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Abstract 
    This paper provides a starting point for the development of 

metacognition in a common model of cognition. It identifies 
significant theoretical work on metacognition from multiple 
disciplines that the authors believe worthy of consideration. 
After first defining cognition and metacognition, we outline 
three general categories of metacognition, provide an initial 
list of its main components, consider the more difficult 
problem of consciousness, and present examples of 
prominent artificial systems that have implemented 
metacognitive components. Finally, we identify pressing 
design issues for the future.  

 

1. Introduction 
The goal of this paper is to begin the development of a 
consensus model of metacognition that spans all relevant 
fields, including cognitive science, philosophy, 
neuroscience, and robotics. In what follows, we first define 
metacognition, then outline general categories of it, list its 
major components, discuss its relationship to consciousness, 
address key design issues, and present case studies with 
metacognition successfully implemented computationally. 
Finally, we briefly address the next steps for the project.  
 

2. Metacognition Defined 
To define metacognition, we must begin with cognition 
itself. Cognition is defined differently across fields and 
contexts. Because an intelligent agent executes a repeating 
perceive-decide-act cycle, we define cognition to capture 
that cycle, thus incorporating perception and action (Newell, 
1990). Here, “perceive” subjects the agent to a continual 
barrage of signals (e.g., visual, auditory, olfactory) that 
describe the agent’s context. These signals are necessarily a 
partial description of the environment in which the agent 
exists. The “decide” portion of the cycle — the focus of this 
paper — is also treated differently across fields. Here, it is 
used it broadly, to capture intermediate processes that 

culminate in a decision about which action(s) to execute. 
Necessitated by the incomplete, and possibly inconsistent, 
messages an intelligent agent receives, decision 
incorporates, but is not restricted to, a wealth of processes. 
These include, attention, reasoning, learning, planning, 
imagination, conscious access, and communication and 
understanding through natural language (Dehaene, 2014). 
Finally, “act” represents the ultimate outcome of the 
cognitive cycle, one that typically results in external motor 
responses (e.g., via muscles, actuators). 
 Simply put, metacognition is cognition about cognition. 
Thus it includes, for example, reasoning about reasoning, 
reasoning about learning, and learning about reasoning 
(Jackson, 2014; Kralik, 2017; Nelson, 1992). Broadly 
construed, it is any cognitive process or structure about 
another cognitive process or structure (e.g., data about 
memory held in memory). Here we focus on cognitive 
processes applied to cognitive processes (Jackson, 2014), a 
kind of recursive processing illustrated in Fig. 1. If a 
particular process is of Type-X (where X is perception, 
decision, or action) and receives input from another Type-X 
process, it is considered a metaprocess, and therefore 
metacognition. In fact, it is considered metacognitive if and 
only if the process receives input from, sends output to, or 
both receives from and sends to the same process type.  
 

 
Figure 1. A process is metacognitive if and only if it receives input 
from, sends output to, or both receives from and sends to the same 
process type. A process type is perception, decision, or action. 
 

 Metacognition addresses what the system knows, the 
importance of what is known, as well as what has been 



remembered and what is worth remembering or forgetting. 
Its advantages include arbitration underlying competing 
functions; modulation to help finetune other cognitive 
processes; safeguards against confusion and errors from 
lower cognitive processes (especially those designed for 
efficiency and specialization); and data management to 
reduce inefficiencies (e.g., removal of obsolete information 
by forgetting). The next section further clarifies this 
definition.  
 

3. General Categories of Metacognition 
This section delineates general categories of human-level 
metacognition based on their input and output. It considers 
these categories in turn and provides prominent examples of 
each, along with empirical evidence and a description of 
their key properties. For clarity and brevity, the focal central 
process is “decide.” We align metacognition closely with 
cognition itself by first identifying cognition as Category 0, 
the mapping of perception into action (Fig. 2).  
 

 
Figure 2. Four categories consistent with Figure 1. Category 0 is 
cognition itself, with primary input from perception and primary 
output to action control. Categories 1, 2, and 3 comprise 
metacognition. Category 1: Primary input and output from and to 
decision processes. Category 2: Primary input from decision 
processes; primary output feeds forward to action control. 
Category 3: Input from perception; primary output to decision 
processes. 

Category 1  
For Category 1 metacognition, signals from other decision 
processes provide the main input; Category 1’s output is 
primarily directed at other decision processes, with the 
intent to modulate or control them (Fig. 2). Examples from 
cognitive neuroscience and cognitive science provide a 
clearer view of Category 1 metacognition.  
 

Arbitration of Model-Free vs Model-Based Reinforcement 
Learning. Decision neuroscience has proposed two distinct 

types of reinforcement learning in the human brain: model 
free (MF) and model based (MB), which account for 
habitual and goal-directed behavior control, respectively 
(Doya, 1999; Daw et al., 2005). A “arbitrator” here is a 
meta-control mechanism between MB and MF systems (Lee 
et al., 2014). An input to the arbitrator is the estimated 
reliability of each system, which is computed from the 
average amount of state prediction errors and reward 
prediction errors, respectively. The arbitrator then 
determines the amount of influence MB and MF should 
have. Neural evidence suggests that ventrolateral prefrontal 
cortex (vlPFC) computes reliability, which in turn results in 
the model choice probability (PMB). Given PMB, vlPFC 
chooses the more reliable of MB or MF to directly control 
human behavior.   
 

Self-Representation. A self-concept is the ability to situate 
ourselves in the world and reflect on how we act and feel. It 
is presumed to arise from the lower processes that define 
ourselves in the first place, that is, from other processes, 
including cognitive ones. Cognitive neuroscience research 
has identified a brain region (ventral medial prefrontal 
cortex) that mediates this self-concept. It activates when we 
think about ourselves as opposed to others (Gazzaniga, Ivry, 
& Mangun, 2013). The way a metacognitive process uses a 
self-representation determines its category. The next 
example demonstrates its use in Category 1 metacognition. 
 

Reflection and Self Improvement. Having a self-concept 
enables multiple important abilities, including that of self-
reflection, and thus of self-modification and improvement. 
Such behavior requires that a system assess the quality of its 
own performance with respect to some standard or 
benchmark (including its own past behavior). The FORR 
cognitive architecture, for example, can manipulate both the 
value it assigns to its problem-solving mechanisms and the 
order in which it references them (Epstein & Petrovic, 
2011). Moreover, it can develop provisional new heuristics, 
observe the impact they might have had were they to 
participate in decisions, and gradually incorporate the most 
reliable of them into its decision making (Epstein, Freuder, 
& Wallace, 2005).  
 

Self-control. Category 1 self-control is well illustrated by a 
high-profile functional imaging study in which the brain 
activity of dieters was compared to that of others. The study 
found that dieters’ higher-level health or weight-loss self-
concept based interest modulated their lower-level valuation 
process in the striatum. In other words: it actually lowered 
the value for junk food rather than permit a direct 
competition between the choice outcomes of two higher-
level and lower-level behavioral control systems (Hare, 
Camerer, & Rangel, 2009). 
 

Artificial Category-1 Metacognition. Further evidence for 
the use of this category of metacognition in artificial systems 
include Clarion (Coward & Sun, 2004), MIDCA (Cox et al., 



2016), FORR (Epstein, 1994), Sigma (Rosenbloom, Demski 
& Ustun, 2016) and Soar (Rosenbloom, Laird & Newell, 
1988). The key aspect here is how to develop a 
representational and processing space that is connected to 
but separate from the base space in which direct interaction 
with the world occurs.  The first two of these architectures 
provide a separate module for metacognition, while the 
latter three essentially recur on the base space to do this.   
 
Category 2 
For Category 1, input to the metacognitive processes is 
output from other decision processes (or other signals 
derived during the decision process), and output is sent to 
decision processes (rather than, e.g., to actuators). In 
contrast, Category-2 metacognitive processes do more than 
merely control/modulate lower-level, behavioral-control 
systems. Category-2 metacognitive processes are 
themselves behavioral-control/problem-solving systems; 
they develop problem representations that lead to decision 
making and action selection. A key feature of Category-2 
metacognition is its use of input from other, lower-level 
decision processes to inform its own decision making.   
Social cognition is a particularly salient example of 
Category 2. 
 

Social cognition. A social setting (e.g., a multiagent system) 
often requires that an agent have a self-concept, a 
computational model of human decision making that models 
the agent within a multiagent environment. Such a self-
concept considers possible scenarios (i.e., decision options) 
with respect to potential social interactions, possibly from a 
game-theoretic perspective. To the extent that the self-
concept models other agents the way it models itself, higher-
level social cognition also provides an example of 
metacognitive elements in higher-level cognition. More 
specifically, extensive research in social psychology and 
neuroscience has established that people model each other’s 
beliefs, goals, and intentions, and think about their minds 
much the way they think about themselves (Gazzaniga et al., 
2013). Note, however, that all of social cognition is not 
necessarily meta-level or even high-level; it too shades from 
simple (e.g., dominance hierarchies) to complex (e.g., 
theory of mind). 
 Social constructs may be based on larger social groups, 
especially social rules (from norms and conventions to 
laws). Whether such rules are meta-cognitive depends on 
exactly how they are processed by individuals and/or 
modeled by artificial systems. Again, this can range from 
simple (e.g., rules as punishment to avoid) to complex (e.g., 
moral principles) (Gazzaniga et al., 2013). 
 Finally, much higher-level human cognition requires 
sophisticated cognitive machinery to coordinate with other 
cognitive systems. This is especially clear with social 
cognition, where almost any problem (e.g., organizing 
meals, working, raising a family) must pass possible 
solutions through a social filter. The filter determines 

whether a possible choice remains viable given the interests 
and dynamics of others. Such interaction across different 
content domains (e.g., finding food vs. sociability) 
ultimately requires sophisticated coordination among a set 
of cognitive processes, and therefore metacognition. 
 

Artificial Category-2 Metacognition. Evidence for 
Category-2 metacognition in artificial systems includes 
developed computational models of social cognition 
(Alechina et al., 2012; Lee, Kralik, & Jeong, 2018a, 2018b; 
Lee et al., 2014a, 2014b; Pynadath & Marsella, 2005; 
Pynadath, Rosenbloom & Marsella, 2014) inspired by 
socio-cognitive theory on human decision making 
(Bandura, 2001). For example, regarding higher-level 
societal understanding, N-2APL (Alechina et al., 2012) and 
N-Jason (Lee et al., 2014a, 2014b) have metacognitive 
components that enable decision making with social norms. 
Their cognitive agents can decide whether to follow their 
individual goals or deontic goals (related to obligation and 
permission) triggered by social norms. This allows a 
cognitive agent to be autonomous over social constructs, 
that is, it can choose the normative goals or abandon 
compliance with them. 
 
Category 3 
Category-3 metacognition includes processes that receive 
their input primarily from feedforward representations of 
environmental stimuli (e.g., from perceptual processes), but 
primarily project to other cognitive processes (Fig. 2). A 
prominent example from cognitive neuroscience is context 
and abstract task relevant information. Evidence from 
cognitive neuroscience shows that higher-order brain 
regions (e.g., regions in the prefrontal cortex) provide more 
sophisticated environmental information to basic decision-
making systems (Gazzaniga et al., 2013). 
 
Summary 
The categories of metacognition outlined here are meant to 
clarify the broad possibilities of what constitutes 
metacognition. In practice, the boundaries between 
categories themselves can become fuzzy and gradated, 
especially in sufficiently complex computational systems. 
Nonetheless, this categorization helps clarify the general 
characteristics of cognitive and metacognitive processes. 
The next section provides a list of some of the major 
components of metacognitive decision processes. 
 

4. Components of Metacognition 
This section identifies the components of metacognition for 
which substantial empirical evidence exists (e.g., Gazzaniga 
et al., 2013). This list (Fig. 3) currently centers on Category-
1 metacognition, with input, central focus, and output all as 
decision processes (see Fig. 2).  
 
 



 
 

Figure 3. Components of Category 1 Metacognition. 
 

 Monitoring. Monitoring occurs when a metacognitive 
process receives input from the cognitive processes it 
attempts to influence. In the brain, for example, evidence 
implicates particular brain regions (e.g., medial prefrontal 
cortex, and in particular, anterior cingulate) involved in 
monitoring (Gazzaniga et al., 2013). 
 Evaluation. Once activity from the monitored cognitive 
systems is received, the metacognitive system must then 
evaluate it. A particularly strong example of this is evidence 
that a region of the prefrontal cortex in the human brain 
arbitrates among candidate behavioral-control systems via 
an evaluation process that compares their relative likelihood 
of success (see Category 1 Section above) (Kowaguchi, 
Patel, Bunnell, & Kralik, 2016; Lee et al., 2014).   
 Planning. Because evaluation by higher-level 
metacognitive control systems is relatively sophisticated, 
evaluation should include an assessment of future success as 
well as identification of the best action policies to achieve 
it. Planning systems can be quite complex. For example, 
they may have goal hierarchies that require dynamic 
management to use and update them during task completion 
(Gazzaniga et al., 2013).  
 Mental Simulation. Similar to and often in conjunction 
with planning, mental simulation provides the ability to play 
out imagined possible scenarios before a given action is 
chosen. Such simulations require relatively rich mental 
models of the problem environment. Consciousness, 
described in Section 5, also appears to play an important role 
in forming mental models; it integrates aspects of the 
present, the past, and the future as part of a correlated scene. 
 Control. Category-1 metacognitive processes are 
dedicated to coordinating (or orchestrating) activities of 
lower-level behavioral-control systems. They include 
arbitrating among systems (i.e., choosing among mutually 
exclusive ones) and multitasking, including such sub-
processes as scheduling and task switching. Control by 
Category-1 processes is normally expected to either 
modulate or bias the behavioral-control systems it 
addresses.  
 This list of components is merely a starting point. Other 
functionality expected to be added includes those related to 
self-reflection and self-improvement (e.g., understanding, 
awareness, generating, organizing, maintaining, modifying, 
debugging, healing, configuring, adapting) (Project CogX, 
http://cogx.eu/; Lee et al., 2018b; Sampson, Khan, 
Nisenbaum, & Kralik, 2018). We turn next to perhaps 
the most quintessentially ‘meta’ cognition: conscious 
processing and consciousness. 
 

5. Consciousness 
Consciousness involves perceiving, thinking about, and 
experiencing elements derived from other decision 
processes (e.g., our concept of ‘self’). Thus, consciousness 
is also a form of metacognition. The ‘Hard Problem’ 
(Chalmers, 1995) is explaining the first-person, subjective 
experience of human consciousness that goes from self-
concept to the interpretation of our experiences as sentient. 
How and why, for example, people are able to experience 
things like love, the color red, self-doubt (Damasio, 1996; 
Dennett, 1991; Gazzaniga et al., 2013).  To date, there is no 
philosophical or scientific consensus on this, but there are 
notable, important developments, which we outline here. 
 Tononi (2008) and Tononi and Koch (2015) described 
and refined integrated information theory (IIT) as a 
theoretical framework to describe and measure 
consciousness.  IIT argues that a theory of consciousness 
must begin from a set of axioms based on the phenomena to 
be explained, and then derive a set of postulates from those 
axioms. Central to IIT is the notion that a proper theory of 
consciousness must first consider the essential properties of 
the phenomenon that the conscious being has had, that is, its 
own experience of the phenomenon. McGreggor (2017) 
established a theoretical framework that allows such 
experiences to be considered as proper knowledge 
representations, a crucial connection between the various 
theories of consciousness and the analytical techniques of 
cognitive science and AI. 
 Jackson (2014) discussed how computers could 
potentially obtain enough self-awareness to achieve human-
level AI by adapting the ‘axioms of being conscious’ 
proposed by Aleksander and Morton (2007) for research on 
artificial consciousness. For a system to approach artificial 
consciousness, there are a set of metacognitive 
“observations” it must achieve: 
 

Observation of an external environment. 
 Observation of itself in relation to the external environment. 
 Observation of internal thoughts. 
 Observation of time: the present, the past, and potential futures. 
 Observation of hypothetical or imaginative thoughts. 

Reflective observation: Observation of observations. 
 

To attain these observational abilities, an AI system would 
need to create and process data structures that represent 
them. Indeed, there appears to be nothing inherently 
impossible about creating such data structures. Jackson 
(2014, p.245) discussed how the potential to support 
artificial consciousness is illustrated by the TalaMind 
prototype demonstration system. 
 Dehaene (2014) described consciousness as “the mind’s 
virtual reality simulator.” The functions of consciousness, 
he argued, are the stable retention of information (as 
opposed to the fleeting signals of perception), the 
compression of information to facilitate routing and further 
processing, and the ability to broadcast information through 



language. These capabilities should also be considered in a 
cognitive model of consciousness. 
 An interpreter and inner speech are also critical features 
of human consciousness. The former is a unified cognitive 
process that mediates the sense of “I” or “me”, and the 
control we believe we have over our decisions (Gazzaniga, 
2011). Functionally, this interpreter is an overarching 
cognitive system that organizes the “findings” of the 
multiple other lower-level processes to produce one 
coherent story (and sense of self). This interpreter appears 
to seek a consistent narrative that makes sense of the world 
causally, with this story considered as a set of higher-level 
beliefs. The interpreter can then use these beliefs to 
manipulate and affect the agent’s goal-directed behavior. 
Consciousness thus appears to have aspects drawn from 
Types 1, 2 and 3 metacognition — to orchestrate other 
systems, and to follow its own muse and decision policies. 
Representation of the interpreter and inner speech in 
metacognition would support several of the axioms of 
consciousness: observation of internal thoughts, observation 
of hypothetical or imaginative thoughts, and reflective 
observation. 
 Johnson-Laird (1983, pp. 448-477) discussed how a 
computational system could approach artificial 
consciousness. He reasoned that such a system must process 
in parallel, and that a form of self-awareness could result if 
the system could recursively represent mental models within 
mental models and have a higher-level model of its own 
operating system. 
 Beyond the emulation of human consciousness, Sanz 
(2007) offered an alternative perspective to Aleksander and 
Morton’s axioms. Gamez (2017) offered an approach to 
neutralize philosophical conundrums around consciousness 
to ground a scientific, measurable theory that can be used in 
the analysis of consciousness in metacognition for both 
humans and machines. 
 Finally, in neuroscience, affective processing has been 
identified as playing a key role in conscious experience 
(Damasio, 1996; Gazzaniga et al., 2013). In short, the 
sentience that humans feel derives at least in part from a 
highly integrated (and likely “resonant loop”) signal of both 
deeply bottom-up body-state signals with those from the 
highest top-down conceptual understanding. Progression 
towards a greater understanding will therefore require focus 
on the processes involved in the large-scale integration of 
cognitive processing. Metacognition should play a 
prominent role, since it focuses on the mechanisms of 
system-wide integration. 
 

6. Design Issues and Case Studies 
To help provide a roadmap for constructing models of 
metacognition, this section presents general design issues, 
followed by case studies where metacognitive components 

have been successfully added to working computational 
models of cognition. 
 
6.1 Design Issues for Metacognition 
 

The homunculus fallacy A persistent issue for 
metacognition concerns whether to consider metacognition 
as a central module for executive control. This can give rise 
to the homunculus fallacy, where a little person inside one’s 
brain reasons like an intelligent being to deal with the 
situation it observes. Such reasoning leads to an infinite 
regress: to explain how the homunculus functions, one must 
assume that it has a mind, which itself implies another 
homunculus inside it, which must contain yet another 
homunculus, and so on. One possible solution to this 
problem is to provide a priori constraints on what the 
highest-level executive system should entail, both in what it 
can achieve and how it is constructed. From a functional and 
architectural perspective, it may be best to conceive of 
metacognition not as a collection of parts but holistically, as 
a whole distributed over many components. Ultimate 
understanding is not located in any one of the components, 
but in the network of their relations or interconnections, and 
in their inter-processing. 
 

Internal languages of thought. In principle, we can 
generate arbitrarily long recursive metacognitive processes 
and their output (e.g., long, embedded sentences), In 
practice, however, probably only a few combinations 
require execution in a metacognitive system. One general 
approach would be to build additional components for the 
model once sufficient evidence supports them. Another 
design possibility, however, would make the system itself 
able to add a metacognitive process when it is needed. This 
could, for example, be prompted by a decision point relative 
to an ongoing process. For example, “I don’t know how to 
do X, so I can try to learn how to do X.” Systems could also 
be designed to halt metacognitive processes when they are 
no longer deemed worthwhile. This might use mechanisms 
corresponding to an ‘economy of mind’ (Wright, 2000). In 
addition, recursively nested mental models (Johnson-Laird, 
1983 et seq.), and a ‘natural language of thought’ (Jackson, 
2018) can be tools for representation and implementation of 
metacognition.  
 A multi-language approach to an internal language of 
thought proposed a cognitive hierarchy of logical languages. 
Other logical language families (e.g., AI’s description logics 
or classical mathematical logic with its propositional logic, 
first-order and higher-order predicate logics) emphasize 
cognitive adequacy as measured by time complexity, 
following Newell (1990). In particular, the continuous 
domains of perception require high-complexity description 
logics built on taxonomic reasoning. Decision processes, 
however, must handle perceptual input much faster than 
taxonomic inference. Accordingly, a logical hierarchy was 
developed that is based on a minimalistic language for 
reasoning about continuous domains equivalent to a 



fragment of propositional logic, that is, fast enough for real-
time processing at the time scale higher end of perception 
and the lower end of reasoning (see Schmidtke, 2018). A 
recent result has shown that, through a strictly logical, 
ontology-free, and particularly simple reasoning 
mechanism, this primitive language’s formulae give rise to 
graphical representations analogous to the content expressed 
in the formulae (Schmidtke, 2018). This result opens new 
ways to connect the lower end of decision with the higher 
end of perception. It is also fundamental for higher cognition 
because it provides a simple mechanism for the construction 
of mental images from logical representations, which can be 
employed for the construction or reconstruction of 
remembered, inferred, or communicated contents. That is, 
the hierarchy can provide a primitive step that facilitates 
metacognitive tasks.  
 

Limitations of human cognition Finally, an important 
design consideration is the extent to which any model of 
cognition — including metacognition — should mirror 
human abilities. On the one hand, human cognition provides 
an important existence proof of some of the highest 
cognitive and metacognitive abilities known to exist, yet it 
often makes simple logical errors (Johnson-Laird, 1983; 
Kahneman, 2011). Thus, there may be a downside to 
building cognitive systems that fall into the same logical 
traps as people. Perhaps we should not be guided solely by 
human models. 
 

6.2 Metacognition in Cognitive Architectures 
Computational frameworks for cognition have tackled 
metacognition from different perspectives depending on the 
underlying neuropsychological and psychological theories 
used for their construction. Next, we briefly present three 
case studies for metacognition: the ACT-R (Anderson, 
2009), CLARION (Sun, 2007), and LIDA (Franklin, 2016) 
cognitive architectures.  
 While a metacognitive module is not included in the core 
ACT-R architecture, recent work has developed a 
metacognitive module (Anderson & Fincham, 2014) that 
consciously assesses what one knows and how to extend it 
to solve a problem. This activity is associated with the 
rostrolateral prefrontal cortex (RLPFC), which has been 
linked to reflective functions (e.g., prospective memory, 
reasoning about analogies). The metacognitive module 
implements this activity by reflecting on declarative 
representations of cognitive procedures. Use of the 
metacognitive module was illustrated with Exception and 
Regular (simpler) mathematical problem solving. Solution 
of Exception problems required the modification or 
replacement of elements in procedures for solving Regular 
problems. The metacognitive module builds a 
representation of the required elements. The working 
memory holds the problem representation, while the 
metacognitive module holds declarative representations of 

procedures to be modified and “rehearses” the modified 
procedure. 
 CLARION’s hybrid architecture comprises two 
representation levels; symbolic and subsymbolic. It is based 
on Flavell’s notion of metacognition as the active 
monitoring and consequent regulation and orchestration of 
cognitive processes in relation to the cognitive objects and 
data of which they bear) (Flavell, 1976). CLARION uses 
multiple metacognitive criteria to decide when and how to 
use symbolic or sub-symbolic processing; a particular 
learning method (e.g., reinforcement, supervised, 
unsupervised) or combination of them; and a specific 
reasoning mechanism (e.g., rule-based, similarity-based). 
  CLARION also provides cross-layer learning 
mechanisms to synchronize (accommodate and assimilate 
knowledge) in both symbolic and subsymbolic layers, to 
enable both top-down and bottom-up learning. Moreover, 
CLARION includes a variety of metacognitive processes to 
set parameters (e.g., learning rates, thresholds, temperature 
in stochastic decision making, action costs); set dynamic 
goals driven by competition; and set reinforcement 
functions to measure the agent’s degree of satisfaction. 
CLARION’s metacognition thereby depends heavily upon 
interaction with a motivational subsystem concerned with 
drives and their interactions. 
 Unlike CLARION, LIDA does not define a specific 
module or subsystem for metacognition; instead, 
metacognition emerges from the interaction of cascading 
sequences of cognitive cycles corresponding to action-
perception loops. Metacognition in LIDA is based on 
Sloman’s classification of levels of control (Sloman, 1999). 
These include reactive (for agents requiring little flexibility 
in their action selection), deliberative (higher-level 
cognitive processes as planning, scheduling and problem 
solving), and metacognitive levels (monitoring deliberative 
processes, allocating cognitive resources, and regulating 
cognitive strategies). Metacognition in LIDA is 
implemented by a collection of appropriate behavior 
streams, each with its own metacognitive task. 
Metacognitive control adds yet another level of flexibility to 
an agent’s decision making, allowing it to function 
effectively in an even more complex and dynamically 
changing environmental niche. Additionally, LIDA defines 
an artificial consciousness mechanism based on the Global 
Workspace theory, a neuropsychological theory of 
consciousness and cognition (Baars, 2007). Attention 
‘codelets’ are little processes that bring items of interest to 
consciousness, gather current information from the 
workspace, and compete to see which can bring its 
information to consciousness. The winner’s information is 
broadcast widely throughout the cognitive apparatus. The 
purpose of the conscious broadcast is to recruit appropriate 
resources with which to deal with the current situation. 
Though various types of resources can, theoretically, be 
recruited, the conscious broadcast is mostly aimed at 
procedural memory, where it can directly bring to bear the 



information in the contents of consciousness so as to affect 
the next action to be chosen.  
 

7. Discussion and Conclusions 
The first steps towards an architecture for metacognition are 
to develop a common language and outline the main 
concepts and research across the relevant fields, which the 
current paper has begun. The next steps should elaborate on 
every section, and begin piecing them together to construct 
a consensus model of metacognition.  In 1973, Allen Newell 
challenged scientists to achieve “a science of [humans] 
adequate in power and commensurate with [their] 
complexity”. The endeavor to include metacognition in a 
Common Model of Cognition is one way to accept his 
challenge. 
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