledge
learned on previous problems. Every Advisor outputs a set
of comments whose strengths indicate its degree of support
for or opposition to some subset of those choices. Hoyle
and Ariadne each have dozens of Advisors. ACE has more
than 100 Advisors gleaned from the CSP literature; each of
them either selects the next variable to be assigned a value
or chooses a value for it.

To manage all that advice, FORR organizes decision
making as a three-tier hierarchy where the first tier to make
a decision does so, as shown in Figure 3. FORR distin-
guishes between Advisors that are correct and Advisors
that are merely heuristic. Those Advisors that comment on
individual choices and that the programmer judges to be
both correct and quick are placed in tier 1. Tier 1 Advisors
have the authority to make a decision immediately, or to
eliminate some choices from further consideration. For ex-
ample, Hoyle’s Victory selects the final winning move in a
game, Ariadne’s NoWay vetoes moves that would re-enter
a previously visited dead-end that does not contain the
goal, and ACE’s Degree-Zero opposes the selection of a

current current acquired
state choices knowledge

Ll

| Tier 1 Advisors

single

choice ? decision

partially-
ordered
set of
decisions

| Tier 2 Advisors subproblem ?

| Tier 3 Advisors

weighted combination

of comments [— decision

Figure 3: FORR s 3-tier architecture of Advisors.

argmax
8 . {E dw, CU}

J

g; = number of opinions Advisor i has generated
0.1%g,if g, < 10

"~ |1 otherwise

w, = weight of Advisor i

where

¢, = strength of comment from Advisor i on choice j

Figure 4: Voting in tier 3. Comment strengths are normalized
into a uniform interval, Advisor weights are learned.

variable that has no neighbors in the constraint graph until
all those with neighbors have been assigned mutually con-
sistent values.

Advisors in tier 2 are triggered by familiarity and
quickly produce a plan to address a recognized situation.
For example, when Ariadne’s robot is aligned with the goal
but a wall lies between them, Roundabout generates a path
to go around it. As a second example, ACE’s Separate se-
lects variables from a cyclic connected component in the
constraint graph until the component becomes acyclic. The
Advisors in tier 2 are also pre-sequenced by the program-
mer. The first plan they produce is accepted. Executor, a
tier-1Advisor, monitors an executing plan’s progress and
has the ability to abandon it. Situation-based reasoning is
not case-based; it deliberately avoids the subtleties inherent
in indexing and partial matching — if there is no obviously
recognized situation, FORR proceeds instead to tier 3.

The vast majority of Advisors in a FORR-based program
comment on individual choices but are costly to compute
or are not perfectly reliable. They are assigned to tier 3.
Each tier-3 Advisor assigns a score to choices based on its
underlying metric. For example, Ariadne’s Giant Step pre-
fers longer distances, and ACE’s Max Degree prefers vari-
ables with a higher degree in the constraint graph. Tier-3
Advisors are all given the opportunity to comment on the
choices remaining after tier 1 has filtered them and tier 2
has not proffered a plan. Typically, most decisions are

Table 1: A pair of heuristics outperforms individual ones on 50
CSPs with 30 variables and domain size 8, each of which has a
potential search space of 9°° nodes. Problems are at the phase
transition, that is, particularly hard for their size. Time is in CPU
seconds; space is number of nodes in the search tree. Max Degree
is a variable-ordering heuristic; Max Product and Promise are
value ordering-heuristics (Geelen, 1992).

made in tier 3, where voting selects the choice with the
greatest support as the decision. A typical experiment with
ACE, for example, made 87.1% of the variable decisions,
and 98.9% of the value decisions in tier 3. Voting in FORR
uses a weighted combination of comment strengths to cal-
culate support. The computation for voting is shown in
Figure 4.

FORR’s modularity makes it an ideal test-bed for prob-
lem solving. It can use only a single heuristic, or a preor-
dered set placed in tier 1. It will try to plan only if there are
Advisors in tier 2. It combines heuristics in tier 3, where
weights can be pre-specified or learned, and the weight-
learning algorithm can be domain-specific. It can break ties
in tier 3 lexically or at random, so that experiments are
readily reproduced. For example, ACE generated the data
in Table 1, which shows the performance of a variable-
ordering heuristic and two value-ordering heuristics for
CSP search. Although each heuristic solved every problem,
the first pair (line 4) searched far fewer nodes and did so
faster. The second pair (line 5) searched about as many
nodes as the first pair, but took more than twice as long as
Max Degree alone. This is an important issue in the use of
multiple heuristics: more knowledge may make fewer mis-
takes (here, require backtracking out of fewer nodes), but it
may also slow problem solving. Table 2 shows perform-
ance results on structured CSPs, which are more similar to
those based on real-world problems. It demonstrates that
different heuristics, and different combinations of heuris-
tics, are more appropriate for different problem classes.
Clearly, learning is essential.

Optimism Implemented

FORR’s design is intended to support optimistic problem
solving, which develops expertise quite rapidly in all three

Table 2: Performance of heuristics on two classes of challenging,
structured CSPs. (The geometric problems each have a search
space of size 11°°, the composed problems of size 7°°.) Search
was limited to 5000 nodes on each problem. ddd is a variable or-
dering metric that calculates the ratio of the number of values
that a variable could be assigned in the current state to the num-
ber of unassigned neighbors it has in the constraint graph. v; and
v, are value-ordering heuristics. After inference, v; orders values
by the smallest domain size produced, and v, orders values by the
largest product of all domain sizes. Values are averaged over 50
problems. Space is nodes searched; elapsed time is in CPU sec-
onds. (Reproduced from (Epstein and Petrovic, 2008).)

Heuristics Space Time
Max Degree 139.70 0.435
Promise 770.14 3.037
Max Product 774.80 6.454
Max Degree + Promise 93.80 0.377
Max Degree + Max Product 99.28 0.836

Geometric Composed

Heuristics Space Time Solved| Space Time Solved
Min ddd 258.1 3.1 98%]| 996.7 2.0 82%
Max ddd 47227 323 6%| 5299 1.0 90%
Min ddd+v, 199.7 3.6 98%| 9242 3.0 84%
Min ddd+v, 171.6 33 98%| 431.1 15 92%
Max ddd+v, 3826.8 53.7 30%| 430.6 14 92%
ACE mixture 146.8 5.1 100%| 314 0.6 100%

domains. Ten trips in a maze, 30 CSPs of similar size and
difficulty, or 50 — 100 contests at a game are generally
enough to produce outstanding performance (Epstein,
1995; Epstein, 2001; Epstein, Freuder and Wallace, 2005).

Many of the hallmarks of optimistic problem solving
cited earlier are addressed inherently, by FORR’s design:

» Expectation of success is embodied in extensive reliance
on tier-3 heuristics and on tier-2 situation-based reasoning.

* Thinking less motivated the placement of faster proce-
dures in tier 1 and acceptance of the first plan created.
Situation-based reasoning is the foundation of tier 2, where
reused procedures address subgoals.

* Reliance on the familiar (fast and frugal reasoning under
a particular strategy for heuristic selection) can be imple-
mented by a single Advisor in tier 1.

* Focus of attention motivated the ability to veto choices in
tier 1.

* Reliance on many knowledge sources is implemented as
multiple Advisors.

Learning is an integral part of the architecture. FORR
learns on a set of problems characterized as similar (e.g.,
contests at the same game or trips between different loca-
tions in the same maze). FORR evaluates its performance
after every problem and learns from it. For example, tier-
3 Advisors are provided to a FORR-based program be-
cause they are expected to be accurate in some situations,
on some problem classes. Which Advisors are appropriate,
and to what extent, is learned as the weights w; in Figure 4.
Domain-specific knowledge, such as dead-ends in a maze
or forks in a game, may also be learned.

An experiment in FORR averages behavior over a set of
runs. Each run is a self-supervised learning phase followed
by a testing phase. The acquired knowledge (e.g., Advisor
weights) is then made available during search on subse-
quent problems. During testing, learning is turned off, but
the acquired knowledge remains available to the Advisors.
The last line in Table 2 demonstrates how well ACE can
learn from only 30 CSPs given 40 Advisors. Only ACE’s
mixture solves every problem within the space limit.

Like people, a FORR-based program takes precautions
against the errors its optimism may engender. Weight
learning, for example, evaluates knowledge sources for
trustworthiness. It extracts examples of both good and bad
decisions from the trace of each successful problem solv-
ing experience, and uses them as training examples.
Weights are reinforced based in part on the difficulty of
each decision and the magnitude of each error. (For further
details on reinforcement weight learning in FORR, see
(Epstein, 1994; Epstein and Petrovic, 2008).) During vot-
ing, the discount factor d; in Figure 4 gradually introduces
Advisors into the mix. It modulates their influence until
they have commented often enough for weight learning to
evaluate their trustworthiness accurately, much the way
people tentatively integrate new rules.

The Impact of Optimism

This section recounts experiments that further emphasize
optimism in human-like ways.

Learning How to Solicit Less Advice

Because most Advisors reside in tier 3, and because many
of their metrics rely on costly state representations, tier-3
Advisors consume the vast majority of a FORR-based pro-
gram’s computing time. Thinking less could therefore be
interpreted as consulting fewer of them for advice. This
conflicts, however, with the tenet that multiple heuristics
are better. Nonetheless, it is possible to reduce the number
of Advisors and the frequency with which they are con-
sulted to accelerate problem solving without impairing per-
formance.

The learning phase in an experiment identifies trustwor-
thy knowledge sources appropriate to a particular problem
class: those tier-3 Advisors with the highest weights. Be-
cause people seek at least better-than-random performance,
FORR provides for benchmark Advisors that make ran-
domly many comments with random strengths. (Ariadne
and Hoyle have a single benchmark Advisor; ACE has one
for variable selection and one for value selection.) Bench-
mark Advisors do not participate in search decisions, but
they do receive weights during the learning phase. Then,
during testing, only Advisors whose weights are greater
than that of their respective benchmarks are consulted. Be-
cause some Advisors’ costly-to-compute representations
are shared, however, speedup is not always equivalent.
Typically, about half of ACE’s Advisors are eliminated by
the benchmarks, and this accelerates testing by about 30%.

One might think that an exceptionally highly weighted
tier-3 Advisor ought simply to be promoted to tier 1 during
testing. Experiments with Hoyle, however, indicate that
even an Advisor that has been 99.5% correct during learn-
ing should not be promoted from tier 3 to tier 1 (thereby
bypassing tiers 2 and 3 for most decisions) because a single
error in play can prove fatal. There are more subtle and
successful ways to exploit learned weights.

For example, many CSPs have a backdoor, a relatively
small set of variables that, once assigned the right values,
make search nearly trivial (Williams, Gomes and Selman,
2003). Once past the backdoor, it should be safer to think
less. Although identification of the backdoor in a particular
problem is NP-complete, ACE can conservatively
(over)estimate the size of the backdoor b on a class of
CSPs as the point after which there was no backtracking in
any solved problem during the learning phase. Pusher is a
tier-1 Advisor, active only during testing, that, after b vari-
ables have been valued, consults only the single highest-
weighted tier-3 Advisor to force a decision. Unless
Pusher’s Advisor is wrong, this should accelerate search.
We tried three versions of Pusher: one pushed all deci-

sions, one pushed only for value selection, and one pushed
only for variable selection. The variable-only version was
the best. In experiments on a broad variety of problem
classes, it never impaired search performance, and it usu-
ally accelerated testing by about 8%. After a while, it is
apparently safe to think less about which part of the prob-
lem to address next, but not about what to do there. Push-
ing is an effective way to jump to a conclusion because it
has a context, “after the backdoor,” and a breadth of expe-
rience behind it. An accurate estimate for b is essential,
however. Pushing too soon (overly low b) can prove as
problematic as promotion, and pushing too late (overly
high b) can produce little performance improvement.

Prioritization is a more tentative way to push. It seeks to
exploit top-weighted tier-3 Advisors first, and resorts to the
remainder only to break ties. Prioritization partitions tier 3
into k subsets, S;, S», ..., Si. Subset S votes first. If it can
make a choice it does so, otherwise only the tied, top-rated
choices are forwarded to S,, which then votes, and so on.
In this way, fewer Advisors are likely to be consulted on
fewer choices. The issue, however, is how to partition the
Advisors after they have been filtered by their benchmark.
In extensive testing, we have found that it is more effective
to cluster Advisors according to weight intervals of equal
size than to form subsets of equal size. Given a set of 40
Advisors, ACE does best with this approach when it identi-
fies 3 subsets. Prioritization accelerates testing perform-
ance by about 5%.

Ranking is a more extreme version of prioritization; it
replaces voting in tier 3 with a list of Advisors ordered by
weight. This is equivalent to prioritization where all sub-
sets are of size 1. Ranking has never proved better than
prioritization in any of these domains, and is often worse.

Reusing Decisions

The impact of fast and frugal reasoning has thus far been
explored only in ACE. As implemented here, familiarity
requires errors — after backtracking, a variable that no
longer has an assigned value and the retracted value for it
will both be familiar and preferred when they recur later
among the current choices. The premise is that variables
and values for them that were once attractive to the heuris-
tics will still be attractive, so that re-consulting the Advi-
sors that selected them is unnecessary. Certainly, the clas-
sical context in which they were selected has changed, be-
cause the kind of constraint search described here never
revisits exactly the same CSP node. Nonetheless, fast and
frugal reasoning optimistically assumes that there is not
enough contextual difference to re-consult all of tier 3. If
multiple choices are recognized, fast and frugal reasoning
selects a pair of recognized choices at random and uses one
Advisor at a time until some Advisor prefers one choice to
the other. The algorithm in Figure 1 was applied to the

problems in Table 1 only during the testing phase. With the
Take the Best strategy for heuristic selection (in descending
order of weight), fast and frugal reasoning reduced ACE’s
computation time by 24%, despite the introduction of 8%
more errors (Epstein and Ligorio, 2004). This approach re-
quires errors to generate familiarity, however, so perform-
ance improves less on easier problem classes. At the other
extreme, if problems are very hard and search is extensive,
most variables and values for them may be familiar. In that
case, fast and frugal reasoning could degenerate into rank-
ing, which we know to be inferior to a weighted mixture.

Another successful but startlingly optimistic reuse of
prior decisions is evident in the reuse of locations once vis-
ited by Ariadne’s robot (Epstein, 1998). After each trip,
Ariadne analyzes the trace, and removes unnecessary di-
gressions. The locations remaining may have facilitated
travel because they provided access to a different quadrant
of the maze (gates), offered the possibility of a new direc-
tion (cormers), or merely represented a counterintuitive
step that did not direct the robot toward the goal (bases).
These facilitators are pragmatic descriptions of the maze.
Some tier-3 Advisors (e.g., HomeRun) advise the robot to
move toward them; some tier-2 Advisors (e.g., Patchwork)
use them to formulate plans quickly and optimistically, as-
suming that an obstruction will not intervene. (Such par-
tially-executed plans are discarded as soon as they fail.)
Because bases are reinforced each time they are revisited,
even if a plan including them fails, Ariadne develops ha-
bitual behaviors in the same maze, much like “Take the
subway.”

A final example of decision reuse is Hoyle’s learned
move sequences (Lock and Epstein, 2004). These se-
quences are valued according to the outcome of play (win,
loss, or draw). Unlike fast and frugal reasoning, each move
sequence has its own context, a generalized, pattern-like
description of the location of pieces on the board immedi-
ately before each time the sequence was put into effect.
Hoyle uses these sequences in situation-based reasoning:
when the current board matches the context of a highly
valued sequence, Hoyle follows its advice. For five men’s
morris, a game with millions of nodes in its search space,
Hoyle learned sequences while it observed 40 contests be-
tween programs at various skill levels. Reusing this se-
quence knowledge, and with no other Advisors, Hoyle was
able to draw more than half the time against an external
program that played flawlessly, and to perform well
against the three other programs it had observed.

Discussion

There are, of course, any number of domains in which op-
timistic reasoning would be inappropriate. The domain
must have a high tolerance for error; nuclear power genera-
tion would not qualify. It must also have a low recovery

cost; although backtracking is inexpensive, it may be for-
bidden, as in game playing. The domain must also be con-
sistent enough so that reuse is reasonable.

There are also requirements for learning. The environ-
ment must be extensive enough and broad enough to pre-
pare the learner for a variety of situations, the way Hoyle’s
sequence learning environment did. The learner must be
self-aware and reward efficiency. There must be mecha-
nisms that compactly capture and flexibly reuse regulari-
ties from experience, such as Ariadne’s facilitators. There
must be some standard for performance, gauged if need be
by the learner’s best. There must be a mechanism to detect
and learn from errors as well as successes.

The integration of perception with reasoning often leads
to dramatic performance improvements. Hoyle’s learned
move sequences are one example. Ariadne contains many
others; obstructions, corridors, and dead-ends all summa-
rize the robot’s experience as it senses its way through a
maze. Moreover, many CSP heuristics are rooted in the
constraint graph, a representation that people use to visual-
ize the problem. In FORR, most representations of the cur-
rent state are shared, and computed only when requested
by an Advisor. As a FORR-based program consults fewer
Advisors, it is likely to compute fewer representations, and
thereby become even more efficient, attending only to
what it needs.

FORR’s modularity permits us to explore how various
implementations of optimism impact different applications,
and impact different kinds of problems within a single ap-
plication. The user of a FORR-based program specifies the
Advisors in each tier for an experiment. As a result it is
possible to test individual Advisors and tiers, as well as
any combination of them. Because promotion, prioritiza-
tion, pushing, fast and frugal reasoning, and the various
weight-learning algorithms are optional, one can experi-
ment to gauge their impact. This paper summarizes thou-
sands of experiments. Not surprisingly, the gentler forms
of optimism (e.g., prioritization) are very successful on
easy problems, and the more extreme forms (e.g., promo-
tion) can considerably degrade performance on hard prob-
lems. Repeatedly, however, we have observed that some
degree of optimism is surprisingly effective.

Still, optimistic problem solving, as documented in peo-
ple, often strikes computer scientists as foolhardy. Ap-
proaches that entail random choice and lazy calculation do
not support the rigor to which we are accustomed. None-
theless, human problem solving is robust, efficient, and
surprisingly effective. The results presented here suggest
that optimism, controlled for error, merits our further con-
sideration.

Acknowledgements

This work was supported by the National Science Founda-

tion under 9222720, IRI-9703475, I11S-0328743, IIS-
0739122, and 1IS-0811437. ACE is an ongoing joint pro-
ject with Eugene Freuder and Richard Wallace. Joanna
Lesniak, Tiziana Ligorio, Xingjian Li, Esther Lock, Anton
Morozov, Smiljana Petrovic, Barry Schiffman, and Zhijun
Zhang have all made substantial contributions to this work.

References

Birch, S. A. J., S. A. Vauthier and P. Bloom 2008. Three-
and four-year-olds spontaneously use others' past perform-
ance to guide their learning. Cognition 107(3): 1018-1034.

Biswas, G., S. Goldman, D. Fisher, B. Bhuva and G.
Glewwe 1995. Assessing Design Activity in Complex
CMOS Circuit Design. Cognitively Diagnostic Assessment.
Nichols, P., S. Chipman and R. Brennan. Hillsdale, NJ,
Lawrence Erlbaum: 167-188.

Borrett, J., E. P. K. Tsang and N. R. Walsh 1996. Adaptive
Constraint Satisfaction: the Quickest First Principle. In
Proceedings of 12th European Conference on Al, 160-164.
D'Andrade, R. G. 1991. Culturally Based Reasoning. Cog-
nition and Social Worlds. Gellatly, A. and D. Rogers. Ox-
ford, Clarendon Press: 795-830.

Epstein, S. L. 1992. Prior Knowledge Strengthens Learn-
ing to Control Search in Weak Theory Domains. Interna-
tional Journal of Intelligent Systems 7: 547-586.

Epstein, S. L. 1994. Identifying the Right Reasons: Learn-
ing to Filter Decision Makers. In Proceedings of AAAI
1994 Fall Symposium on Relevance., 68-71. New Orleans,
AAAL

Epstein, S. L. 1995. On Heuristic Reasoning, Reactivity,
and Search. In Proceedings of Fourteenth International
Joint Conference on Artificial Intelligence, 454-461. Mont-
real, Morgan Kaufmann.

Epstein, S. L. 1998. Pragmatic Navigation: Reactivity,
Heuristics, and Search. Artificial Intelligence 100(1-2):
275-322.

Epstein, S. L. 2001. Learning to Play Expertly: A Tutorial
on Hoyle. Machines That Learn to Play Games. Fiirnkranz,
J. and M. Kubat. Huntington, NY, Nova Science: 153-178.

Epstein, S. L., E. C. Freuder and R. J. Wallace 2005.
Learning to Support Constraint Programmers. Computa-
tional Intelligence 21(4): 337-371.

Epstein, S. L. and T. Ligorio 2004. Fast and Frugal Rea-
soning Enhances a Solver for Really Hard Problems. In
Proceedings of Cognitive Science 2004, 351-356. Chicago,
Lawrence Erlbaum.

Epstein, S. L. and S. Petrovic 2008. Learning Expertise
with Bounded Rationality and Self-awareness. In Proceed-
ings of AAAlI Workshop on Metareasoning, Chicago,
AAAL

Gagliolo, M. and J. Schmidhuber 2007. Learning dynamic
algorithm portfolios. Annals of Mathematics and Artificial
Intelligence 47(3-4): 295-328.

Geelen, P. A. 1992. Dual Viewpoint Heuristics for Binary
Constraint Satisfaction Problems. In Proceedings of 10th
European Conference on Artificial Intelligence, 31-35.
Gigerenzer, G. and D. G. Goldstein 2002. Models of Eco-
logical Rationality: The Recognition Heuristic. Psycho-
logical Review 109(1): 75-90.

Gigerenzer, G. and G. Goldstein 1996. Reasoning the Fast
and Frugal Way: Models of Bounded Rationality. Psycho-
logical Review 103(4): 650-669.

Goldstein, D. G. and G. Gigerenzer 2002. Models of eco-
logical rationality: The recognition heuristic. Psychological
Review 109: 75-90.

Gomes, C. P. and B. Selman 2001. Algorithm portfolios.
Artificial Intelligence 126(1-2): 43-62.

Holding, D. 1985. The Psychology of Chess Skill.
Hillsdale, NJ, Lawrence Erlbaum.

Hsu, F.-h. 2002. Behind Deep Blue: Building the Computer
that Defeated the World Chess Champion. Princeton, NJ,
Princeton University Press.

Klein, G. S. and R. Calderwood 1991. Decision Models:
Some Lessons from the Field. IEEE Transactions on Sys-
tems, Man, and Cybernetics 21(5): 1018-1026.

Kojima, T. and A. Yoshikawa 1998. A Two-Step Model of
Pattern Acquisition: Application to Tsume-Go. In Proceed-
ings of First International Conference on Computers and
Games, 146-166.

Lock, E. and S. L. Epstein 2004. Learning and Applying
Competitive Strategies. In Proceedings of AAAI-04, 354-
359. San Jose.

Minton, S., J. A. Allen, S. Wolfe and A. Philpot 1995. An
Overview of Learning in the Multi-TAC System. In Pro-
ceedings of First International Joint Workshop on Artifi-
cial Intelligence and Operations Research, Timberline,
Oregon, USA.

Nareyek, A. 2003. Choosing Search Heuristics by Non-
stationary Reinforcement Learning. Metaheuristics: Com-
puter Decision-Making. Resende, M. G. C. and J. P.
deSousa. Boston, Kluwer: 523-544.

Ratterman, M. J. and S. L. Epstein 1995. Skilled like a Per-
son: A Comparison of Human and Computer Game Play-
ing. In Proceedings of Seventeenth Annual Conference of
the Cognitive Science Society, 709-714. Pittsburgh, Law-
rence Erlbaum Associates.

Schaeffer, J., Y. Bjornsson, N. Burch, A. Kishimoto, M.
Muller, R. Lake, P. Lu and S. Sutphen 2005. Solving
Checkers. In Proceedings of IJCAI-05,292-297.

Siegler, R. S. and K. Crowley 1994. Constraints on Learn-
ing in Nonprivileged Domains. Cognitive Psychology 27:
194-226.

Streeter, M., D. Golovin and S. F. Smith 2007. Combining
multiple heuristics online. In Proceedings of AAAI-07,
1197-1203.

Williams, R., C. Gomes and B. Selman 2003. On the Con-
nections between Heavy-tails, Backdoors, and Restarts in
Combinatorial search. In Proceedings of SAT 2003.
Zilberstein, S. 1996. Using anytime algorithms in intelli-
gent systems. The Al magazine 17: 73-83.

