
 Relative Support Weight Learning for Constraint Solving
Smiljana Petrovic1 and Susan Epstein1,2

1Department of Computer Science, The Graduate Center, The City University of New York, NY, USA
2Department of Computer Science, Hunter College of The City University of New York, NY, USA

spetrovic@gc.cuny.edu, susan.epstein@hunter.cuny.edu

Abstract
Many real-world problems can be represented and solved as
constraint satisfaction problems, but their solution requires
the development of effective, efficient constraint solvers. A
constraint solver’s success depends greatly upon the heuris-
tics chosen to guide search. Some heuristics perform well on
one class of problems, but are less successful on others. The
solver described here learns a weighted combination of heu-
ristic recommendations customized for a given class of
problems. A pre-existing algorithm has weights learned for
heuristics from the number of nodes explored during learn-
ing. We present here a new algorithm which learns weights
for heuristics that consider the nuances of relative support
for actions. The resultant performance is statistically signifi-
cantly better than that of traditional individual heuristics.

Introduction
This work uses subproblem difficulty and the nuances
available in the expression of heuristics preferences to
guide search and learning effectively. In the domain inves-
tigated here, a semi-supervised learner searches for solu-
tions to difficult combinatorial problems. The learner
gleans training instances from its own (likely imperfect)
trace, and uses them to refine its search algorithm before it
continues to the next problem. Our long-term goal is to
learn an effective, efficient combination of domain-specific
heuristics that works well on a specific class of problems.
This paper moves toward that goal with a new algorithm
that learns weights to balance search heuristics.

The program described here learns to solve constraint
satisfaction problems by refining the weights assigned to a
large set of heuristics. It generates training instances from
its own search experience. The program’s decisions are
guided by a weighted combination of traditional constraint-
solving heuristics. The learning algorithm accepts recom-
mendations that assign some degree of support to each
available choice, compares them to the performed action,
and updates the heuristics’ weights accordingly. Search and
learning are closely coupled; weights are updated based on
search results, and decisions made during search are based
on the current weights.

DWL  (Digression-based Weight Learning) is a pre-
existing weight-learning algorithm for such a task. Its
weight reinforcements are based upon the size of the search
tree relative to searches on previous problems, and to the
sizes of digressions (failed subtrees) (Epstein, Freuder, et
al., 2005). We introduce here RSWL (Relative Support

Weight Learning), an algorithm for the same task. RSWL
bases its weight reinforcements on the degree of support
from a heuristic to all the available choices, the difficulty
of the current subproblem, whether the decision is early or
late in the search, the number of choices available, and the
weights at the moment of decision.

The next two sections of this paper provide background
on combining heuristics and on constraint satisfaction.
Subsequent sections describe the learning architecture used
here, and how the two weight-learning algorithms work
within it to combine heuristics. Later sections detail the
experiments and discuss the results.

Combining heuristics
Ensemble learning methods select hypotheses from a hy-
pothesis space and combine their predictions (Russell and
Norvig, 2003). A hypothesis can be represented by a func-
tion, as the output of an algorithm, or as the opinion of an
expert or a heuristic. Learning to combine experts has been
theoretically analyzed for supervised environments
(Kivinen and Warmuth, 1999). A mixture of experts algo-
rithm learns from a sequence of trials how to combine ex-
perts’ predictions. A trial consists of three steps: the mix-
ture algorithm receives predictions from each of e experts,
makes its own prediction y based on them, and then re-
ceives the correct value y'. The objective is to create a
mixture algorithm that minimizes the loss function (the
distance between y and y'). The performance of such an
algorithm is often measured by its relative loss:  the addi-
tional loss compared to the best individual expert. Under
the worst-case assumption, all experts’ predictions and
observed values are created to maximize the relative loss.
The best expert is not known in advance, and finding the
best expert in an on-line setting (where there is no separate
set of training instances and a decision must be produced at
any time based on previously experienced instances) is
impossible. Mixture of experts algorithms have been
proved asymptotically close to the behavior of the best ex-
pert (Kivinen and Warmuth, 1999).

Our setting differs from a traditional mixture of experts
in several critical ways. In solving constraint satisfaction
problems, the problem class is given in advance, and all the
experts’ predictions are based upon the characteristics of
the problem. Thus, a program that learns to solve constraint
satisfaction problems with a mixture of experts does not
seek to improve the worst-case performance, but to cus-



tomize the mixture of experts for the given class. In such a
setting, a mixture of experts can often outperform any sin-
gle expert (Valentini and Masulli, 2002). Our learner works
in a semi-supervised environment, without full information
about the correctness of decisions. Finally, it learns in an
off-line setting, where the goal is to accomplish some level
of competence on testing problems.

There are several reasons why a combination of experts
can offer improved performance, compared to a single ex-
pert (Valentini and Masulli, 2002). First, there may be no
single expert that is best on the all problems. A combina-
tion of experts could thus enhance the accuracy and reli-
ability of the overall system. Next, it may be possible to
use a natural decomposition of the problem, learn only
from relevant instances, or monitor different features dur-
ing learning. In addition, on limited data, there may be dif-
ferent hypotheses that appear equally accurate. In this case,
one could approximate the unknown true hypothesis by the
simplest one, but averaging or mixing all of them gives a
better approximation. A combination of hypotheses can
expand the space of representable functions. The target
function may not be representable by any hypothesis in the
pool, but their combination could produce an acceptable
representation. Finally, the Condorcet Jury Theorem, pro-
posed by the Marquis de Condorcet (1745-1794), considers
the conditions under which a democracy as a whole is more
effective than any of its constituent members. The theorem
states that the judgment of a committee of competent jurors
(each of which is correct with some probability greater
than 0.5) is superior to the judgment of any individual ju-
ror.

Constraint satisfaction problems
A constraint satisfaction problem (CSP) consists of a set of
variables with associated domains and a set of constraints,
expressed as relations over subsets of those variables. A
partial instantiation of a CSP is an assignment of values to
some proper subset of the variables. An instantiation is
consistent if and only if all constraints over the variables in
it are satisfied. A solution to a CSP is a consistent instan-
tiation of all its variables. Determining whether a CSP has
a solution is an NP-complete problem; the worst-case cost
is exponential in the number of variables for any known
algorithm. Most instances of these problems can be solved
with a cost much smaller than the worst-case cost, how-
ever. Problems that may be expressed as CSPs include
scheduling, satisfiability (SAT), and graph coloring. A bi-
nary CSP  (all constraints are on at most two variables) can
be represented as a constraint graph, where vertices corre-
spond to the variables (labeled by their domains), and each
edge represents a constraint between its respective vari-
ables.

A class is a set of CSPs with the same characterization.
For example, CSPs may be characterized by the parameters
<n,!m,!d,!t>, where n is the number of variables, m  the
maximum domain size, d the density (fraction of edges out
of n(n-1)/2 possible edges) and t the tightness (fraction of

possible value pairs that each constraint excludes) (Gomes,
Fernandez, et al., 2004). A class can also restrict the struc-
ture of the problem. For example, a composed problem
consists of a subgraph called its central component joined
to one or more subgraphs called satellites. (These were in
part inspired by the hard manufactured problems of
(Bayardo and Schrag, 1996).) The number of variables n,
maximum domain size m, density d, and tightness t of the
central component and its satellites are specified sepa-
rately, as are the density and tightness of the links between
them. A class of composed graphs is specified here as

<n, m, d, t> s <n¢, m¢, d¢, t¢>
where the first tuple describes the central component, s is
the number of satellites, and the second tuple describes the
satellites. (Satellites are not connected to one another.) Al-
though CSPs in the same class are ostensibly similar, there
is evidence that their difficultly may vary substantially for
a given solution method (Hulubei and O'Sullivan, 2005).
Our experiments here are limited to classes of solvable
binary CSPs, generated randomly using methods and code
shared by the CSP community.

The CSP search algorithm used here alternately selects a
variable and then selects a value for it from its domain.
Thus it incrementally extends a partial instantiation by a
value assignment consistent with all previously-assigned
values. When an inconsistency arises, search backtracks
chronologically: the subtree rooted at the inconsistent node
is pruned and another value from the domain of the same
variable is tried. If every value in that variable’s domain is
inconsistent, the current partial instantiation cannot be ex-
tended to a solution, so the previously assigned variable in
the instantiation is reassigned. Typically, extensive search
occurs when many attempts lead to “near” solutions, and
backtracking occurs deep in the search tree. Further prun-
ing of the search tree is accomplished by some form of
propagation to detect values that cannot be supported by
the current instantiation. Here we use MAC-3 to maintain
arc consistency during search (Sabin and Freuder, 1994).
MAC-3 temporarily removes currently unsupportable val-
ues to calculate dynamic domains that reflect the current
instantiation. The size of the search tree depends upon the
order in which values and variables are selected. Different
variable-ordering heuristics (rules to select the next vari-
able for instantiation) and value-ordering heuristics (rules
to select the next value to be assigned to an already-
selected variable) can support extensive early pruning and
thereby speed search.

Solving with heuristics
ACE (the Adaptive Constraint Engine) learns to customize
a weighted mixture of heuristics for a given CSP class
(Epstein, et al., 2005). ACE is based on FORR, an archi-
tecture for the development of expertise from multiple heu-
ristics (Epstein, 1994). ACE makes decisions by combining
recommendations from procedures called Advisors, each of
which implements a heuristic for taking, or not taking, an
action. By solving instances of problems from a given



class, ACE learns an approach tailored to that class. Advi-
sors are organized into three tiers. Tier-1 Advisors are al-
ways correct. If a tier-1 Advisor comments positively, the
action is executed; if it comments negatively, the action is
eliminated from further consideration during that decision.
The only tier-1 Advisor in use here is Victory, which rec-
ommends any value from the domain of the last unassigned
variable. Tier-1 Advisors are consulted in a user-specified
order. Tier-2 Advisors address subgoals; they are outside
the scope of this paper. The decision making described
here focuses on the heuristic Advisors in tier 3.

Each tier-3 Advisor can comment upon any number of
choices, and each comment has a strength which indicates
the degree of support from the Advisor for the choice. Each
Advisor’s heuristic view is based upon a descriptive met-
ric. An example of a value-selection Advisor is Max Prod-
uct Domain Value, which recommends values that maxi-
mize the product of the sizes of the dynamic domains of its
neighbors. One example of a variable-selection Advisor is
Min dom/deg, which recommends variables whose ratio of
dynamic domain size to static degree in the constraint
graph is a minimum. Another example is Min dom/ddeg
that minimize the ratio of dynamic domain size to dynamic
degree. For each metric, there are two Advisors, one that
favors smaller values for the property and one that favors
larger values. For example, domain size is referenced by
Max Domain and Min Domain, which recommend vari-
ables with the largest and smallest initial domains, respec-
tively. Typically, one Advisor from each pair is known by
CSP researchers to be a good heuristic, but ACE imple-
ments both of them, and occasionally demonstrates that the
less accepted heuristic is successful for some problem
class. There are also two benchmark Advisors, one for
value selection and one for variable selection. They model
random tier-3 advice but do not participate in decisions.
During testing, only an Advisor that has a weight larger
than the weight of its respective benchmark is permitted to
comment. When a decision is passed to tier 3, all its Advi-
sors are consulted together, and a selection is made by
voting: the action with the greatest sum of weighted
strengths from all comments is executed. 

Learning weights
ACE uses a weight-learning algorithm to update its weight
profile, the set of weights of its tier-3 Advisors. Positive
training instances are those made along an error-free path
extracted from a solution. Negative training instances are
value selections at the root of a digression and variable
selections when a value assignment to the selected variable
fails. Decisions made within a digression are not consid-
ered.

The only information available to ACE comes from its
limited experience as it finds one solution to a problem.
This approach is problematic for several reasons. There is
no guarantee that some other solution could not be found
much faster, if even a single decision were different. Al-
though variable selections are always correct (because with

correct value assignments, any variable ordering leads to a
backtrack-free solution), there can be a large difference in
search performance for different variable orderings. With-
out supervision, we must somehow declare what consti-
tutes a correct variable selection. Here, a variable selection
is considered correct if no value assignment to that variable
subsequently failed. All we know for certain is that the
value selection at the root of each digression tree is wrong,
based upon the evaluation of an entire subtree. Yet, that
failure may be the result of some earlier decision. Moreo-
ver, a particular Advisor may be incorrect on some deci-
sions that resulted in a large digression, and still be correct
on many other decisions in the same problem. These issues
are addressed with two different weight learning algo-
rithms: DWL and RSWL.

DWL: Digression-based Weight Learning
DWL determines that an Advisor supports a decision if it is
included among the Advisor’s highest-strength preferences
(Epstein, et al., 2005). Advisors that support a positive
training instance are rewarded with a weight increment that
depends upon the size of the search tree, relative to the
minimal size of the search tree in all previous problems.
Advisors that support a negative training instance are pe-
nalized in proportion to the number of search nodes in the
resultant digression. Short solutions indicate a good vari-
able order, so correct variable-ordering Advisors on train-
ing instances from a successful short search are highly re-
warded. For value-ordering Advisors, short solutions are
interpreted as an indication that the problem was relatively
easy (i.e., any value selection would likely have led to a
solution), and therefore result in only small weight incre-
ments for correct Advisors. A successful long search, in
contrast, suggests that a problem was relatively difficult, so
value-ordering Advisors that supported positive training
instances there receive substantial weight increments.

RSWL: Relative Support Weight Learning
Recall that, in ACE, an Advisor does not select one vari-
able or value, but recommends multiple choices each with
some numeric strength, the Advisor’s degree of support
(Epstein and Freuder, 2001). Although ACE incorporates
those strengths in voting, DWL attends only to which as-
signed strength is the highest. For example, if one Advisor
recommends the correct choice but only with its second-
highest strength and another does not recommend it at all,
both Advisors will be equally penalized.

In contrast, RSWL considers all recommendation
strengths, not only the highest. The relative support of an
Advisor for a choice is the normalized difference between
the strength the Advisor assigned to that choice and the
average strength it assigned to all available choices. Under
RSWL an Advisor is deemed to support an action if its
relative support for that action is positive, and to oppose it
if its relative support is negative. Reinforcement (positive
or negative) is proportional to relative support. Another
crucial difference between DWL and RSWL is that DWL



bases rewards on the size of the search tree, while RSWL
bases them on properties of the state in which a decision is
made.

For weight reinforcement, RSWL credits Advisors that
support correct actions and penalizes those that support
incorrect actions. In the experiments recounted in this pa-
per, we explored RSWL with various combinations of the
following factors:
• Relative support . Support for a correct decision with
near-average strength earns only a small credit, while sup-
port with substantially greater than average strength indi-
cates a clear preference and receives a proportionally larger
credit.
• Constrainedness. k is a parameter that can be used to
identify hard classes of problems (Gent, Prosser, et al.,
1999). For CSPs, k depends upon n, d, m, and t (defined
above):

† 

k =
n -1

2
d ⋅ logm ( 1

1- t
)

Regardless of the algorithm used, for fixed n and m, hard
problem classes have k close to one. Although k was in-
tended for a class, RSWL uses it as a measure of subprob-
lem difficulty throughout search. RSWL rewards an Advi-
sor only when it supports a correct decision on a training
instance derived from a search state where k is greater than
some specified value. Our rationale for this is that, on easy
problems, any decision leads to a solution. Credit for an
easy decision would effectively increase the weights of
Advisors that led to it, whose weights were presumably
already high. Similarly, RSWL penalizes an Advisor only
when it supports an incorrect decision and the correspond-
ing state has k lower than specified value, because there
should be no errors on easy problems.
• Depth of the search tree. Because calculating k on every
training instance is computationally expensive, we also
investigated RSWL with the depth of the search tree as a
rough, quick estimate of problem hardness. Early decisions
(at the top of the search tree) are known to be more diffi-
cult (Ruan, Kautz, et al., 2004).
• Number of available choices . Another factor in learning
is the number of choices presented to the Advisors. For
variable-selecting Advisors, the number of available
choices is n minus the current search tree depth (number of
assigned variables). For value-selecting Advisors, the
number of available choices is the domain size of the cur-
rently-selected variable, and varies due to propagation.
• Current weight. Advisors with high weights should be
reliable and accurate. When a highly-weighted Advisor
supports an incorrect decision, RSWL imposes an addi-
tional penalty. Similarly, when an Advisor with a low
weight supports a correct decision, additional credit is
given, so that its weight can recover faster.

Weight convergence
As calculated by both DWL and RSWL, the weight of an
Advisor is directly proportional to the rewards and penal-
ties it receives, but inversely proportional to the number of
training instances on which it comments. As a result, each

weight eventually achieves stability (its standard deviation
over some number of consecutive problems becomes very
small). In most situations, learned weights elicit good per-
formance. Occasionally, however, good heuristics are un-
able to control decision making and anti-heuristics (heu-
ristics that make poor choices) are repeatedly rewarded.
DWL takes a radical approach to this problem: a full restart
of the learning process (Petrovic and Epstein, 2006). DWL
recognizes when its current learning attempt is not prom-
ising, abandons the responsible training problems, and re-
starts the entire learning process.

In contrast, RSWL uses a recovery mechanism moti-
vated by the share update algorithm (Herbster and War-
muth, 1998). When ACE is not able to solve a problem
within the specified step limit (maximum number of search
decisions), RSWL redistributes (shares) the weights of
highly-weighted Advisors among all the Advisors, so that
small weights can recover quickly. This reapportionment
spreads equally among all Advisors a (parameterized) per-
centage of the weights of Advisors whose weights are
greater than their benchmarks’ weights. Such sharing can
be either across all Advisors or by category, so that vari-
able-selection Advisors share among themselves, and
value-selection Advisors share among themselves, possibly
with different a reapportionment percentage.

Experimental design
DWL, RSWL, and three traditional heuristics (min domain,
dom/deg, and dom/ddeg, described earlier) were tested on
random, solvable, binary CSPs from 4 classes:
<30,!8,!0.16,!0.5>, <30,!8,!0.18,!0.5>, the general class
<30,!8,!0.31,!0.34> with k near 1 (indicating that these
problems are particularly difficult for their n and m values),
and the composed class

<22,!6,!0.6,!0.1>!1!<8,!6,!0.72,!0.45>.
These composed problems have 30 variables, each with
domain size 6, separated into a central component of 22
variables that is relatively loose and a satellite of 8 vari-
ables that is somewhat more dense and significantly
tighter. Links between the central component and a satellite
occur with density 0.115 and tightness 0.05. Composed
problems present a particular challenge to most traditional
heuristics, as shown in the next section.

All experiments were conducted within ACE. For ACE,
a learning phase is a sequence of problems that it attempts
to solve and uses to learn Advisor weights. A testing phase
in ACE is a sequence of fresh problems to be solved with
learning turned off. For each problem class and for every
algorithm, each testing phase used the same 20 problems.
A run in ACE is a learning phase followed by a testing
phase, and draws all its problems from a single class. No
learning phase was used with the traditional heuristics.

In the work reported here, during learning ACE refer-
enced the 36 tier-3 Advisors described in the appendix.
During testing, ACE included only those tier-3 Advisors
whose weights exceeded their corresponding benchmarks.



Learning stopped when ACE solved 10 consecutive prob-
lems (the expertise criterion).

During learning, step limits on individual problems must
be set high enough to allow ACE to find solutions, but not
so high that search wanders and thereby produces poor
training examples and learns poor weight profiles. Step
limits were 2000 for the general CSPs and 5000 for com-
posed CSPs. During testing, step limits were 20000 for
general CSPs and 5000 for composed CSPs. During learn-
ing, DWL used full restart when 4 out of the last 7 con-
secutive tasks failed. Unless otherwise specified, RSWL
only gave credit for the support of correct decisions (i.e.,
no penalties). Without sharing, RSWL learns to solve the
general problems on some runs, but fails on others. There-
fore we established the following sharing policy as the de-
fault: share 40% of the weight of all Advisors whose
weight is higher than its benchmark Advisor’s weight.

Learning performance for DWL and RSWL was meas-
ured by the average number of learning problems over 10
runs. Testing performance for all algorithms was the num-
ber of steps per problem, averaged over 10 runs.

Results
DWL, RSWL, and all the traditional heuristics performed
uniformly well on the <30,!8,!0.16,!0.5> and
<30,!8,!0.18,!0.5> classes. (Those results are omitted here.)
We demonstrate first the power of a combination of heu-

ristics. Table 1 shows the performance of some of often
used traditional heuristics and of the pre-existing DWL
learning algorithm with 36 heuristics on the general prob-
lems. “Minimize the dynamic domain size”, “minimize the
ratio of dynamic domain size to static degree” (dom/deg),
and “minimize the ratio of dynamic domain size to dy-
namic degree” (dom/ddeg) are all traditional heuristics that
work well on a wide range of problems. The blend of heu-
ristics that DWL creates is significantly better than each of
them. The remainder of our empirical work studies RSWL.

On the general problems
First we look at criteria for reinforcement, and then at the
degree of reinforcement, special consideration for low-
weight Advisors that comment correctly and high-weight
Advisors that comment incorrectly, and sharing.

Table 2 illustrates the importance of constrainedness and
the depth of the search tree to weight learning with RSWL
on the problems from the general class. Credit was given to
Advisors that supported a correct decision, either when the
problem was sufficiently difficult (k) or when search was
high enough in the tree (depth). When credit was given
only on extremely hard subproblems (k > 0.8), there were
too few learning instances to refine the weights. Credit that
extended to relatively easy subproblems (k > 0.4) proved
unjustified, since the supported decisions were not neces-
sarily better than the other available choices. Testing
problems were solved in fewer steps and learning required
fewer tasks when k!>!0.6. Search tree depth as a criterion
for credit did best when credit was limited to early deci-
sions. Although search tree depth as a criterion seems to
show slightly better performance, the choice of a lower
bound for k is more likely to be independent of the prob-
lem class.

Thus far we have used k and search tree depth as criteria
for whether or not reinforcement should be given.  Another
approach is to use parameters to determine how much rein-
forcement to apply. For example, instead of credit = rs for
correct decisions when k > 0.6, we might credit every cor-
rect decision by

credit = 1.7⋅ k ⋅ rs [1]
where rs is an Advisor’s relative support. The use of 1.7 in

Table 2: Performance varies with bounds for k and for
search tree depth. Data is for RSWL on problems from
the class  <30,!8,!0.31,!0.34>. Only credit was assigned,
with sharing at 40% among all Advisors.

Criterion Learning tasks Testing steps
k > 0.8 21.60 174.91
k > 0.6 13.30 143.33
k > 0.4 19.40 152.24
Depth < 5 14.20 137.21
Depth < 10 12.80 140.13
Depth < 15 12.90 143.21
Depth < 20 12.70 156.71

Table 1: A blend of heuristics outperforms individual
ones. Performance of three traditional (non-learning) heu-
ristics and the DWL algorithm on problems from the class
<30,!8,!0.31,!0.34>.

Approach Learning tasks Testing steps
min domain — 335.20
dom/deg — 219.70
dom/ddeg — 201.40
DWL 16.90 139.75

Table 3: Performance varies with emphasis on relative
support. Data is for RSWL on problems from the class
<30,!8,!0.31,!0.34>. Credits and penalties were a multiple
of relative support, as defined in the text. Sharing was at
40% among all Advisors.

Reinforcement computation Learning
tasks

Testing
steps

For credit: 1.7 ·k 14.70 141.81

For credit: the number of choices 12.10 135.50
For credit: the number of choices
For penalty: the complement of
the number of choices

11.50 138.10



[1] provides credit ≈ rs when k ≈ 0.6, slightly more credit
with k!>!0.6, and some reduced credit when k < 0.6 (in-
stead of none at all). The results appear in the first line of
Table 3. For the remainder of Table 3, we calculated credit
as the product of relative support and number of available
choices, and penalties as the product of relative support and
the difference between the number of initial choices and
the number of available choices. (This increases penalty
size when an incorrect decision is made from fewer
choices.)

Table 4 shows the improvement in performance when
extra credit is given to low-weight Advisors that support
the correct decision. In these experiments, an Advisor with
weight w received credit that was the product of its relative
support with respect to a weight factor wf as follows:

† 

credit =
rs      when w > wf -1
rs ⋅ wf - w( ) otherwise

Ï 
Ì 
Ó 

[2]

When the weight factor is associated with a penalty this
becomes:

† 

credit =
rs      when w < 1- wf
rs ⋅ wf + w( ) otherwise

Ï 
Ì 
Ó 

[3]

In experiments with the weight factor, the average number
of learning tasks may increase slightly. When learning is
progressing well, this feature does not significantly affect
weights, because low-weight Advisors are usually anti-
heuristics. In the case of repetitive errors, which indicate
the need for a more radical change in the weight profile,
the weight factor helps the weights of good Advisors re-
cover faster. Clearly, an overly high weight factor can pre-
vent learning. With a weight factor of 5, learning never
converged and was terminated after 100 learning tasks.

The data in Table 5 shows how sharing, as implemented
here, can recover when a run is not progressing well. Table
5 indicates that appropriate values for reapportionment
parameters can support improved performance.

On the composed problems
Table 6 illustrates performance on the composed problems
described earlier. If an early variable choice is from the
satellite, the problem will be solved quickly. On the other
hand, if an early variable choice is from the central compo-
nent, propagation will impact domains primarily in the
central component and solve it, but be unable to extend that
solution to the satellite. Such searches are typically ex-
tremely long. We used a 5000-step limit here, but in other
experiments with a 20000-step limit, many problems in this

Table 4:  Performance changes when additional credit is
given to low-weight, correct Advisors or high weight in-
correct Advisors, as described in the text. Data is for
RSWL on problems from the class  <30,!8,!0.31,!0.34>.
Some data is repeated here to facilitate comparison with
earlier tables. * indicates that learning failed. Sharing was
at 40% among all Advisors.

Weight
factor Criterion Learning

tasks Testing steps

— k > 0.6 13.30 143.33
2 k > 0.6 13.70 142.11
3 k > 0.6 14.50 132.23
5 k > 0.6 — *
— Depth < 5 14.20 137.21
2 Depth  < 5 19.10 133.82
— Depth < 10 12.80 140.13
2 Depth  < 10 11.50 132.09

— Credit: k > 0.6
Penalty: k < 0.1 14.80 147.12

Credit: 2
Penalty: 1

Credit: k > 0.6
Penalty: k < 0.1 13.20 136.35

Table 5: Performance changes with different sharing ap-
proaches. Data is for RSWL on problems from the class
<30,!8,!0.31,!0.34>. Credit was given only when
depth!<!10, and no penalties were assigned. * denotes that
without sharing, learning failed.

Sharers % Learning
tasks

Testing
steps

None — * —

All 40% 12.80 140.13

All 25% 15.80 130.62
Variable Advisors
Value Advisors

40%
25% 11.60 135.84

Variable Advisors
Value Advisors

25%
25% 14.50 143.50

Variable Advisors
Value Advisors

40%
40% 11.60 133.46

Table 6: RSWL outperforms other algorithms on 20 com-
posed problems from <22,!6,!0.6,!0.1>!1!<8,!6,!0.72,!0.45>.
Sharing was at 40% among all Advisors; credits and pen-
alties assigned as noted.

Approach Testing
steps

Solved testing
problems

min domain 308.40 95.0%

dom/deg 551.90 90.0%

dom/ddeg 306.65 95.0%

DWL 549.82 91.5%
RSWL
credit when depth < 15,
penalty when depth > 15

137.67 98.5%

RSWL
credit when depth < 10 86.90 99.5%



class still went unsolved by the traditional heuristics, with
considerably more testing steps. For this reason Table 6
includes the number of problems solved during testing as
another measure of performance.

It is also important to note that on composed problems,
ACE often learns so-called anti-heuristics to be the best
choices. For example, in one successful run (where 11 of
the 20 testing problems were without any retraction at all),
RSWL learned a weight of 0.15 for the well-known heuris-
tic max degree, while its opposite, min degree, had a
weight of 10.71.

Discussion
The experiments recounted here show that a variety of
factors impact RSWL’s learning and ultimately its search
performance: the constrainedness of the current subprob-
lem, the depth of the search tree, the number of available
choices, the weight factor, the percentage of shared weights
and whether or not penalties are enforced. With one or
more of these in place, RSWL performs well on selected
classes of CSP problems. With well-chosen parameters, on
all the problem classes tested here, RSWL performs sig-
nificantly better than traditional heuristics and comparably
to a preexisting algorithm that was based upon different
features. RSWL’s mechanism for faster weight recovery
speeds convergence to good weights.

This research will be extended in several directions. We
intend to study RSWL on other classes of CSPs, including
quasigroups with holes, small world problems, and unsolv-
able general problems. We plan to determine whether ideal
values for parameters are problem-class dependent. If so,
we hope to automate the selection of good parameter set-
tings with respect to an individual class. We also intend to
study further the interaction among factors and how it af-
fects the selection of good values for the relevant parame-
ters. Furthermore, preliminary research has suggested that
credit to supporting correct decisions is often adequate,
without any penalties at all. We plan to investigate this
further, as well as the influence of credit for opposing in-
correct decisions and penalties for failure to support correct
ones. Meanwhile, we believe that RSWL represents a
promising new approach to learning to manage a large
body of heuristics.

Appendix
The concerns underlying ACE’s heuristic tier-3 Advisors,
drawn from the CSP literature are listed below. Each con-
cern is computed dynamically unless otherwise indicated.
One vertex is the neighbor of another if there is an edge
between them. A nearly neighbor is the neighbor of a
neighbor in the constraint graph. The degree of an edge is
the sum of the degrees of the variables incident on it. The
edge degree  of a variable is the sum of edge degrees of the
edges on which it is incident.

For variable selection:
• Number of neighbors in the constraint graph (static)
• Number of remaining possible values
• Number of unvalued neighbors
• Number of valued neighbors
•!Ratio of dynamic domain size to degree
•!Number of constraint pairs for variable (Kiziltan, Flener,
et al., 2001)
• Edge degree, with preference for the higher/lower degree
endpoint
• Edge degree, with preference for the lower/higher degree
endpoint
• Dynamic edge degree, with preference for the
higher/lower degree endpoint
• Dynamic edge degree, with preference for the
lower/higher degree endpoint

For value selection:
• Number of variables already assigned this value
• Number of value pairs on the selected variable that in-
clude this value
• Minimal resulting domain size among neighbors after this
assignment (Frost and Dechter, 1995)
• Number of value pairs from neighbors to nearly neigh-
bors supported by this assignment
• Number of values among nearly neighbors supported by
this assignment supported by this assignment
• Domain size of neighbors after this assignment, breaking
ties with frequency (Frost and Dechter, 1995)
• Weighted function of the domain size of the neighbors
after this assignment, a variant on an idea in (Frost and
Dechter, 1995)
• Product of the domain sizes of the neighbors after this
assignment

References
Bayardo, R. J. J. and R. Schrag (1996). Using CSP Look-

Back Techniques to Solve Exceptionally Hard SAT In-
stances. Principles and Practice of Constraint Pro-
gramming CP-1996, pp. 46-60.

Epstein, S. L. (1994). For the Right Reasons: The FORR
Architecture for Learning in a Skill Domain. Cognitive
Science 18: 479-511.

Epstein, S. L. and E. Freuder (2001). Collaborative Learn-
ing for Constraint Solving. Principles and Practice of
Constraint Programming -- CP2001 (T. Walsh, Ed.),
pp. 46 - 60, Springer 2001, Paphos, Cyprus.

Epstein, S. L., E. C. Freuder and R. Wallace (2005).
Learning to Support Constraint Programmers. Compu-
tational Intelligence 21(4): 337-371.

Frost, D. and R. Dechter (1995). Look-ahead Value Or-
dering for Constraint Satisfaction Problems. IJCAI-95,
pp. 572-278.

Gent, I. P., P. Prosser and T. Walsh (1999). The Con-
strainedness of Search. AAAI/IAAI 1: 246-252.



Gomes, C., C. Fernandez, B. Selman and C. Bessiere
(2004). Statistical Regimes Across Constrainedness
Regions. 10th Conf. on Principles and Practice of Con-
straint Programming (CP-04) (M. Wallace, Ed.), pp.
32-46, Springer, Toronto, Canada.

Herbster, M. and M. Warmuth (1998). Tracking the Best
Expert. Machine Learning 32: 151 - 178.

Hulubei, T. and B. O'Sullivan (2005). Search Heuristics
and Heavy-Tailed Behavior. Principles and Practice of
Constraint Programming - CP 2005 (P. V. Beek, Ed.),
pp. 328-342, Berlin: Springer-Verlag.

Kivinen, J. and M. K. Warmuth (1999). Averaging expert
predictions. Computational Learning Theory: 4th
European Conference (EuroCOLT '99), pp. 153--167,
Springer, Berlin.

Kiziltan, Z., P. Flener and B. Hnich (2001). Towards Infer-
ring Labelling Heuristics for CSP Application Do-
mains. KI'01, Springer-Verlag.

Petrovic, S. and S. L. Epstein (2006). Full Restart Speeds
Learning. Proceedings of the 19th International
FLAIRS Conference (FLAIRS-06), Melbourne Beach,
Florida.

Ruan, Y., H. Kautz and E. Horvitz (2004). The backdoor
key: A path to understanding problem hardness. Pro-
ceedings of the Nineteenth National Conference on Ar-
tificial Intelligence, pp. 124-130, San Jose, CA, USA.

Russell, S. and P. Norvig (2003). Artificial Intelligence A
Modern Approach, Prentice Hall, Upper Saddle River,
NJ.

Sabin, D. and E. C. Freuder (1994). Contradicting Con-
ventional Wisdom in Constraint Satisfaction. Eleventh
European Conference on Artificial Intelligence, pp.
125-129, John Wiley & Sons, Amsterdam.

Valentini, G. and F. Masulli (2002). Ensembles of learning
machines. Neural Nets WIRN Vietri-02  (M. M. a. R.
Tagliaferri, Ed.), Springer-Verlag, Heidelberg, Italy.


