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Abstract  

People are optimistic about problem solving. This paper 
identifies hallmarks of optimistic human problem solving 
and how people control for the errors it often engenders. It 
describes an architecture that permits a controlled version of 
optimistic problem solving and recounts experiments with it 
in three very different domains. Results indicate that, con-
trolled for error, optimistic problem solving is a robust ap-
proach to a variety of challenging problems. 

Introduction 

Young children regularly tackle new problems expecting to 

succeed; they reuse decisions, rely on the familiar, and 

jump to conclusions. Such optimistic problem solving is 

quite different from traditional artificial intelligence pro-

grams with their insistence on proof, many trials, and ex-

tensive computation. This paper characterizes and analyzes 

optimistic problem solving, and offers examples of its im-

pact in three very different domains. Particularly notewor-

thy are recent successes on difficult constraint satisfaction 

problems.  

 People make decisions and solve problems optimisti-

cally because it is ecologically rational, that is, computa-

tionally reasonable given their environment (Gigerenzer 

and Goldstein, 2002). The novelty, unpredictability, and 

breadth of experience inherent in the real world, and the 

need to respond to it in real time, demand more efficiency 

and less rigor. As computers tackle increasingly realistic 

tasks, ecological rationality becomes an important issue. 

 In contrast, global state-space search (hereafter, search) 

is a classical AI paradigm for problem solving. It moves 

from one state (description of the world) to another by se-

lecting an action. Such search begins at an initial state and 

halts when it arrives at a state that satisfies some set of goal 

criteria. Unless it halts at a goal, a complete search method 

guarantees to visit every state. In a space of manageable 

size, complete search is tractable and foolproof, but it was 

developed for static, deterministic domains (e.g., chess). In 

more ambitious domains, complete search is often prohibi-

tively expensive.  

 The next two sections of this paper assemble further ob-
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servations about how people solve problems and control 

for error. Subsequent sections describe how one architec-

ture capitalizes on these ideas, and recounts results in three 

domains: game playing, path finding, and constraint 

satisfaction. 

Hallmarks of Optimism 

Human problem solving has several hallmarks that distin-

guish it from search.  

 People expect to succeed. At the end of the day, most 

urban workers head home without checking the news to 

see if a power failure or a massive tidal wave has disabled 

mass transit. Assuming the unexceptional simplifies deci-

sion making. A rule like “To get home, take the subway” is 

almost always right. In contrast, some programs prove that 

an intended approach will solve the problem before execut-

ing the steps that comprise it. That would entail not only 

verifying that the subway is running, but that it will con-

tinue to do so and that particular trains will make all their 

scheduled stops, a computationally infeasible task. Heuris-

tics are the AI version of people’s optimistic rules, and the 

foundation of this paper. 

 People prefer to think less. Together with skill, compu-

tational speed is prized by people as a form of expertise 

(D'Andrade, 1991). A generally reliable rule like “Take the 

subway” conserves resources on almost every occasion. In 

contrast, search works hard to assure that its solution is 

correct: it looks at all the alternatives and plans for many 

contingencies. Two automated, somewhat primitive forms 

of thinking less are bounded rationality, which limits the 

resources available during computation, and anytime algo-

rithms, which are interruptible but expected to deliver in-

creasingly better solutions across time (Zilberstein, 1996). 

 People store and reuse old decisions. Once people 

learn a successful approach to a familiar problem, they re-

use it. Only if traveling conditions change are people likely 

to reconsider “Take the subway.” Reuse extends to por-

tions of a solution as well. Expert chess players, for exam-

ple, reuse old openings and agree on previously computed 

endgame outcomes to skip the final moves. Human experts 

under time constraints do situation-based reasoning, where 

procedures trigger in a familiar context, and produce a set 

of decisions (Klein and Calderwood, 1991). Placed in a 



novel transportation facilit/0 for example0 our experienced 

sub6a/ rider 6ill tr/ to pa/ a fare0 6ithout checking to see 

if transport is free. ;I has reused old decisions in case=

based reasoning0 in memoi>ation0 and in large kno6ledge 

bases ?Hsu0 ABBAC Schaeffer et al.0 ABBEF0 but rarel/ to the 

extent that people do.  

 "e$p&e re&( $n *a,i&iarit( /0en ,a1in2 3ecisi$ns. 

Ghere is an extensive literature on human preference for 

familiar choices0 even 6hen the context of a decision is 

different ?Higeren>er and Holdstein0 ABBAC Holdstein and 

Higeren>er0 ABBAF. !ast and frugal reasoning is an exten=

sivel/ studied0 some6hat extreme example of human reli=

ance on the familiar ?Higeren>er and Holdstein0 IJJKF. It 

has been documented in people0 particularl/ under time 

pressure. Last and frugal reasoning can be paraphrased as 

MI once encountered this choice0 reasoned about it ?possi=

bl/ in a different contextF0 and no6 choose it once again.N 

Ghis is not case=based reasoning0 because the onl/ context 

is the choice set. It is as if one 6ere choosing a mode of 

transportation in a foreign cit/O MGhe/ have a sub6a/ and I 

take one at home so I 6ill do it here.N High=level pseu=

docode for fast and frugal reasoning appears in Ligure I. 

Hiven a set of choices and a set of heuristics that return 

boolean values0 it uses onl/ one heuristic at a time to select 

one choice from among man/. Ghe basic heuristic for fast 

and frugal reasoning is simple recognition P it prefers the 

familiar. If more than one choice is recogni>ed0 a pair of 

recogni>ed choices is selected at random. Qext0 a heuristic 

is selected and used to compare the t6o. If the heuristic 

prefers one of the pair to the other0 the preferred choice is 

returnedC other6ise another heuristic is chosen and the 

comparison is repeated on the same pair. Strategies people 

use to select a heuristic include random choice0 the heuris=

tic that most recentl/ succeeded in breaking a tie0 or the 

heuristic kno6n to 6ork best on the current problem set 

?Take the 3estF. In contrast0 search t/picall/ treats the deci=

sion at each node as an entirel/ ne6 computation. 

 "e$p&e *$cus t0eir attenti$n. Rhess grandmasters and 

Ho masters visuall/ attend to ver/ fe6 moves before the/ 

choose one0 far fe6er than 6eaker pla/ers ?Holding0 IJSEC 

ToUima and Voshika6a0 IJJSF. In contrast0 complete 

search uses ordering heuristics that seWuence choices based 

on some metric0 but it does not eliminate them from con=

sideration. 

 "e$p&e c$,bine ,u&tip&e 0euristics t$ ,a1e 3eci9

si$ns. Xhile designing circuits or pla/ing games0 people 

use several heuristics simultaneousl/ ?Yis6as et al.0 IJJEC 

Zatterman and [pstein0 IJJEF. In contrast0 search that re=

lies on multiple heuristics t/picall/ prioriti>es them 

?\inton et al.0 IJJEC Qare/ek0 ABB]F0 reserves the more 

costl/ for harder problems ?Yorrett0 Gsang and Xalsh0 

IJJKF0 or regards its heuristics as a portfolio of procedures 

that compete or alternate on the same problem ?Hagliolo 

and Schmidhuber0 ABB^C Homes and Selman0 ABBIC 

Streeter0 Holovin and Smith0 ABB^F.  

 :$ntr$&&in2 *$r Err$r 

Optimistic problem solving runs the risk of error. In par=

ticular0 reuse of past computation is unsafe0 because the 

current state of the 6orld ma/ not be sufficientl/ similar to 

the state in 6hich that decision 6as originall/ formulated. 

Lor example0 recent flooding or bro6nouts make the sub=

6a/ a less attractive alternative. 

 Optimism is different from naivet`0 and people 6ant to 

succeed. Go control for the errors that their o6n optimistic 

problem solving engenders0 people have important com=

pensator/ behaviorsO 

 "e$p&e e<a&uate t0eir $/n be0a<i$r an3 a3=ust it ac9

c$r3in2&(. Human self=a6areness includes perpetual per=

formance evaluation. Ghis evaluation is categori>ed b/ task 

similarit/0 that is0 transportation decisions are different 

from chess moves. Self=Uudged poor performance is a 

strong motivation for behavioral change. ;daptive pro=

grams Uudge and change their o6n behavior too. 

 "e$p&e e<a&uate t0eir 1n$/&e32e s$urces *$r trust9

/$rt0iness. [ven three and four /ear=old children monitor 

the accurac/ of information from individual sources and 

use it to guide subseWuent learning ?Yirch0 aauthier and 

Yloom0 ABBSF. bespite their teachersc instructions0 elemen=

tar/ school children often develop their o6n peculiar 

MrulesN for ho6 to subtract multi=digit numbers ?Siegler 

and Rro6le/0 IJJdF. Xhen the/ do so0 the/ incorporate 

onl/ one such rule at a time into their existing algorithm0 

and use it determinedl/ until corrected. In contrast0 pro=

grams often merel/ accept their heuristics at face value. 

 "e$p&e &earn *r$, t0eir ,ista1es. In the rain/ season0 

getting 6et ever/ da/ soon loses its humor P people carr/ 

an umbrella. ;lthough people ma/ regard a fe6 repetitions 

of the same error as humorous0 the/ Wuickl/ label man/ re=

peated errors Munintelligent.N People expect to learn ho6 to 

avoid a particular repeated error. In contrast0 search simpl/ 

backtracks out of its mistakes.  
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!igure () Pseudocode for fast and frugal reasoning. Given a set 
of choices and a set of heuristics, this algorithm selects a single 
choice. The strategy for heuristic selection is key. 



 People integrate perception with reasoning. Peo$le 

'ring to 'ear a full range of in$ut modalities 3hen $ro'lem 

solving, including vision, hearing, and smell. For e:am$le, 

$eo$le consider $ro3ess at 'lindfolded chess remarka'le 

'ecause they 'elieve vision is integral to a $rocess that 

=sees> future game $ositions and e:amines them for fla3s. 

?earch re$resents some descri$tive version of $erce$tion 

3ithin the state descri$tion. 

2rom 4ptimism to 5rchitecture 

@e e:$lore o$timistic reasoning here 3ith F"RR AFBr the 

Cight CeasonsD, an architecture for learning and $ro'lem 

solving AE$stein, FGGHD.  FBCC serves as a system shell. 

To $roduce a FBCCJ'ased $rogram for a domain, one 

s$ecifies a set of decision $rocedures A$d&isorsD, a set of 

$ro'lems, and some kno3ledge to acKuire.  

 @e reference three FBCCJ'ased $rograms here, each of 

3hich learns to $erform e:$ertly in its domain. +oyle is a 

game $layer 3ith FG different t3oJdimensional, finiteJ

'oard games. $riadne is a simulated ro'ot $athfinder for 

t3oJdimensional maLes like that in Figure H. $12 Athe 

Mda$tive Nonstraint EngineD solves 'inary constraint satisJ

faction $ro'lems A1S4s). M 'inary N?P is a set of variJ

a'les, each 3ith a domain of values it can assume, and a 

set of constraints that restrict the 3ay $airs of the varia'les 

can hold values simultaneously. Oany N?P heuristics are 

'ased on the constraint graph, 3hich re$resents varia'les 

as nodes and constraints as edges 'et3een them. 

 To solve a $ro'lem in its domain, a FBCCJ'ased $roJ

gram re$eatedly makes decisions Ae.g., moves in Poyle or 

Mriadne, the selection of a varia'le or a value for it in 

MNED. Each decision incor$orates advice from many MdviJ

sors. Mn Mdvisor either comments on individual choices or 

does situationJ'ased reasoning. Bther than in$ut and outJ

$ut, no uniformity is im$osed on MdvisorsQ they are sim$ly 

$rocedures. Every Mdvisor acce$ts as in$ut the current 

state, the choices availa'le to it, and any kno3ledge 

learned on $revious $ro'lems. Every Mdvisor out$uts a set 

of comments 3hose strengths indicate its degree of su$$ort 

for or o$$osition to some su'set of those choices. Poyle 

and Mriadne each have doLens of Mdvisors. MNE has more 

than FRR Mdvisors gleaned from the N?P literatureQ each of 

them either selects the ne:t varia'le to 'e assigned a value 

or chooses a value for it.  

 To manage all that advice, FBCC organiLes decision 

making as a threeJtier hierarchy 3here the first tier to make 

a decision does so, as sho3n in Figure S. FBCC distinJ

guishes 'et3een Mdvisors that are correct and Mdvisors 

that are merely heuristic. Those Mdvisors that comment on 

individual choices and that the $rogrammer Tudges to 'e 

'oth correct and Kuick are $laced in tier F. Tier F Mdvisors 

have the authority to make a decision immediately, or to 

eliminate some choices from further consideration. For e:J

am$le, PoyleUs <ictory selects the final 3inning move in a 

game, MriadneUs =o>ay vetoes moves that 3ould reJenter 

a $reviously visited deadJend that does not contain the 

goal, and MNEUs DegreeJ@ero o$$oses the selection of a 

 
Figure 2: $ maze proClem for $riadne, Fhere the roCot R must 

reach the goal HI 2ach decision chooses a location on a &ertical 

or horizontal line from the roCot to the nearest (shaded) FallsI 

Khe roCot in this state has L possiCle mo&es and Fill reMuire 12 

to reach the goalI 
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Figure 3: F"RRPs Q-tier architecture of $d&isorsI 
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sions, one pushed only for value selection, and one pushed 

only for variable selection. The variable-only version was 

the best. In experiments on a broad variety of problem 

classes, it never impaired search performance, and it usu-

ally accelerated testing by about 8%. After a while, it is 

apparently safe to think less about which part of the prob-

lem to address next, but not about what to do there. Push-

ing is an effective way to jump to a conclusion because it 

has a context, “after the backdoor,” and a breadth of expe-

rience behind it. An accurate estimate for ! is essential, 

however. Pushing too soon (overly low !) can prove as 

problematic as promotion, and pushing too late (overly 

high !) can produce little performance improvement. 

 "rioriti'ation is a more tentative way to push. It seeks to 

exploit top-weighted tier-3 Advisors first, and resorts to the 

remainder only to break ties. Prioritization partitions tier 3 

into * subsets, S1, S2, …, S*. Subset S1 votes first. If it can 

make a choice it does so, otherwise only the tied, top-rated 

choices are forwarded to S2, which then votes, and so on. 

In this way, fewer Advisors are likely to be consulted on 

fewer choices. The issue, however, is how to partition the 

Advisors after they have been filtered by their benchmark. 

In extensive testing, we have found that it is more effective 

to cluster Advisors according to weight intervals of equal 

size than to form subsets of equal size. Given a set of 40 

Advisors, ACE does best with this approach when it identi-

fies 3 subsets. Prioritization accelerates testing perform-

ance by about 5%. 

 ,an*ing is a more extreme version of prioritization; it 

replaces voting in tier 3 with a list of Advisors ordered by 

weight. This is equivalent to prioritization where all sub-

sets are of size 1. Ranking has never proved better than 

prioritization in any of these domains, and is often worse. 

Reusing Decisions 

The impact of fast and frugal reasoning has thus far been 

explored only in ACE. As implemented here, familiarity 

requires errors — after backtracking, a variable that no 

longer has an assigned value and the retracted value for it 

will both be familiar and preferred when they recur later 

among the current choices. The premise is that variables 

and values for them that were once attractive to the heuris-

tics will still be attractive, so that re-consulting the Advi-

sors that selected them is unnecessary. Certainly, the clas-

sical context in which they were selected has changed, be-

cause the kind of constraint search described here never 

revisits exactly the same CSP node. Nonetheless, fast and 

frugal reasoning optimistically assumes that there is not 

enough contextual difference to re-consult all of tier 3. If 

multiple choices are recognized, fast and frugal reasoning 

selects a pair of recognized choices at random and uses one 

Advisor at a time until some Advisor prefers one choice to 

the other. The algorithm in Figure 1 was applied to the 

problems in Table 1 only during the testing phase. With the 

.a*e t1e 2est strategy for heuristic selection (in descending 

order of weight), fast and frugal reasoning reduced ACE’s 

computation time by 24%, despite the introduction of 8% 

more errors (Epstein and Ligorio, 2004). This approach re-

quires errors to generate familiarity, however, so perform-

ance improves less on easier problem classes. At the other 

extreme, if problems are very hard and search is extensive, 

most variables and values for them may be familiar. In that 

case, fast and frugal reasoning could degenerate into rank-

ing, which we know to be inferior to a weighted mixture. 

 Another successful but startlingly optimistic reuse of 

prior decisions is evident in the reuse of locations once vis-

ited by Ariadne’s robot (Epstein, 1998). After each trip, 

Ariadne analyzes the trace, and removes unnecessary di-

gressions. The locations remaining may have facilitated 

travel because they provided access to a different quadrant 

of the maze (gates), offered the possibility of a new direc-

tion (corners), or merely represented a counterintuitive 

step that did not direct the robot toward the goal (!ases). 

These 5acilitators are pragmatic descriptions of the maze. 

Some tier-3 Advisors (e.g., Ho8e,9n) advise the robot to 

move toward them; some tier-2 Advisors (e.g., "atc1wor*) 

use them to formulate plans quickly and optimistically, as-

suming that an obstruction will not intervene. (Such par-

tially-executed plans are discarded as soon as they fail.) 

Because bases are reinforced each time they are revisited, 

even if a plan including them fails, Ariadne develops ha-

bitual behaviors in the same maze, much like “Take the 

subway.” 

 A final example of decision reuse is Hoyle’s learned 

move sequences (Lock and Epstein, 2004). These se-

quences are valued according to the outcome of play (win, 

loss, or draw). Unlike fast and frugal reasoning, each move 

sequence has its own context, a generalized, pattern-like 

description of the location of pieces on the board immedi-

ately before each time the sequence was put into effect. 

Hoyle uses these sequences in situation-based reasoning: 

when the current board matches the context of a highly 

valued sequence, Hoyle follows its advice. For five men’s 

morris, a game with millions of nodes in its search space, 

Hoyle learned sequences while it observed 40 contests be-

tween programs at various skill levels. Reusing this se-

quence knowledge, and with no other Advisors, Hoyle was 

able to draw more than half the time against an external 

program that played flawlessly, and to perform well 

against the three other programs it had observed.  

Discussion 

There are, of course, any number of domains in which op-

timistic reasoning would be inappropriate. The domain 

must have a high tolerance for error; nuclear power genera-

tion would not qualify. It must also have a low recovery 



cost; although backtracking is inexpensive, it may be for-

bidden, as in game playing. The domain must also be con-

sistent enough so that reuse is reasonable.  

 There are also requirements for learning. The environ-

ment must be extensive enough and broad enough to pre-

pare the learner for a variety of situations, the way Hoyle’s 

sequence learning environment did. The learner must be 

self-aware and reward efficiency. There must be mecha-

nisms that compactly capture and flexibly reuse regulari-

ties from experience, such as Ariadne’s facilitators. There 

must be some standard for performance, gauged if need be 

by the learner’s best. There must be a mechanism to detect 

and learn from errors as well as successes.  

 The integration of perception with reasoning often leads 

to dramatic performance improvements. Hoyle’s learned 

move sequences are one example. Ariadne contains many 

others; obstructions, corridors, and dead-ends all summa-

rize the robot’s experience as it senses its way through a 

maze. Moreover, many CSP heuristics are rooted in the 

constraint graph, a representation that people use to visual-

ize the problem. In FORR, most representations of the cur-

rent state are shared, and computed only when requested 

by an Advisor. As a FORR-based program consults fewer 

Advisors, it is likely to compute fewer representations, and 

thereby become even more efficient, attending only to 

what it needs.  

 FORR’s modularity permits us to explore how various 

implementations of optimism impact different applications, 

and impact different kinds of problems within a single ap-

plication. The user of a FORR-based program specifies the 

Advisors in each tier for an experiment. As a result it is 

possible to test individual Advisors and tiers, as well as 

any combination of them. Because promotion, prioritiza-

tion, pushing, fast and frugal reasoning, and the various 

weight-learning algorithms are optional, one can experi-

ment to gauge their impact. This paper summarizes thou-

sands of experiments. Not surprisingly, the gentler forms 

of optimism (e.g., prioritization) are very successful on 

easy problems, and the more extreme forms (e.g., promo-

tion) can considerably degrade performance on hard prob-

lems. Repeatedly, however, we have observed that some 

degree of optimism is surprisingly effective. 

 Still, optimistic problem solving, as documented in peo-

ple, often strikes computer scientists as foolhardy. Ap-

proaches that entail random choice and lazy calculation do 

not support the rigor to which we are accustomed. None-

theless, human problem solving is robust, efficient, and 

surprisingly effective. The results presented here suggest 

that optimism, controlled for error, merits our further con-

sideration. 
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