
Sequential Instance-Based Learning

Susan L. Epstein1 and Jenngang Shih2

1Department of Computer Science
Hunter College and The Graduate School of The City University of New York

695 Park Avenue, New York, NY 10021
epstein@roz.hunter.cuny.edu

2Department of Computer Science
The Graduate School of The City University of New York

33 West 42nd Street, New York, NY 10036
jshih@broadway.gc.cuny.edu

Abstract. This paper presents and evaluates sequential instance-based learning
(SIBL), an approach to action selection based upon data gleaned from prior
problem solving experiences. SIBL learns to select actions based upon se-
quences of consecutive states. The algorithms rely primarily on sequential
observations rather than a complete domain theory. We report the results of
experiments on fixed-length and varying-length sequences. Four sequential
similarity metrics are defined and tested: distance, convergence, consistency
and recency. Model averaging and model combination methods are also tested.
In the domain of three no-trump bridge play, results readily outperform IB3 on
expert card selection with minimal domain knowledge.

1. Introduction

In domains where a solution is a sequence of decisions, experts often address
problems with action patterns, contiguous subsequences of those decisions that
establish subgoals (e.g.,(Korf 1990)). These macros are purposeful and often named.
For example, a finesse in bridge is an action pattern, part of a plan intended to win.
Our thesis is that reusable action patterns can be inductively learned from sequences
of expert decisions. Specifically, in game playing, a set of sequences from previously
played contests can yield action patterns that accurately select expert choices in a new
contest. The principal contributions of this paper are a general method to learn action
patterns called SIBL (Sequential Instance-Based Learning), and a demonstration of its
efficacy for three no-trump card play in the game of bridge.

Game playing may be viewed as a planning problem, with an initial state, one or
more goal states and a set of operators that transforms one state into another. A plan
consists of an ordered set of operators that transforms the initial state into a goal state.
Some planning approaches, such as non-linear and hierarchical planners, rely on
complete domain knowledge to derive plans (Hendler, Tate, & Drummond 1990).
Some learning methods that readily enhance planning, such as explanation-based
learning (EBL), also assume complete domain knowledge (Minton 1985). Others, such

 443

as case-based planners, reuse past planning experience through matching and
adaptation but require large quantities of knowledge (Alterman 1988; Hammond
1989; Kambhampati 1990). SIBL, the inductive learning approach described here,
addresses planning tasks but does not require extensive domain knowledge. Instead, it
reuses information about past solutions to identify likely sequences of actions.

Because SIBL is intended to rely on relatively little domain knowledge, it could
require substantial quantities of data. Rather than collect thousands of expertly-played
bridge deals, we perturbed 72 input deals into about 90,000 training instances. We
then used SIBL (and a modicum of domain knowledge, described in Section 7), to
mine the resultant database for action patterns to direct expert play.

The next section provides a foundation for work with action patterns. Section 3
explains variants of SIBL and the need for good matching heuristics. Section 4 details
four metrics developed for SIBL on matches between sequences of states. Section 5
describes an application of SIBL to the game of bridge, and provides results. The final
sections survey related and future work.

2. Sequential Dependency

This section defines relevant terms and considers the extraction from problem solving
experiences of sequences that could be used to support expert decisions. Consider,
then, a problem solving experience

a1 a2 ai-1 ai ai+1 an-1

s1 → s2 → … → si → si+1 → … → sn

(1)

represented as a sequence of n states and n–1 actions, where the expert’s action ai
moves the problem state from si to si+1 for i = 1, 2, …, n-1. Each such experience
contains many transition sequences, contiguous subsequences of states and actions
within the experience that end in a particular state from which an action will be taken.
In the notation of (1), a transition sequence is of the form:

aj aj+1 ai-1

 sj → sj+1 → … → si

(2)

Traditional learning methods assume that ai, the action to be selected from state si, is
dependent upon the nature of si, and therefore those methods seek features within si
that mandate the selection of ai. Sequential dependency, however, postulates that the
reasons for the selection of ai actually reside within a broader context, the particular
sequence of states sj, sj+1, …, si that precede ai. SIBL seeks to learn that broader
context.

Let a sequential instance, or s-instance, be a sequence of states followed by an
action a, denoted:

asss ijj �+ ,...,, 1 (3)

 444

Observe that an s-instance describes both the current state si and some number of
consecutive, immediately prior states sj, sj+1, …, si, but that the s-instance omits the
intermediate actions of the transition sequence (2). (Assuming an adequate state
description, an intermediate action could be deduced from the differences between
two consecutive states.) The length of an s-instance is the number of states it includes.
Thus the length of (3) is i–j+ 1.

Given a transition sequence like (2), the chronological expansion of it is the set of
s-instances terminating in the action that leads to s. For example, in the experience

 a1 a2 a3 a4
 s1 → s2 → s3 → s4 → s5

(4)

the chronological expansion of s4 is three s-instances:

3321

332

33

asss

ass

as

�

�

�

 (5)

We call each of the s-instances in the chronological expansion of a transition sequence
a partial s-instance. Clearly, if the transition sequence is at the kth state in a problem
solving experience, then there are k-1 partial s-instances in its chronological
expansion.

Each partial s-instance offers a different context that may have determined the
selection of action a. In (5), for example, all of s1 s2 s3 may have determined the
choice of a3, or perhaps only s2 s3, or simply the nature of s3 alone. It may also be
necessary, for computational efficiency, to limit consideration to the l most recent
partial s-instances. SIBL learns and makes decisions based on sequential dependency.

3. SIBL

SIBL is an extension to instance-based learning (IBL). IB3, the version of IBL we use
here, represents input examples and output concept descriptions as feature-value pairs,
and ordinarily retains the prototypical examples for reuse (Aha 1992; Aha, Kibler, &
Albert 1991) . When IB3 is used for planning from state s, it retrieves the best-
matching simple instance of the form si � ai from its database, and applies the action
of the recommended instance, ai. SIBL is an IB3 approach that applies sequential de-
pendency to decision making, using a database of s-instances like (3) instead of simple
instances.

Figure 1 is an overview of learning with SIBL. It shows how a training instance is
expanded into a set of one or more partial s-instances that are then matched against a
database. Unless the database’s best match predicts the training action, the database is
updated with the partial s-instances derived from the training instance.

 445

database of
partial

s-instances

s-
partial

instances
training
instance

matcher
training action =

best match
action?

no
store partial
s-instances

yes no
action

candidates

expander

best
match

Figure 1. An overview of learning in SIBL

Table 1 gives high-level pseudocode for the SIBL algorithms. The length of the s-
instances to be learned is an important issue. Is there a “best” length partial s-instance
or does the length of the best partial s-instance vary from one decision to another?
Although some actions may depend upon the entire sequence of states that preceded
them, others may not require a complete chronological sequence to interpret the
current situation. The relevant sequence of events may be shorter, even of length one.
Table 1 therefore contains three approaches, one that assumes a parameterized best
length l, and two that accommodate varying lengths.

Each approach incrementally constructs a database DB from a set of problem
solving experiences, and uses it to make decisions. All three approaches begin the
same way: each problem solving experience like (1) is expanded into training
instances, s-instances like (3) where the expert made a decision. Here, the three
methods deviate.

3.1 Fixed-length SIBL

For fixed-length partial s-instances, SIBL-learn-fixed in Table 1 retrieves from the
database DB the most similar s-instance of length l. For example, given training data

assss �4321 ,,, (6)

and l = 2, SIBL-learn-fixed would select from DB the s-instance most similar to s3 s4,
using the distance metric described in Section 4.1 below. Unless the action the re-
trieved s-instance recommends is identical to the action in the training instance, the
database is updated with the training instance. For l = 1, SIBL-learn-fixed is IB3.

Once DB has been constructed, SIBL makes decisions based upon it. In Table 1,
SIBL-decide-fixed merely retrieves the most similar s-instance of length l and
mandates that action. For example, given the training data in (6) and l = 3, SIBL-
decide-fixed recommends the action taken by the s-instance in DB most similar to s2 s3

s4. Similarity here is measured by distance, defined in Section 4.1 below.

 446

Table 1. The SIBL algorithms.

SIBL-learn-fixed (s1, s2, …, sn � a, DB, l)
unless FindMostSimilar (sn-l+1, …, sn, DB) = a
 append s1, s2, …, sn � a to DB
SIBL-decide-fixed (s1, s2, …, sn, DB, l)
return FindMostSimilar (sn-l+1, …, sn, DB)
SIBL-learn-majority-vote (s1, s2, …, sn � a, DB)
for i from 1 to n
 collect FindMostSimilar (si, si+1, …, sn, DB) into C
for each candidate c = s′c, s′c+1, …, s′n � ac in C and its recommended action ac
 vote(ac) ← vote(ac) + 1
unless a = ac where vote(ac) is a maximum
 for i from 1 to n
 append si, si+1, …, sn � a to DB
SIBL-decide-majority-vote (s1, s2, …, sn, DB)
for i from 1 to n
 collect FindMostSimilar (si, si+1, …, sn, DB) into C
for each candidate c = s′c, s′c+1, …, s′n � ac in C and its recommended action ac
 vote(ac) ← vote(ac) + 1
return ac where vote(ac) is a maximum
SIBL-learn-SSM (s1, s2, …, sn � a, DB)
for i from 1 to n
 collect FindMostSimilar (si, si+1, …, sn, DB) into C
unless FindMostSimilarCandidate (s1, s2, …, sn, C) = a
 for i from 1 to n
 append si, si+1, …, sn � a to DB
SIBL-decide-SSM (s1, s2, …, sn, DB)
for i from 1 to n
 collect FindMostSimilar (si, sI+1, …, sn, DB) into C
return FindMostSimilarCandidate (s1, s2, …, sn, C)
FindMostSimilar (si, si+1, …, sn, DB)
σ ← si, si+1, …, sn
for each partial s-instance s in DB of length n – i + 1
 minimize distance(σ, s) as smallest
return action of smallest
FindMostSimilarCandidate (s1, s2, …, sn, C)
if candidate c in C has significant minimum distance(s1, s2, …, sn, c),
 then return its recommended action ac
else if candidate c in C has significant maximum convergence(s1, s2, …, sn, c),
 then return its recommended action ac
else if candidate c in C has significant maximum consistency(s1, s2, …, sn, c),
 then return its recommended action ac
else if candidate c in C has significant maximum recency(s1, s2, …, sn, c),
 then return its recommended action ac
else select a random candidate c in C, return its recommended action ac

 447

3.2 Varying-length SIBL

For decisions rely on varying-length s-instances, there are two methods in Table 1:
one relies on a voting process and the second on similarity metrics. Both methods
chronologically expand each s-instance into a set of partial s-instances. Then, for each
partial s-instance in each chronological expansion, both methods retrieve a candidate
(the most similar partial s-instance of the same length as the newly expanded partial s-
instance) from the partial s-instances already recorded in DB. Since a current
experience with k states gives rise to k–1 partial s-instances, there will be k–1
candidates, each a partial s-instance of a different length. For example, if (6) is a
training instance and we restrict partial instances to at most length l = 3, SIBL
identifies a candidate of length one to match s4, a second of length two to match s3,s4,
and a third of length three to match s2,s3,s4. Both varying-length SIBL methods collect
these candidates along with the actions they recommend. They differ, however, in how
they learn and decide with these candidates.

3.2.1 Majority vote
As described above, for a given s-instance SIBL-learn-majority-vote retrieves the best
matching candidates of varying lengths from DB. Then each partial s-instance re-
trieved by FindMostSimilar casts one vote for the action it recommends. If the action
that receives the majority vote (the most support) among the different length can-
didates matches the action to be learned, no change is made to DB. Otherwise, each of
the partial s-instances in the expansion is appended to DB. Given the training data in
(6) and l = 3, for example, SIBL-learn-majority-vote would retrieve three candidates
and vote for the actions they indicate. Unless the best supported action were a, all
three partial s-instances would be added to DB.

Once the database DB has been constructed by SIBL-learn-majority-vote, to make a
decision SIBL-decide-majority-vote retrieves the candidates from DB. Each candidate
casts one vote for the action it recommends, and the action that receives the majority
vote is selected. Given the training data in (6) and l = 3, for example, SIBL-learn-
majority-vote would retrieve three candidates, vote for the actions they indicate, and
select the best supported action. In the event of a tie, both the training and testing
majority vote algorithms choose at random from among the top-ranked actions.

3.2.2 Sequential similarity metrics
As described above, for a given s-instance SIBL-learn-SSM retrieves the best
matching candidates of varying lengths from DB. Next, SIBL-learn-SSM uses
FindMostSimilarCandidate in Table 1 to identify the best-matching candidate, the one
whose state sequence is most similar to the training instance. The metrics that measure
the quality of a match between two partial s-instances are called sequential similarity
metrics and defined in the next section. In the example of (6) with l = 3, some can-
didate of length 1 ≤ l ≤ 3 is identified. If the best-matching candidate’s recommended
action already corresponds to the action taken in the training instance, no change is
made to the database. When the database’s best match, however,

 448

recommends an action different from that taken by the expert in the training instance,
each of the partial s-instances in the expansion is appended to DB.

Once the database DB has been constructed by SIBL-learn-SSM, to make a
decision SIBL-decide-SSM retrieves the candidates from its database. Then the
algorithm selects the most similar candidate and returns its recommended action. The
next section describes the sequential similarity metrics that underlie this method.

4. Metrics for Sequential Similarity

FindMostSimilarCandidate in Table 1 applies up to four metrics to select the best
matching partial s-instance of length n in DB to the training s-instance of length n.
Each metric is defined for two same length, partial s-instances whose states are
represented by a finite set of v features. To avoid bias toward shorter s-instances,
every metric is normalized to return values in [0,1]. For clarity, normalization is
omitted from the examples shown here.

A metric m is said to distinguish between two s-instances s and s′ if and only if m(s)
≠ m(s′) to some precision, say, the nearest tenth. In the order of presentation below,
each metric is a refinement of the one that precedes it. For example, convergence is a
way to distinguish between two partial s-instances with equal distance.
FindMostSimilarCandidate applies these metrics one at a time to a set of same-length
candidates. The first metric to distinguish among the different-length candidates
returns its choice. We report the frequency to which they were resorted in Section 5.

Throughout, we let one partial s-instance be

kpp ssss →→→= + ...1 (7)

and the second be

kpp ssss '...''' 1 →→→= + (8)

4.1 Distance

The distance metric quantifies the feature-based differences between the individual
states in s and s′ as:

�
=

=
v

i
i ssdifferencesscetandis

1

2)',()',((9)

The difference between the values of feature fi in s and s′ is defined as:

�
�

�
�

�

=

−

=
otherwise1

)'()(and discrete is if0

numeric is if)'()(

)',(sfsff

fsfsf

ssdifference iii

iii

i (10)

 449

In FindMostSimilarCandidate, the candidate s′ with minimal distance to the same
length, partial s-instance

s of the current experience is selected.

Table 2 is a hypothetical example where E = s1s2s3 is the current experience, and Yi
is the stored s-instance of length i = 1, 2, 3, the best candidate of length i for the par-
tial s-instance s3-i+1…s3 of E. If the distances between the partial s-instances of E and
the stored s-instances were given as 0.67, 0.69 and 0.68, FindMostSimilarCandidate
could select action A1 for E, because Y1 is the most similar (least distant) stored
partial s-instance to E.

Table 2. Applying sequential similarity metrics.

 11 AY � 22 AY � 33 AY �
Distance to E 0.67 0.69 0.68
Convergence to E 0.55 0.58 0.56
Consistency with E 1 1 2
Recency to E 1 1 2

4.2 Convergence

Although the distance metric in Table 2 shows Y1 as most similar to E, all three values
round to 0.7, so FindMostSimilarCandidate would not distinguish among the candi-
dates to the nearest tenth with the distance metric. The algorithm therefore resorts to a
second metric. The convergence metric quantifies the change in the distance between
partial s-instances, measured from their first states to their last states. Convergence is
the change in distance between s and s′ from one end to the other:

)',()',()',(kkpp sscetandisssetandissseconvergenc −= (11)

In SIBL, the candidate s′ with maximal convergence to the same length, partial s-
instance s of the current experience is selected. Continuing the example in Table 2,
since the convergence values between E and the candidates are 0.55, 0.58 and 0.56,
FindMostSimilarCandidate could select action A2 for E, because Y2 is the most similar
(most convergent) stored partial s-instance to E.

4.3 Consistency

Convergence, like distance, may not adequately discriminate among the candidates, as
shown in Table 2 to the nearest tenth. Therefore, in the ongoing example Find-
MostSimilarCandidate would now resort to a third metric. For each partial s-instance
of the current experience and the candidate retrieved for it, the consistency metric
tallies the maximum number of consecutive non-increases in distance between the
states in the current experience and the states in each candidate. Consistency between
s and s′ is measured by:

 450

[]
such valuelargest theis and

 where,in tofor)',()',(

such that)',(

11

tkjp

kptmmjsscetandissscetandis

tssyconsistenc

jjjj

≤≤

+=≥

=

++ (12)

In FindMostSimilarCandidate, the candidate s′ with maximal consistency to the same
length, partial s-instance s of the current experience is selected. In Table 2, continuing
the example, since the consistency values between E and the candidates are 1, 1, and
2, FindMostSimilarCandidate could select action A3 for E, because Y3 is the most
similar (most consistent) stored partial s-instance to E.

4.4 Recency

When consistency fails to discriminate adequately among candidates,
FindMostSimilarCandidate resorts to the recency metric that identifies the latest point
where distance did not increase between consecutive states. Recency between s and s′
is measured by:

[]
)',()',(

such that ,in largest the)',(

11 ++≥
=

jjjj sscetandissscetandis

kpjssrecency
 (13)

If, for example, all the consistency values in Table 2 had been 1 but the recency values
between E and the candidates 1, 1, and 2, FindMostSimilarCandidate would select
action A3 for E, because Y3 is the most similar (most recent) stored partial s-instance
to E.

5. Experimental Design and Results

The domain of investigation for this work is card play in the game of bridge, a four-
player planning domain. A bridge deal distributes 52 distinct cards equally among the
players into four hands. There are 13 cards in each of four suits; in increasing order of
strength: 2, 3, 4, 5, 6, 7, 8, 9, 10, jack, queen, king, ace. The game has two phases:
bidding and play. During bidding, the contract (a specific number of tricks for
winning and a trump suit) is determined. During play, one contestant, identified by the
bidding, is the declarer and another contestant, sitting opposite the declarer, is the
dummy. The declarer tries to achieve the contract, controlling both declarer’s and
dummy’s cards, while the other two contestants try to defeat it. (After the first card is
played, the dummy’s cards are exposed on the table for all to see.) Play consists of 13
tricks; a trick is constructed when each contestant in turn plays a single card. The first
card’s suit in the trick is the suit led. This work is restricted thus far to declarer play
for three no-trump contracts, where the highest card in the suit led takes the trick, and
the declarer is expected to take at least nine tricks. The problem addressed here is to
select a sequence of actions (card plays) that enables the declarer to reach the contract.

A bridge state is a situation in which someone is expected to select a card, the
target feature. We represent such a state as a set of 23 feature-value pairs. The
features describe the suit strengths held by declarer and dummy, the suit strengths

 451

played by each of the opponents in all previous tricks, the cards played thus far in the
current trick, who must play the next card, the target feature, and whether or not the
declarer wins the trick. Since high cards are most likely to win tricks, cards below 9
are considered indistinguishable and are represented by the symbol X.

A bridge deal is a problem-solving experience, a sequence of 53 states and 52
actions, 26 of which are situations where the declarer had to play a card from its own
or the dummy’s hand. Our program calculates the chronological expansion of each
training instance as a set of partial s-instances of various lengths in the context of the
deal where the training instance appears. Every s-instance of length five or less is then
represented as a sequence of one or more states plus a selected card. (Five was chosen
as an upper bound based on preliminary experiments.) Thus an s-instance represents
the current state and zero or more (up to four) states immediately prior to the current
state.

Our data began as 108 three no-trump bridge deals, each fully played by human
experts who successfully made the contract. We first separated the deals into training
(72 deals) and test (36 deals) sets. In any given deal, however, there are 26 decision
situations, and 325 partial s-instances of lengths from 1 to 25. Furthermore, each par-
tial s-instance can be permuted (by varying its suits, declarer and dummy) into 48
partial s-instances. At this point, when every deal yields 1248 (26 ⋅ 48) training in-
stances and 15,600 partial s-instances, computing resources become a consideration.
We therefore divided the training set into three smaller ones.

Each smaller training set of 24 deals was used to produce a database, which we call
here a model. Thus each model was based on almost 30,000 (24 ⋅ 26 ⋅ 48) training in-
stances, and could be tested on the 26 ⋅ 36 = 936 withheld instances in the testing set.
A run randomized the order of the training instances, and then a decision maker
learned on them. To gauge the learner’s development and the value of continued train-
ing, after each tenth of the training set was presented, the program was tested on the
936 testing instances with learning turned off. An experiment averaged the results over
10 runs for a decision maker.

We ran experiments for decision makers based upon each of the following models:
• Length-one instances (IB3).
• Fixed-length instances for l = 2, 3, 4 and 5
• Majority vote among s-instances of lengths l ≤ 5 learned with SIBL-learn-majority-

vote for l ≤ 5.
• Model averaging, where a single model built with SIBL-learn-SSM was used for

decision making, but performance reported as the average of the performance of
the three individual models.

• Model combination, where the three models built with SIBL-learn-SSM voted
equally to make a decision whose performance was monitored.

All fixed-length models were built with SIBL-learn-fixed. As a benchmark, we also
tested random legal (suit-following) play.

We tested each SIBL decision maker on the 936 withheld instances, noting how
often it selected the correct (expert’ s move) card. If the program selected a card in a
different suit, the result was scored as 0 (error). If the program selected the identical
card, the result was scored as 1 (correct). If the program selected a card in the same
suit as the correct card and consecutively adjacent to the target feature, the result was
also considered correct and scored as 1. (For example, 10, jack, and queen in the same

 452

suit are consecutively adjacent and have the same effect on a trick.) Because the
database is constructed from different deals, the recommended action may not always
be legal in the current state, that is, SIBL may recommend a card not held but in the
correct suit. Therefore, if the card SIBL selected was in the same suit as the correct
card but neither identical nor consecutively adjacent, the result was assigned a
numeric value between 0 and 1 based on the distance between the correct card and the
card recommended by SIBL. In this case, the program plays the closest holding to the
card SIBL recommends, and if two cards are equally close, the higher. With six
possible actions in a suit (ace, king, queen, jack, 10, 9 and X), the difference to the
adjacent card was scored as 5/6, to two adjacent cards as 4/6, and so on.

Test Results

0

10

20

30

40

50

10 20 30 40 50 60 70 80 90 100

Percent of training set presented

P
er

ce
n

t
o

f
co

rr
ec

t
ac

ti
o

n
 s

el
ec

ti
o

n

SIBL model combination

SIBL model averaging

SIBL majority vote

IBL

Fixed length 2

Fixed length 3

Fixed length 4

Fixed length 5

Random play

Figure 2. SIBL test results

Figure 2 shows how often each decision maker selected the correct action. The
horizontal axis indicates the percentage of the training set seen before testing; the
vertical axis shows the percentage of correct decisions. All the instance-based learners
were substantially better than random play. Among the fixed-length SIBL
experiments, after learning on all the training instances, l = 1 (IB3) outperformed all
longer fixed-length sequences at the 99% confidence level. All three versions of SIBL
outperformed IB3 at the 99% confidence level. Both model averaging and model
combination with sequential similarity metrics were consistently better than majority
vote. In addition, model combination outperformed (43% correct) model averaging
(36% correct).

The sequential similarity metrics did indeed refine action selection. 80% of the
decisions were made on distance alone. 17% of the time, distance did not distinguish
among the candidates but convergence did. 2% of the decisions were made on
consistency, and the final 1% relegated to recency or random selection among the
most recent. Would more training (i.e., additional hands) have provided even better
performance? The curves in Figure 2 (except the random play benchmark) appear to
flatten in the last 10-20% of training. This suggests that 72 hands, as permuted, may
be enough.

 453

6. Related Work

Projective Visualization (PV) projected future states from the current one by following
a set of state links (Goodman 1994) . The link between two states was defined by a set
of state features that associated the two states. Initially, the state features were built
one at a time with decision tree algorithms. At runtime these decision trees were used
to find matching states with the same features. Like SIBL, PV tried to learn the state
transition patterns. PV, however, used only lookahead information, with the risk of
compounding projection errors. PV did not take advantage of historical state transition
information, nor did it exploit the relative strengths of transition sequences of various
lengths. The primary domain of investigation was Bilestoad, a computer game
between two gladiators.

CAP learned action patterns with constructive induction. CAP’s representation was
a subset of Horn clause logic (Hume 1990) . It defined primitive properties of objects,
relations, and actions for the target action pattern. A logical expression described a
sequence of actions. Like EBL, given the basic definitions of a domain, CAP could
learn domain concepts from a few descriptive examples. Unlike SIBL, CAP relied on
a well-defined logical representation to assist learning domain concepts. The primary
domain of investigation was mountaineering.

Moore’s system used a form of reinforcement learning on a sequence of situation-
action pairs to learn the effect of an action for robot arm control (Moore 1990) . It
divided the search space into hierarchical segments to limit the search. It matched only
the current state description to select an action, whereas SIBL matches a sequence of
state descriptions to select an action. In a domain such as bridge, that is sensitive to
sequential relationships, a sequence of states is more advantageous.

GINA was a program that learned to play Othello from experience, with a
sequential list of situations encountered, actions taken, and final outcome (DeJong &
Schultz 1988) The representation of its experience base was a subtree of the min-max
game tree. Bridge, however, has concealed information (the opponents’ hands), that
makes its branching factor much higher than Othello’s, and GINA’s approach less
practical.

SIBL is a general method to learn action patterns, that is, to reuse stored expert
knowledge to make decisions in similar subsequent situations. An expert bridge
program should also rely on substantial domain knowledge and a model of its
opponents. SIBL could ultimately be one component in such a program. For these
reasons, we do not compare our program’s decision making skill to other expert
bridge programs’ here.

7. Conclusion

Although there are about 5 ⋅ 1028 possible decision states in bridge, the strongest
version of SIBL described here achieves more than twice the accuracy of IB3 on card
play after training on only 72 deals. The only domain knowledge provided to the pro-
gram was the need to follow suit, the ranking of the cards in a suit, and a preference
for a higher card in the same suit when SIBL’s recommendation was not present in the
hand.

 454

Bridge play includes units of four decisions (tricks), yet no fixed-length SIBL
method performed as well as IB3 (length-1 sequences) did. This is probably due to the
nature of the domain, that is, bridge play is dependent on recent experience, but the
extent of the relevant recent experience varies. This theory is supported by the fact
that the varying-length SIBL methods substantially outperformed IB3. Majority vote
from a database of varying-length, rather than fixed-length, sequences is correct 27%
more often than IB3. With the similarity metrics defined here and model combination,
SIBL makes correct decisions 118% more often than IB3.

These experiments demonstrate that SIBL is an effective way to detect action
patterns in bridge play, and represents a substantial improvement over IB3. As
described here, SIBL seeks a match in its database for past states. In that sense, it only
completes plans that are already underway. Current research enhances SIBL with
planning-oriented lookahead.

References

Aha, D. W. 1992. Tolerating Noisy, Irrelevant and Novel Attributes in Instance-Based Learning
Algorithms. International Journal of Man-Machine Studies, 36 : 267-287.

Aha, D. W., Kibler, D. and Albert, M. K. 1991. Instance-based Learning Algorithms. Machine
Learning, 6 : 37-66.

Alterman, R. 1988. Adaptive Planning. Cognitive Science, 12 : 393-421.
DeJong, K. A. and Schultz, A. C. 1988. Using Experience-Based Learning in Game Playing. In

Proceedings of the Fifth International Machine Learning Conference, 284-290. Ann Arbor,
Michigan: Morgan Kaufmann, San Mateo.

Goodman, M. 1994. Results on Controlling Action with Projective Visualization. In
Proceedings of the Twelfth National Conference on Artificial Intelligence, 1245-1250.

Hammond, K. J. 1989. Case-based Planning: Viewing Planning as a Memory Task . Boston:
Academic Press.

Hendler, J., Tate, A. and Drummond, M. 1990. AI Planning: Systems and Techniques. AI
Magazine, 11 (2): 61-77.

Hume, D. V. 1990. Learning Procedures by Environment-Driven Constructive Induction. In
Proceedings of the Seventh International Conference on Machine Learning, 113-121.
Austin: Morgan Kaufmann.

Kambhampati, S. 1990. Mapping and Retrieval during Plan Reuse: A Validation Structure
Based Approach. In Proceedings of the Eighth National Conference on Artificial
Intelligence, 170-175. Boston: AAAI Press.

Korf, R. 1990. Real-Time Heuristic Search. Artificial Intelligence, 42 (2-3): 189-211.
Minton, S. 1985. Selectively Generalizing Plans for Problem-Solving. In Proceedings of the

Ninth International Joint Conference on Artificial Intelligence, 596-599. Los Angeles.
Moore, A. W. 1990. Acquisition of Dynamic Control Knowledge for a Robotic Manipulator. In

Proceedings of the Seventh International Conference on Machine Learning, 244-252.
Austin.

