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Abstract. Propagation is intended to remove from consideration values that 
will not lead to a solution. A propagation policy includes preprocessing, selec-
tion of a propagation method, identification of relevant method parameters, and 
switching among methods. We show here the significant impact a propagation 
policy has on solution time, and that the choice of a good propagation policy 
varies with the problem class. We also demonstrate how a propagation policy 
can be learned automatically and can substantially improve performance.

1 Introduction

Since the earliest days of the modern study of backtracking (Golumb and Baumert 
1965), we have faced the question of the best tradeoff between search and inference: 
how much constraint propagation is cost efficient to interleave with backtrack search 
choices? The answer is almost certainly “it depends” -- on the problem under consid-
eration, as well as on the method of propagation. This answer, however, provides little 
comfort to the constraint programming practitioner. In this paper we extend the Adap-
tive Constraint Engine (ACE) (Epstein and Freuder 2001; Epstein, Freuder et al. 2002)
to construct automatically an appropriate “customized propagation policy” when con-
fronted with a class of problems.

The classic propagation choices are forward checking or maintaining arc consis-
tency, embodied in the FC and MAC algorithms. Forward checking is the minimal 
lookahead one must do to assure consistency with previous choices; MAC restores full 
arc consistency after every choice. A variety of intermediate methods have been pro-
posed, which do more propagation than FC but less than AC. We employ here the 
restricted propagation methods of (Freuder and Wallace 1991) and develop new vari-
ants. Specifically we develop an AC version of FC-based restricted propagation and 
add to restricted propagation the option of thresholds that are functions of search 
depth. We also introduce a limited "one-pass" form of AC preprocessing, and the 
"meta-method" of switching propagation methods at different search depths.

We show that our new intermediate methods excel in appropriate circumstances. 
As expected, however, they too are no panaceas. We would like to use the new and 
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old methods together as “building blocks” to be chosen, tuned and combined to best 
effect for individual circumstances, but that presents the constraint programmer with a 
bewildering array of choices and combinations. This is where ACE comes in.

Specifically, ACE trains on a set of problems from a given class to automatically:
• decide which form of preprocessing to do
• decide whether to use FC, AC, or any of the intermediate propagation methods
• decide upon thresholds for intermediate methods
• decide whether to switch between methods, and determine switching point depths

We call such a set of decisions a propagation policy. The classical propagation poli-
cies are FC (with limited preprocessing) and MAC. We demonstrate that, for a fixed 
search method, the customized propagation policies constructed by ACE for various 
problem classes sometimes outperform both of the classical extremes and never un-
derperforms them (cf. Chmeiss and Sais, 2004 on FC versus AC). One would expect 
that an appropriate propagation policy would depend not just on the problem class, 
but also on the search method employed, specifically the variable-ordering and value-
ordering heuristics. We present preliminary evidence to show that ACE can choose 
propagation policies appropriate for different search methods as well.

We then provide detailed experiments to suggest that not only is ACE choosing 
good propagation policies, but most likely it is choosing essentially the best policies 
that can be constructed from the building blocks provided. Our experiments incorpo-
rate a representative sample of such building blocks, but additional variations, old or 
new, could naturally be accommodated. In fact, we have effectively demonstrated 
here, with the positive results obtained for some of our new methods, and the negative 
results obtained for others, that a constraint programmer can throw new ideas into the 
mix, and ACE will not be confused, but will sort the wheat from the chaff, using new 
ideas appropriate to the circumstances, and eschewing inappropriate ones.

Section 2 describes the building blocks, new and old, from which the propagation 
policies are constructed and carefully defines essential terminology. Section 3 de-
scribes how ACE learns a propagation policy. Section 4 presents the results of the 
learning experiments. Section 5 provides a more detailed study of various methods 
and combinations, which provides further evidence for the ability of some of our new 
methods to excel, and further support for the choices that ACE made. Section 6 dis-
cusses related and future work.

2 The building blocks

A constraint satisfaction problem (CSP) is a triple, <X, D, C>, where X is a set of 
variables, D is the set of domains for X, and C is a set of constraints on X. A solution 
for a CSP is a set of values, one for each variable, that satisfies C. In this paper, we 
restrict our discussion to binary constraints. A partial assignment is a set of values for 
some of X (the past variables) with the remainder (the future variables) described by 
their (possibly reduced) domains. A partial assignment is said to be consistent if it 
does not violate C. Search for a solution, then, can be represented as movement from 
an initial state where all variables are future variables to a consistent assignment 



where all variables are past variables. In the paradigm used here, search alternately 
selects a current variable and then assigns it a value. When a propagation method 
executes after each assignment during search, and removes any inconsistent values 
from the domains of future variables, the method is said to be maintained. We con-
sider only maintained consistency here. 

A binary CSP can also be represented as a labeled graph (a constraint graph), 
where each variable is a node, each constraint is an edge, nodes are labeled by their 
domains, and edges are labeled by their acceptable value pairs. A pair of nodes that 
share an edge are said to be neighbors. The degree of a node is the number of 
neighbors it has. Here, the density d of a CSP on n variables is the percentage of edges 
it includes beyond the n-1 necessary to connect the graph. The tightness t of a graph is 
the percentage of possible value pairs each edge excludes. With these parameters, we 
represent a class of random problems as <n,m,d,t>, where m is the maximum initial 
domain size. For fixed values of n and m, values of d and t that make the problems 
particularly difficult are said to lie at the phase transition. 

For clarity in our work, we make the following distinctions. Neighborhood consis-
tency (NC) guarantees that, for each variable x, each value in the domains of x’s 
neighbors in the constraint graph is consistent with some value in the domain of x.
Forward checking (FC) is an algorithm that combines search with NC propagation 
after each choice; it considers those neighbors of the just-assigned variable that are 
future variables, compares the neighbors’ domains with the newly-assigned value, and 
removes from them any value inconsistent with the new value. Thus FC guarantees 
only that any consistent assignment to one variable can be extended to a consistent 
partial solution on two variables. Arc consistency guarantees that for every value v in 
the domain of each variable x, and for every constraint c  C between x and another 
variable y, there is a value w in the domain of y such that (v w) satisfies c. MAC is an 
algorithm that combines search with AC propagation after each choice. Each test that 
a value is supported by another value in a neighboring domain is called a constraint 
check. One would expect a higher level of consistency to improve search, but such 
consistency demands more computation. Initialization is a propagation pass prior to 
search. Let one-pass AC initialization be a process that, before search, examines each 
edge once, in both directions, to remove unsupported values. We investigate both one-
pass AC initialization and (full) AC initialization here.

Research results on constraint propagation during search initially favored FC’s 
simple one-step lookahead (Haralick and Elliott 1980). Later work indicated that for 
hard problems the constraint propagation method of choice was often AC (Sabin and 
Freuder 1994). This in turn drove research on clever data structures (Bessière and 
Régin 1996; Bessière, Freuder et al. 1999; Bessière and Régin 2001) and elaborate 
AC queue management to speed AC’s computation (Lecoutre, Boussemart et al. 2003; 
Mehta and van Dongen 2005). As a result, maintained arc consistency (MAC) has 
become the most popular propagation method. There are many implementations of 
MAC. Here we use MAC-3, where each iteration processes a queue of edges, confirm-
ing for each edge from x to y that the domain values of y are supported by the domain 
values of x. Whenever such confirmation reduces the domain of y, edges (y z) are 
added to the queue, where z is a future variable and a neighbor of y. Before search, 
MAC-3 does a full AC, with an initial queue that includes every edge in the graph. 
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During search, immediately after variable v is assigned a value, MAC-3 begins with a 
queue that includes all the edges from v to future variables that are its neighbors. Our 
implementation has no special queue management and no special treatment for vari-
ables whose domain is reduced to a single value. 

Many search methods depend upon the efficacy of a propagation method because 
they consider dynamic domain size (the number of values consistent with the current 
partial solution) when selecting the next variable. Prominent among these are Min 
Domain (which selects as the next variable the future variable with minimum dynamic 
domain size),  and Min Domain/Degree (which minimizes the ratio of dynamic do-
main size to static degree when selecting a variable). This work assumes, for each 
problem class, a known, efficient search method which references dynamic domain 
size. Unless otherwise stated, the search method used here is Min Domain/Degree. 
Lexical order is used to break ties and in choosing values.

2.1 Problem classes

Intuitively, the degree and the nature of connectivity in the constraint graph can influ-
ence the potential impact of constraint propagation. In the experiments described here, 
we therefore consider a variety of random, same-size problems: sparse <30, 8, 0.05, 
0.5>, simple <30, 8, 0.1, 0.5>, medium <30, 8, 0.12, 0.5>, and hard
<30, 8, 0.26, 0.34>, the latter so named because they are at a phase transition. Ran-
dom problems, however, have arbitrary constraints and lack reliable structure; they 
may obscure some interesting properties of propagation. Therefore, we also consider 
three additional problem classes, to explore the impact of propagation further:
• A coloring problem is a CSP with constraints that prohibit assigning the same value 
to certain pairs of variables. The coloring problems we use here have 30 variables, 
domain size 8, and density 0.58.
• A geometric CSP is formed from a random set of points in the Cartesian plane —
each point becomes a variable in the problem; constraints are formed among any pair 
of variables within a specified distance of each other, with additional constraints 
added to connect the underlying constraint graph (Johnson, Aragon et al. 1989). The 
result is a constraint graph ridden with clusters (not necessarily cliques) of vertices 
which can prove particularly difficult for traditional solvers. The geometric problems 
we use here have 50 variables, domain size 10, and tightness 0.18. Density is deter-
mined by the distance parameter (here, 0.4) and the spacing of the points in the unit 
square; for a sample of 20 of these problems the average density was 0.32. 
• An n X n quasigroup is a Latin square of size n: each of n2 variables participates in 
2n–2 binary constraints. Quasigroups with holes specifies values for some variables 
(the unspecified variables are the holes). The phase transition for quasigroups with 
holes is about 33% non-holes (Achlioptas, Gomes et al. 2000). The problems we use 
here are 10 X 10 quasigroups with 60 holes and are balanced (i.e., the holes are evenly 
distributed across the square). For quasigroups with balanced holes, we use Min Do-
main, which selects the same variables as Min Domain/Degree. 
All problems have at least one solution, but some geometric and quasigroup problems 
are so difficult that some in our training set were never solved within 1000 seconds.



2.2 Locality and response in propagation

The propagation methods detailed in this section (some of which were first described 
in Freuder and Wallace, 1991) seek a balance between AC and FC. Each of them 
potentially does more work than FC but less than AC. The intuition behind these 
methods is that propagation may only be effective in the neighborhood of the current 
variable (locality) or that it is only effective if it reduces the domains of the neighbors 
of the current variable substantially (response).

We address locality with two approaches: one extends FC’s reach beyond the cur-
rent variable and its neighbors; the other limits AC to the vicinity of the current vari-
able. More formally, let the p-neighborhood of a variable be the set of all future vari-
ables within distance p of it in the dynamic constraint graph.
• FC-spread first forward checks and then permits propagation to extend beyond the 
current variable’s immediate neighbors within its p-neighborhood. FC-spread can be 
thought of as a kind of spreading activation, which processes each edge at most once, 
and considers only future variables within the p-neighborhood of the current variable. 
FC-spread with p = 1 is equivalent to FC. 
• AC-bound first forward checks and then performs AC with a queue restricted to 
edges within the p-neighborhood of the current variable. AC-bound with p = n-1 is 
equivalent to AC. (A similar method was examined recently by Chmeiss and Sais, 
2004.)

We address response with approaches whose names include R for “response”:
• FCR first forward checks the neighbors of the current variable and then continues to 
check edges only from neighbors whose domain sizes have been reduced by at least 
r%. No edge is visited more than once. 
• ACR is like FCR, but it permits edges from variables with sufficiently-reduced do-
mains to re-enter the queue. 

It may be the case that the appropriate response varies with the search depth, that 
is, that r is not uniform during search. We address this with two approaches whose 
names include D for “depth”:
• FCRD first forward checks and then performs AC with a queue that includes edges 
only from neighbors whose domain sizes have been reduced by at least r%, where r is 
a function of search depth. No edge is visited more than once.
• ACRD is like FCRD, but it permits edges from variables with sufficiently-reduced 
domains to re-enter the queue.

2.3 Switching and initialization in propagation methods 

At some point during search a problem may become so easy that FC is sufficient. The 
solver may have already instantiated a backdoor (Ruan, Horvitz et al. 2004) so that the 
remainder of the problem is relatively easy. Indeed, the constraint graph may have 
become acyclic, in which case, after a single AC pass, it can be solved backtrack-free 
with a pre-computed (width-one) ordering of the variables and random value selection 
(Freuder 1982). This is documented in Figure 1(a) which plots the number of con-
straint checks calculated with Min Domain/Degree and FCR with different r values 
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against search depth for the hard random problems. Initially the FCR methods do far 
less work than AC itself, and do substantially less work (as does AC) after some point, 
here when about 9 variables have been bound. We tested FCR for r = .1, .2,…,.9 on a 
set of 100 problems. We therefore investigate propagation methods of the form x-FC 
with terminal switch st, where x is itself a successful method. While no more than st

variables are bound, x-FC uses x to propagate; afterwards it uses FC.
Problems also differ in the number of values removed by AC immediately after the 

first few value assignments. We therefore investigate propagation methods of the form 
FC-x with initial switch si, where x is itself a successful method. While no more than si

variables are bound, FC-x uses FC to propagate; afterwards it uses x. Finally we inves-
tigated propagation methods of the form FC-x-FC with both initial and terminal 
switches between FC and a successful method x.

Because most search methods (including Min Domain/Degree) depend in part on 
dynamic domain size to select variables for assignment, a solver may derive some 
clues on its initial selection of a variable with AC initialization. This is common CSP 
practice, as well as part of MAC-3. Nonetheless, we solved 100 problems from each 
problem set twice, once with one-pass AC initialization and the second time with AC 
initialization, using Min Domain/Degree to search and AC to propagate after the ini-
tialization. There was no statistically significant difference at the 95% confidence 
level, in initialization time, in solution time, or in total time between AC initialization 
and one-pass AC initialization in any problem class. We therefore chose to make 
either one-pass AC or AC initialization our final building block.

3 The learning algorithm

Tweaking parameters empirically is tedious and inexact. Ideally, a solver should learn 
which propagation policy to use. We have enhanced ACE to learn a good propagation 
policy for a fixed search method and problem class as follows. (A high-level synopsis 
appears in Figure 2.) The program first solves a set of problems (here, 100) with FC 
and gathers statistics on the response (percentage reduction in domain size) that it 
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Figure 1: (a) The number of constraint checks with Min Domain/Degree on 100 random prob-
lems in <30, 8., 0.26, 0.34> for FCR propagation with r = .1, .2…, .9. (b) Running time aver-
age and standard deviation for these runs. Note that the best time appears to be for r = 0.3.



accomplishes as it does so. This data is stored by search depth. The same problems are 
all reused at every stage in the process described here. One method was judged supe-
rior to another if it solved more problems (occasional geometric and quasigroup prob-
lems went unsolved in the 1000-second time limit under some propagation methods), 
or if it had an initialization plus search time that was statistically significantly better, 
or if it had a lower median time, or if it had a lower average time, in that order. (Be-
cause poor propagation policies often produced highly skewed distributions of per-
formance, we emphasize, and report, median times here.) In any tie, the method sim-
pler to compute was preferred.

ACE tests FCR on the problems and attempts to accelerate it. A higher r value re-
sults in less propagation from FCR or ACR. ACE begins with r = 1/m and increases r
by 1/m and retests on the 100 problems as long as there is no statistically significant 
increase in time to solution. (Recall that m is the maximum domain size.) ACE also 
tests FCRD using the data by search depth already collected. (Parameters are not 
changed for the D methods.) The best among FC, FCR with the best observed r, and 
FCRD becomes the foundation method f for propagation. Then the entire process is 
repeated, beginning this time with AC, and resulting in a second foundation method a.
(To make ACR’s queue more selective than AC’s, however, r begins at 2/m instead of 
1/m.) For example, in a learning run on 100 simple random problems, ACE found f = 
FCR with r = 0.25 and a = AC.

Then ACE reruns f and a with the increased overhead of monitoring for the point at 
which the graphs become acyclic. ACE then turns off the acyclic computation and 
tests f-FC and a-FC. (The intuition here is that a late-enough terminal switch to FC 
should be relatively safe, even without the width-one order.) First ACE tests a termi-
nal switch st that is the minimum of the greatest search depth at which any domain 
reduction occurred and the greatest search depth at which any problem became acyclic 
in the 100 problems. As long as there is no statistically significant increase in time to 
solution, ACE continues to reduce st by 1. At this point the foundation methods are of 
the form f-FC and a-FC (unless late switching reduced performance or a base method 
was FC already). In our example, the foundation methods were now f = FCR with r = 
0.25 and a = AC-FC with st = 25.

Next, unless a base method is FC, ACE fixes any terminal switch st and tests FC-f-
FC and FC-a-FC, beginning with si = 1 and increasing the initial switch until there is a 
statistically significant increase in time to solution. (If the two switches for FC-x-FC 
converge to the same value, ACE reverts to method x.) In our example, f became FC-
FCR with r = 0.25 and si = 2, while a became FC-AC-FC with si = 2 and st = 25. Then 

For initialization method m in {one-pass AC, AC}
f  fastest method among {FC, FCR, FCRD}
a  fastest method among {AC, ACR, ACRD}
Accelerate f and a by late FC
Accelerate f and a by early FC 
Select b(m), the faster of FC-f-FC and FC-a-FC

Select the faster of b(one-pass AC) and b(AC)

Figure 2:ACE’s high-level algorithm for learning a propagation policy.

                       Learning Propagation Policies



ACE compares the times for f and a, and chooses the more effective propagation 
method, in this case f.

ACE runs this entire procedure, from foundation methods on, twice: once with one-
pass AC initialization and again with AC initialization. It thereby learns a propagation 
policy with an initialization. The example above was for one-pass AC initialization on 
the simple problems; with AC initialization, ACE found f = FC-FCR with r = 0.25 and 
si = 2, and a = FC-AC-FC with si = 2 and st = 25.. Ultimately, ACE preferred the lat-
ter. 

4 Results with learning

We had ACE learn to propagate for each of the classes described in Section 2. The 
results appear in Table 1. Note that the propagation policy learned does indeed vary 
by class. Of course, it is necessary to confirm these results on a separate set of data.

Table 1:Best propagation policies learned by ACE on 100 problems, based on initialization 
plus search time. Integer parameters are switch points; decimal parameters are r values. Times 
in seconds (mean , median md, and std deviation ) are shown for a second set of problems in 
the same class: for FC (with one-pass AC initialization), for AC (with AC initialization), and 
for ACE’s learned policy. Improvement is time reduction by ACE over each of FC and AC.

Times Improvement
Class ACE learns FC AC ACE FC AC

Sparse 
random

ACR-FC 0.75,23
AC initialization


md


0.05
0.05
0.01

0.05
0.05
0.00

0.05
0.05
0.02

Same
Same

Same

Simple 
random

ACR-FC 0.25, 23
AC initialization


md


0.25
0.12
0.50

0.12
0.09
0.06

0.10
0.08
0.09

60%
33%

17%
11%

Medium 
random

ACR 0.25
one-pass AC
initialization


md


0.32
0.24
0.28

0.17
0.14
0.27

0.14
0.12
0.06

56%
50%

18%
14%

Hard 
random

ACR 0.25
one-pass AC 
initialization


md


1.52
1.08
1.29

0.85
0.63
0.65

0.70
0.53
0.55

54%
51%

18%
16%

Coloring FCR-FC 0.5, 28 
md


0.45
0.25
0.77

0.43
0.34
0.24

0.47
0.27
1.00

-4%
-8%

–9%
21% 

Geometric ACR-FC 0.4 45
AC initialization


md


6.41
0.74

22.47

6.69
0.76

28.81

6.38
0.76

22.40

0.4%
–3%

5%%
Same

Quasigroups
with holes

AC-FC 93
AC initialization


md


16.61
1.45

54.80

6.65
0.99

21.49

6.55
0.94

20.21

60%
32%

2%%
5%
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Figure 3: Constraint checks performed at each search depth (a, c, e, g) and values removed (b, 
d, f, h) by a traditional solver on 100 solvable random hard problems, quasigroups with holes, 
coloring problems, and geometric problems, respectively. An AC initialization pass was per-
formed on each problem.
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We ran Min Domain/Degree three times on a second, fresh set of 100 problems in 
each class: with ACE’s learned propagation policy, with FC and one-pass AC initiali-
zation, and with AC and AC initialization. For every class of problems, our learned 
policies were at least as good as the others; for all random problem classes but sparse, 
ACE was statistically significantly better than FC at the 95% confidence level.

5 Further assessment of learning

In the previous section we have shown that the propagation policy ACE learns im-
proves search performance on several different classes of CSPs. It is reasonable to ask 
whether this was the best propagation policy learnable from these building blocks, and 
whether most any policy would have sufficed. This section addresses those questions 
with additional data. We begin with three examples that compare the propagation 
activity and performance time of FC and AC. 
• On random problems in <20, 30, 0.444, 0.5>, Min Domain/Degree averaged 29.21 
seconds under FC to find a solution, but 82.14 seconds under AC.
• On hard random problems, the solver under FC does considerably less work (as 
measured in constraint checks) and removes more values (during compensation for its 
errors) somewhat later in search than under AC, as shown in Figures 3(a) and (b). 
Nonetheless, solution under FC is actually slower on these problems, presumably 
because FC leaves more unsupportable values which the solver cannot readily avoid. 
• On quasigroups of order 10 with 60 holes, under FC the solver does less work and 
removes fewer values than AC. See Figures 3(c) and (d).

Table 2 confirms the differences between FC and AC on our problem classes, and 
that comparing them is well worth the effort. (In this table only, initialization time is 
excluded, to focus on work done after it; times are means, to show statistical signifi-
cance.) If problems are easy because most initial value selections are consistent with 
some solution, then they probably do not require the intense scrutiny of AC, particu-
larly if we seek only one solution. AC indeed does more work (as measured by con-
straint checks), but can significantly speed solution, depending on the problem class. 

Table 2: Mean propagation time, checks and nodes expanded, exclusive of AC initialization, to 
solve with FC or AC and Min Domain/Degree on different problem classes. Results are aver-
aged over 100 problems. Figures in bold represent a statistically significantly difference at the 
95% confidence level. 

Time Checks Nodes
Class FC AC FC AC FC AC

Sparse 0.04 0.05 347.68 1804.20 34.99 30.18
Simple 0.20 0.12 1647.85 5425.75 254.21 38.43
Medium 0.36 0.17 3401.41 9070.71 477.22 55.14
Hard 1.70 0.85 20416.20 51598.53 1879.87 189.43
Coloring 0.32 0.43 2686.37 17941.30 169.88 73.36
Geometric 7.37 6.69 74428.00 293088.37 2223.95 385.46
Quasigroups 16.61 6.65 26123.90 35392.58 3376.16 1196.96



Among our problem classes, FC appears to be a viable alternative only on sparse and 
coloring problems. Otherwise, FC’s fewer checks come at the expense of visiting 
more nodes. Moreover, in these experiments AC initialization rarely removed any 
more values than one-pass AC initialization — at most two values in 100 problems.

Finding a good propagation policy by hand is not trivial. We tested FC, AC, and 
the propagation methods of Section 3 on the hard random problems, using AC initiali-
zation and Min Domain/Degree. We tested FC-spread and AC-bound for p = 2, 3,…, 
n/2, and FCR and ACR for r = .1,.2,…,.9. For x-FC methods we tested terminal switch 
st = 5, 10, …, n–5. We observed that immediately upon any initial switch, there is a 
pronounced spike in the number of constraint checks, often well beyond what AC 
would have done, as the first AC pass catches up. We therefore tested FC-x methods 
only for initial switches si = 1, 2,…, 5. Often a single parameter change (e.g., from r = 
0.5 to 0.4) made it impossible to solve some problems that had been solved under the 
previous setting. Under many parameter settings, the solver spent hours on a single 
problem and we terminated the run. 

ACE is learning in a space of methods that have the potential to perform quite 
poorly. Nonetheless, ACE found a very good propagation policy for each class. We 
tested these “best observed” parameter settings on the testing problems from Table 1, 
to see how they compared with ACE. Inspection indicates that ACE’s learning is con-
sistent with these results. For example, ACE learns r = 0.25 for the hard random prob-
lems for both FCR and ACR, as close as it can get to 0.3 with its algorithm. 

Finally, as observed earlier, random problems lack reliable structure, which real-
world problems generally have. Figure 3 suggests that a good propagation method 
might vary with problem class. We tested coloring, geometric, and quasigroup with 
holes problems empirically, using AC initialization and various propagation methods 
described above, beginning with parameters for the hard random problems and then 
choosing a few new values to test based on those results. The best observed parame-
ters that produced them appear in Table 3, retested on the problems of Table 1. ACE 

Table 3: Observed median solution time in seconds on 100 problems for three problem classes, 
along with the parameter values that produced them. The classes and the range of parameter 
values tested are detailed in the text. Min Domain/Degree and AC initialization were used. 

Hard Geometric Coloring Quasigroup
Propagation Time Pars. Time Pars. Time Pars. Time Pars.

FC 1.20 — 0.78 — 0.26 — 1.45 —
FC-spread 0.63 5 0.72 40 0.36 5 2.28 40
AC-bound 0.62 10 0.99 15 0.42 5 1.42 50
FCR 0.54 .3 0.67 .3 0.27 .5 2.21 .5
ACR 0.51 .3 0.66 .3 0.24 .5 1.42 .5
FC-AC 0.65 5 0.69 30 0.36 10 2.11 40
AC-FC 0.62 20 0.83 20 0.33 20 2.25 90
ACR-FC 1.09 5, .3 0.68 .3, 20 0.28 .2, 10 2.22 .5, 60
FC-AC-FC 0.65 5, 25 0.74 5, 30 0.28 5, 20 2.37 20,80
FC-ACR-FC 0.67 5,.3,25 0.75 3,.3,15 0.29 5,.2,25 1.34 40,.3,80
AC 0.92 — 0.76 — 0.34 — 0.99 —
ACE learned 0.53 ACR 

.25
0.76 ACR-FC 

.4, 45
0.27 FCR-FC

.5, 28
0.94 AC-FC 
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came close to the best time for the hard problems and the coloring problems. Note that 
ACR and FCR consistently match or outperform the more traditional FC and AC.

6 Discussion and related work

It is noteworthy that AC initialization often, but not always, leads to improved per-
formance. In some cases, of course, the nature of the problem class makes any reduc-
tion by AC unlikely (e.g., coloring). Otherwise, we surmise that much of the difficulty 
a search method experiences with a problem has to do with where to begin (once 
again, the backdoor), and that an initialization pass of either kind may offer a useful 
clue based on initially reduced domain size. 

AC’s automatic reconsideration of edges may be overkill. Propagation is effective 
only when it can quickly remove values that will not lead from the current instantia-
tion to a solution. If the crucial potential inconsistencies lie nearby the current vari-
able, then propagation need not explore every constraint. In Table 1, ACE learned 
ACR or FCR for every class, which suggests that the impact of propagation, as meas-
ured by the response r, may be a better indication of when to reconsider them. 

As search deepens, dynamic domains become progressively smaller, so that even-
tually few values remain, and even AC removes few of them. In Figure 2(b), for ex-
ample, this happens after assigning about one third of the values with AC, and after 
about two thirds with FC. A search method that prefers maximum degree will focus 
first on highly-connected variables; eventually the future variables will be connected 
to few others, and again are likely to have little impact beyond their immediate 
neighbors. This would argue for propagation methods that address response when the 
search method includes minimizing domain size, and explains to some extent our 
success here with R methods. Because Min Domain/Degree is responsive both to 
dynamic domain size and to degree, it supported our new methods particularly well.

ACE’s algorithm to learn a propagation policy performs as well as any manually 
selected settings. Differences arise when the crucial r values tested by ACE (in incre-
ments of 1/m) do not match those tested empirically (in increments of 0.1), or when its 
switch values (tested in increments of 1) step more gradually than those tested empiri-
cally (in increments of 5). Inspection indicates that despite its host of building blocks, 
ACE learns r = 0.25 for FCR on the hard random problems, as close as it can get to 
the 0.3 that performed best on those problems in Figure 2. (Ultimately, however, ACE 
judged one-pass AC initialization and ACR r = 0.25 to be better.) The learning algo-
rithm eliminates much tedious lengthy testing (and automates the rest). 

In the construction of this algorithm we explored and then eliminated many possi-
ble approaches. Based on observations of monotonicity during the extensive testing 
that led to Tables 3 and 4, we assumed that performance associated with response r
has a single minimum. Based on their lackluster performance during initial testing, 
FC-spread and AC-bound were excluded from the process. (Nonetheless, a real-world 
problem could in principle be most affected by variables in the immediate vicinity of 
the current variable, and we expect to investigate these variants further.) One might 
also argue that value removals ought to be compared with tightness. Since the prob-



ability that a pair of values is unacceptable on an edge is roughly the square root of the 
tightness, a static approach should therefore be commensurate with t1/2. While it is 
unlikely that a method will achieve such reductions consistently, in a state with f future 
variables and an average dynamic domain size g, one could hope for t1/2fg removals 
and continue to propagate with AC as long as r% of that gauge was removed. This 
method, however, is equivalent to AC-bound with an appropriately-scaled parameter. 
(See, however, (Mehta and van Dongen 2005).) One might also monitor removals per 
check, a sort of utility heuristic, that would select the method that removes the most 
values for the work it performs. By this standard, however, the best of the FCR meth-
ods on the hard problems would have been FC, which we know to have been unac-
ceptably slow there. Finally, we coded and observed an algorithm that cycled between 
AC and FC at various intervals. The spikes we noted for the early FC switch reap-
peared and proved too costly, however.

Some propagation methods appear rarely if at all in Table 1. Inspection indicates 
that the D (adjust by search depth) methods performed relatively well. In most prob-
lem classes total domain size drops by 16-23% after the first assignment. This is not 
true of the random hard problems, however, and only geometric problems have an-
other significant drop after the second assignment. Further work on the D methods is 
planned. It also appears that switching is not helpful with R methods. This suggests 
that a substantial reduction in domain size remains important throughout search. When 
a terminal switch was constructive, it led to some reduction in median time: during 
learning, about 12% on geometric and quasigroup problems. An initial switch, al-
though it may have improved AC in Table 3, was never part of a best observed or 
learned propagation policy.

Because the focus of this work is propagation, we used equivalent search methods 
throughout. It is reasonable to expect, however, that the performance of the search 
method and the propagation policy are intertwined. We therefore had ACE learn a 
propagation policy for coloring problems under two other variable-ordering heuristics: 
Min Domain and the Brélaz heuristic (minimize the dynamic domain size and break 

Table 4: Propagation policies ACE learned for coloring problems. Decimal parame-
ters are r value. Times in seconds (mean , median md, and standard deviation ) are 
shown for a second set of problems in the same class: for FC (with one-pass AC ini-
tialization), for AC (with AC initialization), and for ACE’s learned policy. Improve-
ment is for ACE over each of FC and AC.

Search Times Improvement
method ACE learns FC AC ACE FC AC

Min 
Domain/Degree

FCR-FC 0.5, 28 
md


0.45
0.25
0.77

0.43
0.34
0.24

0.47
0.27
1.00

-4%
-8%

–9%
21% 

Brélaz ACR-FC 0.5, 25 
md


0.45
0.27
0.56

0.44
0.35
0.33

0.43
0.27
0.57

4%
0%

4%
23%

Min Domain ACR 0.625 
md


1.40
0.50
3.48

1.38
0.48
3.45

0.75
0.32
1.43

46%
36%

46%
33%
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ties with maximum forward degree) (Brélaz 1979). Both select values lexically. Min 
Domain is an inferior search method for these problems, and Brélaz is known to be 
superior to Min Domain/Degree on coloring problems. Table 4 compares the results. 
ACE learned a different propagation policy for each search method method. For Min 
Domain the learned policy was able to compensate, to some degree, for the poor 
search method, cutting search time nearly by half. 

Learning a propagation policy is now part of ACE’s framework for learning to 
solve CSPs, but several intriguing research issues remain. We have not yet addressed 
whether the propagation policy ACE learns to find the first solution is equally good 
when seeking all solutions or when working with unsolvable problems. We generated 
a separate set of unsolvable problems in <30, 8, 0.26, 0.34> and redrew diagrams like 
those of Figure 2(a) and (b) for them in Figure 4. Comparing them, the values re-
moved curves are similar, but the constraint checks are not. Learning a propagation 
policy is not limited to binary constraints; it should be of value with any specialized 
propagation methods (e.g., all-diff or rank sum). Additional speedup should be avail-
able through queue management. The impact of a value-selection heuristic on this 
process is also unknown. An algorithm to learn a propagation policy might be based 
upon checks and/or nodes as well as time. Finally, one might wonder to what extent 
our results are dependent upon ACE, rather than upon the problems themselves. To 
this we reply that every implementation has aspects that are done more or less effi-
ciently. This paper demonstrates that AC may be more work than is necessary, that 
response (rather than locality) seems to be key, and that early and late FC are often 
useful as well. We therefore encourage others to have their solvers learn their own, 
possibly implementation-dependent balance between AC and FC, confident that learn-
ing such a propagation policy offers clear benefits within a problem class.
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Figure 4: (a) Constraint checks performed at each search depth and (b) values removed by a 
traditional solver on 100 unsolvable problems with 30 variables, domain size 8, density 0.26, 
and tightness 0.34. 
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