
This paper appeared in the Proceedings of ICTAI 2006.

Finding Crucial Subproblems to Focus Global Search

Susan L. Epstein

Hunter College and The Graduate School of

The City University of New York

susan.epstein@hunter.cuny.edu

Richard J. Wallace

Cork Constraint Computation Centre

University College Cork

r.wallace@4c.ucc.ie

Abstract

Traditional global search heuristics to solve constraint

satisfaction problems focus on properties of an individual

variable that mandate early search attention. If, however,

one could predict crucial subproblems (the portions of a

constraint satisfaction problem likely to cause each other

particular difficulty) in advance, search could address

them first. This paper postulates several types of crucial

subproblems, and shows how local search can be har-

nessed to identify them before global search for a solu-

tion. A variety of heuristics and metrics are then used to

guide traditional constraint heuristics with those crucial

subproblems. On certain classes of structured problems,

such search outperforms traditional heuristics by at least

an order of magnitude in both time and space.

1. Introduction

Constraint satisfaction problems (CSPs) often have a

backdoor, a crucial, relatively small subset of variables

whose assignment makes the remainder of search nearly

trivial [1]. Our premise here is that the backdoor may lie

within a cluster, a dense, highly-constrained subproblem

destined to impede global search. The principal contribu-

tions of this paper are two new, efficient local search al-

gorithms to identify such CSP subproblems prior to

search, and their heuristic integration with traditional

methods to direct global search to a solution. Our ap-

proach harnesses the power of propagation within the

density of the subproblem, and directs it to the variables

upon which constraints press hardest. On certain classes

of structured problems, our approach outperforms tradi-

tional variable-ordering heuristics by at least an order of

magnitude, in both time and space. Even on structured

problems, whose uniform edge tightness makes subprob-

lem detection more difficult, we show that crucial sub-

problems can still reduce solution time by about half.

We investigate four methods approaches to detect cru-

cial subproblems in advance, and then use them to guide

search:

• The clique hypothesis: Density (the percentage of possi-

ble constraints present in the subproblem) alone is the

key. Since a clique (a complete subgraph) has maximal

density, search should exploit clique membership. Thus

search should assign values to variables in maximum

(largest present) cliques first [2].

• The tension hypothesis: Tightness (the degree to which a

constraint excludes possible value combinations) alone is

the key. The tension on a vertex is the average tightness

of the edges on which it is incident. Search should assign

values to the maximally constrained variables (those inci-

dent on the tightest edges) first.

• The near clique hypothesis: Problems are unlikely to

have very large cliques, because too many constraints

with some reasonable tightness are likely to admit no so-

lutions at all. A near clique is a subgraph that would be a

cliques but for a few missing edges. Search should assign

values to variables in maximum near cliques first.

• The cluster hypothesis: Together, density and tension

predict difficult subproblems. Search should therefore as-

sign values to variables in maximum clusters first.

Precise identification of these subproblems (maximum

cliques, near cliques and clusters) is NP-hard. Instead, we

estimate them with variable neighborhood search, a local

search metaheuristic [3]. After detection, we use one or

more of these multiple disjoint subproblems in a single

problem to guide global search. We show that both clus-

ters and near cliques are considerably give more incisive

information, resulting in more and efficient search than do

cliques on several classes of problems.

Although arc consistency is more efficiently enforced

by solving global subproblems on the fly [4], the identifi-

cation of such subproblems has thus far been the province

of the human modeler. The exploitation of some semanti-

cally-based, dense subgraphs has certainly been success-

ful. For example, all-different cliques have their own

propagation schemes [5], but they require identification

by the modeler. There has also been some domain-

specific success for relatively sparse coloring problems

[6, 7], and with subsets of natural language constraints

(circles) that can be solved exhaustively and then com-

bined with branch and bound to optimize sentence transla-

tion [8]. Circles, however, have few interactions among

them and are predicated upon relatively low density and

This paper appeared in the Proceedings of ICTAI 2006.

the prevalence of articulation points in the graph underly-

ing natural language constraints on a sentence. Clusters,

in contrast, are purely syntactic, at least from the view of

the solver (and perhaps of the modeler as well).

Our primary focus here is on composed problems,

which simulate the uneven density and tightness often

prevalent in real-world problems such as frequency as-

signment [9]. On composed problems, the combination of

density and constrainedness embodied by a cluster, proves

more powerful than either alone. Clusters go undetected

by traditional heuristics until they impact search. Al-

though an identified cluster takes priority during search,

our approach uses a traditional heuristic to make decisions

within a cluster, and to guide search once all cluster vari-

ables have been assigned values. Clusters harness more

information than cliques, because they consider tightness

as well as structure.

The next section provides some fundamental defini-

tions. To identify crucial subproblems prior to global

search, we have adapted variable neighborhood search

[3], a metaheuristic that systematically changes local

search neighborhoods. Section 3 describes the basic vari-

able neighborhood search approach, along with the met-

rics and heuristics we have devised to apply it and capital-

ize on crucial subproblems. Subsequent sections describe

the experimental design and discuss empirical results and

future work.

2. Background

A constraint satisfaction problem (CSP) consists of a

set of variables X, a set D of domains for those variables

(values which may be assigned to them), and a set C of

constraints on X, restrictions on how values may be as-

signed to subsets of X. This discussion is restricted to bi-

nary CSPs, where each constraint is on a pair of variables.

The constraint graph of a CSP represents each variable as

a vertex and each constraint as an edge between the two

vertices whose variables it restricts. The degree of a vari-

able is the number of edges on which it is incident in the

constraint graph. The density of a CSP is the fraction of

possible edges in its constraint graph. The tightness of a

constraint is the fraction of possible value pairs it ex-

cludes. A CSP with fixed tightness has the same tightness

on each of its edges; otherwise it is said to have varying

tightness.

An instantiation of a CSP = <X, D, C> assigns values

from their respective domains to some subset of X. A con-

sistent instantiation abides by all the constraints on its in-

stantiated variables. A full instantiation assigns a value to

every variable, otherwise an instantiation is said to be

partial. A solution to a CSP is a full, consistent instantia-

tion. Global search on a CSP assigns a value to one vari-

able at a time, and backs up when a partial instantiation is

inconsistent, until it reaches a solution. During global

search, a future variable is one that is not yet assigned a

value. As global search progresses, constraint propaga-

tion eliminates, from the domains of future variables, val-

ues that would conflict with the current partial instantia-

tion. Thus each variable has an original (static) domain

size and a dynamic domain size with respect to the current

partial instantiation. Similarly, the dynamic constraint

graph consists only of the vertices that represent future

variables and edges between them. Each variable has a

(static) degree in the original constraint graph as well as a

dynamic degree in the dynamic constraint graph.

Although in principle any ordering of the variables for

instantiation can lead to a solution, a good ordering

speeds search. Many heuristics for variable ordering dur-

ing global search are based on the premise that density in

the constraint graph is important, for example, “maximize

the degree.” Other heuristics insist that constrainedness is

important, such as “minimize the domain size.” Particu-

larly successful variable-ordering heuristics combine den-

sity and constrainedness, for example, dom/deg (minimize

the ratio of dynamic domain size to static degree) and

dom/ddeg (minimize the ratio of dynamic domain size to

dynamic degree).

3. Local search for crucial subproblems

Although variable neighborhood search (VNS) is a meta-

heuristic that has been successfully applied to a wide

range of combinatorial and optimization problems [3], our

new work appears to be its most general CSP application.

Our description here focuses upon the aspects of VNS

that support our particular goals. The key processes are

the generation of an initial solution, a local search algo-

rithm, and shaking to search within k pre-specified neigh-

borhoods for a solution.

Figure 1 provides pseudocode for VNS. (The “variable”

in VNS refers to changing neighborhoods, not to variables

in the CSP sense.) A neighborhood intentionally delimits

the current search space; as VNS iterates, each new

neighborhood provides a larger search space. VNS begins

with an initial solution (line 1) and terminates on a user-

1 best-yet ! initial-solution

2 index ! 1

3 neighborhood ! neighborhood(index)

4 until stopping condition or index = k
5 unless index = 1, best-yet ! shake(best-yet, index)

6 local-optimum ! local-search(best-yet, neighborhood)

7 If score(local-optimum) > score(best-yet)
8 then best-yet ! local-optimum

9 index ! 1

10 else index ! index + 1

11 neighborhood ! neighborhood(index)

Figure 1. A high-level description of VNS metaheuristic

search through k neighborhoods. The initial solution,

shake algorithm, and local search vary with the applica-
tion.

This paper appeared in the Proceedings of ICTAI 2006.

specified stopping condition (e.g., elapsed time) or after

shaking in k increasingly larger neighborhoods without an

improvement (lines 1 and 4). After best-yet is initialized,

VNS performs local search in its neighborhoods (line 6).

Local optima are compared by a metric, score. A better

local optimum resets best-yet and begins again with the

first neighborhood (lines 8 and 9); otherwise it proceeds

to the next neighborhood (line 10). Shaking (line 5, de-

scribed further below) randomizes best-yet to avoid loop-

ing through the same portions of the search space. Shak-

ing shifts search within the current neighborhood. As in-

dex increases, these neighborhoods become larger and the

shaken version of best-yet becomes less similar to best-yet

itself. The VNS algorithm to find a maximum clique in a

graph clarifies the details, and provides a foundation for

our own new algorithms.

3.1 Finding a maximum clique with VNS

Computations for the maximum clique in a graph G =

<V, E> on vertices V with edges E are made with respect

to its complement G! = <V,V"V–E>. At all times, a 3-part

partition of the vertices is maintained: those in the solu-

tion, those forbidden to join the solution (the transversal),

and the remainder (remaining).

The VNS algorithm to identify a maximum clique finds

an initial subgraph for best-yet in line 1 of Figure 1. with

the simplicial vertex test (SVT) shown in Figure 3 [10]. A

vertex is said to be simplicial if and only if its neighbors

form a clique. The size of a simplicial vertex is the size of

the clique it forms with its neighbors. Because a vertex of

degree zero in G! is clearly a member of any maximum

clique in G, SVT begins with all simplicial vertices of

size 0 in G! (e.g., vertex 1 in Figure 2a). SVT then adds

simplicial vertices from remaining in ascending size order

(in G!) with select, one at a time. Ties are broken by a

greedy choice: minimize the degree of the vertex in G!

(i.e., maximize the degree in G); subsequent ties are bro-

ken at random. After each selection E! is updated. SVT

returns a starting point for local search, an initial (possibly

empty) solution (e.g., Figure 2b).

Once SVT terminates, the VNS algorithm to identify a

maximum clique uses local search to expand it. When lo-

cal search can proceed no farther, the algorithm shakes

the subgraph by removing some number of randomly-

selected vertices from it and begins local search again.

Examples of the algorithm’s behavior appear in Figure 2.

The local search algorithm to identify a maximum

clique M is Variable Neighborhood Descent (VND),

summarized in Figure 4 [10]. One vertex at a time, it

greedily extends best-yet with a vertex adjacent to every

vertex already in M (e.g., vertices 2 and then 3 in Figure

2), using the same tie-breaking rules as SVT. Next, it may

be possible to enlarge M by swapping some vertex w in M

for two adjacent vertices that are not neighbors of w, are

not presently in M, and are neighbors of all vertices in

M – w (e.g., vertices 4 and 5 for 2 in Figure 2). VND re-

peatedly performs such interchanges in an attempt to

identify a larger clique in the same neighborhood. When

interchange can proceed no further, shaking in VNS re-

moves some number of randomly-selected vertices from

M (e.g., for index = 1, vertex 4 in Figure 2) and thereby

shifts search within the current neighborhood. For both

VNS and VND the maximum neighborhood index k is set

to the minimum of 10 and |M| dynamically. The important

differences between VND and VNS are their termination

conditions and greedy extension rather than shaking.

We extended VNS to seek disjoint cliques in G as fol-

lows. When VNS returns M, we remove M from G and

repeat the entire process with VNS to identify the next

maximum clique in G – M.

1 1 2
1 2

3

1 2

3 4

5

1

3 4

5

1

3

5

(a)

(b) (c) (d)

(f)(e)
Figure 2. Selected steps from the identification of a

maximum clique with VNS from the graph (a). (b) SVT:

Begin with a simplicial vertex of size 0. (c)-(d) VND:

Greedily add, one at a time, vertices adjacent to every se-

lected vertex. (e) Interchange a pair of adjacent vertices

for a selected one. (f) Shake out a randomly-selected ver-
tex. This process repeats; see the text for further details.

solution " all vertices of degree zero in G!

while vertices remain in transversal and simplicial

 vertices appear in remaining
 v # select(remaining)

 solution#solution # {v}

 transversal# transversal # neighbors(v)

 remaining #remaining – v – neighbors(v)

 E!# E! – all edges to v or to neighbors(v)

return solution

Figure 3. SVT, the initialization procedure in VNS search
for a maximum clique.

best-yet #greedy-extension (best-yet)

index " 1

neighborhood # neighborhood(index)

 until index = k
 local-optimum " interchange(best-yet, neighborhood)

 If score(local-optimum) > score(best-yet)
 then best-yet " local-optimum

 index # 1

 else index # index + 1
 neighborhood " neighborhood(index)

Figure 4. A high-level description of VND, the local
search algorithm called by VNS in Figure 1.

This paper appeared in the Proceedings of ICTAI 2006.

3.2 Finding near cliques with VNS

To find near cliques with VNS, our implementation

uses SVT to initialize a near clique N as if search were for

a clique, and shakes the current near clique as cliques are

shaken. There are, however, two important changes: one

to select in SVT and the other to interchange in VND.

When adding a vertex to N in the greedy extension step, if

no vertex in remaining is a neighbor of every vertex in N,

select takes a vertex whose inclusion in N will introduce

the fewest missing edges (e.g., one missing edge for ver-

tex 4 in Figure 5). During search for a near clique on v

vertices that is missing m edges, we prefer large, dense

subgraphs. This is implemented with the scoring function:

score = v ! 1"
m

C
v,2

$
%

&

'
(
 [1]

where Cv,2 is the number of edges to form a clique on v

vertices. Thus, a new vertex that is missing !m edges

should be added only if

 v +1() 1–
m + !m

C
v+1,2

"

$

%

&
' > v 1(

m

C
v,2

"

$

%

&
' [2]

Condition [2] can be shown to reduce to

 !m <
v

2
+

m

v –1
 [3]

Thus, to maintain N’s near clique density, a selected ver-

tex can be missing no more than the number of edges in-

dicated in condition [3].

Our VNS algorithm to find a near clique permits the

same interchange used for cliques: the replacement of w

in N by a pair of adjacent vertices that are neighbors to all

of N – w. If no such w exists, subject to the restriction in

condition [3], the near clique algorithm will accept as a

replacement for w in N, a pair of non-adjacent vertices

that are neighbors to all of N – w (e.g., 5 and 6 for 2 in

Figure 5). This introduces one missing edge. Although

other possibilities (e.g., a 3 for 2 interchange) might re-

spect condition [3], in the interest of speed we restricted

interchange to these two possibilities. Our implementation

iterates to identify disjoint near cliques until no near

clique of size at least 3 can be found.

3.3 Clusters

Clusters are near cliques whose vertices have above

average tension on them. Because they are computed

prior to any search, clusters do not appear in graphs with

uniform edge tightness. Our VNS algorithm to identify

clusters is based upon our algorithm for near cliques. Be-

fore any search, our algorithm calculates the tightness of

each edge in the graph and initializes the (static) tension

of a vertex to the average tightness on its edges. As

propagation reduces the domains, the number of pairs of

possible values excluded by each edge changes. The dy-

namic tension of each future variable v considers only the

edges still present in the graph and is estimated by

 tension v() = 1 –

˜ D w
w!neighbors(v)

"

Dw

w!neighbors(v)

"
 [4]

where ˜
D

w
 is the dynamic domain size of the neighbor w

of v, and Dw. is its original domain size.

Constrainedness impacts local search here in three

ways. First, SVT is modified to prefer simplicial vertices

with above average tension and to exclude vertices of de-

gree 1. Second, selection and extension in VND are

greedy first with respect to tension, and only then with re-

spect to minimum degree in G". (We also tested greedi-

ness with respect first to degree and then to tension, and

found that it performs less well. Data omitted here.) Fi-

nally, the scoring metric for “better” clusters in VND pre-

fers large, dense, highly-constrained subgraphs, that is,

score(S) = |S| # density(S) #tension(S).

4. Testing the hypotheses

All experiments were conducted with ACE (the Adap-

tive Constraint Engine) on solvable problems [11]. Each

hypothesis was tested as a variable-ordering heuristic that

preferred its designated vertices and broke ties with

dom/deg. For example, the cluster hypothesis was tested

by preferring future variables in an identified cluster, and,

if there was more than one such variable, those with the

lowest dom/deg value. (We chose to break ties with

dom/deg rather than dom/ddeg in the interest of speed;

subsequent testing suggested no advantage to dom/ddeg

as a tie breaker.) Any further ties were resolved by lexi-

cal ordering. Values were assigned in lexical order and

arc consistency was maintained with the MAC-3 algo-

rithm with d-way branching [12]. (2-way branching per-

formed the no differently.) For both classes of random

1 1 2 1 2

31 2

3 4

1 2

3 4

5

6

1

3 4

5

6
3 4

6

(a)

(c)(b) (d)

(e) (f)
(g)

Figure 5. Selected steps from the identification of a

near clique with VNS from graph (a). (b) SVT: Begin

with a simplicial vertex of size 0. (c) - (d) VND: Greedily

add vertices adjacent to every selected vertex. (e) Add

a vertex that introduces one missing edge.

(f) Interchange a pair of non-adjacent vertices for a se-

lected one. (g) Shake out two randomly-selected verti-
ces. This process also repeats.

This paper appeared in the Proceedings of ICTAI 2006.

problems, each heuristic was allocated 20000 steps (vari-

able selections and value assignments) to solve a problem.

The benchmark in every class is variable ordering with

dom/ddeg and lexical value assignment. The termination

condition for all subproblem calls (to find a clique, a near

clique, or a cluster) was a fixed time limit of 0.1 seconds.

For repeated calls on a single problem (e.g., to find a se-

quence of c cliques) this could incur a cost of up to c ! 0.1

seconds.

4.1 The problem classes

A composed problem consists of a subgraph called its

central component joined to one or more subgraphs called

satellites. (These problems were inspired in part by the

hard manufactured problems of [13].) A class of com-

posed graphs stipulates the features of its central compo-

nent and its satellites separately, along with the density

and the tightness of the edges (links) between them. In all

our problem classes, links were generated under the same

conditions, with density 0.115 and tightness 0.05. (Satel-

lites are not connected to one another.) The class notation

<n, k , d, t> indicates n variables, maximum domain size

k, density d, and tightness t. Thus the problem class

<22, 6, 0.6, 0.1> 1 <8, 6, 0.72, 0.45> has 30 variables,

each with domain size 6, separated into a central compo-

nent of 22 variables with loose constraints and one satel-

lite of 8 variables that is somewhat more dense and sig-

nificantly tighter. We use randomly-generated solvable

problems in a range of these classes to explore the vulner-

abilities of various heuristics:

• Class A: <22, 6, 0.6, 0.1> 1 <8, 6, 0.72, 0.45> Variable-

ordering heuristics that prefer large degrees should be

misled here, because variable degree in the central com-

ponent will average about twice that in the satellite. As a

result, search will remain in the central component for a

considerable time. Moreover, given the low tightness on

the links and on the edges within the central component,

search will rarely backtrack until it begins to select vari-

ables from the satellite, quite deep in the tree. Variable-

ordering heuristics that prefer small domains will also

flounder on these problems, because low tightness in the

central component and along the links to the satellite will

rarely eliminate any domain values. Only satellite do-

mains are likely to reduce.

• Class B: <22, 6, 0.6, 0.1> 2 <8, 6, 0.72, 0.45> problems

are similar to those in class A, but have 2 satellites, so that

even if the first satellite is solved, traditional heuristics

could still be deflected into the central component. They

also have 38 rather than 30, variables, with satellite verti-

ces less in the minority.

• Class C: <22, 6, 0.5, 0.05> 1 <8, 6, 0.8, 0.5> problems

further exaggerate the difference in tightness between the

central component and its satellite.

• Class D: <22, 6, 0.6, 0.2> 1 <8, 6, 0.72, 0.4> problems

have a central component and satellite with the same den-

sity as those in class A, but more similar tightness.

• Class E: <22, 6, 0.58, 0.23> 1 <8, 6, 0.64, 0.23> prob-

lems have a central component and a satellite with the

same tightness, but the satellite is slightly more dense,

which should subject its variables to greater tension.

• Class F: <20, 7, 0.58, 0.28> 1 <10, 7, 0.58, 0.05> prob-

lems have a central component and a satellite with the

same density, but a loosely constrained satellite. Search

should address the central component first.

• Class G: <15, 7, 0.6, 0.36> 1 <15, 7, 0.6, 0.05> prob-

lems have a central component and a satellite of equal

size and the same density, but the central component is

tighter, so search should address it first.

• Class H: <10, 7, 0.58, 0.05> 1 <20, 7, 0.58, 0.28> prob-

lems have a small central component and a larger, equally

dense, tighter satellite. Search should address the satellite

first. In principle there is no distinction between classes F

and H, but lexical order would otherwise prefer the cen-

tral component, which is larger and tighter in F.

We emphasize that our solver had no access to any in-

formation that would indicate that a particular problem

was composed. To the solver, these problems all “look”

as if they are simply ordinary (i.e., non-composed) CSPs;

only our own inspection has access to the component-

satellite partitioning.

4.2 Detecting crucial subproblems

We identified crucial subproblems in 100 random prob-

lems from each of the composed problem classes, using

the original VNS clique-finding algorithm and our adapta-

tions, described in Section 3. Results appear in Table 1.

The clique finder is known to outperform many other al-

gorithms intended for the same task, and to perform on a

par with the best known local search algorithm as long as

the density of the graph is at least 70% [10]. Although our

Table 1. Detected crucial subproblems, averaged across

100 composed problems. For cliques and near cliques,

this table gives the size of the maximum subproblem iden-

tified in the graph and the median number of disjoint sub-

problems. Only a single cluster was calculated; median

cluster size and its location in the composed problem are

provided.
 Cliques Near cliques Clusters

Class Max No. Max No. SIze Location

A 6.52 5 9.62 4 7 Satellite

B 6.48 6 9.61 4 7 Satellite

C 6.07 5 8.83 4 8 Satellite

D 6.99 5 10.10 4 7 Satellite

E 7.28 5 10.60 3 10 Central

F 6.36 6 9.49 3 9 Central

G 6.19 5.5 9.48 3 9 Central

H 6.33 6 9.56 4 9 Satellite

T"i$ paper appeared in t"e Proceedings of ICTAI 2006.

grap"$ are o/ lo1er den$it23 t"e algorit"m $till per/ormed

1ell5 67erall3 our implementation /ound /e1er 9ut larger

near cli;ue$ t"an cli;ue$ in pro9lem$ /rom a gi7en cla$$5

<ot" cli;ue$ and near cli;ue$ 1ere /ound eit"er 1it"in t"e

central component or 1it"in a $ingle $atellite= none e7er

$traddled a central component and a $atellite at once5

Cluter 1ere larger t"an cli;ue$ in t"e $ame grap"$3

?it" one e@ception3 a clu$ter 1a$ /ound eit"er in t"e cen-

tral component or in a $atellite3 9ut did not $traddle t"em

9ot"5 ?e in$pected t"e identi/ied cluter care/ull25 Bn

cla$$e$ A3 D3 E and /or t"e mo$t part <3 t"e2 1ere al1a2$

re$tricted to t"e $atellite5 F6ne cla$$-< pro9lem "ad a

clu$ter in it$ /ir$t $atellite t"at included a $ingle 7erte@

/rom it$ central component= anot"er cla$$-< pro9lem "ad

a clu$ter o/ $iGe 25 <ot" pro9lem$ 1ere $ol7ed 1it"out

di//icult25I Cla$$-C pro9lem$ "ad cluter re$tricted to t"e

$atellite and o/ten included all o/ it5 Bn cla$$e$ F and K t"e

clu$ter 1a$ al1a2$ re$tricted to t"e central component3 a$

e@pected5 6nl2 cla$$ E o//ered a $urpri$e= alt"oug" 1e

"ad e@pected t"e $lig"tl2 "ig"er den$it2 o/ t"e $atellite to

/orce t"e clu$ter into t"e $atellite3 it ne7er did5

4.3 Using crucial subproblems in global search

T"e reult o/ our "2pot"ei te$ting appear in Ta9le 25

?e te$ted t"e ten$ion "2pot"ei 1it" a "euri$tic t"at pre-

/erred 7ertice$ o/ ma@imum ten$ion3 a$ e$timated 92 t"e

e@pre$$ion in M4O5 6n t"e compo$ed pro9lem$3 ten$ion al-

1a2$ per/ormed at lea$t a$ 1ell a$ dom/ddeg= it $ol7ed

more pro9lem$ or $ol7ed a$ man2 /a$ter5 Nonet"ele$$3

ten$ion /ailed to $ol7e pro9lem$ in cla$$e$ A3 C and K= on

cla$$ < it 1a$ $lo1er t"an $ome ot"er $ucce$$/ul met"od$5

6n cla$$e$ D3 E3 F and E3 "o1e7er3 t"i$ $imple approac"

1a$ among t"e 9e$t met"od$ te$ted5

?e te$ted t"e cli;ue "2pot"e$i$ 1it" a "euri$tic t"at pre-

/erred 7aria9le$ in t"e large$t di$Qoint cli;ue$ o/ $iGe at

lea$t 35 For e@ample3 i/ a pro9lem "ad identi/ied di$Qoint

cli;ue$ o/ iGe 63 53 53 43 33 and 3 F1it" 4 7ertice$ in no

identi/ied cli;ue at allI3 t"en t"e prioritiGed $u9$et$ o/

7aria9le$ 1ould 9e o/ $iGe 63 103 43 and 65 Werel2 $elect-

ing 7aria9le$ in large cli;ue$ did not pro7e e//ecti7e3

"o1e7er5 FData omitted5I 6ur mo$t $ucce$$/ul approac"

$orted cli;ue$ in de$cending order 92 t"eir e$timated

tig"tne$$ on t"eir remaining active variables F/uture 7ari-

a9le$ 1it" a d2namic domain t"at included more t"an one

7alueI5 6ur t"eor2 1a$ t"at t"e a$$ignment o/ a 7alue to

an acti7e 7aria9le 1ould "a7e con$idera9le in/luence on

t"e ot"er acti7e 7aria9le$ in it$ cli;ue5 <ecau$e repeated

calculation o/ t"e tuple$ $upported 1it"in a $u9grap" S i$

too co$tl23 1e e$timate tig"tne$$ a$X

 tightness S() = 1—

˜ D v
v!S

"

Dv

v!S

"
 M5O

1"ere ˜ D
v
 i$ t"e d2namic domain $iGe o/ 7aria9le v in S3

and Dv i$ it$ original domain $iGe5 6n $ome compo$ed

pro9lem cla$$e$ FA3 <3 C3 D and EI3 cli;ue$ $ol7ed at

lea$t a$ man2 pro9lem$ a$ dom/ddeg3 and $ol7ed t"em

/a$ter5 Nonet"ele$$3 on cla$$e$ A3 C and K cli;ue$ /ailed

to /ind a $olution 1it"in t"e $tep limit5 ?it"out Yno1l-

edge a9out ten$ion3 t"e cli;ue "2pot"e$i$ appear$ 7ulner-

a9le5 Bndeed3 it /ailed to $ol7e 7 pro9lem$ t"at dom/ddeg

could $ol7e in cla$$ K3 and clearl2 /loundered a9out t"ere

on man2 ot"er$5 T"i$ i$ liYel2 9ecau$e t"e $atellite and t"e

central component in K "a7e 7irtuall2 identical $tructure3

and cli;ue$ do not con$ider tig"tne$$5

Table 2. Performance results averaged across 100 solv-

able composed problems, with a limit of 20000 solution

steps. Steps and checks have been rounded to the near-

est integer. Noteworthy results are in bold.

Class Method Solved Time Checks

A dom/ddeg 85% 6.59 3609 229621

 Tension 92% 4.22 1955 136623

 Cliques 98% 0.97 473 51350

 Near cliques 98% 1.42 626 52440

 Clusters 100% 0.21 62 4660

B dom/ddeg 99% 0.82 395 22553

 Tension 100% 0.51 228 17587

 Cliques 100% 0.34 105 10556

 Near cliques 97% 1.83 828 70398

 Clusters 100% 0.33 93 9984

C dom/ddeg 90% 5.25 2408 277444

 Tension 90% 4.40 2257 225325

 Cliques 97% 1.60 730 84873

 Near cliques 98% 1.25 461 46082

 Clusters 100% 0.16 62 3854

D dom/ddeg 100% 0.47 127 17253

 Tension 100% 0.29 137 18561

 Cliques 100% 0.28 105 16461

 Near cliques 100% 0.58 113 17812

 Clusters 100% 0.31 121 21287

E dom/ddeg 100% 0.35 119 32870

 Tension 100% 0.35 116 33153

 Cliques 100% 0.38 118 33858

 Near cliques 100% 0.67 117 32999

 Clusters 100% 0.55 121 35936

F dom/ddeg 100% 0.31 111 32141

 Tension 100% 0.33 109 32017

 Cliques 100% 0.37 111 33462

 Near cliques 100% 0.72 109 32547

 Clusters 100% 0.45 105 30633

G dom/ddeg 99% 1.75 360 142370

 Tension 99% 0.93 293 111311

 Cliques 92% 9.49 1773 702746

 Near cliques 100% 0.65 111 33496

 Clusters 100% 0.38 70 9766

H dom/ddeg 100% 0.36 104 29735

 Tension 100% 0.29 103 29663

 Cliques 100% 0.34 104 30122

 Near cliques 100% 0.70 103 29720

 Clusters 100% 0.47 103 29465

This paper appeared in the Proceedings of ICTAI 2006.

We tested the near clique hypothesis with a heuristic

that preferred variables in the largest near cliques of size

at least 3. Merely selecting variables in large near cliques

did not prove effective, however. (Data omitted.) Our

most successful approach sorted near cliques in descend-

ing order by tightness on their future variables, using the

estimate in [5]. The performance of near cliques on com-

posed problems was uneven. On the relatively easy com-

posed classes (D, E, F, and H), near cliques were about

twice as slow as cliques, despite virtually no difference in

number of steps or checks. Near cliques solved fewer

class B problems than cliques did, and solved the same

number of class A problems more slowly. Near cliques

solved one more class C problem than cliques did. On

composed class G, near cliques solved all the problems

but clusters did better.

The performance of clusters on the composed prob-

lems was solid; it was the only method that solved every

problem in every class within the step limit. We tested the

cluster hypothesis with a heuristic that preferred variables

in the single largest cluster of size at least 2. In classes E,

F and H, clusters were slower than dom/ddeg. The slightly

tighter satellites in class E did not, it turned out, warrant

more attention, so the computation of a cluster was un-

necessary for efficient search. In class F, both dom/ddeg

and clusters focused search in the central component, so

again the time devoted to VNS was unnecessary. Simi-

larly, in class H, both approaches focus on the satellite.

5. Discussion

We do not claim that a cluster is a backdoor, but on our

composed problems it functions as if it contains one. On

composed problems dom/ddeg becomes mired in areas of

the graph that will not prove fruitful, whereas clusters

succeed because they identify a highly-constrained, dense

subgraph in advance.

The implementations for cliques, near cliques, and clus-

ters find crucial subproblems quickly and accurately.

There was no appreciable difference is search decisions

when each subproblem call was allocated 10 seconds in-

stead of the 0.1 second used for the data presented here.

When cliques and near cliques can both solve all the prob-

lems in a composed problem class, near cliques are al-

ways slower. This is because VNS extends its search as it

discovers larger objects, and near cliques are about 50%

larger than cliques in these problems. Judged against an

exponential algorithm on hundreds of both random and

composed CSPs, our VNS implementation found a maxi-

mum clique every time. On about 3% of the problems,

however, that clique was detected second, and was one

larger than the first.

On a larger set of Class-A problems, Table 3 compares

the performance of our methods to other popular variable-

ordering heuristics: minimize the dynamic domain size

(min ddom), maximize the original degree (max deg),

dom/deg, dom/ddeg, maximize the weighted degree

(wdeg), and minimize the ratio of dynamic domain to

weighted degree (dom/wdeg). (The weighted degree of a

variable is the sum of the dynamic edge weights, as com-

puted in [14], on which it is incident.) The edge weight

heuristics perform well, but they still took more time,

more steps, and more constraint checks because they learn

from failure. In a composed class where the size differ-

ence between the central component and its satellite(s)

was further exaggerated, edge weights would take longer

to learn and the edge weight heuristics would be slower

still. The work in [7] uses extensive local search in sparse

coloring problems to establish edge weights with which to

identify hard subproblems prior to global search, but this

too is a form of learning. In contrast, clusters do not have

to err and retract values in order to succeed. Indeed, they

solved 136 of the 400 Class-A problems with no retrac-

tions at all.

Table 3. Average performance of alternative heuristics on

a larger set (400) of class-A problems.

Method Solved Time Steps Checks

min ddom 95.50% 1.12 566.70 40108.78

max deg 83.75% 3.73 1928.88 87962.25

dom/deg 82.25% 4.00 1999.98 118754.01

dom/ddeg 91.25% 2.17 1069.06 77710.32

wdeg 100.00% 0.31 79.97 6159.94

dom/ wdeg 100.00% 0.29 84.04 6804.63

Tension 92.25% 7.41 1885.09 139161.67

Cliques 97.75% 2.27 636.10 61612.08

Near cliques 97.75% 2.64 584.79 52142.08

Clusters 100.00% 0.22 61.81 4636.89

As corroborating evidence, ACE, the program used here

to test the heuristics, can also be used to learn weights for

known heuristics. Highly-weighted heuristics are those

that succeeded in solving problems in a particular class.

For class-A problems, the learning version of ACE de-

termined that min ddom, max deg, and dom/deg all per-

formed worse than random decisions, that is, that they are

in effect, anti-heuristics for this problem class [15].

Table 4. Performance on 100 geometric problems where

clusters are inapplicable.
Heuristic Solved Time Steps Checks

dom/ddeg 100% 9.89 424.76 329008.53

Tension 100% 7.20 359.95 325046.60

Cliques 100% 8.89 530.08 411413.87

Near cliques 100% 5.83 319.53 258948.42

In a structured CSP with uniform tightness, clusters

cannot be computed, but near cliques are effective. Con-

sider, for example, a geometric CSP, constructed by scat-

tering a set of points at random on the Cartesian plane —

each point becomes a variable in the problem; constraints

are formed among any pair of variables within a some

specified distance of each other, with additional con-

This paper appeared in the Proceedings of ICTAI 2006.

straints added to connect the constraint graph [16], which

is ridden with tightly connected sets of vertices. We gen-

erated 100 geometric problems with 50 variables domain

size 10, resultant density 0.4, and tightness 0.82. The 6.05

cliques in these problems averaged 12.65 variables; the

5.39 near cliques averaged 14.28 variables. As Table 4

indicates, all three of our applicable methods solved these

problems in 20000 steps, and did so faster, despite the

preliminary time required to detect crucial subproblems.

Purely random problems should not display structure.

Nonetheless, we tested our methods on two challenging

classes of them: <50,10, 0.38, 0.8> with fixed edge tight-

ness and <50,10, 0.38, 0.8> with varying edge tightness.

Although they are larger than the composed problems,

these random problem had smaller maximum cliques and

near cliques (5.89 and 5.86 variables, respectively). They

also had more of these small subproblems: a median of 10

cliques and 7 near cliques. Clusters, by definition, cannot

be detected in fixed random problems. In random varying

problems, no cluster was detected in one problem; in an-

other the cluster was size 4; in all the other problems clus-

ter size ranged from 6 to 9 and averaged 7.53, again

smaller than those in the composed problems.

The performance results on random problems indicate

that when structure is not intrinsic to a problem, clusters

are ineffective. On random fixed problems, cliques and

near cliques solved a few more problems than dom/ddeg,

but tension solved 47% more problems than dom/ddeg

within the allotted number of steps. Surprisingly, tension

made less of an impact (21% more solved problems) on

random varying problems. Our explanation is that, al-

though tension appears to be more of a factor in varying

problems, a high-tension vertex may still not have enough

neighbors to warrant attention very early in search. Den-

sity still matters. Nonetheless, clusters performed poorly.

Inspection indicates that the average degree of vertices in

the clusters tended to be substantially lower than the aver-

age degree in the near cliques. That, combined with the

fact that only a single cluster was used, accounted for

their poor performance. The moral here is that if a cluster

is present because the problem is structured, it can be de-

tected and exploited; if it is not, what passes for a cluster

may be misleading.

Other graph-based approaches to solving CSPs have

sought to decompose the constraint graph to facilitate

search [17-21]. None of them, however, addressed the

tightness of the constraints in any way. Clusters derive a

substantial advantage because they consider more than

mere structure.
Future work includes variations on the use of crucial

subproblems and specialized propagation to work with

these subproblems. Clusters could also support search for

all solutions to a problem, and provide an explanation to

the user of the particular difficulties that are likely to arise

before a solution is attempted.

Acknowledgements: We are indebted to Pierre Hansen

for his enthusiasm about VNS and to Gene Freuder,

whose breadth of knowledge and curiosity about cliques

inspired this work. Thanks also to Tiziana Ligorio, Saad

Mneimneh, and Smiljana Petrovic for many interesting

discussions. This work was supported in part by NSF IIS-

0328743, PSC-CUNY, and Science Foundation Ireland

under Grant 00/PI.1/C075.

References

[1] Williams, R., C. Gomes and B. Selman. On the Con-

nections between Heavy-tails, Backdoors, and Restarts in

Combinatorial search. In the Proceedings of SAT 2003.

2003.

[2] Dechter, R. and J. Pearl. The cycle-cutset method for

improving search performance. In the Proceedings of

Third Conference on Artificial Intelligence Applications.

1987. p. 224-230.

[3] Hansen, P. and N. Mladenovic, Variable Neighbor-

hood Search, in Handbook of Metaheuristics, F. W.

Glover and G. A. Kochenberger, Editors. 2003, Springer:

Berlin.

[4] Bessière, C. and J.-C. Régin. Enforcing arc consis-

tency on global constraints by solving subproblems on the

fly. In the Proceedings of Fifth International Conference

on Principles and Practice of Constraint Programming

(CP-99). 1999. p. 103-117.

[5] van Hoeve, W. J. and I. Katriel, Global Constraints, in

Handbook of Constraint Programming, F. Rossi, P. Van

Beek and T. Walsh, Editors. 2006: Prague.

[6] Hallodórsson, M. M. and H. C. Lau, Low-degree

Graph Partitioning via Local Search with Applications to

Constraint Satisfaction, Max Cut, and Coloring. Journal

of Graph Algorithms and Applications, 1997. 1(3): p. 1-

13.

[7] Eisenberg, C. and B. Faltings. Using the Breakout Al-

gorithm to Identify Hard and Unsolvable Subproblems. In

the Proceedings of Principles and Practice of Constraint

Programming CP-2003, LNCS 2833. 2003: Springer Ver-

lag. p. 822-826.

[8] Beale, S., S. Nirenburg and K. Mahesh. HUNTER-

GATHERER: Three Search Techniques Integrated for

Natural Language Semantics. In the Proceedings of AAAI-

96. 1996. Portland: AAAI. p. 1056-1061.

[9] Aardal, K. I., S. P. M. van Hoesel, A. M. C. A. Koster,

C. Mannino and A. Sassano, Models and solution tech-

niques for frequency assignment problems. 4OR: A Quar-

terly Journal of Operations Research, 2003. 1(4): p. 261-

317.

[10] Hansen, P., N. Mladenovic and D. Urosevic, Vari-

able neighborhood search for the maximum clique. Dis-

crete Applied Mathematics, 2004. 145: p. 117-125.

[11] Epstein, S. L., E. C. Freuder and R. J. Wallace,

Learning to Support Constraint Programmers. Computa-

tional Intelligence, 2005. 21(4): p. 337-371.

This paper appeared in the Proceedings of ICTAI 2006.

[12] Mackworth, A. K., Consistency in Networks of Rela-

tions. Artificial Intelligence, 1977. 8: p. 99-118.

[13] Bayardo, R. J. J. and R. Schrag. Using CSP Look-

Back Techniques to Solve Exceptionally Hard SAT In-

stances. In the Proceedings of Second International Con-

ference on Principles and Practice of Constraint Pro-

gramming CP-1996. 1996. p. 46-60.

[14] Boussemart, F., F. Hemery, C. Lecoutre and L. Sais.

Boosting systematic search by weighting constraints. In

the Proceedings of ECAI-2004. 2004: IOS Press. p. 146-

149.

[15] Petrovic, S. and S. L. Epstein. Learning Weights for

Heuristics that Solve Constraint Problems. In the Pro-

ceedings of Workshop on Learning to Search at AAAI-

2006. 2006. Boston.

[16] Johnson, D. B., C. R. Aragon, L. A. McGeooh and C.

Schevon, Optimization by Simulated Annealing: An ex-

perimental evaluation; Part 1, Graph partitioning. Opera-

tions Research, 1989. 37(865-892).

[17] Pearson, J. and P. G. Jeavons, A Survey of Tractable

Constraint Satisfaction Problems. 1997, Royal Holloway

University of London: London.

[18] Dechter, R. and J. Pearl, Tree Clustering For Con-

straint Networks

. Artificial Intelligence, 1989. 38: p. 353-366.

[19] Dechter, R., Enhancement schemes for constraint

processing: backjumping, learning and cutset decomposi-

tion. Artificial Intelligence, 1990. 41: p. 273-312.

[20] Gompert, J. and B. Y. Choueiry. A Decomposition

Techniques For CSPs Using Maximal Independent Sets

And Its Integration With Local Search. In the Proceed-

ings of FLAIRS-05. 2005. Clearwater Beach, FL: AAAI

Press.

[21] Gyssens, M., P. G. Jeavons and D. A. Cohen, De-

composing constraint satisfaction problems using data-

base techniques. Artificial Intelligence, 1994. 66(1): p.

57-89.

