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Abstract 
If a system is to both satisfice and compute with a high de-
gree of reliability, a balance must be struck. This paper de-
scribes an architecture that effectively integrates correct rea-
soning with satisficing heuristics. As a program inductively 
learns new heuristics, the architecture underlying it robustly 
incorporates them. Many of these heuristics represent signif-
icant information previously inexpressible in the program’s 
representation and, in some cases, not readily deducible 
from a description of the problem class. After training, the 
program exhibits both an emphasis on its new heuristics and 
the ability to respond correctly to novel situations with them. 
This significantly improves the program’s performance. The 
domain of investigation is board games, but the methods 
outlined here are applicable to an autonomous learning pro-
gram in any spatial domain.  

1. Issues in Satisficing 
To satisfice is to make a good enough decision (Simon 
1981). An agent that satisfices is sometimes termed limit-
edly rational because, despite the availability of a perfectly 
correct process, it uses a more expedient heuristic, a rea-
sonably reliable rule of thumb. The faster choice permits 
the agent to conserve its resources, and so is often the 
wiser one. Human experts, for example, do not search the 
full game tree for most board games, even though they un-
derstand that the best possible move is deduced that way. 

Although heuristics may speed computation, sole re-
liance on them risks obvious oversights. A heuristic is li-
able to overlook an otherwise evident correct choice, or 
make an egregious error. Heuristics fail when they are 
overly broad generalizations. Consider, for example, the 
quite reputable heuristic H “always play the center” for tic-

tac-toe. In Figure 1 it is X’s turn, and H clearly makes the 
wrong choice.  

Overly broad generalizations are of particular concern 
for programs that learn inductively, because such heuristics 
make them brittle. For example, imagine an inductive 
learning program that watched two contestants, who 
always made the correct move based on minimax from the 
full game tree, compete against each other at tic-tac-toe. 
(Figure 1 would never appear in such a tournament.) The 
program would observe that one or the other always played 
the center quite early in the contest. As a result, the pro-
gram might learn H. Although that would stand it in good 
stead against such contestants, in the broader contest of the 
full game tree, H is not completely reliable. Applying H to 
Figure 1 overlooks an essential defensive move. A more 
accurate heuristic has a caveat attached, something on the 
order of “play the center unless….” 

Learning heuristics with caveats, however, subverts the 
fundamental rationale for satisficing: efficiency. Because 
they strive to be more accurate, such heuristics are less 
general, and therefore there are many more of them. The 
caveats become lengthy as the program has more experi-
ence, and they may be somewhat repetitive. For example, 
on one run of 800 contests a program learned 45 tic-tac-toe 
rules with 52 caveats (Fawcett & Utgoff 1991).  

An inductively learned heuristic cannot be guaranteed 
trustworthy unless the program has the domain knowledge 
or the experience to test it on every state in the space. 
Nonetheless, in very large or dynamic environments learn-
ing heuristics is often essential, and induction is itself a sat-
isficing technique. Possible inaccuracy is not adequate rea-
son to abandon induction, only a warning that learned 
heuristics must be treated even more gingerly than those 
anticipated by the programmer. 

This paper describes FORR (FOr the Right Reasons), a 
satisficing architecture that addresses these issues. FORR 
includes enough correct computation at manageable cost to 
prevent egregious errors and make obvious decisions eas-
ily. FORR’s procedural hierarchy integrates economical, 
correct routines with heuristic ones. FORR also supports 
the incorporation of inductively learned heuristics in a way 
that preserves the integrity of the system while it expands 
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Figure 1: A tic-tac-toe state with X to move. 



 

its capabilities. As a result, a FORR-based program is both 
robust and adaptive. 

The next section of this paper describes the architecture 
and a FORR-based program for game playing. Subsequent 
sections detail one way new heuristics can be learned in-
ductively and integrated with care. Finally we discuss ex-
perimental results, and related and future work. 

2. The FORR Architecture 
FORR is a general architecture for learning and problem 
solving in a broad domain of related problem classes 
(Epstein 1994a; Epstein 1998). FORR is an implemented 
system, available in Common Lisp for a variety of plat-
forms. Hoyle, the example used throughout this paper, is a 
FORR-based program for the domain of two-person, per-
fect information, finite-board games (Epstein 1992).  

In FORR, a procedural implementation of a particular 
decision-making rationale is called an Advisor. The input 
to any Advisor at any decision point is the current state of 
the world, a list of the legal actions possible, and a 
collection of useful knowledge, information that is 
potentially applicable and probably correct for a specific 
problem class. In Hoyle, the current state is the game board 
and whose turn it is to move, and the legal actions are the 
rule-abiding moves. Useful knowledge is data learned from 
experience and expected to enhance performance. It may or 
may not be correct, depending upon the algorithm used to 
acquire it. Good openings are an example of useful knowl-
edge for game playing. The output of an Advisor is any 
number of comments, each of the form  

<Advisor, action, strength> 
Strength is an integer in [0, 10] that indicates the attitude of 

the Advisor to the action, from firm opposition (0) to 
strong support (10). Advisors need not reference useful 
knowledge and they do not learn; they simply generate 
comments.  

For the most part, FORR Advisors are expected to be 
domain dependent but problem class independent. In 
Hoyle, for example, where the domain is game playing and 
a problem class is a particular game, such as tic-tac-toe, an 
Advisor should be applicable (although not necessarily 
valuable) to board games in general, and not intended for 
some particular game. Hoyle also has, however, some 
number (determined during execution) of learned, game-
specific heuristic Advisors (learned spatial Advisors) that 
proceduralize spatial concepts based on visual perception, 
as described in the next section.  

FORR accepts both correct and heuristic reasoning pro-
cedures for a domain, but requires the programmer to dis-
tinguish in advance between them. FORR organizes a pro-
gram’s Advisors into a hierarchy; Hoyle’s is shown in Fig-
ure 2. The correct Advisors appear in tier 1, with a se-
quence prespecified by the programmer. The heuristic ones 
are relegated to tier 2. Table 1 lists Hoyle’s full comple-
ment of Advisors: 7 in tier 1 in their prespecified sequence, 
and 15 in tier 2 alphabetically, with the learned ones 
grouped as the final entry. Note that in each tier there are 
some general game-playing decision makers (indicated by 
*’s) that reference any learned useful knowledge, and oth-
ers that do not.  

Tier-1 Advisors must be perfectly correct. For example, 
Hoyle’s tier-1 Advisors do valid inference on data that is 
true in the context of the full game tree. The only limitation 
on a tier-1 Advisor is the extent of its computation. For ex-
ample, Hoyle’s Victory recommends a move that wins a 
contest immediately, and its Panic forbids a move that 
loses a contest after the opponent’s response. At most, 
however, Hoyle’s tier-1 Advisors do two-ply search. If 
some tier-1 Advisor mandates a move, or if as a group they 
find only one move acceptable, that move is made and the 
heuristic Advisors are never consulted.  

Otherwise, the tier-2 Advisors collectively make their 
less reliable comments from their individual, heuristic 
viewpoints. For example, Hoyle’s Material embodies the 
heuristic “maximize the number of your playing pieces and 
minimize the number of your opponent’s.” In tier 2 a move 
may be supported or opposed by many Advisors. Therefore 
each tier-2 Advisor has a weight (e.g., w1 in Figure 2) that 
reflects its relevance to and relative significance in a par-
ticular problem class. When a decision must be made in 
tier 2, FORR selects the move with maximal support, 
summing the product of the strength from each comment 
about the move with the weight of the commenting Advi-
sor.  

Empirical experience with Hoyle indicates that appropri-
ate Advisor weights are game-specific and should therefore 
be learned. After every contest Hoyle plays against an ex-
pert, AWL (Algorithm for Weight Learning) considers, one 
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Figure 2: A schematic of decision making in Hoyle. 



 

at a time, only those states in which it was the expert’s turn 
to move. For each such state, AWL distinguishes among 
support and opposition for the expert’s recorded move and 

for other moves. AWL cumulatively adjusts the weights of 
tier-2 Advisors at the end of each contest, and uses those 
weights to make decisions throughout the subsequent con- 

 
Table 1: Hoyle’s Advisors for game playing. Tier 1 is in its prespecified order. Advisors with a * apply useful knowledge. 
 

Name Description 
Tier 1  
Victory Makes winning move from current state if there is one. 
Wiser* Makes correct move if current state is remembered as certain win. 
Sadder* Resigns if current state is remembered as certain loss. 
Panic* Blocks winning move non-mover would have if it were its turn now. 
Don’t Lose* Eliminates any move that results in immediate loss. 
Shortsight* Advises for or against moves based on two-ply lookahead. 
Enough Rope* Avoids blocking losing move non-mover would have if it were its turn. 
Tier 2  
Anthropomorph* Moves as winning or drawing non-Hoyle expert did. 
Candide Formulates and advances naive offensive plans. 
Challenge Moves to maximize its number of winning lines or minimize non-mover’s. 
Coverage  Maximizes mover’s influence on predrawn board lines or minimizes non-mover’s. 
Cyber* Moves as winning or drawing Hoyle did. 
Freedom  Moves to maximize number of its immediate next moves or minimize non-mover’s. 
Greedy Moves to advance more than one winning line. 
Leery* Avoids moves to state from which loss occurred, but where limited search proved no certain failure. 
Material Moves to increase number of its pieces or decrease those of non-mover. 
Not Again* Avoids moving as losing Hoyle did. 
Open* Recommends previously-observed expert openings. 
Patsy* Supports or opposes moves based on their patterns’ associated outcomes 
Pitchfork * Advances offensive forks or destroys defensive ones. 
Vulnerable Reduces non-mover’s capture moves on two-ply lookahead. 
Worried Observes and destroys naive offensive plans of non-mover. 
Learned spatial 
Advisors 

 

Supports or opposes moves based on their creation or destruction of a single pattern. 
 

test. Essentially, Hoyle learns to what extent each of its 
tier-2 Advisors simulates expertise, as exemplified by the 
expert’s moves. Eventually, irrelevant and self-contradic-
tory Advisors in a particular game should have weight 0, 
and more trustworthy Advisors should have higher weights 
than less trustworthy ones. AWL was based upon Winnow, 
a fast, perceptron-like learning algorithm (Littlestone 
1988).  

3. Learning and Applying New Heuristics  
One current research effort is to have Hoyle learn new 
heuristics from patterns. For Hoyle, a pattern is a visually-
perceived regularity, represented as a small geometric ar-
rangements of playing pieces (e.g., black or X) and blanks 
(unoccupied positions) in a particular geographic location. 
A move can create a pattern by providing some missing 
piece or blank. In games where pieces are not permanently 
placed, a move can also destroy a pattern by relocating a 
playing piece. When it first learns a new game, Hoyle con-
structs a set of board-dependent templates as a filter for its 
perceived patterns: straight lines, L’s, triangles, squares, 
and diagonals of a limited size composed of legal piece po-
sitions. When a template is instantiated with some combi-

nation of pieces, blanks, and don’t care (#) symbols, it be-
comes a pattern. Further details on this process are avail-
able in (Epstein, Gelfand, & Lesniak 1996). 

The associative pattern store (a pattern queue, a pattern 
cache, and generated spatial concepts) is a heuristically-or-
ganized database that links patterns with contest outcome 
(win, loss, or draw). Figure 3 is an overview of the devel-
opment of Hoyle’s spatial orientation from the game-spe-
cific associative pattern store. After each contest, the pat-
terns newly created by each move are extracted with the 
templates. Next, patterns are associated with winning, los-
ing, or drawing and stored in a pattern queue. Patterns that 
persist on the pattern queue over time and are identified 
with a single consistent outcome enter the pattern cache. 

Proceduralization is the transformation of expert knowl-
edge into expert behavior. Patterns in the cache are proce-
duralized with a tier-2 Advisor called Patsy, as described 
below. Periodic sweeps through the pattern cache also at-
tempt to generalize sets of patterns into spatial concepts. 
Each concept is proceduralized as an individual, game-spe-
cific, learned spatial Advisor, a heuristic that is then vali-
dated during subsequent learning. Because pattern knowl-
edge is extensive and contradictory, each segment of the 



 

associative pattern store relates differently to decision mak-
ing. Queued patterns have no impact at all, cached patterns 
serve as input to Patsy, and pattern-based concepts become 
game-specific, learned spatial Advisors. Both patterns and 
learned Advisors are efficiently represented. A hierarchy 
from less to more specific speeds pattern matching and 
supports subsumption testing. In addition, Hoyle normal-
izes with respect to the symmetries of the plane, thereby 
reducing matching costs. 

Patsy considers the set of possible next states resulting 
from the current legal moves. Each next state is compared 
with the patterns in the appropriate, game-specific cache. 
(No new patterns are cached during this process.) Each pat-
tern is assigned a value computed from the total number of 
won, lost and drawn contests since the pattern was first 
seen. The strength of Patsy’s comment on each legal next 
move is a function of the values of the patterns created and 
destroyed by the move in the state to which it leads. Thus 
Patsy encourages moves that lead to states introducing pat-
terns associated with a win or a draw for the mover, while 

it discourages moves that lead to states introducing patterns 
associated with a loss. 

Generalization summarizes a set of detailed experiences 
into a more useful and efficient representation. After every 
10 learning contests, three generalization processes sweep 
the pattern cache to form spatial concepts. Patterns agree 
when they originate from the same template. As shown in 
the examples of Figure 4, one generalization drops a posi-
tion, a second variabilizes the mover and all pieces, and a 
third variabilizes the mover and a single piece. During gen-
eralization, only patterns with compatible associations may 
be combined. For example, a pattern must be associated 
with both a win for X and with a win for O to be general-
ized as a win for the mover α. In addition, if a new concept 
subsumes one that already exists, the more specific is 
eliminated. Each concept is proceduralized as a tier-2, 
game-specific, learned spatial Advisor.  

In the experiments that follow, we shall see that, despite 
the care taken in Figure 3, learned spatial Advisors based 
upon play experience do not always provide correct guid-
ance. As Hoyle’s skill develops further and the learned spa-
tial Advisors are introduced into tier 2, some of them prove 
irrelevant, self-contradictory, or untrustworthy, despite 
prior empirical evidence of their validity. To support their 
smooth integration into tier 2, the weights of learned spatial 
Advisors are initially discounted by an additional multi-
plier. This factor begins at 0.1 and reaches 1.0 after the 
learned spatial Advisor comments appropriately 10 times.  

4. Results 
Hoyle now learns pattern associations and game-specific 
spatial Advisors while it plays tic-tac-toe and lose tic-tac-
toe (played like tic-tac-toe but whoever gets three in a row, 
column, or diagonal first loses). Because they both have 
the same board, they begin with the same templates. Tic-
tac-toe is extremely easy for Hoyle to learn well, and we 
expected no improvement; it was present only to demon-
strate that weights, patterns, and learned spatial Advisors 
were game-board independent. Lose tic-tac-toe is a far 
more difficult game to learn to play well, both for humans 
and for machines (Ratterman & Epstein 1995). It has been 
solved mathematically (Cohen 1972) and the correct 
strategies for the two contestants are different. Thus it 
forces the program to distinguish between patterns and 
concepts good for one contestant and those good for both. 
Both are draw games, that is, play between two contestants 
that make no errors must, by the nature of the game graph, 
end in a draw.  

A run here is learning followed by testing. On each run, 
Hoyle alternately moved first in one contest and second in 
the next. During learning, the other contestant was a hand-
coded perfect player for the game being learned, one that 
always moved to secure the best possible outcome despite 
subsequent error-free play by the opposition, and chose 
from among equally good moves at random. After learning, 

Game state Move

Pattern 
filter

Pattern
queue

Pattern
cache

Patsy

Spatial
concepts

Spatial
Advisors

proceduralize

generalize

proceduralize

associate patterns with outcomes

extract patterns

 
 

Figure 3: Hoyle’s model for spatial learning. 
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Figure 4: Generalizing patterns into spatial concepts. 



 

Hoyle was tested against four challengers: the same perfect 
player, a 10% random and 90% perfect player, a 70% ran-
dom and 30% perfect player, and a 100% random player. 
Because Hoyle is non-deterministic (it breaks ties in tier-2 
voting by selecting a top-ranked move at random), data is 
averaged over 10 runs to form a single experiment. Each 
experiment was run once with a version of Hoyle that in-
cluded Patsy but did not learn new spatial Advisors as 
heuristics, and a second time where it did learn heuristics. 

Figure 3. Improvements cited here are statistically signifi-
cant at the 95% confidence level. We also, for reasons de-
scribed in the next section, ran one additional experiment 
for each game. 

Hoyle learns to value pattern-oriented play (i.e., Patsy 
and the learned spatial Advisors) highly. After learning in 
200 tic-tac-toe contests, 32.6% of all weight is assigned to 
Advisors that are pattern-oriented, and Patsy and the best 
learned spatial Advisor always have the top two weights. In 
lose tic-tac-toe, 29.3% of all weight is assigned to Advisors 
that are pattern-oriented, and Patsy ranks second on all but 
one run, where it ranks third. On 80% of the runs, Hoyle 
learned at least one spatial Advisor for lose tic-tac-toe with 
weight at least one, and that Advisor ranked fifth on aver-
age. Learning new spatially-oriented heuristics also 
reduces the number of contests Hoyle requires to develop 
consistent expert performance. With patterns and the 
learned spatial Advisors, the program never lost at lose tic-
tac-toe during learning after contest 29.0, versus contest 
56.0 without patterns and the learned spatial Advisors.  

Because learned spatial Advisors are produced by induc-
tion, not all of them are correct. This is especially true 
during early learning experience, when Hoyle is not yet 
playing well enough to exploit good pattern knowledge. 
Figure 5 shows how AWL adjusted the weights of three 
learned spatial Advisors for lose tic-tac-toe, based on their 
performance in one run of 200 contests. Advisor 1 is the 
horizontal and (through symmetry) vertical portion of the 
heuristic “reflect through the center,” proved optimal play 
for most situations in the game (Cohen, 1972). The weight 
of Advisor 1 increases rapidly after its creation. Advisor 2 
advocates playing in a row that does not go through the 
center, where each contestant already has one piece and the 
non-mover has a corner. Advisor 2 recommends a correct 
but infrequently applicable action, and its weight increases 
moderately. Advisor 3 recommends a move into a side row 
between an O and a blank. The weight of Advisor 3 ini-
tially increases but then falls off rapidly as Hoyle finds it 
misleading and discounts it on the basis of further experi-
ence.  

 
 

Table 2: Average performance of versions with and without new learned heuristics against four challengers. Estimated optima are in italics. 
Boldface is represents an improvement over Hoyle without new heuristics at the 95% confidence level.  

 
 Perfect Player 90% Perfect 30% Perfect Random Player 

Decision maker Wins+Draws Wins Wins+Draws Wins Wins+Draws Wins Wins+Draws Wins 
Tic-tac-toe 100.0 — 100.0 16.4 100.0 80.7 100.0 93.6 
Without new heuristics 100.0 — 98.0 15.0  98.0 75.0 100.0 97.0 
With new heuristics 100.0 — 97.0 13.0  94.0  77.0 98.0 93.0 
Broader context and 
weight ≥ 1 only 

100.0 — 100.0 22.0 99.0 85.0 98.0 94.0 

Lose tic-tac-toe 100.0  100.0 18.5 100.0 66.4 100.0 74.3 
Without new heuristics 100.0  — 97.0 19.0 87.0 56.0 77.0 55.0 
With new heuristics 100.0  — 98.0 18.0 92.0  49.0  91.0 66.0 
Weight ≥ 2 only 100.0  — 99.0 18.0 96.0   68.0  93.0 68.0 
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Figure 5: Three learned spatial Advisors for lose tic-tac-
toe, and their weights during 200 consecutive contests. The 
mover for each Advisor is in the current state; the pattern is 
matched for in the subsequent state In an α−β Advisor, ei-
ther α = X and β = O or α = O and β = X. In an Advisor 
with mover *, * is either X or O consistently.  



 

Table 2 shows learning to satisfice can change decision 
making, where improved performance over Hoyle without 
new heuristics is in boldface. When Hoyle learns with 
patterns and spatial Advisors, it improves its performance 
in lose tic-tac-toe against the less perfect challengers, even 
though it is forced to play from board states unseen during 
learning. In tic-tac-toe, its performance actually degrades 
somewhat, for reasons discussed in the next section. 
 

5. Discussion 
Two items of particular interest in these experiments are 
Hoyle’s performance against different opponents and its re-
sponse in novel situations. Recall that Hoyle trains against 
a perfect player. This results in stereotyped movement 
through the game tree (Epstein 1994b). During testing, the 
challengers with varying degrees of randomness in their 
move selection lead to states provably never experienced 
by Hoyle during learning.  

For lose tic-tac-toe, Table 2 demonstrates dramatic im-
provement when Hoyle learns new heuristics (its learned 
spatial Advisors). The secret here, we believe, is to care-
fully screen potential heuristics (as in Figure 3) and then 
phase them in gradually (as AWL does). Figure 6 demon-
strates how spatially-oriented play can improve behavior in 
novel situations. The position shown from lose tic-tac-toe 
never occurs during learning against the perfect player 
when Hoyle is X, but arises often in testing against the 
other three challengers. Without the learned spatial Advi-
sors, Hoyle typically votes to move into a corner adjacent 
to O’s move. Advisor 1 of Figure 5, however, though it has 
never experienced the specific instance of reflection 
through the center required here, swings the vote to do so 
because of the generalization used in its concept formation 
algorithm. Thus Hoyle can make correct decisions against 
the imperfect challengers in situations it has never seen 
during training. It parlays inductive spatial generalizations 
into game playing expertise.  

When new heuristics are learned inductively, there are 
several dangers. First, they can slow the system. Indeed, 

Table 3 shows the decision making time during testing lose 
tic-tac-toe for Hoyle without patterns and Hoyle with pat-
terns and new learned spatial Advisors. The price of greater 
accuracy appears to be speed. The introduction of new spa-
tial heuristics increases computation time. We therefore 
also ran a high-weight lose tic-tac-toe experiment, where 
Hoyle learned new spatial Advisors as before, but during 
testing only Advisors with weight at least 2 were permitted 
to comment. This not only reduced computation time but 
also improved performance against the 30% perfect chal-
lenger, as indicated in Table 2. 

The second danger is that during introduction of new 
heuristics, performance will temporarily degrade while the 
system adjusts to their presence. There was no evidence of 
this in these runs. Hoyle did not lose more often during 
learning at the times new spatial Advisors were introduced. 
We attribute this smooth integration to AWL’s gradual 
phase in for newly learned Advisors.  

The third danger in learning heuristics, as Table 2 shows 
for tic-tac-toe, is that performance might actually degrade. 
Inspection revealed that Hoyle overgeneralized on tic-tac-
toe. On every run Hoyle learned only a single new spatial 
Advisor that ever commented: “move into the corner of an 
empty row or column.” Let us call this Advisor Corner. On 
every run Patsy had the highest weight, and Corner had the 
second highest. Corner actually degraded Hoyle’s reliabil-
ity against the imperfect challengers. Inspection revealed 
that Hoyle’s new errors all stemmed from Corner’s incor-
rect response playing O to a side-square  opening by X 
shown in Figure 7. Because the perfect player always 
opens in the center or a corner, Hoyle had never 
encountered this opening during learning. Without Patsy 
and Corner, Hoyle correctly plays the center. Patsy, 

 
 

Figure 6: A learned spatial Advisor affects decision making in 
lose tic-tac-toe. 

Table 3: Decision time in seconds per contest for 3 ver-
sions of Hoyle against 4 challengers in lose tic-tac-toe. 

 Challenger plays perfectly 
Decision maker 100% 90%  30%  0% 
Without new heuristics .84 .83 .70 .71 
With new heuristics 1.33 1.33 1.23 1.19 
Weight ≥ 2 only 1.10 1.06 .95 .94 

X

without new 

heuristics

with new 

heuristics

 
  

Figure 7: Voting for O’s first tic-tac-toe move, Patsy and a 
learned spatial Advisor incorrectly select two corners. 



 

however, learned a specific pattern in the context of 
competition against a perfect player, a pattern that does not 
always apply when the competition is not perfectly expert. 
Corner suffers from a similar lack of context. Together, 
every time an imperfect challenger opens in a side square, 
Patsy and Corner swing the vote in tier 2 to a corner not 
adjacent to X, a fatal error. (X will play the corner between 
its first move and O. A sequence of forced moves then 
guarantees a win for X.)  

The use of context should correct such problems with 
learned heuristics. In this case, the strength of a pattern is 
in large part determined by the environment in which it is 
experienced. Hoyle’s pattern induction did detect an impor-
tant tic-tac-toe pattern, but only for play against a perfect 
player. In other words, the induction process overgeneral-
ized to say “corners in empty rows or columns are good,” 
whereas the more accurate statement would be “if someone 
already holds the center, corners in empty rows or columns 
are good.” Thus heuristic learning is demonstrably context-
dependent. When the context changes, the automatic re-
sponse to a heuristic (in this case playing the corner of an 
open column) may be wrong.  

We believe that the benefits of learning heuristics justify 
the cost of overlooking an occasional context. Even Corner 
gives generally good advice. Rather than keep a list of 
caveats, our preference is to broaden the context in which 
the pattern is learned, that is, to learn against all the chal-
lengers. The extra experiment we ran for tic-tac-toe had 
Hoyle train equally against each of the challengers and was 
high-weight, with weights at least 1. (The minimum weight 
was 1 instead of 2, as it was for the lose tic-tac-toe run, be-
cause there were fewer opportunities to adjust the weights. 
Recall, AWL models only a perfect player.) This time the 
error in Figure 7 never occurred, and Hoyle’s performance 
actually improved against the 30% perfect challenger. 
Hoyle simply needed additional knowledge to prevent the 
misuse of the new spatial Advisor; knowledge it acquired 
with broader training.  

We have begun to test this approach on five men’s mor-
ris to explore scaling up. This game’s board has 16 posi-
tions, contests average about 50 moves, and there are ap-
proximately 9 million states in its game graph. Results ap-
pear similar. Despite the substantial increase in scale, pat-
tern-oriented play improves Hoyle’s ability to win and 
draw against the challengers, and the learned spatial Advi-
sors are often salient subgoals. For example, five men’s 
morris is lost by a contestant who has too few pieces or 
cannot slide. Hoyle regularly learns and weights highly two 
spatial Advisors that enable capture, and a third that traps 
opposition pieces so they cannot slide, both keys to win-
ning the game. 

6. Related Work 
Any architecture that autonomously acquires skill in a spe-

cific problem class should be able to perform tasks there 
while learning. For a system to learn through experience, it 
must be able to perform at some low level of competence 
that supports the kind of experience required to achieve a 
higher level of performance through practice. Many cogni-
tive models (e.g., SOAR) have such ability, and can per-
form tasks in a serviceable fashion while mechanisms such 
as chunking operate to improve performance with experi-
ence (Newell 1990). These systems, however, typically 
have a complete set of knowledge for the particular prob-
lem class, as well as a knowledge representation initially 
optimized for it. In contrast, the architecture described here 
retains its capacity for general baseline performance, while 
it introduces an additional representation that specializes its 
behavior to a particular problem class, in this case an indi-
vidual game. 

We do not claim that Hoyle is a full cognitive model, but 
it does contain many appropriate elements which enhance 
its performance as an autonomous learning program. For 
example, the templates that filter perceived patterns and 
curtail a potential combinatoric explosion are not an ad hoc 
device, but are inherent in the human perceptual system 
(Goldstein 1989). FORR’s approach is supported by evi-
dence that people integrate a variety of strategies in order 
to accomplish problem solving (Biswas, Goldman, Fisher, 
Bhuva, & Glewwe 1995; Crowley & Siegler 1993; Ratter-
man, & Epstein 1995). Hoyle’s use of these patterns was 
inspired by repeated laboratory experiences with people 
who relied upon familiar, sometimes symmetrically trans-
posed patterns while learning (Ratterman, & Epstein 1995).  

7. Conclusion 
 The experiments described here directly address the issues 
raised in the introduction. Three aspects in this work con-
stitute satisficing as resource-bounded reasoning: 
• Design to curtail search in tier 1, and subsequent 
calculation with heuristics in tier 2 as necessary.  
• Reliance in tier 2 on knowledge not guaranteed to be 
correct, typically because it is learned by induction. 
• Elimination of low-weight Advisors (during testing). 

FORR’s hierarchy integrates correct and satisficing 
rationales in a constructive and natural way, so that 
obvious decisions are quick, and egregious errors are 
avoided. Search is minimized by the rationales’ design. 
AWL supports the gradual introduction of learned 
heuristics so that the system remains robust and yet is able 
to improve. Finally, context notwithstanding, the cost of 
additional procedural knowledge can be controlled by 
allocating resources only to those satisficing heuristics that 
prove reliable. We conclude that the role of inductive 
learning is to present well-founded new heuristics and then 
force them to prove their worth in an agent’s ongoing 
problem solving experience.  
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