
Learning Propagation Policies

Susan L. Epstein1, Richard Wallace2, Eugene Freuder2, Xingjian Li1

1 Department of Computer Science
Hunter College of The City University of New York

695 Park Avenue, New York, NY 10021 USA
susan.epstein@hunter.cuny.edu

http://www.cs.hunter.cuny.edu/~epstein
2 Cork Constraint Computation Centre
rwallace/efreuder@4c.ucc.ie

Abstract. Propagation is intended to remove from consideration values that
will not lead to a solution. A propagation policy includes preprocessing, selec-
tion of a propagation method, identification of relevant method parameters, and
switching among methods. We show here the significant impact a propagation
policy has on solution time, and that the choice of a good propagation policy
varies with the problem class. We also demonstrate how a propagation policy
can be learned automatically and can substantially improve performance.

1 Introduction

Since the earliest days of the modern study of backtracking (Golumb and Baumert
1965), we have faced the question of the best tradeoff between search and inference:
how much constraint propagation is cost efficient to interleave with backtrack search
choices? The answer is almost certainly “it depends” -- on the problem under consid-
eration, as well as on the method of propagation. This answer, however, provides little
comfort to the constraint programming practitioner. In this paper we extend the Adap-
tive Constraint Engine (ACE) (Epstein and Freuder 2001; Epstein, Freuder et al. 2002)
to construct automatically an appropriate “customized propagation policy” when con-
fronted with a class of problems.

The classic propagation choices are forward checking or maintaining arc consis-
tency, embodied in the FC and MAC algorithms. Forward checking is the minimal
lookahead one must do to assure consistency with previous choices; MAC restores full
arc consistency after every choice. A variety of intermediate methods have been pro-
posed, which do more propagation than FC but less than AC. We employ here the
restricted propagation methods of (Freuder and Wallace 1991) and develop new vari-
ants. Specifically we develop an AC version of FC-based restricted propagation and
add to restricted propagation the option of thresholds that are functions of search
depth. We also introduce a limited "one-pass" form of AC preprocessing, and the
"meta-method" of switching propagation methods at different search depths.

We show that our new intermediate methods excel in appropriate circumstances.
As expected, however, they too are no panaceas. We would like to use the new and

 Learning Propagation Policies

old methods together as “building blocks” to be chosen, tuned and combined to best
effect for individual circumstances, but that presents the constraint programmer with a
bewildering array of choices and combinations. This is where ACE comes in.

Specifically, ACE trains on a set of problems from a given class to automatically:
• decide which form of preprocessing to do
• decide whether to use FC, AC, or any of the intermediate propagation methods
• decide upon thresholds for intermediate methods
• decide whether to switch between methods, and determine switching point depths

We call such a set of decisions a propagation policy. The classical propagation poli-
cies are FC (with limited preprocessing) and MAC. We demonstrate that, for a fixed
search method, the customized propagation policies constructed by ACE for various
problem classes sometimes outperform both of the classical extremes and never un-
derperforms them (cf. Chmeiss and Sais, 2004 on FC versus AC). One would expect
that an appropriate propagation policy would depend not just on the problem class,
but also on the search method employed, specifically the variable-ordering and value-
ordering heuristics. We present preliminary evidence to show that ACE can choose
propagation policies appropriate for different search methods as well.

We then provide detailed experiments to suggest that not only is ACE choosing
good propagation policies, but most likely it is choosing essentially the best policies
that can be constructed from the building blocks provided. Our experiments incorpo-
rate a representative sample of such building blocks, but additional variations, old or
new, could naturally be accommodated. In fact, we have effectively demonstrated
here, with the positive results obtained for some of our new methods, and the negative
results obtained for others, that a constraint programmer can throw new ideas into the
mix, and ACE will not be confused, but will sort the wheat from the chaff, using new
ideas appropriate to the circumstances, and eschewing inappropriate ones.

Section 2 describes the building blocks, new and old, from which the propagation
policies are constructed and carefully defines essential terminology. Section 3 de-
scribes how ACE learns a propagation policy. Section 4 presents the results of the
learning experiments. Section 5 provides a more detailed study of various methods
and combinations, which provides further evidence for the ability of some of our new
methods to excel, and further support for the choices that ACE made. Section 6 dis-
cusses related and future work.

2 The building blocks

A constraint satisfaction problem (CSP) is a triple, <X, D, C>, where X is a set of
variables, D is the set of domains for X, and C is a set of constraints on X. A solution
for a CSP is a set of values, one for each variable, that satisfies C. In this paper, we
restrict our discussion to binary constraints. A partial assignment is a set of values for
some of X (the past variables) with the remainder (the future variables) described by
their (possibly reduced) domains. A partial assignment is said to be consistent if it
does not violate C. Search for a solution, then, can be represented as movement from
an initial state where all variables are future variables to a consistent assignment

where all variables are past variables. In the paradigm used here, search alternately
selects a current variable and then assigns it a value. When a propagation method
executes after each assignment during search, and removes any inconsistent values
from the domains of future variables, the method is said to be maintained. We con-
sider only maintained consistency here.

A binary CSP can also be represented as a labeled graph (a constraint graph),
where each variable is a node, each constraint is an edge, nodes are labeled by their
domains, and edges are labeled by their acceptable value pairs. A pair of nodes that
share an edge are said to be neighbors. The degree of a node is the number of
neighbors it has. Here, the density d of a CSP on n variables is the percentage of edges
it includes beyond the n-1 necessary to connect the graph. The tightness t of a graph is
the percentage of possible value pairs each edge excludes. With these parameters, we
represent a class of random problems as <n,m,d,t>, where m is the maximum initial
domain size. For fixed values of n and m, values of d and t that make the problems
particularly difficult are said to lie at the phase transition.

For clarity in our work, we make the following distinctions. Neighborhood consis-
tency (NC) guarantees that, for each variable x, each value in the domains of x’s
neighbors in the constraint graph is consistent with some value in the domain of x.
Forward checking (FC) is an algorithm that combines search with NC propagation
after each choice; it considers those neighbors of the just-assigned variable that are
future variables, compares the neighbors’ domains with the newly-assigned value, and
removes from them any value inconsistent with the new value. Thus FC guarantees
only that any consistent assignment to one variable can be extended to a consistent
partial solution on two variables. Arc consistency guarantees that for every value v in
the domain of each variable x, and for every constraint c  C between x and another
variable y, there is a value w in the domain of y such that (v w) satisfies c. MAC is an
algorithm that combines search with AC propagation after each choice. Each test that
a value is supported by another value in a neighboring domain is called a constraint
check. One would expect a higher level of consistency to improve search, but such
consistency demands more computation. Initialization is a propagation pass prior to
search. Let one-pass AC initialization be a process that, before search, examines each
edge once, in both directions, to remove unsupported values. We investigate both one-
pass AC initialization and (full) AC initialization here.

Research results on constraint propagation during search initially favored FC’s
simple one-step lookahead (Haralick and Elliott 1980). Later work indicated that for
hard problems the constraint propagation method of choice was often AC (Sabin and
Freuder 1994). This in turn drove research on clever data structures (Bessière and
Régin 1996; Bessière, Freuder et al. 1999; Bessière and Régin 2001) and elaborate
AC queue management to speed AC’s computation (Lecoutre, Boussemart et al. 2003;
Mehta and van Dongen 2005). As a result, maintained arc consistency (MAC) has
become the most popular propagation method. There are many implementations of
MAC. Here we use MAC-3, where each iteration processes a queue of edges, confirm-
ing for each edge from x to y that the domain values of y are supported by the domain
values of x. Whenever such confirmation reduces the domain of y, edges (y z) are
added to the queue, where z is a future variable and a neighbor of y. Before search,
MAC-3 does a full AC, with an initial queue that includes every edge in the graph.

 Learning Propagation Policies

During search, immediately after variable v is assigned a value, MAC-3 begins with a
queue that includes all the edges from v to future variables that are its neighbors. Our
implementation has no special queue management and no special treatment for vari-
ables whose domain is reduced to a single value.

Many search methods depend upon the efficacy of a propagation method because
they consider dynamic domain size (the number of values consistent with the current
partial solution) when selecting the next variable. Prominent among these are Min
Domain (which selects as the next variable the future variable with minimum dynamic
domain size), and Min Domain/Degree (which minimizes the ratio of dynamic do-
main size to static degree when selecting a variable). This work assumes, for each
problem class, a known, efficient search method which references dynamic domain
size. Unless otherwise stated, the search method used here is Min Domain/Degree.
Lexical order is used to break ties and in choosing values.

2.1 Problem classes

Intuitively, the degree and the nature of connectivity in the constraint graph can influ-
ence the potential impact of constraint propagation. In the experiments described here,
we therefore consider a variety of random, same-size problems: sparse <30, 8, 0.05,
0.5>, simple <30, 8, 0.1, 0.5>, medium <30, 8, 0.12, 0.5>, and hard
<30, 8, 0.26, 0.34>, the latter so named because they are at a phase transition. Ran-
dom problems, however, have arbitrary constraints and lack reliable structure; they
may obscure some interesting properties of propagation. Therefore, we also consider
three additional problem classes, to explore the impact of propagation further:
• A coloring problem is a CSP with constraints that prohibit assigning the same value
to certain pairs of variables. The coloring problems we use here have 30 variables,
domain size 8, and density 0.58.
• A geometric CSP is formed from a random set of points in the Cartesian plane —
each point becomes a variable in the problem; constraints are formed among any pair
of variables within a specified distance of each other, with additional constraints
added to connect the underlying constraint graph (Johnson, Aragon et al. 1989). The
result is a constraint graph ridden with clusters (not necessarily cliques) of vertices
which can prove particularly difficult for traditional solvers. The geometric problems
we use here have 50 variables, domain size 10, and tightness 0.18. Density is deter-
mined by the distance parameter (here, 0.4) and the spacing of the points in the unit
square; for a sample of 20 of these problems the average density was 0.32.
• An n X n quasigroup is a Latin square of size n: each of n2 variables participates in
2n–2 binary constraints. Quasigroups with holes specifies values for some variables
(the unspecified variables are the holes). The phase transition for quasigroups with
holes is about 33% non-holes (Achlioptas, Gomes et al. 2000). The problems we use
here are 10 X 10 quasigroups with 60 holes and are balanced (i.e., the holes are evenly
distributed across the square). For quasigroups with balanced holes, we use Min Do-
main, which selects the same variables as Min Domain/Degree.
All problems have at least one solution, but some geometric and quasigroup problems
are so difficult that some in our training set were never solved within 1000 seconds.

2.2 Locality and response in propagation

The propagation methods detailed in this section (some of which were first described
in Freuder and Wallace, 1991) seek a balance between AC and FC. Each of them
potentially does more work than FC but less than AC. The intuition behind these
methods is that propagation may only be effective in the neighborhood of the current
variable (locality) or that it is only effective if it reduces the domains of the neighbors
of the current variable substantially (response).

We address locality with two approaches: one extends FC’s reach beyond the cur-
rent variable and its neighbors; the other limits AC to the vicinity of the current vari-
able. More formally, let the p-neighborhood of a variable be the set of all future vari-
ables within distance p of it in the dynamic constraint graph.
• FC-spread first forward checks and then permits propagation to extend beyond the
current variable’s immediate neighbors within its p-neighborhood. FC-spread can be
thought of as a kind of spreading activation, which processes each edge at most once,
and considers only future variables within the p-neighborhood of the current variable.
FC-spread with p = 1 is equivalent to FC.
• AC-bound first forward checks and then performs AC with a queue restricted to
edges within the p-neighborhood of the current variable. AC-bound with p = n-1 is
equivalent to AC. (A similar method was examined recently by Chmeiss and Sais,
2004.)

We address response with approaches whose names include R for “response”:
• FCR first forward checks the neighbors of the current variable and then continues to
check edges only from neighbors whose domain sizes have been reduced by at least
r%. No edge is visited more than once.
• ACR is like FCR, but it permits edges from variables with sufficiently-reduced do-
mains to re-enter the queue.

It may be the case that the appropriate response varies with the search depth, that
is, that r is not uniform during search. We address this with two approaches whose
names include D for “depth”:
• FCRD first forward checks and then performs AC with a queue that includes edges
only from neighbors whose domain sizes have been reduced by at least r%, where r is
a function of search depth. No edge is visited more than once.
• ACRD is like FCRD, but it permits edges from variables with sufficiently-reduced
domains to re-enter the queue.

2.3 Switching and initialization in propagation methods

At some point during search a problem may become so easy that FC is sufficient. The
solver may have already instantiated a backdoor (Ruan, Horvitz et al. 2004) so that the
remainder of the problem is relatively easy. Indeed, the constraint graph may have
become acyclic, in which case, after a single AC pass, it can be solved backtrack-free
with a pre-computed (width-one) ordering of the variables and random value selection
(Freuder 1982). This is documented in Figure 1(a) which plots the number of con-
straint checks calculated with Min Domain/Degree and FCR with different r values

 Learning Propagation Policies

against search depth for the hard random problems. Initially the FCR methods do far
less work than AC itself, and do substantially less work (as does AC) after some point,
here when about 9 variables have been bound. We tested FCR for r = .1, .2,…,.9 on a
set of 100 problems. We therefore investigate propagation methods of the form x-FC
with terminal switch st, where x is itself a successful method. While no more than st

variables are bound, x-FC uses x to propagate; afterwards it uses FC.
Problems also differ in the number of values removed by AC immediately after the

first few value assignments. We therefore investigate propagation methods of the form
FC-x with initial switch si, where x is itself a successful method. While no more than si

variables are bound, FC-x uses FC to propagate; afterwards it uses x. Finally we inves-
tigated propagation methods of the form FC-x-FC with both initial and terminal
switches between FC and a successful method x.

Because most search methods (including Min Domain/Degree) depend in part on
dynamic domain size to select variables for assignment, a solver may derive some
clues on its initial selection of a variable with AC initialization. This is common CSP
practice, as well as part of MAC-3. Nonetheless, we solved 100 problems from each
problem set twice, once with one-pass AC initialization and the second time with AC
initialization, using Min Domain/Degree to search and AC to propagate after the ini-
tialization. There was no statistically significant difference at the 95% confidence
level, in initialization time, in solution time, or in total time between AC initialization
and one-pass AC initialization in any problem class. We therefore chose to make
either one-pass AC or AC initialization our final building block.

3 The learning algorithm

Tweaking parameters empirically is tedious and inexact. Ideally, a solver should learn
which propagation policy to use. We have enhanced ACE to learn a good propagation
policy for a fixed search method and problem class as follows. (A high-level synopsis
appears in Figure 2.) The program first solves a set of problems (here, 100) with FC
and gathers statistics on the response (percentage reduction in domain size) that it

Hard Random Constraint Checks by Search Depth

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Search Depth

FCR.1

FCR.2

FCR.3

FCR.4

FCR.5

FCR.6

FCR.7

FCR.8

FCR.9

FCR Running Time and Standard Deviation

1.61

1.29

1.05
1.26

1.36

2.22

3.41

4.64

3.42

1.7
1.52

1.08

1.32 1.4

2.34

3.83

5.28

3.5

0

1

2

3

4

5

6

FCR.1 FCR.2 FCR.3 FCR.4 FCR.5 FCR.6 FCR.7 FCR.8 FCR.9

FCR Methods

running time

standard deviation

(a) (b)

Figure 1: (a) The number of constraint checks with Min Domain/Degree on 100 random prob-
lems in <30, 8., 0.26, 0.34> for FCR propagation with r = .1, .2…, .9. (b) Running time aver-
age and standard deviation for these runs. Note that the best time appears to be for r = 0.3.

accomplishes as it does so. This data is stored by search depth. The same problems are
all reused at every stage in the process described here. One method was judged supe-
rior to another if it solved more problems (occasional geometric and quasigroup prob-
lems went unsolved in the 1000-second time limit under some propagation methods),
or if it had an initialization plus search time that was statistically significantly better,
or if it had a lower median time, or if it had a lower average time, in that order. (Be-
cause poor propagation policies often produced highly skewed distributions of per-
formance, we emphasize, and report, median times here.) In any tie, the method sim-
pler to compute was preferred.

ACE tests FCR on the problems and attempts to accelerate it. A higher r value re-
sults in less propagation from FCR or ACR. ACE begins with r = 1/m and increases r
by 1/m and retests on the 100 problems as long as there is no statistically significant
increase in time to solution. (Recall that m is the maximum domain size.) ACE also
tests FCRD using the data by search depth already collected. (Parameters are not
changed for the D methods.) The best among FC, FCR with the best observed r, and
FCRD becomes the foundation method f for propagation. Then the entire process is
repeated, beginning this time with AC, and resulting in a second foundation method a.
(To make ACR’s queue more selective than AC’s, however, r begins at 2/m instead of
1/m.) For example, in a learning run on 100 simple random problems, ACE found f =
FCR with r = 0.25 and a = AC.

Then ACE reruns f and a with the increased overhead of monitoring for the point at
which the graphs become acyclic. ACE then turns off the acyclic computation and
tests f-FC and a-FC. (The intuition here is that a late-enough terminal switch to FC
should be relatively safe, even without the width-one order.) First ACE tests a termi-
nal switch st that is the minimum of the greatest search depth at which any domain
reduction occurred and the greatest search depth at which any problem became acyclic
in the 100 problems. As long as there is no statistically significant increase in time to
solution, ACE continues to reduce st by 1. At this point the foundation methods are of
the form f-FC and a-FC (unless late switching reduced performance or a base method
was FC already). In our example, the foundation methods were now f = FCR with r =
0.25 and a = AC-FC with st = 25.

Next, unless a base method is FC, ACE fixes any terminal switch st and tests FC-f-
FC and FC-a-FC, beginning with si = 1 and increasing the initial switch until there is a
statistically significant increase in time to solution. (If the two switches for FC-x-FC
converge to the same value, ACE reverts to method x.) In our example, f became FC-
FCR with r = 0.25 and si = 2, while a became FC-AC-FC with si = 2 and st = 25. Then

For initialization method m in {one-pass AC, AC}
f  fastest method among {FC, FCR, FCRD}
a  fastest method among {AC, ACR, ACRD}
Accelerate f and a by late FC
Accelerate f and a by early FC
Select b(m), the faster of FC-f-FC and FC-a-FC

Select the faster of b(one-pass AC) and b(AC)

Figure 2:ACE’s high-level algorithm for learning a propagation policy.

 Learning Propagation Policies

ACE compares the times for f and a, and chooses the more effective propagation
method, in this case f.

ACE runs this entire procedure, from foundation methods on, twice: once with one-
pass AC initialization and again with AC initialization. It thereby learns a propagation
policy with an initialization. The example above was for one-pass AC initialization on
the simple problems; with AC initialization, ACE found f = FC-FCR with r = 0.25 and
si = 2, and a = FC-AC-FC with si = 2 and st = 25.. Ultimately, ACE preferred the lat-
ter.

4 Results with learning

We had ACE learn to propagate for each of the classes described in Section 2. The
results appear in Table 1. Note that the propagation policy learned does indeed vary
by class. Of course, it is necessary to confirm these results on a separate set of data.

Table 1:Best propagation policies learned by ACE on 100 problems, based on initialization
plus search time. Integer parameters are switch points; decimal parameters are r values. Times
in seconds (mean , median md, and std deviation ) are shown for a second set of problems in
the same class: for FC (with one-pass AC initialization), for AC (with AC initialization), and
for ACE’s learned policy. Improvement is time reduction by ACE over each of FC and AC.

Times Improvement
Class ACE learns FC AC ACE FC AC

Sparse
random

ACR-FC 0.75,23
AC initialization


md


0.05
0.05
0.01

0.05
0.05
0.00

0.05
0.05
0.02

Same
Same

Same

Simple
random

ACR-FC 0.25, 23
AC initialization


md


0.25
0.12
0.50

0.12
0.09
0.06

0.10
0.08
0.09

60%
33%

17%
11%

Medium
random

ACR 0.25
one-pass AC
initialization


md


0.32
0.24
0.28

0.17
0.14
0.27

0.14
0.12
0.06

56%
50%

18%
14%

Hard
random

ACR 0.25
one-pass AC
initialization


md


1.52
1.08
1.29

0.85
0.63
0.65

0.70
0.53
0.55

54%
51%

18%
16%

Coloring FCR-FC 0.5, 28 
md


0.45
0.25
0.77

0.43
0.34
0.24

0.47
0.27
1.00

-4%
-8%

–9%
21%

Geometric ACR-FC 0.4 45
AC initialization


md


6.41
0.74

22.47

6.69
0.76

28.81

6.38
0.76

22.40

0.4%
–3%

5%%
Same

Quasigroups
with holes

AC-FC 93
AC initialization


md


16.61
1.45

54.80

6.65
0.99

21.49

6.55
0.94

20.21

60%
32%

2%%
5%

Hard Random Problem, Constraint Checks by Search Depth

0

20000

40000

60000

80000

100000

120000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Search Depth

hard random ac

hard random fc

Hard Random Problems, Values Removed by Search Depth

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Search Depth

hard ac

hard fc

(a) (b)
Quasigroup with holes, Constraint Checks by Search Depth

0

2000

4000

6000

8000

10000

12000

14000

16000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Search Depth

qwh ac

qwh fc

Quasigroup with holes, Values Removed by Search Depth

0

50

100

150

200

250

300

350

400

450

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Search Depth

qwh ac

qwh fc

(c) (d)

Coloring Problems, Constraint Checks by Search Depth

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Search Depth

coloring ac

coloring fc

Coloring Problems, Values Removed by Search Depth

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Search Depth

coloring ac

coloring fc

(e) (f)
Geometric Problems, Constraint Checks by Search Depth

0

100000

200000

300000

400000

500000

600000

700000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Search Depth

geometric ac

geometric fc

Geometric Problems, Values Removed by Search Depth

0

500

1000

1500

2000

2500

3000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Search Depth

geometric ac

geometric fc

(g) (h)
Figure 3: Constraint checks performed at each search depth (a, c, e, g) and values removed (b,
d, f, h) by a traditional solver on 100 solvable random hard problems, quasigroups with holes,
coloring problems, and geometric problems, respectively. An AC initialization pass was per-
formed on each problem.

 Learning Propagation Policies

We ran Min Domain/Degree three times on a second, fresh set of 100 problems in
each class: with ACE’s learned propagation policy, with FC and one-pass AC initiali-
zation, and with AC and AC initialization. For every class of problems, our learned
policies were at least as good as the others; for all random problem classes but sparse,
ACE was statistically significantly better than FC at the 95% confidence level.

5 Further assessment of learning

In the previous section we have shown that the propagation policy ACE learns im-
proves search performance on several different classes of CSPs. It is reasonable to ask
whether this was the best propagation policy learnable from these building blocks, and
whether most any policy would have sufficed. This section addresses those questions
with additional data. We begin with three examples that compare the propagation
activity and performance time of FC and AC.
• On random problems in <20, 30, 0.444, 0.5>, Min Domain/Degree averaged 29.21
seconds under FC to find a solution, but 82.14 seconds under AC.
• On hard random problems, the solver under FC does considerably less work (as
measured in constraint checks) and removes more values (during compensation for its
errors) somewhat later in search than under AC, as shown in Figures 3(a) and (b).
Nonetheless, solution under FC is actually slower on these problems, presumably
because FC leaves more unsupportable values which the solver cannot readily avoid.
• On quasigroups of order 10 with 60 holes, under FC the solver does less work and
removes fewer values than AC. See Figures 3(c) and (d).

Table 2 confirms the differences between FC and AC on our problem classes, and
that comparing them is well worth the effort. (In this table only, initialization time is
excluded, to focus on work done after it; times are means, to show statistical signifi-
cance.) If problems are easy because most initial value selections are consistent with
some solution, then they probably do not require the intense scrutiny of AC, particu-
larly if we seek only one solution. AC indeed does more work (as measured by con-
straint checks), but can significantly speed solution, depending on the problem class.

Table 2: Mean propagation time, checks and nodes expanded, exclusive of AC initialization, to
solve with FC or AC and Min Domain/Degree on different problem classes. Results are aver-
aged over 100 problems. Figures in bold represent a statistically significantly difference at the
95% confidence level.

Time Checks Nodes
Class FC AC FC AC FC AC

Sparse 0.04 0.05 347.68 1804.20 34.99 30.18
Simple 0.20 0.12 1647.85 5425.75 254.21 38.43
Medium 0.36 0.17 3401.41 9070.71 477.22 55.14
Hard 1.70 0.85 20416.20 51598.53 1879.87 189.43
Coloring 0.32 0.43 2686.37 17941.30 169.88 73.36
Geometric 7.37 6.69 74428.00 293088.37 2223.95 385.46
Quasigroups 16.61 6.65 26123.90 35392.58 3376.16 1196.96

Among our problem classes, FC appears to be a viable alternative only on sparse and
coloring problems. Otherwise, FC’s fewer checks come at the expense of visiting
more nodes. Moreover, in these experiments AC initialization rarely removed any
more values than one-pass AC initialization — at most two values in 100 problems.

Finding a good propagation policy by hand is not trivial. We tested FC, AC, and
the propagation methods of Section 3 on the hard random problems, using AC initiali-
zation and Min Domain/Degree. We tested FC-spread and AC-bound for p = 2, 3,…,
n/2, and FCR and ACR for r = .1,.2,…,.9. For x-FC methods we tested terminal switch
st = 5, 10, …, n–5. We observed that immediately upon any initial switch, there is a
pronounced spike in the number of constraint checks, often well beyond what AC
would have done, as the first AC pass catches up. We therefore tested FC-x methods
only for initial switches si = 1, 2,…, 5. Often a single parameter change (e.g., from r =
0.5 to 0.4) made it impossible to solve some problems that had been solved under the
previous setting. Under many parameter settings, the solver spent hours on a single
problem and we terminated the run.

ACE is learning in a space of methods that have the potential to perform quite
poorly. Nonetheless, ACE found a very good propagation policy for each class. We
tested these “best observed” parameter settings on the testing problems from Table 1,
to see how they compared with ACE. Inspection indicates that ACE’s learning is con-
sistent with these results. For example, ACE learns r = 0.25 for the hard random prob-
lems for both FCR and ACR, as close as it can get to 0.3 with its algorithm.

Finally, as observed earlier, random problems lack reliable structure, which real-
world problems generally have. Figure 3 suggests that a good propagation method
might vary with problem class. We tested coloring, geometric, and quasigroup with
holes problems empirically, using AC initialization and various propagation methods
described above, beginning with parameters for the hard random problems and then
choosing a few new values to test based on those results. The best observed parame-
ters that produced them appear in Table 3, retested on the problems of Table 1. ACE

Table 3: Observed median solution time in seconds on 100 problems for three problem classes,
along with the parameter values that produced them. The classes and the range of parameter
values tested are detailed in the text. Min Domain/Degree and AC initialization were used.

Hard Geometric Coloring Quasigroup
Propagation Time Pars. Time Pars. Time Pars. Time Pars.

FC 1.20 — 0.78 — 0.26 — 1.45 —
FC-spread 0.63 5 0.72 40 0.36 5 2.28 40
AC-bound 0.62 10 0.99 15 0.42 5 1.42 50
FCR 0.54 .3 0.67 .3 0.27 .5 2.21 .5
ACR 0.51 .3 0.66 .3 0.24 .5 1.42 .5
FC-AC 0.65 5 0.69 30 0.36 10 2.11 40
AC-FC 0.62 20 0.83 20 0.33 20 2.25 90
ACR-FC 1.09 5, .3 0.68 .3, 20 0.28 .2, 10 2.22 .5, 60
FC-AC-FC 0.65 5, 25 0.74 5, 30 0.28 5, 20 2.37 20,80
FC-ACR-FC 0.67 5,.3,25 0.75 3,.3,15 0.29 5,.2,25 1.34 40,.3,80
AC 0.92 — 0.76 — 0.34 — 0.99 —
ACE learned 0.53 ACR

.25
0.76 ACR-FC

.4, 45
0.27 FCR-FC

.5, 28
0.94 AC-FC

93

 Learning Propagation Policies

came close to the best time for the hard problems and the coloring problems. Note that
ACR and FCR consistently match or outperform the more traditional FC and AC.

6 Discussion and related work

It is noteworthy that AC initialization often, but not always, leads to improved per-
formance. In some cases, of course, the nature of the problem class makes any reduc-
tion by AC unlikely (e.g., coloring). Otherwise, we surmise that much of the difficulty
a search method experiences with a problem has to do with where to begin (once
again, the backdoor), and that an initialization pass of either kind may offer a useful
clue based on initially reduced domain size.

AC’s automatic reconsideration of edges may be overkill. Propagation is effective
only when it can quickly remove values that will not lead from the current instantia-
tion to a solution. If the crucial potential inconsistencies lie nearby the current vari-
able, then propagation need not explore every constraint. In Table 1, ACE learned
ACR or FCR for every class, which suggests that the impact of propagation, as meas-
ured by the response r, may be a better indication of when to reconsider them.

As search deepens, dynamic domains become progressively smaller, so that even-
tually few values remain, and even AC removes few of them. In Figure 2(b), for ex-
ample, this happens after assigning about one third of the values with AC, and after
about two thirds with FC. A search method that prefers maximum degree will focus
first on highly-connected variables; eventually the future variables will be connected
to few others, and again are likely to have little impact beyond their immediate
neighbors. This would argue for propagation methods that address response when the
search method includes minimizing domain size, and explains to some extent our
success here with R methods. Because Min Domain/Degree is responsive both to
dynamic domain size and to degree, it supported our new methods particularly well.

ACE’s algorithm to learn a propagation policy performs as well as any manually
selected settings. Differences arise when the crucial r values tested by ACE (in incre-
ments of 1/m) do not match those tested empirically (in increments of 0.1), or when its
switch values (tested in increments of 1) step more gradually than those tested empiri-
cally (in increments of 5). Inspection indicates that despite its host of building blocks,
ACE learns r = 0.25 for FCR on the hard random problems, as close as it can get to
the 0.3 that performed best on those problems in Figure 2. (Ultimately, however, ACE
judged one-pass AC initialization and ACR r = 0.25 to be better.) The learning algo-
rithm eliminates much tedious lengthy testing (and automates the rest).

In the construction of this algorithm we explored and then eliminated many possi-
ble approaches. Based on observations of monotonicity during the extensive testing
that led to Tables 3 and 4, we assumed that performance associated with response r
has a single minimum. Based on their lackluster performance during initial testing,
FC-spread and AC-bound were excluded from the process. (Nonetheless, a real-world
problem could in principle be most affected by variables in the immediate vicinity of
the current variable, and we expect to investigate these variants further.) One might
also argue that value removals ought to be compared with tightness. Since the prob-

ability that a pair of values is unacceptable on an edge is roughly the square root of the
tightness, a static approach should therefore be commensurate with t1/2. While it is
unlikely that a method will achieve such reductions consistently, in a state with f future
variables and an average dynamic domain size g, one could hope for t1/2fg removals
and continue to propagate with AC as long as r% of that gauge was removed. This
method, however, is equivalent to AC-bound with an appropriately-scaled parameter.
(See, however, (Mehta and van Dongen 2005).) One might also monitor removals per
check, a sort of utility heuristic, that would select the method that removes the most
values for the work it performs. By this standard, however, the best of the FCR meth-
ods on the hard problems would have been FC, which we know to have been unac-
ceptably slow there. Finally, we coded and observed an algorithm that cycled between
AC and FC at various intervals. The spikes we noted for the early FC switch reap-
peared and proved too costly, however.

Some propagation methods appear rarely if at all in Table 1. Inspection indicates
that the D (adjust by search depth) methods performed relatively well. In most prob-
lem classes total domain size drops by 16-23% after the first assignment. This is not
true of the random hard problems, however, and only geometric problems have an-
other significant drop after the second assignment. Further work on the D methods is
planned. It also appears that switching is not helpful with R methods. This suggests
that a substantial reduction in domain size remains important throughout search. When
a terminal switch was constructive, it led to some reduction in median time: during
learning, about 12% on geometric and quasigroup problems. An initial switch, al-
though it may have improved AC in Table 3, was never part of a best observed or
learned propagation policy.

Because the focus of this work is propagation, we used equivalent search methods
throughout. It is reasonable to expect, however, that the performance of the search
method and the propagation policy are intertwined. We therefore had ACE learn a
propagation policy for coloring problems under two other variable-ordering heuristics:
Min Domain and the Brélaz heuristic (minimize the dynamic domain size and break

Table 4: Propagation policies ACE learned for coloring problems. Decimal parame-
ters are r value. Times in seconds (mean , median md, and standard deviation ) are
shown for a second set of problems in the same class: for FC (with one-pass AC ini-
tialization), for AC (with AC initialization), and for ACE’s learned policy. Improve-
ment is for ACE over each of FC and AC.

Search Times Improvement
method ACE learns FC AC ACE FC AC

Min
Domain/Degree

FCR-FC 0.5, 28 
md


0.45
0.25
0.77

0.43
0.34
0.24

0.47
0.27
1.00

-4%
-8%

–9%
21%

Brélaz ACR-FC 0.5, 25 
md


0.45
0.27
0.56

0.44
0.35
0.33

0.43
0.27
0.57

4%
0%

4%
23%

Min Domain ACR 0.625 
md


1.40
0.50
3.48

1.38
0.48
3.45

0.75
0.32
1.43

46%
36%

46%
33%

 Learning Propagation Policies

ties with maximum forward degree) (Brélaz 1979). Both select values lexically. Min
Domain is an inferior search method for these problems, and Brélaz is known to be
superior to Min Domain/Degree on coloring problems. Table 4 compares the results.
ACE learned a different propagation policy for each search method method. For Min
Domain the learned policy was able to compensate, to some degree, for the poor
search method, cutting search time nearly by half.

Learning a propagation policy is now part of ACE’s framework for learning to
solve CSPs, but several intriguing research issues remain. We have not yet addressed
whether the propagation policy ACE learns to find the first solution is equally good
when seeking all solutions or when working with unsolvable problems. We generated
a separate set of unsolvable problems in <30, 8, 0.26, 0.34> and redrew diagrams like
those of Figure 2(a) and (b) for them in Figure 4. Comparing them, the values re-
moved curves are similar, but the constraint checks are not. Learning a propagation
policy is not limited to binary constraints; it should be of value with any specialized
propagation methods (e.g., all-diff or rank sum). Additional speedup should be avail-
able through queue management. The impact of a value-selection heuristic on this
process is also unknown. An algorithm to learn a propagation policy might be based
upon checks and/or nodes as well as time. Finally, one might wonder to what extent
our results are dependent upon ACE, rather than upon the problems themselves. To
this we reply that every implementation has aspects that are done more or less effi-
ciently. This paper demonstrates that AC may be more work than is necessary, that
response (rather than locality) seems to be key, and that early and late FC are often
useful as well. We therefore encourage others to have their solvers learn their own,
possibly implementation-dependent balance between AC and FC, confident that learn-
ing such a propagation policy offers clear benefits within a problem class.

Acknowledgments
We thank Barbara Smith for her thoughtful questions and ideas. This work was sup-
ported in part by NSF IIS-0328743, by PSC-CUNY, by Enterprise Ireland under
Grant No. SC/2002/0137, and is based upon works supported in part by Science
Foundation Ireland under Grant 00/PI.1/C075.

Unsolvable Random Problems, Constraint Checks by Search Depth

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Search Depth

AC
FC

Unsolvable Random Problems, Values Removed by Search Depth

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Search Depth

AC
FC

(a) (b)
Figure 4: (a) Constraint checks performed at each search depth and (b) values removed by a
traditional solver on 100 unsolvable problems with 30 variables, domain size 8, density 0.26,
and tightness 0.34.

References
Achlioptas, D., C. Gomes, H. Kautz and B. Selman (2000). Generating Satisfiable

Problem Instances. AAAI-00.
Bessière, C., E. C. Freuder and J.-C. Régin (1999). "Using constraint metaknowledge

to reduce arc consistency computation." Artificial Intelligence 107(125-148).
Bessière, C. and J.-C. Régin (1996). MAC and Combined Heuristics: Two Reasons to

Forsake FC (and CBJ?) on Hard Problems. Principles and Practice of Con-
straint Programming - CP96, Springer-Verlag.

Bessière, C. and J.-C. Régin (2001). "Refining the basic constraint propagation algo-
rithm." JFPLC: 1-13.

Brélaz, D. (1979). "New Methods to Color the Vertices of a Graph." CACM 22: 251-
256.

Chmeiss, A. and L. Sais (2004). Constraint satisfaction problems: Backtrack search
revisited. Sixteenth International Conference on Tools with Artificial Intelli-
gence (ICTAI'04). IEEE

Epstein, S. L. and E. C. Freuder (2001). Collaborative Learning for Constraint Solv-
ing. Principles and Practice of Constraint Programming - CP 2001,
Springer-Verlag.

Epstein, S. L., E. C. Freuder, R. Wallace, A. Morozov and B. Samuels (2002). The
Adaptive Constraint Engine. Principles and Practice of Constraint Pro-
gramming -- CP2002. P. Van Hentenryck. Berlin, Springer Verlag. LNCS
2470: 525-540.

Freuder, E. C. (1982). "A Sufficient Condition for Backtrack-Free Search." JACM
29(1): 24-32.

Freuder, E. C. and R. J. Wallace (1991). Selective relaxation for constraint satisfac-
tion problems. Third International Conference on Tools for Artificial Intelli-
gence (TAI'91), San Diego, CA.

Golumb, S. and L. Baumert (1965). "Backtrack programming." Journal of the ACM
12: 516-524.

Haralick, R. M. and G. L. Elliott (1980). "Increasing tree search efficiency for con-
straint satisfaction problems." Artificial Intelligence 14: 263-314.

Johnson, D. B., C. R. Aragon, L. A. McGeooh and C. Schevon (1989). "Optimization
by Simulated Annealing: An experimental evaluation; Part 1, Graph parti-
tioning." Operations Research 37(865-892).

Lecoutre, C., F. Boussemart and F. Hemery (2003). Exploiting multidirectionality in
coarse-grained arc consistency algorithms. Principles and Practice of Con-
straint Programming - CP2003, LNCS 2833, Springer Verlag.

Mehta, D. and M. R. C. van Dongen (2005). Reducing Checks and Revisions in
Coarse-grained MAC Algorithms. IJCAI-05.

Ruan, Y., E. Horvitz and H. Kautz (2004). The Backdoor Key: A Path to Understand-
ing Problem Hardness. AAAI-2004, San Jose, CA, AAAI Press.

Sabin, D. and E. C. Freuder (1994). Contradicting Conventional Wisdom in Con-
straint Satisfaction. Eleventh European Conference on Artificial Intelligence,
Amsterdam, John Wiley & Sons.

 Learning Propagation Policies

