
Thinking and Seeing in Game Playing:
Integrating Pattern Recognition and Symbolic Learning

Susan L. Epstein Jack Gelfand
Pascal Abadie Department of Psychology
Joanna Lesniak Frank Midgley
Department of Computer Science Department of Computer Science
Hunter College and The Graduate School Princeton University
The City University of New York Princeton, NJ
sehhc@cunyvm.cuny.edu jjg@phoenix.princeton.edu

Abstract

Although people rely heavily on visual cues
during problem solving, it is non-trivial to in-
tegrate them into machine learning. This paper
reports on three general methods that
smoothly and naturally incorporate visual cues
into a hierarchical decision algorithm for
game playing: two that interpret predrawn
straight lines on the board, and a third that
uses an associative, hierarchical pattern
database for pattern recognition. They have
been integrated into Hoyle, a game learning
program that makes decisions with a hierarchy
of modules representing individual rational
and heuristic agents.

Key words: machine learning, game play-
ing, hierarchical decision algorithms, visual
cues, pattern recognition

1. Introduction

Since the early work of Chase and Simon, re-
searchers have noted that expert chess players

retain thousands of patterns (Holding, 1985).
There has been substantial additional work on
having a program learn specific patterns for
chess (Berliner, 1992; Campbell, 1988; Flann,
1992; Levinson and Snyder, 1991). There is
conflicting evidence as to whether or not ex-
pert game players learn to play solely by as-
sociating appropriate moves with key patterns
detected on the board, but it is believed that
pattern recognition is an important part of a
number of different strategies exercised in ex-
pert play (Holding, 1985). In AI, visual cues
have previously demonstrated their power as
explicit search control directives and as hand-
selected terms in an evaluation function
(Gelernter, 1963; Samuel, 1963). Learned vi-
sual cues have also been derived from goal
states with a predicate calculus representation
(Fawcett and Utgoff, 1991; Yee, et al., 1990).

This paper integrates the pattern recognition
and the explanatory heuristics that experts use
into a program called Hoyle that learns to play
two-person, perfect information, finite board
games against an external expert. As in the

schematic of Figure 1, whenever it is Hoyle’s
turn to move, a hierarchy of resource-limited
procedures called Advisors is provided with
the current game state, the legal moves, and
any useful knowledge (described below)
already acquired about the game. There are 22
heuristic Advisors in two tiers. The first tier
sequentially attempts to compute a decision
based upon correct knowledge, shallow
search, and simple inference, such as
Victory’s “make a move that wins the contest
immediately.” If no single decision is forth-
coming, then the second tier collectively
makes many less reliable recommendations
based upon narrow viewpoints, like Material’s
“maximize the number of your markers and
minimize the number of your opponent’s.”
Based on the Advisors’ responses, a simple
arithmetic vote selects a move that is for-
warded to the game-playing algorithm for ex-
ecution.

current state
acquired useful knowledge

legal moves

Victory

Panic

Enough
Rope

Absolute
decision?

Coverage PatsyShortcutMaterial

Shallow search and
inference based on
perfect knowledge

Heuristic
opinions

yes

no

make
move

…

Blackboard

Voting
Figure 1: How Hoyle makes decisions.

The program learns from its experience to
make better decisions based on acquired
useful knowledge. Useful knowledge is ex-
pected to be relevant to future play and may

be correct in the full context of the game tree.
Examples of useful knowledge include rec-
ommended openings and states from which a
win is always achievable. Each item of useful
knowledge is associated with at least one
learning algorithm. The learning methods for
useful knowledge vary, and include explana-
tion-based learning, induction, and deduction.
The learning algorithms are highly selective
about what they retain, may generalize, and
may choose to discard previously acquired
knowledge. When individual Advisors apply
current useful knowledge to construct their
recommendations, they integrate these learn-
ing strategies. Full details on Hoyle are avail-
able in (Epstein, 1992).

Visual cues are integrated into Hoyle’s deci-
sion-making process as new Advisors in the
second tier. These Advisors react to lines and
clusters of markers without reasoning. This is
prompted by our observation that people guide
their play with frequently-observed patterns of
pieces before they understand their signifi-
cance. The distinction drawn here between
thinking and seeing in game playing is an im-
portant one. By “thinking” we mean the ma-
nipulation of symbolic data, such as “often-
used opening gambit;” by “seeing” we mean
inference-free, explanation-free reaction to vi-
sual stimuli. The three Advisors described
here are directed toward the construction of a
system that both uses and learns visual cues.
They provide powerful performance gains and
promise a natural integration with learning.
This paper indicates how Hoyle, already a
multistrategy learning program, can integrate
knowledge about visual cues, and methods to
learn them.

2. Using Predrawn Lines

Morris games have been played for centuries

throughout the world on boards similar to
1 2 3

4 65

14 15 16

11 1312

7 8 9 10

1 2 3

4 65

14 15 16

11 1312

7 8 9 10

1 2 3

4 65

14 15 16

11 1312

7 8 9 10

 (a) (b) (c)

Figure 2: Some five men’s morris states with white to move: (a) in the placing or the sliding
stage, (b) and (c) in the sliding stage.

those in Figure 2. For clarity, we distinguish
carefully here between a game (a board, mark-
ers, and a set of rules) and a contest (one
complete experience at a game, from an
initially empty board to some state where the
rules terminate play). We refer to the
predrawn straight lines visible in Figure 2
simply as lines. The intersection of two or
more lines is a position. A position without a
marker on it is said to be empty. Although the
program draws pictures like those in Figure 2
for output, the internal, computational
representation of any game board is a linear
list of position values (e.g., black or white or
blank) along with the identity of the mover
and whether the contest is in the placing or
sliding stage. The program also makes
obvious representational transformations to
and from a two-dimensional array to
normalize computations for symmetry, but the
array has no meaningful role in move se-
lection. The game definition includes a list of
predrawn lines and the positions on them.

A morris game has two contestants, black and
white, each with an equal number of markers.
A morris contest has two stages: a placing
stage, where initially the board is empty, and
the contestants alternate placing one of their

markers on any empty position, and a sliding
stage, where a turn consists of sliding one’s
marker along any line drawn on the game
board to an immediately adjacent empty posi-
tion. A marker may not jump over another
marker or be lifted from the board during a
slide. Three markers of the same color on im-
mediately adjacent positions on a line form a
mill. Each time a contestant constructs a mill,
she captures (removes) one of the other con-
testant’s markers that is not in a mill. Only if
the other contestant’s markers are all in mills,
does she capture one from a mill. (There are
local variations that permit capture only dur-
ing the sliding stage, permit hopping rather
than sliding when a contestant is reduced to
three near a contest’s end, and so on.) The first
contestant reduced to two markers, or unable
to move, loses.

2.1 The Coverage algorithm

When a marker is placed on any position on a
line, it is said to affect all the positions on that
line, including its own. The coverage of a po-
sition is the multiset of all distinct positions
that it affects. A marker positioned where two
lines meet, induces two copies of its position.
Thus the coverage of 3 in Figure 2(a) is {1, 2,

2⋅3, 10, 16}. A set of markers belonging to a
single contestant P produces a cover, a multi-
set denoted CP = {c1⋅v1, c2⋅v2,…, cn⋅vn} that
lists the affected positions v1, v2,…, vn and
the number of lines ci on which vi lies that are
affected by one of P’s markers. In Figure 2(a),
the white cover is CW ={2⋅1, 2, 3, 2⋅4, 5, 2⋅6,
2⋅7, 2⋅8, 9, 11, 13, 14}. The cover difference
C~D for C={c1⋅v1, c2⋅v2,… , cn⋅vn} and D=
{d1⋅w1, d2⋅w2,… , dm⋅wm}, is defined to be
the multiset C~D = {x⋅ y | y = vi for some i =
1, 2,…, n; x⋅y ∈ C; y ≠ wj for any j = 1, 2,…,
m}. In Figure 2(a), CB~CW = {10, 12, 15,
2⋅16} and CW~CB = ∅. We take the standard
definitions from graph theory for adjacency,
path, and path length.

A marker offensively offers the potential to
group others along lines it lies on
(juxtaposition) and to facilitate movement
there (mobility), while it defensively obstructs
the opposition’s ability to do the same. The
Coverage algorithm attempts to spread its
markers over as many lines as possible, par-
ticularly lines already covered by the other
contestant, and tries to do so on positions with
maximal coverage. Assume, without loss of
generality, that it is white’s turn to move. In
the placing stage, Coverage recommends a
move to every empty position ci⋅vi∈CB~CW
where ci >1. If there are no such positions, it
recommends a move to every position in
CB~CW with maximal coverage. If there are
no such positions of either kind, it recom-
mends a move to every empty position with
maximal coverage. In Figure 2(a) with White
to move in the placing stage, CB~CW = {10,
12, 15, 2⋅16} so Coverage recommends a
move to 16.

In the sliding stage, Coverage recommends
each legal move that increases |vi|, the number
of the mover’s distinct covered positions. Let

(p,q) denote a sliding move from position p to
position q. In Figure 2(b) the legal moves
(1,7), (9,6), (9,13), (10,3), (10,16), (14,7)
change |vi| by -1, +2, 0, 0, 0, -1, respectively,
so Coverage recommends (9,6). In the sliding
stage, however, one’s cover can also decrease.
Therefore, Coverage also recommends each
legal slide to a position ci⋅vi∈CB where ci >1
but for which ci ≤1 in CW. In Figure 2(c),
where CB = {2⋅1, 2⋅2, 2⋅3, 2⋅4, 2⋅5, 6, 7, 8, 10,
3⋅11, 3⋅12, 2⋅13, 2⋅14, 2⋅15, 2⋅16}, CW = {2⋅1,
2⋅2, 2⋅3, 2⋅4, 2⋅5, 2⋅6, 2⋅7, 2⋅8, 2⋅9, 2⋅10, 11,
13, 2⋅14, 15, 2⋅16}, and the legal moves are
(2,3), (6,9), (8,4), (8,7), (10,3), (10,9), (14,7),
(14,15), those vertices are 11, 12, 13, 15, so
Coverage can only recommend (14,15).

1 2 3

4 65

14 15

16

11 1312

7 8 9

10

19

1817

22

2120

2423

Figure 3: A placing state in nine men’s
morris, white to move.

2.2 The Shortcut algorithm

The Shortcut algorithm addresses long-range
ability to move, and does so without forward
search into the game graph. The algorithm for
Shortcut begins by calculating the non-zero
path lengths between pairs of same-color
markers, including that from a marker to itself.
For example, in Figure 3 the shortest paths
between the white markers on 2 and 20 are [2,
5, 6, 14, 21, 20], [2, 3, 15, 14, 21, 20], and [2,
5, 4, 11, 19, 20]. Next, the algorithm selects
those pairs for which the shortest non-zero

length path between them is a minimum. It
then retains only those shortest paths that meet
the following criteria: every empty position
lies on some line without a marker of the op-
posite color, and at least one position on the
path lies at the intersection of two such lines.
All three paths identified for Figure 3 are re-
tained because of positions 5, 14, and 5, re-
spectively. Shortcut recommends a placing or
sliding move to the middlemost point(s) of
each such path. In Figure 3, Shortcut therefore
recommends moves to the midpoints 6 and 14,
15 and 14, and 4 and 11. Computation for this
algorithm, styled as spreading activation, is
very fast.

2.3 Results with Coverage and Shortcut

Prior to Coverage, Hoyle never played five
men’s morris very well. There are approxi-
mately 9 million possible board positions in
five men’s morris, with an average branch
factor of about 6. After 500 learning contests
Hoyle was still losing roughly 85% of the
time. Once Coverage was added, however,
Hoyle’s decisions improved markedly.
(Shortcut was not part of this experiment; data
averages results across five runs.) With Cov-
erage, Hoyle played better faster; after 32.75
contests it had learned well enough to draw 10
in a row. The contests averaged 33 moves, so
that the program was exposed during learning
to at most 1070.5 different states, about .012%
of the search space. From that experience, the
program was judged to simulate expert play
while explicitly retaining data on only about
.006% of the states in the game graph.

In post-learning testing, Hoyle proved to be a
reliable, if imperfect, expert at five men’s
morris. When the program played 20 addi-
tional contests against the model with learning
turned off, it lost 2.25 of them. Thus Hoyle

after learning is 88.75% reliable at five men’s
morris, still a strong performance after such
limited experience and with such limited re-
tention in so large a search space. Additional
testing displayed increasing prowess against
decreasingly skilled opposition, an argument
that expertise is indeed being simulated.

With a search space about 16,000 times larger
than that of five men’s, nine men’s morris is a
more strenuous test of Hoyle’s ability to learn
to play well. Because there is no definition of
expert outcome for this game, we chose sim-
ply to let the program play 50 contests against
the model. Without Coverage and Shortcut,
Hoyle lost every contest. With them both,
however, there was a dramatic improvement.
Inspection showed that the program played as
well as a human expert in the placing stage of
the last 10 contests. During those 50 contests,
which averaged 60 moves each, it lost 24
times, drew 17 times, and won nine times.
(Some minor corrections to the model are now
underway.) The first of those wins was on the
27th contest, and four of them were in the last
six contests, suggesting that Hoyle was
learning to play better. With the addition of
less than 200 lines of game-independent code
for the two new visually-cued Advisors, Hoyle
was able to learn to outperform expert system
code that was more than 11 times its length
and restricted to a single game. The morris
family includes versions for 6, 9, 11, and 12
men, with different predrawn lines. At this
writing, Hoyle is learning them all quickly.

It should be noted that neither of these Advi-
sors applies useful knowledge; instead, they
direct the learning program’s experience to the
parts of the game graph where the key infor-
mation lies, highly-selective knowledge that
distinguishes an expert from a novice

(

Ericsson and Smith, 1991). If this knowledge
is concisely located, as it appears to be in the
morris games, and the learner can harness it,
as Hoyle’s learning algorithms do, the pro-
gram learns to play quickly and well. As de-
tailed here, this general improvement comes at
a mere fraction of the development time for a
traditional game-specific expert system.

3. Learning Patterns

Hoyle is a limitedly rational system that delib-
erately avoids exhaustive search and complete
storage of its experience. Consistent with this
approach, the work described here retains only
a small number of the patterns encountered
during play, ones with strong empirical evi-
dence of their significance. The program uses
a heuristically-organized database to associate
small geometrical arrangements of markers on
the board with winning and losing. The asso-
ciative, hierarchical pattern database is a new
item of useful knowledge. The first level of
the database contains states; the second level
contains patterns.

The pattern database is constructed by the
pattern classifier, an associated learning al-
gorithm, as follows. At the end of each
contest, every state that occurred during the
contest is cached in a fixed-size hash table,
noting the sequence number of the most recent
contest in which it appeared and whether
Hoyle won, lost, or drew there. Each new state
in the pattern database is now matched against
nine templates for a 3×3 grid, adjusted for
symmetry and shown in Figure 4. A “?” in a
template represents an X, an O, or an empty
space; “#” is the don’t care symbol. A
subpattern is an instantiation of a template,
e.g., X’s in the corners of a diagonal.
(Preliminary empirical tests showed this to be
the smallest set of effective templates.)

The second level of the pattern database con-
sists of those subpatterns which appear in at
least two states of the first level. Most states
match several ways and therefore make multi-
ple contributions to counting on the second
level. Each subpattern also records the number
of contests in which it participated in a win, a
loss, and a draw. Thus a subpattern is a gener-
alization over a class of states: those that have
recently occurred with some frequency and
contain simple configurations of pieces. Each
subpattern is categorized as winning, drawing
or losing based upon which kind of contest it
appeared in most frequently.

? ? #

#

#

? # #

?

#

?

?

#

? # ?

#

#

? # #

#

?

?

#

?

? ? ?

#

#

? # #

?

?

?

?

? #
Figure 4. The set of templates used by the

pattern classifier.

It is important to forget in the pattern
database, primarily to discount novice-like
play during the early learning of a game.
There will be winning contests, and patterns
associated with them, that were due to the
learner’s early errors. We have therefore im-
plemented two ways to forget in the pattern
database. First, when a hash table for either
states or patterns is full, and a new entry
should be made, the least recently used entry
is eliminated, based on its most recent contest
number. Second, at the end of every contest,
the number of times each state was encoun-
tered is multiplied by 0.9.

Patsy is an Advisor that ranks legal next
moves based on their fit with the pattern
database. Patsy looks at the set of possible

next states resulting from the current legal
moves. Each next state is compared with the
subpattern level of the database. A matched
winning subpattern awards the state a +2, a
matched drawing subpattern a +1, and a
matched losing subpattern a -2. A state’s score
is the total of its subpattern values divided by
the number of subpatterns in the cache. Patsy
recommends the move whose next state has
the highest such score. Ties are broken by
random selection among the best moves.

Victory + Panic + Patsy

Victory + Panic

Number of Contests

50

45

40

35

30

25

15

20

10

5

0
0 5 10 15 20 25 30 35 40 45 50

Figure 5. The performance of Hoylite with
and without Patsy.

Patsy was tested within a severely pared-down
version of Hoyle, called Hoylite here. Hoylite
has only two of Hoyle’s original Advisors,
plus Patsy. The pattern classifier forms cate-
gories based on observed game states and as-
sociates responses to the observed states by
learning during play. The hash table sizes
were limited to 50 game states and 30 subpat-
terns. Three tournaments between Hoylite and
a perfect tic-tac-toe player were run to assess
the performance of Hoylite. The perfect player
was a look-up table of correct moves. Each
tournament was continued for 50 contests. The
average cumulative number of Hoylite’s wins
and draws is plotted against contest number in
Figure 5. The graph compares Hoylite’s aver-

age performance against the perfect contestant
with and without Patsy. Clearly Hoylite per-
forms consistently better with Patsy.
There are many games that are played on a
3×3 grid. At this writing we are testing
whether the same pattern templates in Figure 4
apply to several other games. We are also
gradually adding Hoyle’s Advisors to Hoylite,
to see what conflicts, if any, arise. Finally, we
are experimenting with more sophisticated
pattern classifiers, ones that model the re-
sponse of the human eye to arrangements such
as lines of pieces and lines of open spaces.

4. Discussion

Predrawn game board lines are shown here to
be important, readily accessible regularities
that support better playing decisions. Histori-
cal data on patterns attractive to the human
eye are demonstrably helpful in distinguishing
good middlegame positions from mediocre
ones. The brevity of the code required to capi-
talize on these visual cues for a variety of
problems argues for the limitedly rational per-
spective of the architecture. The improvement
the new Advisors have on play argues for the
significance of visual representations as an
integral part of decision making. When
predrawn board lines are taken as visual cues
for juxtaposition and mobility, Hoyle learns to
play challenging games faster and better. Cov-
erage and Shortcut in no way diminish the
program’s ability to learn and play the broad
variety of games at which it had previously
excelled (Epstein, 1992).

Our preliminary examination of the impact of
a recognition-association competitive learning
pattern classifier on several other expert
knowledge sources and learning methods via a
blackboard architecture is promising. The
game played was a simple one, and only two

of the 22 preexisting Advisors were included.
A simple game was chosen to facilitate de-
bugging the pattern classifier and measuring
performance against an absolute standard.
More than two Advisors would have obscured
the contribution of the pattern-associative
component. Hoylite’s pattern classifier is quite
simple and does not learn new templates; it
only learns which game states are important
for the given set of templates. It can be seen
from these preliminary results that a pattern
recognition component can be smoothly inte-
grated into a game playing system that in-
volves reasoning and limited search.

Heuristic Advisors are needed most in the
middlegame, where the large number of pos-
sible moves precludes search. It has been our
experience with more complex games, where
one would have many Advisors, that openings
are typically memorized, and that the endgame
can be well-played with Advisors that reason
about known losing and winning positions. In-
spection reveals that Shortcut and Coverage
contribute to decisions only in the mid-
dlegame, while Patsy works on the opening
and middlegame. In the full version of Hoyle,
other Advisors cover the opening, and an ex-
perience-driven partial retrograde analysis
learns enough useful knowledge to tune the
endgame. In Hoylite, the other two Advisors,
Victory and Panic, address the endgame,
leaving Patsy to consider patterns important at
the earlier stages. All three new Advisors
prove to filter the middlegame alternatives to a
few likely moves, ones that might then benefit
from limited search.

Acknowledgments

J. G. was partially supported by a grant from
the James S. McDonnell Foundation to the
Human Information Processing Group at

Princeton University. S. L. E. was partially
supported by NSF Grant 9001936.

References

Berliner, H. 1992. Pattern Recognition Inter-
acting with Search. Tech. Rpt., CS-92-211,
Carnegie Mellon University.

Campbell, M. S. 1988. Chunking as an Ab-
straction Mechanism. Ph.D. diss., CMU.

Epstein, S. L. 1992. Prior Knowledge
Strengthens Learning to Control Search in
Weak Theory Domains. International Jour-
nal of Intelligent Systems 7: 547-586.

Ericsson, K. A. and Smith, J. 1991. Prospects
and Limits of the Empirical Study of Exper-
tise. In Toward a General Theory of Exper-
tise, ed. K. A. Ericsson and J. Smith. Cam-
bridge: Cambridge University Press. 1-38.

Fawcett, T. E. and Utgoff, P. E. 1991. A Hy-
brid Method for Feature Generation. In
Proc. 8th Int’l Workshop on Machine
Learning, 137-141. Morgan Kaufmann.

Flann, N. S. 1992. Correct Abstraction in
Counter-Planning: A Knowledge Compila-
tion Approach. Ph.D. diss., Oregon State.

Gelernter, H. 1963. Realization of a Geome-
try-Theorem Proving Machine. In Comput-
ers and Thought, ed. E. A. Feigenbaum and
J. Feldman. NY: McGraw-Hill. 134-152.

Holding, D. 1985. The Psychology of Chess
Skill. Hillsdale, NJ: Lawrence Earlbaum.

Levinson, R. and Snyder, R. 1991. Adaptive
Pattern-Oriented Chess. In Proc. 8th Int’l
Machine Learning Workshop, 85-89.

Samuel, A. L. 1963. Some Studies in Machine
Learning Using the Game of Checkers. In
Computers and Thought, ed. E. A. Feigen-
baum and J. Feldman. NY: McGraw-Hill.
71-105.

Yee, R. C., Saxena, S., Utgoff, P. E. and
Barto, A. G. 1990. Explaining Temporal

Differences to Create Useful Concepts for
Evaluating States. In Proc. 8th Nat’l
Conference on AI, 882-888. AAAI Press.

