

Learning How to Satisfice

Susan L. Epstein

Department of Computer Science
Hunter College and The Graduate School

The City University of New York
New York, NY 10021

epstein@roz.hunter.cuny.edu

Jack Gelfand

Department of Psychology
Princeton University
Princeton, NJ 08544

jjg@princeton.edu

Esther Lock

Department of Computer Science
The Graduate School of

The City University of New York
New York, NY 10021

elock@csp.gc.cuny.edu

Abstract
If a system is to both satisfice and compute with a high de-
gree of reliability, a balance must be struck. This paper de-
scribes an architecture that effectively integrates correct rea-
soning with satisficing heuristics. As a program inductively
learns new heuristics, the architecture underlying it robustly
incorporates them. Many of these heuristics represent signif-
icant information previously inexpressible in the program’s
representation and, in some cases, not readily deducible
from a description of the problem class. After training, the
program exhibits both an emphasis on its new heuristics and
the ability to respond correctly to novel situations with them.
This significantly improves the program’s performance. The
domain of investigation is board games, but the methods
outlined here are applicable to an autonomous learning pro-
gram in any spatial domain.

1. Issues in Satisficing
To satisfice is to make a good enough decision (Simon
1981). An agent that satisfices is sometimes termed limit-
edly rational because, despite the availability of a perfectly
correct process, it uses a more expedient heuristic, a rea-
sonably reliable rule of thumb. The faster choice permits
the agent to conserve its resources, and so is often the
wiser one. Human experts, for example, do not search the
full game tree for most board games, even though they un-
derstand that the best possible move is deduced that way.

Although heuristics may speed computation, sole re-
liance on them risks obvious oversights. A heuristic is li-
able to overlook an otherwise evident correct choice, or
make an egregious error. Heuristics fail when they are
overly broad generalizations. Consider, for example, the
quite reputable heuristic H “always play the center” for tic-

tac-toe. In Figure 1 it is X’s turn, and H clearly makes the
wrong choice.

Overly broad generalizations are of particular concern
for programs that learn inductively, because such heuristics
make them brittle. For example, imagine an inductive
learning program that watched two contestants, who
always made the correct move based on minimax from the
full game tree, compete against each other at tic-tac-toe.
(Figure 1 would never appear in such a tournament.) The
program would observe that one or the other always played
the center quite early in the contest. As a result, the pro-
gram might learn H. Although that would stand it in good
stead against such contestants, in the broader contest of the
full game tree, H is not completely reliable. Applying H to
Figure 1 overlooks an essential defensive move. A more
accurate heuristic has a caveat attached, something on the
order of “play the center unless….”

Learning heuristics with caveats, however, subverts the
fundamental rationale for satisficing: efficiency. Because
they strive to be more accurate, such heuristics are less
general, and therefore there are many more of them. The
caveats become lengthy as the program has more experi-
ence, and they may be somewhat repetitive. For example,
on one run of 800 contests a program learned 45 tic-tac-toe
rules with 52 caveats (Fawcett & Utgoff 1991).

An inductively learned heuristic cannot be guaranteed
trustworthy unless the program has the domain knowledge
or the experience to test it on every state in the space.
Nonetheless, in very large or dynamic environments learn-
ing heuristics is often essential, and induction is itself a sat-
isficing technique. Possible inaccuracy is not adequate rea-
son to abandon induction, only a warning that learned
heuristics must be treated even more gingerly than those
anticipated by the programmer.

This paper describes FORR (FOr the Right Reasons), a
satisficing architecture that addresses these issues. FORR
includes enough correct computation at manageable cost to
prevent egregious errors and make obvious decisions eas-
ily. FORR’s procedural hierarchy integrates economical,
correct routines with heuristic ones. FORR also supports
the incorporation of inductively learned heuristics in a way
that preserves the integrity of the system while it expands

O O

X

X

Figure 1: A tic-tac-toe state with X to move.

its capabilities. As a result, a FORR-based program is both
robust and adaptive.

The next section of this paper describes the architecture
and a FORR-based program for game playing. Subsequent
sections detail one way new heuristics can be learned in-
ductively and integrated with care. Finally we discuss ex-
perimental results, and related and future work.

2. The FORR Architecture
FORR is a general architecture for learning and problem
solving in a broad domain of related problem classes
(Epstein 1994a; Epstein 1998). FORR is an implemented
system, available in Common Lisp for a variety of plat-
forms. Hoyle, the example used throughout this paper, is a
FORR-based program for the domain of two-person, per-
fect information, finite-board games (Epstein 1992).

In FORR, a procedural implementation of a particular
decision-making rationale is called an Advisor. The input
to any Advisor at any decision point is the current state of
the world, a list of the legal actions possible, and a
collection of useful knowledge, information that is
potentially applicable and probably correct for a specific
problem class. In Hoyle, the current state is the game board
and whose turn it is to move, and the legal actions are the
rule-abiding moves. Useful knowledge is data learned from
experience and expected to enhance performance. It may or
may not be correct, depending upon the algorithm used to
acquire it. Good openings are an example of useful knowl-
edge for game playing. The output of an Advisor is any
number of comments, each of the form

<Advisor, action, strength>
Strength is an integer in [0, 10] that indicates the attitude of

the Advisor to the action, from firm opposition (0) to
strong support (10). Advisors need not reference useful
knowledge and they do not learn; they simply generate
comments.

For the most part, FORR Advisors are expected to be
domain dependent but problem class independent. In
Hoyle, for example, where the domain is game playing and
a problem class is a particular game, such as tic-tac-toe, an
Advisor should be applicable (although not necessarily
valuable) to board games in general, and not intended for
some particular game. Hoyle also has, however, some
number (determined during execution) of learned, game-
specific heuristic Advisors (learned spatial Advisors) that
proceduralize spatial concepts based on visual perception,
as described in the next section.

FORR accepts both correct and heuristic reasoning pro-
cedures for a domain, but requires the programmer to dis-
tinguish in advance between them. FORR organizes a pro-
gram’s Advisors into a hierarchy; Hoyle’s is shown in Fig-
ure 2. The correct Advisors appear in tier 1, with a se-
quence prespecified by the programmer. The heuristic ones
are relegated to tier 2. Table 1 lists Hoyle’s full comple-
ment of Advisors: 7 in tier 1 in their prespecified sequence,
and 15 in tier 2 alphabetically, with the learned ones
grouped as the final entry. Note that in each tier there are
some general game-playing decision makers (indicated by
*’s) that reference any learned useful knowledge, and oth-
ers that do not.

Tier-1 Advisors must be perfectly correct. For example,
Hoyle’s tier-1 Advisors do valid inference on data that is
true in the context of the full game tree. The only limitation
on a tier-1 Advisor is the extent of its computation. For ex-
ample, Hoyle’s Victory recommends a move that wins a
contest immediately, and its Panic forbids a move that
loses a contest after the opponent’s response. At most,
however, Hoyle’s tier-1 Advisors do two-ply search. If
some tier-1 Advisor mandates a move, or if as a group they
find only one move acceptable, that move is made and the
heuristic Advisors are never consulted.

Otherwise, the tier-2 Advisors collectively make their
less reliable comments from their individual, heuristic
viewpoints. For example, Hoyle’s Material embodies the
heuristic “maximize the number of your playing pieces and
minimize the number of your opponent’s.” In tier 2 a move
may be supported or opposed by many Advisors. Therefore
each tier-2 Advisor has a weight (e.g., w1 in Figure 2) that
reflects its relevance to and relative significance in a par-
ticular problem class. When a decision must be made in
tier 2, FORR selects the move with maximal support,
summing the product of the strength from each comment
about the move with the weight of the commenting Advi-
sor.

Empirical experience with Hoyle indicates that appropri-
ate Advisor weights are game-specific and should therefore
be learned. After every contest Hoyle plays against an ex-
pert, AWL (Algorithm for Weight Learning) considers, one

acquired useful knowledge

Tier 2:
Heuristic opinions

Tier 1:
Shallow search and
inference based on perfect
knowledge

Enough
Rope

make
move

…

w1

wn

…
wk

learned

spatial

Advisor 1

Material Patsy … learned

spatial

Advisor k

…

w2

…
…

…

Figure 2: A schematic of decision making in Hoyle.

at a time, only those states in which it was the expert’s turn
to move. For each such state, AWL distinguishes among
support and opposition for the expert’s recorded move and

for other moves. AWL cumulatively adjusts the weights of
tier-2 Advisors at the end of each contest, and uses those
weights to make decisions throughout the subsequent con-

Table 1: Hoyle’s Advisors for game playing. Tier 1 is in its prespecified order. Advisors with a * apply useful knowledge.

Name Description
Tier 1
Victory Makes winning move from current state if there is one.
Wiser* Makes correct move if current state is remembered as certain win.
Sadder* Resigns if current state is remembered as certain loss.
Panic* Blocks winning move non-mover would have if it were its turn now.
Don’t Lose* Eliminates any move that results in immediate loss.
Shortsight* Advises for or against moves based on two-ply lookahead.
Enough Rope* Avoids blocking losing move non-mover would have if it were its turn.
Tier 2
Anthropomorph* Moves as winning or drawing non-Hoyle expert did.
Candide Formulates and advances naive offensive plans.
Challenge Moves to maximize its number of winning lines or minimize non-mover’s.
Coverage Maximizes mover’s influence on predrawn board lines or minimizes non-mover’s.
Cyber* Moves as winning or drawing Hoyle did.
Freedom Moves to maximize number of its immediate next moves or minimize non-mover’s.
Greedy Moves to advance more than one winning line.
Leery* Avoids moves to state from which loss occurred, but where limited search proved no certain failure.
Material Moves to increase number of its pieces or decrease those of non-mover.
Not Again* Avoids moving as losing Hoyle did.
Open* Recommends previously-observed expert openings.
Patsy* Supports or opposes moves based on their patterns’ associated outcomes
Pitchfork * Advances offensive forks or destroys defensive ones.
Vulnerable Reduces non-mover’s capture moves on two-ply lookahead.
Worried Observes and destroys naive offensive plans of non-mover.
Learned spatial
Advisors

Supports or opposes moves based on their creation or destruction of a single pattern.

test. Essentially, Hoyle learns to what extent each of its
tier-2 Advisors simulates expertise, as exemplified by the
expert’s moves. Eventually, irrelevant and self-contradic-
tory Advisors in a particular game should have weight 0,
and more trustworthy Advisors should have higher weights
than less trustworthy ones. AWL was based upon Winnow,
a fast, perceptron-like learning algorithm (Littlestone
1988).

3. Learning and Applying New Heuristics
One current research effort is to have Hoyle learn new
heuristics from patterns. For Hoyle, a pattern is a visually-
perceived regularity, represented as a small geometric ar-
rangements of playing pieces (e.g., black or X) and blanks
(unoccupied positions) in a particular geographic location.
A move can create a pattern by providing some missing
piece or blank. In games where pieces are not permanently
placed, a move can also destroy a pattern by relocating a
playing piece. When it first learns a new game, Hoyle con-
structs a set of board-dependent templates as a filter for its
perceived patterns: straight lines, L’s, triangles, squares,
and diagonals of a limited size composed of legal piece po-
sitions. When a template is instantiated with some combi-

nation of pieces, blanks, and don’t care (#) symbols, it be-
comes a pattern. Further details on this process are avail-
able in (Epstein, Gelfand, & Lesniak 1996).

The associative pattern store (a pattern queue, a pattern
cache, and generated spatial concepts) is a heuristically-or-
ganized database that links patterns with contest outcome
(win, loss, or draw). Figure 3 is an overview of the devel-
opment of Hoyle’s spatial orientation from the game-spe-
cific associative pattern store. After each contest, the pat-
terns newly created by each move are extracted with the
templates. Next, patterns are associated with winning, los-
ing, or drawing and stored in a pattern queue. Patterns that
persist on the pattern queue over time and are identified
with a single consistent outcome enter the pattern cache.

Proceduralization is the transformation of expert knowl-
edge into expert behavior. Patterns in the cache are proce-
duralized with a tier-2 Advisor called Patsy, as described
below. Periodic sweeps through the pattern cache also at-
tempt to generalize sets of patterns into spatial concepts.
Each concept is proceduralized as an individual, game-spe-
cific, learned spatial Advisor, a heuristic that is then vali-
dated during subsequent learning. Because pattern knowl-
edge is extensive and contradictory, each segment of the

associative pattern store relates differently to decision mak-
ing. Queued patterns have no impact at all, cached patterns
serve as input to Patsy, and pattern-based concepts become
game-specific, learned spatial Advisors. Both patterns and
learned Advisors are efficiently represented. A hierarchy
from less to more specific speeds pattern matching and
supports subsumption testing. In addition, Hoyle normal-
izes with respect to the symmetries of the plane, thereby
reducing matching costs.

Patsy considers the set of possible next states resulting
from the current legal moves. Each next state is compared
with the patterns in the appropriate, game-specific cache.
(No new patterns are cached during this process.) Each pat-
tern is assigned a value computed from the total number of
won, lost and drawn contests since the pattern was first
seen. The strength of Patsy’s comment on each legal next
move is a function of the values of the patterns created and
destroyed by the move in the state to which it leads. Thus
Patsy encourages moves that lead to states introducing pat-
terns associated with a win or a draw for the mover, while

it discourages moves that lead to states introducing patterns
associated with a loss.

Generalization summarizes a set of detailed experiences
into a more useful and efficient representation. After every
10 learning contests, three generalization processes sweep
the pattern cache to form spatial concepts. Patterns agree
when they originate from the same template. As shown in
the examples of Figure 4, one generalization drops a posi-
tion, a second variabilizes the mover and all pieces, and a
third variabilizes the mover and a single piece. During gen-
eralization, only patterns with compatible associations may
be combined. For example, a pattern must be associated
with both a win for X and with a win for O to be general-
ized as a win for the mover α. In addition, if a new concept
subsumes one that already exists, the more specific is
eliminated. Each concept is proceduralized as a tier-2,
game-specific, learned spatial Advisor.

In the experiments that follow, we shall see that, despite
the care taken in Figure 3, learned spatial Advisors based
upon play experience do not always provide correct guid-
ance. As Hoyle’s skill develops further and the learned spa-
tial Advisors are introduced into tier 2, some of them prove
irrelevant, self-contradictory, or untrustworthy, despite
prior empirical evidence of their validity. To support their
smooth integration into tier 2, the weights of learned spatial
Advisors are initially discounted by an additional multi-
plier. This factor begins at 0.1 and reaches 1.0 after the
learned spatial Advisor comments appropriately 10 times.

4. Results
Hoyle now learns pattern associations and game-specific
spatial Advisors while it plays tic-tac-toe and lose tic-tac-
toe (played like tic-tac-toe but whoever gets three in a row,
column, or diagonal first loses). Because they both have
the same board, they begin with the same templates. Tic-
tac-toe is extremely easy for Hoyle to learn well, and we
expected no improvement; it was present only to demon-
strate that weights, patterns, and learned spatial Advisors
were game-board independent. Lose tic-tac-toe is a far
more difficult game to learn to play well, both for humans
and for machines (Ratterman & Epstein 1995). It has been
solved mathematically (Cohen 1972) and the correct
strategies for the two contestants are different. Thus it
forces the program to distinguish between patterns and
concepts good for one contestant and those good for both.
Both are draw games, that is, play between two contestants
that make no errors must, by the nature of the game graph,
end in a draw.

A run here is learning followed by testing. On each run,
Hoyle alternately moved first in one contest and second in
the next. During learning, the other contestant was a hand-
coded perfect player for the game being learned, one that
always moved to secure the best possible outcome despite
subsequent error-free play by the opposition, and chose
from among equally good moves at random. After learning,

Game state Move

Pattern
filter

Pattern
queue

Pattern
cache

Patsy

Spatial
concepts

Spatial
Advisors

proceduralize

generalize

proceduralize

associate patterns with outcomes

extract patterns

Figure 3: Hoyle’s model for spatial learning.

Different movers, pieces opposite

in only one position

!

Drop the single differing position

"For

"

To construct a concept

Same mover and outcome

Figure 4: Generalizing patterns into spatial concepts.

Hoyle was tested against four challengers: the same perfect
player, a 10% random and 90% perfect player, a 70% ran-
dom and 30% perfect player, and a 100% random player.
Because Hoyle is non-deterministic (it breaks ties in tier-2
voting by selecting a top-ranked move at random), data is
averaged over 10 runs to form a single experiment. Each
experiment was run once with a version of Hoyle that in-
cluded Patsy but did not learn new spatial Advisors as
heuristics, and a second time where it did learn heuristics.

Figure 3. Improvements cited here are statistically signifi-
cant at the 95% confidence level. We also, for reasons de-
scribed in the next section, ran one additional experiment
for each game.

Hoyle learns to value pattern-oriented play (i.e., Patsy
and the learned spatial Advisors) highly. After learning in
200 tic-tac-toe contests, 32.6% of all weight is assigned to
Advisors that are pattern-oriented, and Patsy and the best
learned spatial Advisor always have the top two weights. In
lose tic-tac-toe, 29.3% of all weight is assigned to Advisors
that are pattern-oriented, and Patsy ranks second on all but
one run, where it ranks third. On 80% of the runs, Hoyle
learned at least one spatial Advisor for lose tic-tac-toe with
weight at least one, and that Advisor ranked fifth on aver-
age. Learning new spatially-oriented heuristics also
reduces the number of contests Hoyle requires to develop
consistent expert performance. With patterns and the
learned spatial Advisors, the program never lost at lose tic-
tac-toe during learning after contest 29.0, versus contest
56.0 without patterns and the learned spatial Advisors.

Because learned spatial Advisors are produced by induc-
tion, not all of them are correct. This is especially true
during early learning experience, when Hoyle is not yet
playing well enough to exploit good pattern knowledge.
Figure 5 shows how AWL adjusted the weights of three
learned spatial Advisors for lose tic-tac-toe, based on their
performance in one run of 200 contests. Advisor 1 is the
horizontal and (through symmetry) vertical portion of the
heuristic “reflect through the center,” proved optimal play
for most situations in the game (Cohen, 1972). The weight
of Advisor 1 increases rapidly after its creation. Advisor 2
advocates playing in a row that does not go through the
center, where each contestant already has one piece and the
non-mover has a corner. Advisor 2 recommends a correct
but infrequently applicable action, and its weight increases
moderately. Advisor 3 recommends a move into a side row
between an O and a blank. The weight of Advisor 3 ini-
tially increases but then falls off rapidly as Hoyle finds it
misleading and discounts it on the basis of further experi-
ence.

Table 2: Average performance of versions with and without new learned heuristics against four challengers. Estimated optima are in italics.
Boldface is represents an improvement over Hoyle without new heuristics at the 95% confidence level.

 Perfect Player 90% Perfect 30% Perfect Random Player

Decision maker Wins+Draws Wins Wins+Draws Wins Wins+Draws Wins Wins+Draws Wins
Tic-tac-toe 100.0 — 100.0 16.4 100.0 80.7 100.0 93.6
Without new heuristics 100.0 — 98.0 15.0 98.0 75.0 100.0 97.0
With new heuristics 100.0 — 97.0 13.0 94.0 77.0 98.0 93.0
Broader context and
weight ≥ 1 only

100.0 — 100.0 22.0 99.0 85.0 98.0 94.0

Lose tic-tac-toe 100.0 100.0 18.5 100.0 66.4 100.0 74.3
Without new heuristics 100.0 — 97.0 19.0 87.0 56.0 77.0 55.0
With new heuristics 100.0 — 98.0 18.0 92.0 49.0 91.0 66.0
Weight ≥ 2 only 100.0 — 99.0 18.0 96.0 68.0 93.0 68.0

!

! ! ! !
!

!
!

!
!

!
!

!

!

!

!

!

! !

"

" " "" " "" " " "" " "
" " " "

#

#

50 100 150 200

0

1

2

3

4

5

6

! Advisor 1

" Advisor 2

Advisor 3

Mover * Mover

 *

Mover *

 *

Figure 5: Three learned spatial Advisors for lose tic-tac-
toe, and their weights during 200 consecutive contests. The
mover for each Advisor is in the current state; the pattern is
matched for in the subsequent state In an α−β Advisor, ei-
ther α = X and β = O or α = O and β = X. In an Advisor
with mover *, * is either X or O consistently.

Table 2 shows learning to satisfice can change decision
making, where improved performance over Hoyle without
new heuristics is in boldface. When Hoyle learns with
patterns and spatial Advisors, it improves its performance
in lose tic-tac-toe against the less perfect challengers, even
though it is forced to play from board states unseen during
learning. In tic-tac-toe, its performance actually degrades
somewhat, for reasons discussed in the next section.

5. Discussion
Two items of particular interest in these experiments are
Hoyle’s performance against different opponents and its re-
sponse in novel situations. Recall that Hoyle trains against
a perfect player. This results in stereotyped movement
through the game tree (Epstein 1994b). During testing, the
challengers with varying degrees of randomness in their
move selection lead to states provably never experienced
by Hoyle during learning.

For lose tic-tac-toe, Table 2 demonstrates dramatic im-
provement when Hoyle learns new heuristics (its learned
spatial Advisors). The secret here, we believe, is to care-
fully screen potential heuristics (as in Figure 3) and then
phase them in gradually (as AWL does). Figure 6 demon-
strates how spatially-oriented play can improve behavior in
novel situations. The position shown from lose tic-tac-toe
never occurs during learning against the perfect player
when Hoyle is X, but arises often in testing against the
other three challengers. Without the learned spatial Advi-
sors, Hoyle typically votes to move into a corner adjacent
to O’s move. Advisor 1 of Figure 5, however, though it has
never experienced the specific instance of reflection
through the center required here, swings the vote to do so
because of the generalization used in its concept formation
algorithm. Thus Hoyle can make correct decisions against
the imperfect challengers in situations it has never seen
during training. It parlays inductive spatial generalizations
into game playing expertise.

When new heuristics are learned inductively, there are
several dangers. First, they can slow the system. Indeed,

Table 3 shows the decision making time during testing lose
tic-tac-toe for Hoyle without patterns and Hoyle with pat-
terns and new learned spatial Advisors. The price of greater
accuracy appears to be speed. The introduction of new spa-
tial heuristics increases computation time. We therefore
also ran a high-weight lose tic-tac-toe experiment, where
Hoyle learned new spatial Advisors as before, but during
testing only Advisors with weight at least 2 were permitted
to comment. This not only reduced computation time but
also improved performance against the 30% perfect chal-
lenger, as indicated in Table 2.

The second danger is that during introduction of new
heuristics, performance will temporarily degrade while the
system adjusts to their presence. There was no evidence of
this in these runs. Hoyle did not lose more often during
learning at the times new spatial Advisors were introduced.
We attribute this smooth integration to AWL’s gradual
phase in for newly learned Advisors.

The third danger in learning heuristics, as Table 2 shows
for tic-tac-toe, is that performance might actually degrade.
Inspection revealed that Hoyle overgeneralized on tic-tac-
toe. On every run Hoyle learned only a single new spatial
Advisor that ever commented: “move into the corner of an
empty row or column.” Let us call this Advisor Corner. On
every run Patsy had the highest weight, and Corner had the
second highest. Corner actually degraded Hoyle’s reliabil-
ity against the imperfect challengers. Inspection revealed
that Hoyle’s new errors all stemmed from Corner’s incor-
rect response playing O to a side-square opening by X
shown in Figure 7. Because the perfect player always
opens in the center or a corner, Hoyle had never
encountered this opening during learning. Without Patsy
and Corner, Hoyle correctly plays the center. Patsy,

Figure 6: A learned spatial Advisor affects decision making in
lose tic-tac-toe.

Table 3: Decision time in seconds per contest for 3 ver-
sions of Hoyle against 4 challengers in lose tic-tac-toe.

 Challenger plays perfectly
Decision maker 100% 90% 30% 0%
Without new heuristics .84 .83 .70 .71
With new heuristics 1.33 1.33 1.23 1.19
Weight ≥ 2 only 1.10 1.06 .95 .94

X

without new

heuristics

with new

heuristics

Figure 7: Voting for O’s first tic-tac-toe move, Patsy and a
learned spatial Advisor incorrectly select two corners.

however, learned a specific pattern in the context of
competition against a perfect player, a pattern that does not
always apply when the competition is not perfectly expert.
Corner suffers from a similar lack of context. Together,
every time an imperfect challenger opens in a side square,
Patsy and Corner swing the vote in tier 2 to a corner not
adjacent to X, a fatal error. (X will play the corner between
its first move and O. A sequence of forced moves then
guarantees a win for X.)

The use of context should correct such problems with
learned heuristics. In this case, the strength of a pattern is
in large part determined by the environment in which it is
experienced. Hoyle’s pattern induction did detect an impor-
tant tic-tac-toe pattern, but only for play against a perfect
player. In other words, the induction process overgeneral-
ized to say “corners in empty rows or columns are good,”
whereas the more accurate statement would be “if someone
already holds the center, corners in empty rows or columns
are good.” Thus heuristic learning is demonstrably context-
dependent. When the context changes, the automatic re-
sponse to a heuristic (in this case playing the corner of an
open column) may be wrong.

We believe that the benefits of learning heuristics justify
the cost of overlooking an occasional context. Even Corner
gives generally good advice. Rather than keep a list of
caveats, our preference is to broaden the context in which
the pattern is learned, that is, to learn against all the chal-
lengers. The extra experiment we ran for tic-tac-toe had
Hoyle train equally against each of the challengers and was
high-weight, with weights at least 1. (The minimum weight
was 1 instead of 2, as it was for the lose tic-tac-toe run, be-
cause there were fewer opportunities to adjust the weights.
Recall, AWL models only a perfect player.) This time the
error in Figure 7 never occurred, and Hoyle’s performance
actually improved against the 30% perfect challenger.
Hoyle simply needed additional knowledge to prevent the
misuse of the new spatial Advisor; knowledge it acquired
with broader training.

We have begun to test this approach on five men’s mor-
ris to explore scaling up. This game’s board has 16 posi-
tions, contests average about 50 moves, and there are ap-
proximately 9 million states in its game graph. Results ap-
pear similar. Despite the substantial increase in scale, pat-
tern-oriented play improves Hoyle’s ability to win and
draw against the challengers, and the learned spatial Advi-
sors are often salient subgoals. For example, five men’s
morris is lost by a contestant who has too few pieces or
cannot slide. Hoyle regularly learns and weights highly two
spatial Advisors that enable capture, and a third that traps
opposition pieces so they cannot slide, both keys to win-
ning the game.

6. Related Work
Any architecture that autonomously acquires skill in a spe-

cific problem class should be able to perform tasks there
while learning. For a system to learn through experience, it
must be able to perform at some low level of competence
that supports the kind of experience required to achieve a
higher level of performance through practice. Many cogni-
tive models (e.g., SOAR) have such ability, and can per-
form tasks in a serviceable fashion while mechanisms such
as chunking operate to improve performance with experi-
ence (Newell 1990). These systems, however, typically
have a complete set of knowledge for the particular prob-
lem class, as well as a knowledge representation initially
optimized for it. In contrast, the architecture described here
retains its capacity for general baseline performance, while
it introduces an additional representation that specializes its
behavior to a particular problem class, in this case an indi-
vidual game.

We do not claim that Hoyle is a full cognitive model, but
it does contain many appropriate elements which enhance
its performance as an autonomous learning program. For
example, the templates that filter perceived patterns and
curtail a potential combinatoric explosion are not an ad hoc
device, but are inherent in the human perceptual system
(Goldstein 1989). FORR’s approach is supported by evi-
dence that people integrate a variety of strategies in order
to accomplish problem solving (Biswas, Goldman, Fisher,
Bhuva, & Glewwe 1995; Crowley & Siegler 1993; Ratter-
man, & Epstein 1995). Hoyle’s use of these patterns was
inspired by repeated laboratory experiences with people
who relied upon familiar, sometimes symmetrically trans-
posed patterns while learning (Ratterman, & Epstein 1995).

7. Conclusion
 The experiments described here directly address the issues
raised in the introduction. Three aspects in this work con-
stitute satisficing as resource-bounded reasoning:
• Design to curtail search in tier 1, and subsequent
calculation with heuristics in tier 2 as necessary.
• Reliance in tier 2 on knowledge not guaranteed to be
correct, typically because it is learned by induction.
• Elimination of low-weight Advisors (during testing).

FORR’s hierarchy integrates correct and satisficing
rationales in a constructive and natural way, so that
obvious decisions are quick, and egregious errors are
avoided. Search is minimized by the rationales’ design.
AWL supports the gradual introduction of learned
heuristics so that the system remains robust and yet is able
to improve. Finally, context notwithstanding, the cost of
additional procedural knowledge can be controlled by
allocating resources only to those satisficing heuristics that
prove reliable. We conclude that the role of inductive
learning is to present well-founded new heuristics and then
force them to prove their worth in an agent’s ongoing
problem solving experience.

Acknowledgments
We acknowledge helpful discussions with Phil Johnson-
Laird, Ron Kinchla, and Anne Treisman. This work was
supported in part by NSF grant #9423085, PSC-CUNY
#666318, the NSF Center for Digital Video and Media, and
the New Jersey Center for Multimedia Research.

References
Biswas, G., Goldman, S., Fisher, D., Bhuva, B. and

Glewwe, G. (1995). Assessing Design Activity in Complex
CMOS Circuit Design. In P. Nichols, S. Chipman, & R.
Brennan (Ed.), Cognitively Diagnostic Assessment
Hillsdale, NJ: Lawrence Erlbaum.

Cohen, D. I. A. 1972. The Solution of a Simple Game.
Mathematics Magazine, 45 (4): 213-216.

Crowley, K. and Siegler, R. S. 1993. Flexible Strategy
Use in Young Children’s Tic-Tac-Toe. Cognitive Science,
17 (4): 531-561.

Epstein, S. L. 1992. Prior Knowledge Strengthens
Learning to Control Search in Weak Theory Domains.
International Journal of Intelligent Systems, 7 : 547-586.

Epstein, S. L. 1994a. For the Right Reasons: The FORR
Architecture for Learning in a Skill Domain. Cognitive
Science, 18 (3): 479-511.

Epstein, S. L. 1994b. Toward an Ideal Trainer. Machine
Learning, 15 (3): 251-277.

Epstein, S. L. 1998. Pragmatic Navigation: Reactivity,
Heuristics, and Search. Artificial Intelligence, to appear :

Epstein, S. L., Gelfand, J. and Lesniak, J. 1996. Pattern-
Based Learning and Spatially-Oriented Concept Formation
with a Multi-Agent, Decision-Making Expert.
Computational Intelligence, 12 (1): 199-221.

Fawcett, T. E. and Utgoff, P. E. 1991. A Hybrid Method
for Feature Generation. In Proceedings of the Eighth
International Workshop on Machine Learning, 137-141.
Evanston: Morgan Kaufmann, San Mateo.

Goldstein, E. 1989. Sensation and Perception (third ed.).
Belmont, CA: Wadsworth.

Littlestone, N. 1988. Learning Quickly when Irrelevant
Attributes Abound: A New Linear-threshold Algorithm.
Machine Learning, 2 : 285-318.

Newell, A. 1990. Unified Theories of Cognition .
Cambridge, MA: Harvard University Press.

Ratterman, M. J. and Epstein, S. L. 1995. Skilled like a
Person: A Comparison of Human and Computer Game
Playing. In Proceedings of the Seventeenth Annual
Conference of the Cognitive Science Society, 709-714.
Pittsburgh: Lawrence Erlbaum Associates.

Simon, H. A. 1981. The Sciences of the Artificial
(second ed.). Cambridge, MA: MIT Press.

Tversky, B. 1989. Parts, Partonomies, and Taxonomies.
Developmental Psychology, 25 (6): 983-995.

