
Learning and Applying Competitive Strategies

Esther Lock and Susan L. Epstein

Hunter College and The Graduate Center of The City University of New York
Department of Computer Science

New York, New York 10021

Abstract
Learning reusable sequences can support the development of
expertise in many domains, either by improving decision-
making quality or decreasing execution speed. This paper
introduces and evaluates a method to learn action sequences
for generalized states from prior problem experience. From
experienced sequences, the method induces the context that
underlies a sequence of actions. Empirical results indicate
that the sequences and contexts learned for a class of
problems are actually those deemed important by experts for
that particular class, and can be used to select appropriate
action sequences when solving problems there.

Repeated problem solving can provide salient, reusable
data to a learner. This paper focuses on programs that ac-
quire expertise in a particular domain. The thesis of our
work is that previously experienced sequences are an im-
portant knowledge source for such programs, and that ap-
propriate organization of those sequences can support reuse
of that knowledge, in novel as well as familiar situations
(Lock 2003). The primary contributions of this paper are a
learning method for the acquisition of action sequences
(contiguous subsequences of decisions) and an empirical
demonstration of their efficacy and salience as competitive
strategies in game playing. We claim not that sequences
are all there is to learn, but that they are a powerful part of
expert behavior, and well worth learning. In the work
reported here, our method learns many useful action
sequences and highlights the ones human experts consider
significant.

The context of an action sequence is the set of world
states where it is relevant. Rather than deduce all possible
contexts from the operators available to an agent, or from
inspection of the search space, our method exploits the
knowledge inherent in experience to learn context. It asso-
ciates a sequence of actions with the set of origin states
where the sequence’s execution began. The underlying as-
sumption is that some commonality among origin states
drives the same sequence of moves. Discovering context is
thus reduced to generalization over the origin states to ex-
tract it. A learned context is paired with its sequence, and
subsequently recommended as a course of action when the
context matches the current state of the world.

Macro operators to speed problem solving and planning
have been widely studied. MACROPS learned to compose
a sequence of operators together, but it was limited to do-

mains with a set of operators with well-defined precondi-
tions and post-conditions, ones where the goal state was a
conjunction of well-defined subgoals (Fikes, Hart et al.
1972). Other programs learn to acquire macros that achieve
subgoals without undoing previously solved subgoals (Korf
1985; Tadapelli and Natarajan 1996). A game, however,
may lack accessible subgoals, and actions in games can
have subtle, far-reaching effects that are not clearly
delineated. MACLEARN and MICRO-HILLARY use a
domain’s heuristic function to selectively learn macros
from problem solving experience (Iba 1989; Finkelstein
and Markovitch 1998). Our method assumes neither the
existence of subgoals nor of a heuristic function. Planning
for Markov decision processes learns macro actions to
achieve subgoals (Moore, Baird et al. 1998; Sutton, Precup
et al. 1999; Precup 2000). Most closely related to our
method is reinforcement learning work that discovers
useful sequences online from successful experience
(McGovern 2002). Neither of McGovern’s methods
generalize context, however.

Our approach uses problem-solving experience to learn
the context for a sequence, and uses that knowledge to
make decisions. The next section describes how this
method learns action sequences and their contexts, and
applies them. Subsequent sections describe a program that
applies learned competitive strategies, details our
experimental design, and discuss results and related work.

1. Learning action sequences with contexts

We explore sequence learning first within the domain of
two-player, perfect-information, finite board games, using
the following definitions. (Broader applicability is ad-
dressed in Section 3.) A problem-solving experience is a
contest, the agents contestants, and a legal move an action.
A state is uniquely described by the game board and whose
turn it is to move. A place on a game board where a con-
testant’s piece may be placed is a location. All locations on
a game board are numbered in row order, as in Figure 1. A
blank is an empty location. A pattern is a set of locations
and their contents. Our method learns action sequences
only from successful experience; in game playing, those
are move sequences from contests in which a particular
contestant won or drew at a draw game, where the value of
the root of the game tree is a draw under full minimax.

We consider two games here: lose-tic-tac-toe and five
men’s morris. Lose-tic-tac-toe, where the first to place
three pieces in a row in Figure 1(a) loses, is far more diffi-
cult for people to learn than ordinary tic-tac-toe. The object
is to avoid a certain pattern rather than to achieve it, and a
non-optimal move is a fatal error. Flawless lose tic-tac-toe
play involves different strategies for each contestant, some
of which are non-intuitive and go undiscovered by many
people (Cohen 1972). In five men’s morris, the contestants
(black and white) each have five pieces, which they take
turns placing on the board in Figure 1(b). Once the pieces
are all placed, a move slides a piece from one location on
the board to an adjacent, empty location. A contestant who
achieves a mill (three owned pieces on a line drawn on the
board) removes any one opposition piece from the board. A
contestant reduced to two pieces or unable to slide, loses.
This is a challenging game, with a significantly larger
game graph than lose tic-tac-toe.

1.1 Overview of the learning method
The program SeqLearner observes computer programs of
various skill levels in competition at a game. After each
contest, SeqLearner examines the contest’s actions for se-
quences of prespecified lengths. It collects action se-
quences that are duets (include both agents’ actions) and
solos (include one agent’s actions.) In some two-agent do-
mains, an agent determinedly executes a sequence of ac-
tions, so long as they are legal, no matter what the other
agent does. If one gathers only sequences that include both
agents’ actions, the other agent’s varied responses to a solo
could cast instances of the same solo as different se-
quences. Therefore, SeqLearner also gathers solos. In the
trace of a contest of length n, the number of duets of any
length is O(n2), as is the number of solos.

To associate these sequences with states, SeqLearner or-
ganizes the collected data into SeqTable, a sequence hash
table. A key for SeqTable is a sequence; a value stored
there is a list of states. For each extracted sequence,
SeqLearner records in SeqTable the sequence’s origin
state, where the sequence’s execution began. For repeat-
edly encountered sequences, SeqLearner extracts a context
from the set of origins associated with it. Periodically,
SeqLearner sweeps through SeqTable, examining one se-
quence at a time. For game playing, SeqLearner identifies
the maximal common pattern that exists in all the stored
states as the context for the sequence. SeqLearner takes
each location of the board as a feature, and examines its

value in each of those states, retaining only features with
the same value on all the boards. Any location whose value
is not retained is labeled # (don’t care). The resultant
maximal common pattern is associated with its sequence in
a context pair. Both contexts and sequences are normalized
for horizontal, vertical, and diagonal reflection, plus rota-
tions of 90°, 180°, and 270°. As a result, a sequence is re-
trievable whenever its context or a symmetric equivalent
arises. With additional experience, the candidate sets for
each sequence are likely to grow, engendering new, more
general context pairs. If more than one sequence leads to
the formation of the same context, those sequences are
merged into a sequence tree (a tree of alternative, over-
lapping sequences) to form a single context pair. For ex-
ample if the three sequences <X to 1, O to 2, X to 8>, <X
to 1, O to 2, X to 7>, and <X to 1, O to 4, X to 6> have the
identical context, they are merged into the competitive
strategy in Figure 2.

Given their inductive origin, these context pairs are not
applied immediately in problem solving; the incorrect
context pairs must first be carefully filtered out. A variant
of PWL (Probabilistic Weight Learning) is used to weight
them (Epstein 1994). The algorithm determines how well
each context pair simulates expert behavior. After every
experience, it takes the states where it was the expert’s turn
to act, checks whether a context pair’s advice supports or
opposes the expert’s decision, and revises the pair’s weight
in [0,1] accordingly. A context pair’s weight rises
consistently when it is reliable and frequently applicable.

1.2 An example
Figure 3, for example, shows a repeatedly detected lose tic-
tac-toe sequence, <X to 1, O to 3, X to 7>, that began at six
different states. The sequence is the key to the SeqTable,
and the list of states is its stored value. The state descrip-

Figure 1: Two game boards and their numbered location for (a)
lose tic-tac-toe and (b) five men’s morris.

2 4

8 6

1

 7

Figure 2: A sequence tree merging three sequences that
have the same context.

Figure 3: The knowledge stored in the SEQTABLE and its asso-
ciated extracted context.

tions are the data from which context is induced. Figure 3
also shows the maximal common pattern SeqLearner in-
duces as a context for that sequence. The locations consis-
tently present in the origin states are 1, 3, 5, 7, and 9, con-
taining blank, blank, X, blank, and O, respectively. Rather
than associate the sequence with all six states, SeqLearner
associates the sequence with the pattern at the bottom of
Figure 3. If this pattern matches a state during future play,
the duet sequence <X to 1, O to 3, X to 7> can be
suggested as a possible course of action, whether or not the
state is among the original six. A solo would include only
one player’s moves, ignoring the opponent’s responses.

1.3 Using the learned sequences
SeqPlayer is a game-playing program created to test
SeqLearner. SeqPlayer begins with no knowledge about a
game other than the rules. It learns to play a game during
training, where it observes programs of various skill levels
in competition. During training, SeqPlayer uses SeqLearner
to learn and weight context pairs. During testing we
evaluate SeqPlayer’s performance while it uses the learned
context pairs as competitive strategies to make decisions.
There are many ways the data acquired by SeqPlayer might
be used; we report here on two.

Version 1 of SeqPlayer’s decision-making module is a
two-tier, hierarchical framework. Tier 1 is a single proce-
dure, Enforcer, which either continues a sequence whose
execution has already begun or discards one that becomes
inapplicable because of the other contestant’s response.
Tier 2 is those context pairs whose weights had reached or
exceeded a pre-set threshold (.55 in the work reported here)
by the end of training. When it is SeqPlayer’s turn to
choose a move, control begins in tier 1, where Enforcer
suggests the next move in an ongoing sequence. If no se-
quence is being executed or one has just been discarded,
control passes to tier 2. Each context pair compares its
context with the current state; if they match, it supports the
first action in its sequence with the context pair’s learned
weight. The action with the highest total support is chosen.
Thus, actions that begin more than one sequence and ac-
tions proposed by context pairs with higher weights are

more likely to be selected. If a sequence’s first action is
chosen, the rest of the sequence is sent to Enforcer, which
merges the individual sequences it receives into one se-
quence tree. As the contest continues, Enforcer recom-
mends a next action from the branch in the sequence tree
that the opponent followed. If there is no such branch, En-
forcer discards the sequence tree. If no move is recom-
mended in tier 2, a random move is chosen.

Version 2 of SeqPlayer’s decision-making module has a
more sophisticated structure, shown in Figure 4. It uses tier
1 from Version 1, followed by two new tiers. Control
passes through the tiers one at a time; if no move is se-
lected, then one is chosen at random. Tier 2 partitions the
best of the context pairs into three subclasses by weight:
[.9, 1.0], [.8, .9], and [.7, .8]. (Partition criteria were em-
pirically selected.) Each subclass supports actions the way
Version 1’s tier 2 does. Together, however, they work as a
hierarchy: as long as a sequence is not yet selected, the
next subclass is consulted. Tier 3 includes all context pairs
with weights in [.55, .7]. Like the tier-2 context pairs, those
in tier 3 find applicable sequences and select an action
based upon them, but tier 3 does not send the continuation
of the chosen sequences to Enforcer. Tier 3’s one-move
advice from low-weight context pairs is expected to be
better than choosing a move at random. Rather than
enforce the remainder of the sequences associated with
these low-weight context pairs, however, the program
returns to the higher-weight context pairs on the next
move, in anticipation that a better decision can be made,
and a more correct sequence will be identified. Because
Version 2 considers only one subclass of context pairs at a
time, and stops when an action is suggested, the program
no longer has to consult the full set of context pairs on
every decision. This should decrease execution time.

2. Experimental Design and Results

Variously-skilled computer programs were used in our
experiments. A perfect agent is a hand-crafted external
program that plays a randomly-chosen best move in any
state. A reasonable play makes a winning move one ply
away, avoids a losing move two ply away, and otherwise
makes a random, non-losing move. An x-reasonable agent
makes reasonable plays x% of the time, and perfect moves
100-x% of the time. For purposes of comparison, baseline
experiments were conducted for lose tic-tac-toe and five
men’s morris. In each baseline experiment in Table 1, a
random agent competed in four 1,000-contest tournaments
against four different opponents: a perfect agent, an expert
(10%-reasonable), a novice (70%-reasonable), and a
random agent.

To evaluate SeqLearner, two experiments were con-
ducted on each game: Experiment 1 with Version 1 of
SeqPlayer and Experiment 2 with Version 2. SeqPlayer
breaks voting ties at random, so each experiment reported
here averages data from ten runs. A run is a training stage
followed by a testing stage. A tournament is a set of
contests between two agents. During training, SeqPlayer

 no

 no

 no

 no

 no

yes

yes

yes

yes

yes

make move

continuation of sequences

 ENFORCER

random move

VOTE

VOTE

VOTE

VOTE

pairs .9 - 1.0

Tier 1:

Tier 2:

Tier 3:

 pairs .8 -.89

 pairs .7 - .79

 pairs .55 - .69

Figure 4: Version 2 of SeqPlayer’s Decision-making Module

observed a tournament that pitted a perfect agent against a
random agent, followed by a tournament against a novice,
one against an expert, and one against another perfect
agent. This cycle was then repeated (8 tournaments in all)
to provide enough exposure to the space to form the
context pairs and weight them properly. A training
tournament was 20 contests for lose tic-tac-toe, and 40 for
five men's morris. The testing stage for both games
consisted of four 50-contest tournaments that pitted
SeqPlayer against the same four agents used in training.
We assumed that shorter sequences would be more
frequently applicable in a broader range of unfamiliar
situations, and therefore set SeqLearner to learn only
shorter sequences, of length 3 for lose tic-tac-toe and
lengths 3 and 5 for five men’s morris. Although
SeqLearner can learn any length sequence, the lengths
chosen for the final experiments were hand-tuned. Context
pairs were extracted from SeqTable after every training
tournament.

Experimental results appear in Table 1, where reliability
is the number of wins plus the number of draws, and power
is the number of wins. Recall that SeqPlayer begins with-
out any built-in knowledge, either of game-playing in gen-
eral or of the particular game itself. SeqPlayer uses only
the knowledge it learns from watching sequences in actual
play. In light of that, one does not expect SeqPlayer alone

(i.e., without other knowledge or learning methods) to lead
to superior play. These results demonstrate that much
knowledge about a game is contained in experienced se-
quences; they measure SeqPlayer’s ability to capitalize on
this knowledge.

For lose tic-tac-toe, Experiment 1 (using context pairs
with weights above .55) shows that SeqPlayer was able to
win or draw 66-70% of the time against the stronger play-
ers and 83-85% of the time against the weaker players.
This is a significant improvement in both reliability and
power over Baseline for all four opponents. In Experiment
2, recall, context pairs with weights at least .55 were dis-
tributed among tier 3 and the subclasses of tier 2. This hi-
erarchical approach enabled SeqPlayer to win or draw the
game 82-87% of the time against all opponents, and im-
proved reliability against the perfect and expert players.

Five men’s morris, with its significantly larger space,
suggests how this method scales. In Experiment 1,
SeqPlayer learns enough knowledge to significantly im-
prove reliability over Baseline for the perfect, expert and
novice players. Experiment 1 actually demonstrated de-
creased power against the novice and random players.
Basing moves on sequence knowledge alone is problematic
for two reasons: it does not give a player enough power to
win, and it may not provide enough applicable knowledge
when competing against weaker players who follow few, if

Table 1: Percentage of contests won (power) and won +drawn (reliability) by Baseline and SeqPlayer (Experiments 1 and
2) when tested against four opponents. Statistically improved performance over the previous experiment is highlighted in
bold, with standard deviations in parentheses. (Power is not shown against the perfect player, since one cannot win a draw
game against perfect play.)

 Perfect Expert N o v i c e Random
Reliability Reliability Power Reliability Power Reliability Power

Lose tic-tac-toe
Baseline 20.50 25.80 9.00 49.20 37.70 58.40 46.10

(4.14) (5.33) (4.12) (7.57) (6.67) (7.28) (7.84)
Experiment 1 6 6 . 0 0 7 0 . 8 0 1 2 . 8 0 8 3 . 5 0 4 2 . 7 0 8 5 . 3 0 5 5 . 4 0

(20.96) (16.22) (4.71) (6.38) (8.08) (4.79) (5.52)
Experiment 2 8 2 . 0 0 8 3 . 8 0 12.10 85.10 46.70 87.00 57.40

(13.24) (9.73) (4.22) (5.08) (7.08) (4.17) (7.02)

Five men’s morris
Baseline 0.20 1.60 1.20 22.40 14.20 54.00 36.00

(0.60) (1.20) (0.98) (4.27) (5.90) (7.27) (6.81)
Experiment 1 3 9 . 6 0 3 4 . 2 0 1.00 2 8 . 8 0 9.20 54.20 17.40

(13.11) (11.29) (1.34) (4.66) (2.23) (7.18) (6.39)
Experiment 2 5 7 . 8 0 4 5 . 0 0 0.80 4 5 . 0 0 2 9 . 0 0 7 3 . 0 0 5 1 . 2 0

(13.22) (10.05) (1.33) (4.58) (5.81) (8.35) (7.44)

Table 2: Number of learned context pairs by tiers and subclasses
Lose Tic-Tac-Toe Five Men's Morris

Tier 2
Subc las s 1 (we ight . 9 - 1 .0) 17.80 (2.79) 575.50 (48.79)
Subc las s 2 (we ight . 8 - . 89) 3.80 (1.54) 210.40 (8.44)
Subc las s 3 (we ight . 7 - . 79) 6.65 (1.84) 277.90 (20.97)

Tier 3 (weight .55 - .69) 3.20 (1.44) 496.30 (20.79)

any sequences. Experiment 2 produced better reliability
than Experiment 1 against all four opponents, and im-
proved power against the novice and random players. As a
result, SeqPlayer was able to win or draw against a perfect
player 57.80% of the time, and slightly less against the
mid-level opponents.

Table 1 shows that SeqLearner is most useful for learn-
ing techniques against better opponents. Realistically, the
better the opponent, the more one should expect to rely on
learning to produce an expert program. Hence an algorithm
like SeqLearner, that leads to better performance against
stronger opponents, is an important step in game learning,
and a prospective component for multiple-method learning
programs.

The average number of sequences collected in SeqTable
in Experiment 2 was 78.2 for lose-tic-tac-toe, and 12,234
for five men’s morris. These sequences yielded 31.45
context pairs with weights above .55 for lose tic-tac-toe,
and 1560.1 for five men’s morris. Table 2 examines the
quality of the context pairs learned in Experiment 2, by
their weights. In both games, context pairs with weights in
[.9, 1] form the largest subclass of tier 2, larger than all the
other included context pairs together. This means that
many retained context pairs give excellent advice. In five
men’s morris, the second largest group is in tier 3. As a
result, Version 2 runs 21% faster than Version 1, since tier
3 is rarely reached in the decision-making process.

3. Discussion and Related Work

Inspection indicates that SeqLearner learns salient concepts
for each game. Figure 5 shows a context pair learned for
lose tic-tac-toe that achieved a perfect weight of 1.00 after
160 training contests. It advises Player X to reflect O’s
move horizontally or vertically through the center. Al-
though proved to be correct play (Cohen 1972), few people
discover it (Ratterman and Epstein 1995). Figure 6 is a
context pair learned in the placing stage of five men’s
morris; it advises White to block Black from creating a mill
twice. By moving to position 10, White blocks Black from

creating a mill in positions 3-10-16, and by moving to
position 15 after Black moves to 14, White blocks Black
from creating a mill in 14-15-16. Figure 7 shows a solo
sliding context pair learned to create a mill and shuttle in
and out of the mill once it is achieved. This is a crucial se-
quence for winning five men’s morris. (An equivalent
context pair was also learned for White.) The context pairs
in Figures 6 and 7 achieved weights of 1.00 after 320
training contests. All context pairs learned are applicable
elsewhere on the board, when a symmetrically equivalent
context arises. This shuttle is a sophisticated exploitation of
the rules to achieve the goal of reducing the opponent to
two pieces.

SeqLearner learns action sequences for generalized
states. Results show that SeqLearner, beginning with no
knowledge, can learn a great deal about playing the game
of lose tic-tac-toe, and scales to the more difficult game of
five men’s morris. Surprisingly, relying only on learned
sequences, SeqPlayer can draw against a perfect five men’s
morris player more than half the time. Results also show
that the most dramatic improvement gained from applying
SeqLearner occurs when testing against the better players.
This correlates with cognitive science results that better
chess players rely on move-sequence structures stored in
their long-term memories (Chase and Simon 1973).

Instead of all possible legal sequences, SeqLearner in-
duces contexts from the limited number of sequences seen
during experience. This should enable it to scale to larger
spaces. However, for induction to be correct in a large
space, many training examples will be needed. Therefore,
for games with many more moves per contest and much
larger boards, the SeqLearner approach may require some
adaptation. Instead of collecting all sequences, additional
game-specific knowledge could specify when sequences
should be collected. For example, one can define locality
for a game, and collect only sequences that fall in the same
locality. In Go, sequences of moves in the same geographic
vicinity are usually related; this could be used to indicate
the length of a sequence to be learned. The algorithm that
looks for the underlying context would also concentrate on
a vicinity instead of the entire board. In a game like chess,
however, locality would be defined both by proximity to
the locations moved to, and by the squares those moved
pieces attack and defend.

Although the algorithm in SeqLearner for the maximal
common pattern is efficient, it does not consider the value
of more than one board position at a time as a feature,
which may be important to the actual context. Hence the
algorithm may over-generalize, that is, drop locations
whose values were not identical, but whose combination of

Figure 5: With this context pair, SeqLearner has learned to reflect
through the center in lose tic-tac-toe, a technique people rarely
discover for this game.

Figure 6: With this context pair, SeqLearner has learned a
duet for five men’s morris that anticipates and defends
against the formation of two mills by black.

Figure 7: With this context pair, SeqLearner has learned a pow-
erful solo for five men’s morris that shuttles in and out of a mill.

values was important. If the feature representation for
learning contexts were complete (able to express every
combination of the locations on the board as a feature) this
would not be an issue. Completeness, however, comes at
the expense of efficiency. In general, one limitation of
SeqLearner is that context learning depends on human-
selected features. The wrong features will form incorrect
contexts. Learned features are a topic for future work.

Like SeqLearner, case-based planners index a sequence
under a context to retrieve for future use. Unlike
SeqLearner, however, case-based planners require large
quantities of domain knowledge (Hammond, Converse et
al. 1993). PARADISE linked chess concepts to formulate
plans that guided a small search tree to select the best plan
(Wilkins 1980). PARADISE’s concepts, however, were
taken from a manually constructed chess knowledge base,
and not learned. Sequential Instance Based Learning
(SIBL) learns to appropriately select actions in new bridge
contests based on action patterns (i.e., sequences of
consecutive states) played in previous contests (Shih 2001).
Rather than learn the context, SIBL treats the sequence that
led to an action as the context for the action itself, and
trains a database of <sequence, action> pairs based on
similarity metrics that measure a new sequence’s similarity
to known sequences. Kojima’s evolutionary algorithm that
learns patterns for Go, can also learn sequences of moves
(Kojima and Yoshikawa 1999). Kojima’s system, however,
like SIBL, learns sequences as part of the context for the
next single action to take, unlike SeqLearner which learns
sequences to follow.

SeqLearner is not restricted to two-agent-domains; it
could learn sequences that involve one agent or more than
two agents. Although SeqLearner extrapolates a context
from limited experience inductively, searching more
broadly would be costly. SeqLearner takes a compu-
tationally reasonable approach; once it narrows the focus, a
deductive method can further refine the acquired knowl-
edge. For example, a narrow search from an induced
context could be attempted to prove correctness.

Meanwhile, the work outlined here has demonstrated
that previously experienced sequences are an important re-
source for programs learning expertise in a particular do-
main. Experience with sequences can support learning their
contexts. Future work will experiment with other domains,
such as truck-routing, other context extraction methods,
and with using domain-specific knowledge to guide the se-
quence gathering of SeqLearner, rather than gathering all
sequences of various lengths.

Acknowledgements

This work was supported in part by the National Science
Foundation under #IIS-0328743 and #9423085.

References

Chase, W. G. and Simon, H. A. (1973). The Mind's Eye in
Chess. Visual Information Processing. W. G. Chase.
New York, Academic Press: 215-281.

Cohen, D. I. A. (1972). The Solution of a Simple Game.
Mathematics Magazine. 45: 213-216.

Epstein, S. L. (1994). Identifying the Right Reasons:
Learning to Filter Decision Makers. Proc. of the AAAI
1994 Fall Symposium on Relevance, Palo Alto.

Fikes, R. E., Hart, P. E., and Nilsson, N. J. (1972).
“Learning and Executing Generalized Robot Plans.” Ar-
tificial Intelligence 3: 251-288.

Finkelstein, L. and Markovitch, S. (1998). “A Selective
Macro-learning Algorithm and its Application to the N x
N Sliding-Tile Puzzle.” JAIR 8: 223-263.

Hammond, K. J., Converse, T., and Marks, M. (1993).
“Opportunism and Learning.” Machine Learning 10:
279-309.

Iba, G. (1989). “A heuristic approach to the discovery of
macro-operators.” Machine Learning 3: 285-317.

Kojima, T. and Yoshikawa, A. (1999). Knowledge Ac-
quisition From Game Records. ICML Workshop on Ma-
chine Learning in Game Playing.

Korf, R. (1985). “Macro-Operators: A Weak Method for
Learning.” AIJ 26: 35-77.

Lock, E. (2003). Learning and Applying Temporal Patterns
through Experience. Ph.D. thesis, The Graduate School
of The City University of New York.

McGovern, A. (2002). Autonomous Discovery of Tem-
poral Abstractions From Interaction with an Environ-
ment. Ph.D. thesis, University of Massachusetts.

Moore, A. W., Baird, L., and Kaelbling, L. P. (1998).
Multi-Value-Functions: Efficient automatic action hier-
archies for multiple goal MDPs. NIPS'98 Workshop on
Abstraction and Hierarchy in Reinforcement Learning.

Precup, D. (2000). Temporal abstraction in reinforcement
learning. Ph.D. thesis, University of Massachusetts.

Ratterman, M. J. and Epstein, S. L. (1995). Skilled like a
Person: A Comparison of Human and Computer Game
Playing. Proc. of the Seventeenth Annual Conference of
the Cognitive Science Society, Hillsdale, NJ, Lawrence
Erlbaum Associates.

Shih, J. (2001). Sequential Instance-Based Learning for
Planning in the Context of an Imperfect Information
Game. International Conference on Cased Based Rea-
soning.

Sutton, R. S., Precup, D., and Singh, S. (1999). “Between
MDPs and Semi-MDPs: A framework for temporal ab-
straction in reinforcement learning.” AIJ 112: 181-211.

Tadapelli, P., and Natarajan, B. K. (1996). “A formal
framework for speedup learning from problems and so-
lutions.” JAIR 4: 419-433.

Wilkins, D. (1980). “Using Patterns and Plans in Chess.”
Artificial Intelligence 14: 165-203.

