
Abstract 
Observations on a low-level description of a con-
straint satisfaction problem are assembled here to 
learn a higher level, structural model, a cluster 
graph. The model is built from unusually dense 
and tight subproblems (clusters) detected during 
local search. Heuristics then assemble the clusters 
into a new, learned representation and use it effec-
tively to guide global search for a solution. A clus-
ter graph provides insight into a large, complex 
problem, and can be exploited to solve it as much 
as an order of magnitude faster. Additional learn-
ing protects against the occasional inadequacies of 
local search. The tradeoff between structure learn-
ing and performance is also examined.  

1 Introduction 
Many challenging real-world problems can be cast as con-
straint satisfaction problems (CSPs). The thesis of this work 
is that it is possible to predict and then exploit the most dif-
ficult parts of a CSP, both to solve it and to explain it. A 
cluster graph is a structural model that displays relation-
ships among difficult CSP subproblems (clusters). The prin-
cipal result here is that it is feasible to construct a cluster 
graph for a complex CSP quickly, before search for a solu-
tion, and then exploit it effectively to solve the problem. In-
deed, the time to construct a cluster graph and then solve 
with it is faster than search with traditional heuristics by 
much as an order of magnitude on some classes of difficult 
CSPs. A cluster graph also provides a higher-level formula-

tion of a problem that is more meaningful for the user.  
A binary CSP is a set of variables, each with a domain of 

values, and a set of constraints, each of which restricts how 
some pair of variables (neighbors) can be bound simultane-
ously. For insight, people often represent a CSP as a graph 
where each variable is shown as a node and each constraint 
as an edge between the pair of variables it restricts. For a 
large, complex CSP, however, the traditional graph (e.g., 
Figure 1(a)) offers little insight or guidance. 

Intuitively, a solver should address the most difficult 
parts of a problem first. When search for a CSP’s solution 
assigns values to variables one at a time, the order in which 
the variables are addressed is crucial to search performance. 
Such search is typically supported by variable-ordering heu-
ristics that prefer variables incident on many edges in the 
graph. Difficult subproblems, however, are not necessarily 
characterized by such variables. Figure 1(b) redraws the 
graph by extracting some variables from the central circle, 
and Figure 1(c) darkens its more restrictive constraints. This 
formulation is clear only to the generator, however. Without 
that knowledge, the problem could not be solved in 30 min-
utes by a traditional heuristic. Two learning heuristics (de-
scribed below) solved it in about 127 and 88 seconds. What 
is really needed is an effective reasoning mechanism that 
predicts and exploits difficult subproblems. Under the guid-
ance of the cluster graph in Figure 1(d), the approach de-
scribed here solved the same problem in 3.56 seconds. 

Cluster-based modeling first finds clusters and then ex-
ploits them. After background and fundamental definitions 
in the next section, Section 3 describes Foretell, our local 
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 (a)       (b) (c) (d) 
Figure 1. A cluster graph predicts subproblems crucial to search. (a) An uninformative graph for a CSP places the variables on the circum-
ference of a circle. (b) The hidden structure of the same problem, given perfect knowledge. (c) Darker edges represent tighter constraints 
in the same problem. (d) A cluster graph displays critical portions of the problem. This graph was detected from (a) by local search. 



search mechanism to detect clusters. Section 4 provides 
cluster graphs for several interesting CSPs. Section 5 pro-
vides experimental results for focus, our variable-ordering 
search heuristic that exploits a cluster graph. The final sec-
tion discusses the role of learning in this approach, and the 
tradeoffs between structure detection and solution. 

2 Background and Related Work 
The (static) degree of a variable is the number of its neigh-
bors. The tightness of a constraint is the percentage of value 
tuples it excludes from the Cartesian product of the domains 
of its variables. The density of a binary CSP is the fraction 
of the possible pairs of variables that are represented as con-
straints. A partial instantiation is a set of value assignments 
to some of a CSP’s variables from their respective domains. 
A future variable is one unbound in the current partial in-
stantiation, and the dynamic degree of a variable is the 
number of its neighbors that are future variables. A full in-
stantiation assigns a value to every variable. A full instan-
tiation that satisfies all the constraints is a solution.  

Complete search either finds a solution to a CSP or 
proves that none exists. (If search achieves either, the prob-
lem is labeled “solved” here.) Global search assigns a value 
to one variable at a time. After each assignment, propaga-
tion removes from the domains of the future variables any 
values shown inconsistent with the current partial instantia-
tion, producing dynamic domains. If a dynamic domain be-
comes empty (a wipeout) search backtracks (retracts previ-
ously assigned values). The experiments reported here use 
chronological backtracking and MAC-3 propagation to 
maintain arc consistency (Sabin and Freuder, 1997), but are 
in no way restricted to either. CSP search is traditionally 
evaluated by time (in CPU seconds) and by number of 
nodes (partial instantiations) explored.  

Many variable-ordering heuristics have been proposed to 
speed global search (Bessière, Chmeiss and Saîs, 2001; 
Gent et al., 1996; Smith, 1999). For example, MinDom 
seeks to minimize the branch factor of the search tree; it pre-
fers variables with small dynamic domains. Particularly in-
fluential has been the fail first principle: address first those 
variables for which it is difficult to find values that lead to a 
solution (Haralick and Elliott, 1980). For example, MaxDeg 
focuses upon variables with many constraints; it prefers 
variables with high dynamic degree. The traditional popular 
heuristic MinDomDeg combines MinDom and MaxDeg. It 
prefers variables that minimize the ratio of their dynamic 
domain size to their dynamic degree. 

Another way to fail first is to learn weights to prioritize 
troublesome variables (Boussemart et al., 2004). This ap-
proach initializes the weight of every constraint to 1. Then, 
each time propagation along a constraint induces a wipeout, 
the weight of that constraint is incremented by 1. The vari-
able-ordering heuristic MaxWdeg maximizes the weighted 
degree of a variable, the sum of the weights of the con-
straints between it and its future-variable neighbors. Alter-
natively, MinDomWdeg minimizes the ratio of dynamic 
domain size to weighted degree. These learning heuristics 
are also initially drawn to the central component of the 

problem in Figure 1, but they eventually recover. MinDom-
Deg, MaxWdeg, and MinDomWdeg were the non-cluster 
heuristic timed on the CSP in Figure 1. 

Many CSPs have a relatively small backdoor, a set of 
variables whose correct assignment under a given search 
algorithm makes the rest of the search relatively trivial 
(Williams, Gomes and Selman, 2003). Identification of a 
backdoor requires examination of the CSP’s entire search 
tree, however. A cluster graph is intended to suggest enough 
of the backdoor to give global search guided by traditional 
heuristics a considerable advantage. Unlike (Hemery et al., 
2006; Junker, 2004), cluster-based explanations are avail-
able whether or not the problem has a solution. 

A structured CSP has characteristics that can be exploited 
by a specialized method to outperform a more general one. 
A composed CSP is a randomly-generated structured prob-
lem that partitions its variables into connected components. 
One subset is designated as the central component; the oth-
ers are its satellites. Links (constraints) connect some vari-
ables in each satellite to variables in the central component, 
but there are no constraints between variables in distinct sat-
ellites. A class of composed problems  

<n,k,d,t> s <n′,k′,d′,t′> d′′ t′′ 
specifies the central component (n variables, maximum do-
main size k, density d, and tightness t), s satellites (each 
with  n′ variables, maximum domain size k′, density d′, and 
tightness t′), and links with density d′′ and tightness t′′. For 
example, Figure 1 is an unsolvable problem in 
Comp =<100,10,0.15,0.05> 5 <20,10,0.25,0.50> 0.12, 0.05 

Composed CSPs offer an opportunity to explore the im-
pact and management of difficult subproblems. Some, in-
cluding Comp, can respond poorly to traditional CSP order-
ing heuristics (Bayardo and Schrag, 1996). As indicated by 
Figure 1(c), the central component is large and easy to sat-
isfy (relatively few, loose constraints) and the links are 
sparse and loose, but the satellites are denser, with tighter 
constraints. Traditional variable-ordering heuristics usually 
begin search in the central component of a Comp problem.  

Most structure-based work in CSP has focused upon the 
identification and exploitation of tractable (Dechter and 
Pearl, 1989; Gyssens, Jeavons and Cohen, 1994; Mackworth 
and Freuder, 1985) and complex structures (Gompert and 
Choueiry, 2005). Unlike clusters, however, that work ig-
nores tightness along individual constraints, the crucial dis-
tinction between the satellites and the central component in 
a Comp problem. 

3 Cluster Detection with Foretell 
The cluster finder Foretell gathers information in advance 
about sets of tightly related variables whose domains are 
likely to reduce during search. Foretell was inspired by the 
state-of-the-art work for both speed and accuracy on the 
DIMACS maximum clique problems (Hansen, Mladenovic 
and Urosevic, 2004). (A clique is a graph with all possible 
edges between distinct variables.) Foretell searches for 
large, dense, tight subproblems that either are cliques or, but 
for a few missing edges, would be cliques. (Note the miss-
ing edges in the clusters of Figure 1(d).) 



Foretell is based on Variable Neighborhood Search 
(VNS), a local search meta-heuristic that succeeds on a wide 
range of combinatorial and optimization problems (Hansen 
and Mladenovic, 2003). (The “variable” in VNS refers to 
changing neighborhoods, not to CSP variables.) VNS works 
outward from an initial solution (Figure 2, line 1) in a rela-
tively small neighborhood in a graph through k pre-
specified, increasingly large neighborhoods (lines 2–3). 
Each neighborhood restricts the current options; as VNS it-
erates, each new neighborhood provides a larger search 
space. Within a neighborhood, local search tries to improve 
the current solution (best-yet) according to a metric, score. 
A better local optimum resets best-yet and returns to the first 
neighborhood (lines 6–9); otherwise search proceeds to the 
next neighborhood (lines 10–11). Shaking (line 5) shifts 
search within the current neighborhood and randomizes the 
current best-yet to explore different portions of the search 
space. As index increases, the neighborhoods become larger 
so that the shaken version of best-yet becomes less similar 

to best-yet itself. The user-specified stopping condition (line 
4) is either elapsed time or movement through some number 
of increasingly larger neighborhoods without improvement. 

Foretell, adapts VNS to detect multiple subgraphs, and 
redefines routines for the initial solution, the score metric, 
and local search. For these, Foretell relies on the notion of 
pressure on a variable v, the probability that, given all the 
constraints upon it, when one of v’s neighbors is assigned a 
value, at least one value will be excluded from v’s domain. 
Precise calculation of the series that defines pressure is 
computationally expensive. Instead, our algorithm quickly 
approximates the first term in that series, corrected to avoid 
bias in favor of variables with high degrees or large do-
mains. For a constraint with tightness t between variables V1 
and V2 with domain sizes D1 and D2, respectively, Foretell 
calculates the initial pressure on variable V1 as: 
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Foretell’s initial solution (in line 1 of Figure 2) is a vertex 
that is the neighbor of every vertex in the graph (often an 
empty set). Its greedy step maximizes pressure and uses 
pressure to break ties during swaps as well. Since we seek 
large, tight, closely related subproblems, Foretell scores a 
cluster according to its number of variables, its density, and 
the average tightness of its constraints. After each cluster is 
found, Foretell removes the variables within it from consid-
eration, and seeks a new cluster among the variables that 
remain. Ties unbroken by maximum pressure, are broken by 
maximum degree, and then, if need be, at random. The 
minimum acceptable cluster is a clique of size 3, but not 
every cluster is a clique. 

    

   
 (a)  (b)  (c)  (d) 
Figure 3. Tight edges (top) and cluster graphs (bottom) for different CSPs display different secondary structures. Each cluster is drawn 
within a circle; tighter edges are darker. Cluster labels are number of variables, number of additional edges needed to make it a clique, and 
Foretell score. (a) Comp problem (b) 25-10-20 problem (c) RLFAP scene 11 with tightness ≥ 0.3 and (d) the driverlogw-08cc problem.  

1 best-yet ← initial-solution 
2 index ← 1 
3 neighborhood ← neighborhood(index) 
4 until stopping condition or index = k 
5  unless index = 1, best-yet ← shake(best-yet, index) 
6  local-optimum ← local-search(best-yet, neighborhood);VND 
7  If score(local-optimum) > score(best-yet) 
8   then  best-yet ← local-optimum 
9      index ← 1 
10  else  index ← index + 1 
11  neighborhood ← neighborhood(index) 
 
Figure 2. A high-level description of the non-deterministic VNS 
meta-heuristic search through k neighborhoods. The initial solu-
tion, the score metric, and the local search routine vary with the 
application. 



4 Cluster Graphs 
Foretell identifies clusters, and the program then joins them 
with any constraints that connect their variables in the origi-
nal CSP to automatically generate cluster graphs. Applied to 
a broad range of benchmark problems taken from (Lecoutre, 
2009), this approach produces cluster graphs that make ex-
plicit a variety of secondary structure among the clusters 
themselves.  

The first category of secondary structure is a set of iso-
lated clusters, or pairs of clusters, in the cluster graphs for 
composed problems. The cluster graph in Figure 3(a) for a 
Comp problem is suggestive of its tightest edges. Because 
satellites, with density 0.25, are far from cliques, quite often 
more than one cluster lies in the same satellite. Thus some 
clusters are linked. Figure 3(b) shows a similar secondary 
structure for another composed CSP, designated 25-10-20 in 
(Lecoutre, 2009) or, in our notation,   

<25,10,0.667,0.15> 10 <8,10,0.786,0.5> 0.01, 0.05.  
The larger satellite density (0.786) encourages the formation 
of somewhat larger clusters, but typically leaves too few 
edges to form two clusters in one satellite. Thus its clusters 
are isolated from one another.  
 Clusters are not always composed from only the tightest 
edges. RLFAP is scene 11 of the radio link frequency prob-
lems (Cabon et al., 1999). Its many constraints vary dra-
matically in tightness. Figure 3(c) shows only the tightest, 
with the 650 variables on two concentric circles; this is a bi-
partite graph. The cluster graph is considerably more infor-
mative. Foretell found the same clusters of size 6 and 13 on 
every run. Note that only two clusters are connected to one 
another, and that the size-13 cluster is not one of them. 
These 40 variables are the crux of RLFAP, the part that 
makes its rapid solution possible. Only 18 of the tightest 
edges appear in the cluster graph at all, and only two are in 
the top-priority cluster. We also tested driverlog problems 
from (Lecoutre, 2009), originally from a planning competi-
tion. The one in Figure 3(d) displays a more closely coupled 
secondary structure. Other driverlog problems also display a 
path-like secondary structure in their cluster graphs. 

5 Experiments in Cluster-guided Search 
This section exploits clusters detected automatically by 
Foretell. All problems were initialized with AC and propa-
gated with MAC-3. Given the non-determinism in many of 
these approaches, all results are averaged across 10 runs.  

The first set of experiments, on Comp, tested both tradi-
tional variable-ordering heuristics and perfect-knowledge 
approaches that are not ultimately allowable as heuristics 
because they use information about problem generation to 
search. The latter gauge how well perfect knowledge about 
structure supports search, and how best to use that knowl-
edge. Rather than discard traditional variable-ordering heu-
ristics, the perfect knowledge approaches use MinDomDeg 
as a tiebreaker. Each variable ordering had 30 minutes to 
solve each problem. Results appear in Table 1.  

First, we tested three perfect-knowledge approaches. Sat-
ellite prefers satellite variables, and binds central-
component variables last. It never solved any problem. Stay 
repeatedly selects a satellite at random and binds all its vari-
ables. It too binds central-component variables last. Until-i 
selects a satellite at random, binds all but i of its variables, 
and then selects another satellite at random. (Stay is equiva-
lent to until-0.) It binds central-component variables and any 
“leftover” satellite variables last. We tested i =2, 3,…, 15 on 
Comp; i = 11 was the best. Given perfect knowledge about 
satellites of size 20, search can address as few as 9 satellite 
variables before moving on to the next satellite.  

Next we tested three traditional approaches MinDomDeg 
solved only 2 problems within the time limit. Inspection in-
dicates that it was immediately drawn to the central compo-
nent of Comp. Because links there are so few and loose, 
wipeouts did not occur until fairly deep in the search tree, 
after at least 36 variables had been bound. After retraction, 
MinDomDeg repaired its partial instantiation by re-solving 
part of the central component, when the true difficulties lay 
elsewhere, in the satellites. Although the learning heuristics 
initially suffered from the same attraction to the central 
component, they both solved all the problems eventually, 
MaxWdeg in about 2 minutes on average, and MinDom-
Wdeg in about 84 seconds. Nonetheless, they both lack the 
foresight that the cluster graph is intended to provide.  

The three perfect-knowledge experiments suggested sev-
eral variable-ordering heuristics without perfect knowledge, 
fail-first orderings that address clusters first, one at a time. 
True cluster tightness (the ratio of the number of tuples that 
satisfy its future variables to the product of their dynamic 
domain sizes) is too expensive to calculate dynamically. It is 
estimated instead over its future variables as the product of 
the ratios of their dynamic domain sizes to original domain 
sizes. Furthermore, given the vagaries of local search and 
uncertainty about how much time to allocate to VNS, Min-
DomWdeg supports cluster-guided search as a tiebreaker. 
Thus, learning is there to help, although it is rarely neces-
sary. Each of the following cluster-guided search heuristics 
breaks ties by maximum dynamic cluster size. Tight selects 
a variable from the (estimated) dynamically tightest cluster. 
Search guided by tight could shift from one cluster to an-
other, and therefore from one satellite to another in Comp, 

Table 1. On 50 Comp problems, search with perfect knowledge 
(above the line) must remain in a satellite to succeed.. Until-11 is a 
target, not a legitimate heuristic; it applies foreknowledge available 
only to the problem generator, not the search engine. Without per-
fect knowledge (below the line), cluster-guided search improved 
the performance of 3 traditional heuristics by more than an order of 
magnitude. Mean and standard deviation are shown for nodes and 
CPU seconds, including time Foretell uses to find clusters.  
 

Heuristic Time Nodes 
satellite No problems solved 
stay 2.848   (3.584) 511.922  (416.345) 
until -11 1.612 (1.866) 398.776 (244.112) 
MinDomDeg 1728.157  (355.877)  285751.970  (61368.701) 
MaxWdeg 123.000 (128.580) 20817.640 (22954.165) 
MinDomWdeg 83.580 (38.964) 12519.360 (5811.370) 
tight 4.705 (6.252) 505.296 (718.029) 
concentrate 5.461 (5.628) 836.434 (876.539) 
focus 4.311 (2.411) 497.964 (324.327) 
focus-1 5.267 (3.215) 516.406 (425.739) 
focus -2 8.713 (22.442) 1371.338 (2765.681) 



the way the (inadequate) satellite did. Like stay, concentrate 
selects a cluster at random, binds all its variables, and then 
goes to the next randomly chosen cluster. Focus selects the 
(estimated) dynamically tightest cluster, binds all its vari-
ables, and then uses estimated dynamic tightness to select 
the next cluster.  Focus-i is analogous to until-i; it instanti-
ates within a cluster until all but i of its variables have been 
bound. We applied these variable-ordering heuristics to 
Comp, including total VNS time required to find clusters in 
all timing data. Focus was the most successful; it solved 
every problem in under 16.720 seconds. In contrast, Min-
DomWdeg solved only 4% in that time. Because Foretell’s 
clusters are about one fourth the size of Comp’s satellites, it 
proves safer to bind an entire cluster, that is, i should be 0.  

The second set of experiments is reported in Table 2. It 
tested the strongest cluster-based search heuristic, focus 
with MinDomWdeg, on all the composed problems on the 
benchmark website (Lecoutre, 2009), where there are 10 
problems per class. MinDomDeg could solve only 9 of these 
problems, all in the first 3 classes. The search tree sizes for 
MinDomWdeg suggest that these benchmarks are easier than 
Comp. On the harder classes, focus once again provided an 
order of magnitude improvement. Because composed prob-
lems are more uniform in density and tightness than real-
world problems, we also tested RLFAP and the driverlog 
problems w-08cc and w-08c from (Lecoutre, 2009). On 
both, focus was statistically significantly faster.  

6 Discussion 
Earlier work demonstrated that both density and tightness 
are necessary to predict difficult subproblems (Epstein and 
Wallace, 2006). It also showed that cluster graphs do not 
harm performance on smaller composed problems, and may 
improve it. When the ratio of satellite size to central compo-
nent size is high, or when a satellite’s tightness does not 
warrant prioritization, clusters are less useful. The very rare 
presence here of a central component variable in a cluster 
did not negatively impact cluster-guided search in Comp. 

Clusters explain why a problem is difficult to solve or has 
no solution at all. The variables in a cluster mutually con-
strain one another in a highly restrictive way. A user con-
fronted with an unsolvable real-world problem could use 
clusters to reconsider its specifications, or at least to under-
stand why it is unsolvable. For example, MinDomWdeg 
proves that the problem in Figure 1 is unsolvable, but the 
trace is fairly opaque. Until-11 is somewhat more informa-
tive: it searched within only two satellites before it reported 
insolvability. Each of its 10 proofs was different, but most 
of them used no more than 8 variables in 2 satellites, about 
4% of the 200 variables. On the same problem, focus offers 
a more concise and meaningful explanation with 3 clusters.  

The tradeoff between task performance and learning is 
addressed by a final set of experiments (Table 3) that varied 
Foretell’s time allocation per cluster on RLFAP. Under 300 
ms., clusters were smaller. At 2000 ms., Foretell always 

Table 2: Clusters improve performance. Classes above the line are composed, with central component density d, link density d′′, and sat-
ellite tightness t′. Cluster-guided search uses both Foretell and focus. Time is in CPU seconds 

    MinDomWdeg Foretell’s clusters Focus 
Problem d t′ d′′ Time Nodes Count Size Max Time Nodes 

25-10-20 0.667 0.50 0.010 2.485 670.10 10.17 5.197 5.58 0.882 350.00 
25-1-80 0.667 0.65 0.010 0.951 308.00 5.60 5.281 6.08 0.262 94.50 
75-1-80 0.216 0.65 0.133 2.317 595.20 9.09 4.864 5.90 0.365 181.40 
25-1-2 0.667 0.65 0.010 1.007 553.00 1.01 5.770 5.77 0.019 41.40 
25-1-25 0.667 0.65 0.125 0.913 465.70 2.30 5.597 5.90 0.042 41.60 
25-1-40 0.667 0.65 0.200 1.097 473.80 5.00 5.372 6.40 0.073 41.50 
75-1-2 0.216 0.65 0.003 3.330 1171.70 1.00 5.690 5.69 0.044 91.60 
75-1-25 0.216 0.65 0.042 3.289 1084.40 5.40 5.242 6.46 0.146 91.40 
75-1-40 0.216 0.65 0.067 2.972 960.90 4.60 5.292 5.80 0.153 91.30 
Comp 0.150 0.50 0.120 83.580 12519.40 11.00 4.309 5.15 4.311 497.96 
RLFAP scene 11 — — — 58.034 2777.00 38.10 7.912 16.00 51.133    1557.00 
Driverlogw 08cc — — — 134.281 4200.00   3.00 34.333 45.00 87.842 2983.70 
Driverlogw 08c — — — 149.449 4136.00   3.00 34.333 45.00 83.622  2815.30 
           
           

 
Table 3: The tradeoff between exploration and exploitation averaged across 10 runs on RLFAP. Allocated and actual times per cluster 
are in milliseconds; search time, time consumed by Foretell to find all clusters, and total time are in seconds. Statistics include the aver-
age and range of the number of clusters on those runs, their average and maximum size, and their coverage (fraction of variables in-
cluded in the cluster graph). All cluster search time is included in the total time to solution and includes Foretell time. 

 Cluster statistics Cluster-guided search (times in sec.) 
Time per cluster (ms.) 
Allocated       Actual 

 
Count 

Count 
range 

Average 
size 

Max 
size 

 
Coverage 

 
Nodes 

Search 
time 

Foretell 
 time  

Total  
time  

300 395.318 55.100 7 - 65 6.886 15.600 55.80% 1616.100 35.457 21.782 57.239 
400 479.895 38.100 36 - 41 7.912 16.000 44.33% 1557.000 32.849 18.284 51.133 
500 573.561 39.600 5 - 69 7.468 14.800 43.49% 1519.000 50.859 22.713 73.572 
600 621.343 31.005 5 - 65 7.548 15.700 34.42% 1655.000 43.691 36.031 74.696 
800 821.202 46.600 17 - 65 7.769 16.000 53.24% 1532.800 43.269 38.268 81.537 

1000 889.542 63.300 63 - 65 7.059 16.000 65.40% 1519.000 36.536 56.308 92.844 
2000 1323.429 63.000 63 - 63 7.100 16.000 65.78% 1519.000 33.541 83.376 116.917 



finds 63 clusters, and finds the same largest cluster consis-
tently. In the experiments for 1000 and 2000 ms., there is 
little difference among the cluster graphs and none (σ = 0) 
in the resultant search tree size. Total time for search, how-
ever, increases because the increased allocation allows 
Foretell more iterations through the loop in Figure 2, during 
which it tinkers more with the clusters it finds, as indicated 
by the second column in Table 2. Observe that, if Foretell 
dawdles during local search, it can exceed the allocated time 
on average. An allocation greater than time per cluster indi-
cates that Foretell has done all it can.  
 There are two ways to think about Table 2. First, if one 
requires an explanation for the user, the most complete clus-
ter graph can be produced by iteratively increasing the time 
allocation until it exceeds time per cluster and a consistent 
number of clusters is found. The second way is informed by 
some surprising observations. All the errors made on any 
400 ms. run were within the cluster graph, and only 2 errors 
were within the first 300 assignments. Moreover, despite 
differences in the cluster graphs under the same time alloca-
tion, focus uses them the same way, that is, the tightest, 
largest clusters dominate and the standard deviation in the 
search tree size is 0. Thus the difference between 400 and 
2000 ms. is a few variables treated differently. This suggests 
that effective search does not require the most extensive 
possible cluster graph, just enough of it to direct search to 
the hardest subproblems first. Current investigation there-
fore includes additional termination conditions for Foretell. 

Although these experiments are on binary CSPs, in prin-
ciple there is nothing in Foretell that restricts it to binary 
problems. All the experiments reported here ran in ACE, the 
Adaptive Constraint Engine (Epstein, Freuder and Wallace, 
2005). ACE is a highly modular and flexible research tool 
that collects substantial data; it is not honed for speed. 
Nonetheless, the concomitant reductions in checks (data 
omitted) and nodes searched suggest that clusters will accel-
erate other, more agile solvers as well. For an easy problem, 
no clusters are necessary, and any reasonable amount of 
time spent on cluster detection will have no noteworthy im-
pact. For more challenging problems, cluster-guided search 
outperformed off-the-shelf heuristics here, even those that 
learn, in both time and nodes. Given their acuity and ex-
planatory ability, cluster-guided search is a worthwhile CSP 
search technique, one that learns structural knowledge and 
then applies it. 

Acknowledgments 
ACE is a joint project with Eugene Freuder and Richard 
Wallace of the Cork Constraint Computation Centre. 
Thanks go to Pierre Hansen for helpful discussions on VNS. 
This work was supported in part by the National Science 
Foundation under awards IIS-0811437 and IIS-0739122. 

References 
Bayardo, R. J. J. and R. Schrag 1996. Using CSP Look-
Back Techniques to Solve Exceptionally Hard SAT In-
stances. CP-1996, 46-60. Cambridge, Springer Verlag. 

Bessière, C., A. Chmeiss and L. Saîs 2001. Neighborhood-
based Variable Ordering Heuristics for the Constraint Satis-
faction Problem. CP2001, 565-569. Berlin, Springer Verlag. 
Boussemart, F., F. Hemery, C. Lecoutre and L. Sais 2004. 
Boosting systematic search by weighting constraints. ECAI-
2004, 146-149. IOS Press. 
Cabon, R., S. De Givry, L. Lobjois, T. Schiex and J. P. 
Warners 1999. Radio Link Frequency Assignment. Con-
straints 4: 79-89. 
Dechter, R. and J. Pearl 1989. Tree Clustering For Con-
straint Networks. Artificial Intelligence 38: 353-366. 
Epstein, S. L., E. C. Freuder and R. J. Wallace 2005. Learn-
ing to Support Constraint Programmers. Computational In-
telligence 21(4): 337-371. 
Epstein, S. L. and R. J. Wallace 2006. Finding Crucial Sub-
problems to Focus Global Search. ICTAI-2006, 151-159. 
Washington, D.C., IEEE. 
Gent, I., E. MacIntyre, P. Prosser, B. Smith and T. Walsh 
1996. An empirical study of dynamic variable ordering heu-
ristics for the constraint satisfaction problem. CP'99, 179-
193. Cambridge, MA, Springer Verlag. 
Gompert, J. and B. Y. Choueiry 2005. A Decomposition 
Techniques For CSPs Using Maximal Independent Sets And 
Its Integration With Local Search. FLAIRS-05, 167-174. 
Clearwater Beach, FL, AAAI Press. 
Gyssens, M., P. G. Jeavons and D. A. Cohen 1994. Decom-
posing constraint satisfaction problems using database tech-
niques. Artificial Intelligence 66(1): 57-89. 
Hansen, P. and N. Mladenovic 2003. Variable Neighbor-
hood Search. Handbook of Metaheuristics. Glover, F. W. 
and G. A. Kochenberger. Berlin, Springer: 145-184. 
Hansen, P., N. Mladenovic and D. Urosevic 2004. Variable 
neighborhood search for the maximum clique. Discrete Ap-
plied Mathematics 145: 117-125. 
Haralick, R. M. and G. L. Elliott 1980. Increasing tree 
search efficiency for constraint satisfaction problems. Artifi-
cial Intelligence 14: 263-314. 
Hemery, F., C. Lecoutre, L. Sais and F. Boussemart 2006. 
Extracting MUCs from Constraint Networks. ECAI-2006, 
113-117. Riva del Garda. 
Junker, U. 2004. QuickXplain: Preferred explanations and 
relaxations for over-constrained problems. AAAI-04, 167-
172. 
Lecoutre, C. 2009. "Benchmarks in XCSP 2.1." from 
http://www.cril.univatois.fr/~lecoutre/research/benchmarks/
benchmarks.html. 
Mackworth, A. K. and E. C. Freuder 1985. The Complexity 
of Some Polynomial Network Consistency Algorithms for 
Constraint Satisfaction Problems. Artificial Intelligence 
25(1): 65-74. 
Sabin, D. and E. C. Freuder 1997. Understanding and Im-
proving the MAC Algorithm. CP-97, 167-181. 
Smith, B. M. 1999. The Brélaz Heuristic and Optimal Static 
Orderings. CP'99, 405-418. Alexandria, Virginia, Springer 
Verlag. 
Williams, R., C. Gomes and B. Selman 2003. On the Con-
nections between Heavy-tails, Backdoors, and Restarts in 
Combinatorial search. SAT 2003, 222-230.  


