
What You Did and Didn’t Mean: Noise, Context, and Human Skill

Tiziana Ligorio (tligorio@gc.cuny.edu)
Susan L. Epstein (susan.epstein@hunter.cuny.edu)

Department of Computer Science, Hunter College and The Graduate Center of The City University of New York
New York, NY 10016 USA

Rebecca J. Passonneau (becky@cs.columbia.edu)

Joshua B. Gordon (gordon@cs.columbia.edu)
Center for Computational Learning Systems, Columbia University

New York, NY 10037 USA

Abstract
In spoken dialogue between people and machines, the com-
puter must understand not only what the speaker means but
also what she does not. The computer begins with a consider-
able disadvantage: even the best speech recognition technol-
ogy can provide error-ridden transcriptions of human speech
under real-world telephone conditions. The work recounted
here examines how, and how well, people use context to in-
terpret noisy transcribed utterances in a challenging domain.
Models learned from this experiment highlight two aspects of
this human skill: the ability to detect a context-supported
match, and the ability to know when the quality of attempted
matches is so poor that it should be questioned. These models
can then be applied by a spoken dialogue system to find the
correct interpretation of users’ spoken requests, despite incor-
rect speech recognition.

Keywords: spoken dialogue systems; natural language proc-
essing; machine learning; Wizard of Oz studies, learning.

Introduction
A computer system intended to replicate a human skill faces
two considerable limitations: it works from a different input
modality and it is restricted to a preprogrammed set of alter-
native actions. The thesis of our work is that people should
be studied for their skill at the target task as if they were si-
milarly restricted, that is, as if they had only the system’s
input and alternatives. The domain of investigation here is a
spoken dialogue system (SDS). Subjects were given the
same data that would be available to the SDS: error-ridden
strings representing transcribed speech plus a large database
of possible matches (Passonneau et al., In Press). The resul-
tant data was then used to identify the best performers, and
to learn models of them destined for the system. There were
two principal results. First, subjects ably guessed what the
speaker meant, that is, they could often identify the correct
item from the context provided by a database query on the
error-ridden string. Second, the people most skilled at this
task excelled because they could also identify what the
speaker had not meant, that is, they knew when no item re-
turned from the database was a correct match. Such recogni-
tion is essential to move dialogue forward constructively

Ideally, an SDS offers people a natural way to communi-
cate with a computer and benefit from its expertise. In an
SDS, automated speech recognition (ASR) transcribes hu-
man spoken input into a string of words, which is then as-

signed an interpretation. Under real-world telephone condi-
tions, however, even state-of-the-art ASR can exhibit a
word error rate (WER) as high as 68% (Raux et al., 2005).
High WER is common when the environment is noisy, the
language the system is expected to understand is flexible
and based on a large vocabulary, or the user population is
diverse in gender, age, and native language. These are all
characteristic of our target domain: telephoned book re-
quests from patrons of the Andrew Heiskell Braille and
Talking Books Library.

Although people manage dialogue well in the presence of
noise, computers do not. Our subjects used ASR output
from a spoken title to query our copy of Heiskell’s book da-
tabase. For example, for one book title, the ASR output
string was “ROLL DWELL.” A database query on this string
returned three likely matches (in real time): “CROMWELL,”
“ROBERT LOWELL,” and “ROAD TO WEALTH.”

This is a difficult task. (The reader is invited to guess
whether any of these actually matches the spoken title.) Our
experiment studies how people manage this task. The resul-
tant data is then used to train accurate models of human be-
havior, and to identify the features that make people profi-
cient. Such models are ultimately intended as an integral
part of an SDS, to make it more robust to noisy ASR in the
context of database queries. The next sections of this paper
describe related work, our target system, and the experimen-
tal design and results. These are followed by a description of
the models learned from the data collected during the ex-
periment, and a discussion of their import and application.

Related Work
The Wizard of Oz (WOz) paradigm is a well-known ap-
proach to iterative prototype design. It gathers information
about the characteristics of a successful system before the
system’s development (Dix, et al. 2003). In a WOz experi-
ment, only a user-system interface is provided. Users be-
lieve they are interacting with a computer system through
this interface, but instead a person (the wizard) is “behind
the curtain.” This permits the system designer to observe
human responses to certain system functionalities, to study
user behavior and expectation, and to assess interface design
features before the construction of an initial prototype.

WOz can also be used to study the wizard, to provide data
on how the system should behave. In particular, wizard ab-

lation is a WOz study in which a wizard relies on system
input and output rather than her own communication re-
sources (Levin and Passonneau 2006). Wizard ablation sup-
ports the collection of dialogues that illustrate the decisions
people make when confronted by the same input/output data
and choices as an SDS. Data collected under wizard ablation
supports supervised learning to predict wizard actions. The
resultant model can then be incorporated into a system to
improve its behavior. WOz studies that directed their atten-
tion to the wizard during full spoken dialogues include ef-
forts to predict: the wizard’s response when the user is not
understood (Bohus 2004), the wizard’s use of multimodal
clarification strategies (Rieser and Lemon 2006), and the
wizard’s use of application-specific clarification strategies
(Skantze 2005). The experiment presented here is restricted
to single utterances, rather than full dialogues. It also differs
in that it analyzes several wizards’ behavior. It recognizes
differences among wizards and identifies distinctive and
successful behavior, so that the system will ultimately bene-
fit only from models of the most skilled wizards.

To limit communication errors incurred by faulty ASR, an
SDS may use enriched strategies to detect and respond to
incorrect recognition output (Bohus 2004). It may repeat-
edly request user confirmation to avoid misunderstanding,
or ask for confirmation using language that elicits responses
from the user that the system can handle (Raux and
Eskenazi 2004). When the user adds new information in re-
sponse to a system prompt, two-pass recognition can con-
sider the extra information contained in such user responses
to restrict the language expected in the second pass and the-
reby achieve better recognition (Stoyanchev and Stent
2009). In a highly interactive setting, an SDS might benefit
when it takes this approach one step further and uses con-
text-specific language for incremental understanding of the
noisy input throughout the dialog (Aist, et al. 2007). This
paper explores the use of system-internal resources, such as
a database search, to respond to faulty ASR. It embeds a wi-
zard into a system, and then observes and models her ability
to use such context to respond appropriately.

Peripherally related are other approaches that increase
understanding between an SDS and the user through the ad-
aptation of an SDS’s response based on a user model. In
automated tutoring, for example, it is essential to validate
the user when she is correct and to elicit more reasoning
when she is not (Franceschetti, et al. 2003, Ohlsson, et al.
2003). In particular, affect-adaptive systems can improve
learning efficiency by responding to uncertainty in the tran-
scribed speech (Forbes-Riley and Litman 2009).

Ordering Books with CheckItOut
CheckItOut is a research SDS for book requests from pa-
trons of the Andrew Heiskell Braille and Talking Books Li-
brary, a branch of the New York Public Library and part of
the National Library System. Patrons of the library request
books by telephone and receive them by mail. Regular
newsletters provide patrons with the titles and catalogue
numbers of new books. To gauge the kinds of interactions

patrons have with Heiskell’s librarians, we transcribed 82
telephone calls from a larger set we had recorded. Forty four
percent of the book requests were by catalogue number,
28% by title or a combination of title and author, and 28%
were more general. CheckItOut is therefore designed to ac-
cept book requests by catalogue number, author, or title.

CheckItOut builds upon the Olympus/Ravenclaw archi-
tecture and dialogue management framework (Bohus, et al.
2007, Bohus and Rudniky 2003). Olympus/Ravenclaw has
been the basis for approximately a dozen research SDSs in
different domains. During a dialogue with CheckItOut, the
user first identifies herself as a patron of the library, and
then requests at most four books. CheckItOut references two
databases: a sanitized version of Heiskell’s database of
5,028 patrons, and its entire book database with 71,166 titles
and 28,031 authors. These force CheckItOut to manage a
large vocabulary; titles and author names alone contribute
54,448 distinct words. Moreover, Heiskell’s patrons include
many elderly and non-native speakers. The experiment de-
scribed next observes how human wizards respond to the
same challenges that CheckItOut confronts.

Experimental Design
The experiment described here seeks to uncover how people
marshal system resources (e.g., the ASR string and database
results), and which strategies achieve the best performance.
Here the focus is on single turn interactions that request
books by title, the CheckItOut request type most likely to
elicit problematic ASR output.

In an offline pilot study, 3 native speakers of English read
50 titles to generate 3 sets of ASR output strings
(Passonneau, et al. 2009). Each subject received a different
ASR set and was asked to find the corresponding title from
a text file that listed all 71,166 titles. WER was 69% – 83%,
depending on the speaker. Despite the high WER, these sub-
jects identified the correct title 74% of the time.

Given this demonstration of human skill, we designed a
WOz study to identify which aspects of human performance
come into play when a wizard seeks to match noisy ASR
against a list of candidates (possible title matches) (Passon-
neau et al. In Press). The experiment was designed to iden-
tify what makes a good wizard, and to extract any additional
insights a wizard may offer when supported by database
search with the quality common in modern systems.

During the experiment, users and wizards were isolated
from one another in separate rooms. Each had her own
graphical user interface (GUI) and microphone. In a title cy-
cle, the user read a book title into a speech recognizer
through the microphone, and the corresponding ASR was
displayed on the wizard’s GUI. The wizard then formulated
a query for the database. Once the search returned a list of
candidates, the wizard had four options: make a confident
choice among the candidates, make a tentative choice
among the candidates, ask a question through her micro-
phone, or give up. (Wizards were also permitted to ask the
user to repeat the title, but were discouraged from doing so.)
If the wizard chose a candidate, it then appeared on the us-

user’s GUI, and the user scored it as correct or incorrect.
That score was also displayed on the wizard’s GUI, so that
the wizard knew if her most recent title choice was correct
or incorrect. If the wizard asked a question instead, the user
heard it through her headset and rated it on her GUI. The
possible ratings with respect to the current book request
were “relevant and I can answer it,” “relevant but I cannot
answer it,” irrelevant,” and “uncertain.” Question ratings
were not shared with the wizard. After the wizard saw the
user’s score or was notified that the user had judged the
question, the wizard signaled the beginning of a new cycle.

The speech recognizer continually transcribed the speech
signal from the user’s microphone, and the wizard’s GUI
provided a live feed of the resultant ASR strings. For each
request, the wizard submitted a database query after very
limited editing of those strings (e.g., removing “um”). The
return from the database was displayed on the wizard’s GUI
as a list of candidates in descending order of search confi-
dence. This confidence was measured using Rat-
cliff/Obershelp pattern recognition (R/O) which evaluates
the similarity of the ASR string to a book title from the da-
tabase (Ratcliff and Metzener 1988). Confidence scores
were not displayed on the wizard’s GUI.

Given an ASR query, the database produced one of the
four following kinds of returns, based on the R/O scores:
• Singleton: the single top-scoring candidate, if any were

very good (R/O ≥ 0.85)
• AmbiguousList: two to five moderately good candidates

(0.85 > R/O ≥ 0.55)
• NoisyList: six to nine poor but non-random candidates

(0.55 > R/O ≥ 0.40)
• Empty: No candidates (max R/O < 0.40)

Our focus here is not on the database search, but on the wiz-
ard’s actions given noisy ASR and an adequate but imper-
fect database return. Words in each candidate that exactly
matched a word in the query appeared darkest on the GUI.
All other words appeared in grayscale in proportion to their
degree of character overlap with the words in the query.

Two of the seven subjects were non-native speakers of
English (one Spanish, one Romanian). Each pair of students
(a total of 21 possible pairs) met five times. In each meeting,
one student was the user and the other was the wizard in a
session of 20 title cycles. Then the pair immediately ex-
changed roles to run a second session of 20 title cycles.
Thus, each student was the wizard on 100 title cycles and
the user on 100 title cycles with every other student, for a
possible 4200 title cycles in all. Users were permitted to end
a session early after fewer than 20 title cycles if they experi-
enced severe system problems.

Beyond the mechanics of this process, it was important to
create a dialogue-like environment and to encourage the
best possible performance from our subjects. To make her
speech more conversational and less like simply reading a
list, the user prepared immediately before each session. She
read brief synopses of the 20 titles (chosen at random from
the database) and then ordered them in some way (e.g., ge-
nre or theme) relevant to their content. To encourage

thoughtful decisions, no time limits were imposed upon ei-
ther the wizard or the user. Finally, we devised a score that
subjects were asked to maximize throughout the experiment,
with prizes to be awarded for the top two scorers. The wiz-
ard scored +1 for a correctly identified title, +0.5 for a rele-
vant question and -1 for an incorrect title. To encourage co-
operation between users and wizards, the user also scored
+0.5 for a successfully recognized title.

Results
The analysis in this section provides essential support for
automatically learning models of intelligent behavior wor-
thy of incorporation into an SDS. Given the permitted early
termination, there were 4172 title cycles (instead of 4200).
In them, the average WER was 69%. Nonetheless, the dis-
tribution of database returns was 46.7% Singleton, 53.26%
AmbiguousList and 2.83% NoisyList. (Although in pilot
tests 5% - 10% of the returns were empty, during the ex-
periment itself none were.)

Figure 1 shows the overall distribution of wizard actions
for our subjects, W1 through W7. Each of them saw a simi-
lar distribution of database returns: Singleton (µ = 278.57, σ
= 21.16), AmbiguousList (µ = 300.57, σ = 16.92), and Noi-
syList (µ = 16.86, σ = 4.78). The correct title was among
the candidates returned by the database 71.31% of the time.
Singleton returns were the correct title 92.05% of the time.
AmbiguousList and NoisyList returns contained the correct
title 53.74% of the time.

Ideally, a wizard should identify the correct title if it ap-
pears among the candidates, and otherwise ask a thoughtful
question that could constructively advance the dialogue. As
one might expect from our pilot study, wizards knew what
the user meant when they saw it. If the correct title was
among the candidates, wizards identified it confidently
68.72% of the time and tentatively 26.53% of the time —
95.25% in all. Recall, however, that AmbiguousLists and
NoisyLists were sorted by search confidence. When the da-
tabase returned multiple candidates, the top candidate was
the correct title 41% of the time. It was second 5.81%, third
2.61%, fourth 2.20%, and later (fifth through ninth) 1.67%
of the time. This did indeed help the wizards, who correctly
offered the first title 98.34% of the time (74.24% confi-
dently, and 24.10% tentatively). Of course, preference for

Figure 1: Distribution of wizard actions

the top returned candidate is readily programmed into an
SDS. Instead we focus here on what wizards did when the
title was not among the candidates.

Wizards were less skilled at recognizing what the user
had not meant. Indeed, their performance differed primarily
on their response when the correct title was not among the
candidates — most wizards were less accurate then, and
their performance was less uniform. Despite careful instruc-
tions to the subjects that had explained this option, wizards
asked a question in only 22.32% of the cases where the cor-
rect title was not among the candidates. Instead they made a
tentative guess (67.71%), chose confidently (7.78%), or
gave up (2.20%). Table 1 shows each wizard’s number of ti-
tle cycles, session score, and accuracy, the proportion of ti-
tle cycles where she identified the correct title or correctly
recognized that the title was not among the candidates (by
asking a question or giving up). It also shows the frequen-
cies with which she offered the top candidate and correctly
recognized that the title was not among the candidates

Wizards are ranked in Table 1 in descending order of ses-
sion score and accuracy. Those values are highly correlated
(R = 0.91, p = 0.0041). W4 scored highest, primarily be-
cause of the frequency with which she asked a question
when the candidates did not include the correct title (correct
non-offers = 64%). Table 2 shows the distribution of what
should have been the correct action across all 4172 title cy-
cles. The correct action was either to offer the title as the
correct candidate at a given position (Return 1 through Re-
turn 9) or to ask a question or give up when the title was not
among the candidates. Table 2 makes clear that the simple
strategy “always guess the top candidate” (as our wizards
often did) would achieve about 65% accuracy. Note too that
those wizards who relied on it most (W3 and W6) were also
the least accurate overall, while the wizard who relied on it
least (W4) was the most accurate. Clearly, given a reason-
able but fallible database search on noisy ASR, an SDS
should emulate W4, not simply choose the top candidate.

Learning to be Like a Wizard
Wizards collaborate with the SDS — the system manages
input and output (except for the wizard’s questions), while
the wizard exploits the available information (ASR string
and database return) to make a decision. Our experimental
design also captured data that described the system and the
wizard’s session history. That data was then used to train
models of wizard actions selection. Such models could be
used to implement the best wizard behavior within an SDS.

The experiment collected data on 60 features available at
run time, selected for their likely relevance to wizard action
choices. They described the ASR (e.g., number of words in
the ASR string), the recognition process (e.g., recognizer’s
confidence score when it produced the ASR string), the
speech signal (e.g., speech rate as number of 10ms speech
fragments per word), the ability of the SDS to interpret the
ASR string (e.g., number of parses in the natural language
understanding component), and Olympus/ Ravenclaw con-
fidence scores that combine recognition with language un-

derstanding. (Much of this system information was not
available to the wizard.) Other features described the session
history (e.g., number of correctly identified titles so far), the
database return (e.g., return type of Singleton, Ambigu-
ousList, NoisyList), or the similarity between the ASR
string and the candidates (e.g., number of matching words).
Because the number of candidates differed across title cy-
cles, these features were averaged over multiple candidates.

As a machine learning technique, we chose decision trees
to model wizard behavior because they are easy to interpret
and compare, and relatively transparent. A decision tree
maps feature values to a target value (here, wizard action).
A decision tree is a tree-like structure of nodes with directed
links between them. Each node is a branch test based on fea-
ture values. To simulate the modeled behavior, a program
traces a path from the root (the top node), following the
branch tests until it reaches a leaf, a non-branch node that
provides a target value. With a version of C4.5 (Quinlan
1993), we trained two kinds of decision-tree models: an
overall model that used data from all the wizards to predict
wizard action in general, and seven individual wizard mod-
els, one for each wizard.

Cross-correlation over the features indicated that many of
the initial 60 features were heavily correlated. We manually
isolated groups of correlated features with R2 > 0.5, and re-
tained only one representative feature from each group. We
grouped features that described the similarity between ASR
string and candidates, features that described the database

Table 1: Raw session score, accuracy, proportion of offered
titles listed first in the database search return, and frequency
of correct non-offers for seven participants.

Subject

Cycles

Session
score

Accuracy

Chose
#1

Correct
non-offer

W4 600 0.7585 0.8550 70% 64%
W5 600 0.7584 0.8133 76% 43%
W7 599 0.6971 0.7346 76% 14%
W1 593 0.6936 0.7319 79% 16%
W2 599 0.6703 0.7212 74% 10%
W3 581 0.6648 0.6954 81% 20%
W6 600 0.6103 0.6950 86% 3%

Table 2: Distribution of correct wizard actions

Correct action N %
Return 1 2722 65.2445
Return 2 126 3.0201
Return 3 56 1.3423
Return 4 46 1.1026
Return 5 26 0.6232
Return 6 0 0.0000
Return 7 7 0.1678
Return 8 1 0.0002
Return 9 2 0.0005
Question | give up 1186 0.2843
Total 4172 1.0000

search returns, features that described confidence scores
from various system components, and features that de-
scribed the speech signal. This left 28 features. Before train-
ing each model we also ran CfsSubsetEval, an attribute se-
lection algorithm that evaluates subsets of features based on
both their individual predictive power and the degree of re-
dundancy among them (Hall 1999). This further reduced the
number of features to between 8 and 12 per model. (Many
of the same features survived into more than one model.) To
reduce overfitting, we also activated pruning to remove sub-
trees likely to provide little additional power because they
cover too few training instances.

To confirm the learnability and quality of the decision
trees, we also trained logistic regression and linear regres-
sion models on the same data. Here, regression captures the
change in wizard action based on the changes in feature val-
ues (Witten and Frank 2005). Linear regression fits data to a
linear function, and represents the wizard’s four actions nu-
merically in decreasing value: confident choice, tentative
choice, question, and give up. Logistic regression predicts
the probability of an action based on fit to a logistic curve.
This generalizes the linear model to predict categorical data,
here, the wizard’s four actions. All models were produced
with the Weka data mining package (Hall, et al. 2009) under
10-fold cross-validation.

Ability to predict wizard action was uniform across learn-
ing methods. On the overall model, logistic regression had
75.2% accuracy while the decision tree’s accuracy was
82.2%. The linear regression model had root mean squared
error of 0.483, while the decision trees’ was 0.306. Predic-
tive ability for the individual wizard models was similarly
comparable. Thus the remainder of this discussion is re-
stricted to decision trees.

Table 3 describes the learned models for individual wiz-
ards (ranked by wizard accuracy from Table 1). It shows
size in number of nodes, number of included features, accu-
racy, and the F measure on confident choice. Note that
model accuracy does not correlate with wizard rank; model
accuracy indicates only how well the tree predicts the wiz-
ard’s action from the training data. The simplest wizard
strategies (e.g., always select the top candidate) are clearly
easier to predict, but not necessarily better. (Compare, for
example, W4 and W6.)

Recall from Figure 1 that confident choice was more
common than tentative choice, which was in turn more
common than question or give up. As a result, the individual
models consistently predicted a confident choice with 0.80 ≤

F ≤ 0.87, but less consistently predicted tentative choices
with 0.60 ≤ F ≤ 0.89, and could predict question only for
W4, the top-scoring wizard who most often asked questions.

The features that appeared most often in the individual
models primarily described the database return, the ASR
string‘s similarity to the candidates, the wizard’s recent per-
formance, and the quality of the speech recognition and lan-
guage understanding. (Note that the last two were not avail-
able to the wizard.) The five features that appeared most of-
ten at the root or top-level nodes were

• ReturnType (Singleton, AmbiguousList, NoisyList)
• RecentSuccess, how often the wizard had chosen the
correct title within the last three title cycles
• ContiguousWordMatch, the maximum number of con-
tiguous word matches between a candidate and the ASR
string (averaged across candidates)
• NumberOfCandidates, how many candidates were re-
turned by the database
• Confidence, an Olympus/Ravenclaw metric on confi-
dence for recognition and language understanding
Careful inspection of the model for the most accurate wi-

zard (W4) indicates that, if ReturnType was NoisyList, she
asked a question. If ReturnType was AmbiguousList, her
decision involved the five features above, plus the acoustic
model score (another internal system measure that indicates
the quality of the speech recognition), the length of the ASR
string in words, the number of times the wizard asked the
user to repeat, and the maximum size of the gap between
matching words in the ASR string and the candidates. To
further focus our analysis on W4’s distinctive behavior, we
trained an additional decision tree to model how W4 chose
between selecting a title and asking a question. The
resulting model on 600 data points (each corresponds to a ti-
tle cycle) consisted of 37 nodes and 8 features, with F = .91
for selecting a title and F = 0.68 for asking a question. The
root of this tree differs from all other wizard models — it is
the number of frames (10ms speech segments used to pro-
duce the ASR string), a measure of the length of the ASR.
On short ASR strings (as measured both in number of
frames and number of words) with AmbiguousList or Noi-
syList returns, W4 asked a question when RecentSuccess ≤
1 or ContiguousWordMatch = 0, and the acoustic model
score was low. (Short titles are more readily confused.) On
long ASR strings, W4 asked a question only when Contigu-
ousWordMatch ≤ 1, RecentSuccess ≤ 2, and either the re-
turn was a NoisyList, or Confidence was low and there was
more than one candidate. In summary, the factors that drove
W4 to ask a question include the length of the ASR string,
the quality of the ASR transcription, the database return
type, the similarity between the ASR string and the candi-
dates, and how well she had performed on recent title cy-
cles. These can all be captured by system-internal features.

Discussion and Future Work

As used here, wizard ablation embeds a wizard within an
SDS to study her choices when placed in the same environ-
ment as a machine. Given noisy ASR and the results of a

Table 3: Learned decision trees model individual wizards.

Tree Rank Size Features Accuracy F conf
W4 1 55 12 75.67 0.85
W5 2 21 10 76.17 0.85
W1 3 7 8 80.44 0.87
W7 4 45 11 73.62 0.83
W3 5 33 10 77.42 0.84
W2 6 35 10 78.49 0.85
W6 7 23 10 85.19 0.80

database search, the best wizards do not always guess based
on search return. Instead they sense that the knowledge they
have is a poor fit with what the recognizer “heard.” In that
case, a good wizard infers that the correct title is not among
the returned candidates, and asks a thoughtful question to
move the dialogue forward. (The mystery book at the be-
ginning of this paper, by the way, was the third title listed.)

Experiments like this provide insight into how people
match noisy input with returns from database search. The
experimental design led wizards to prefer the first candidate
listed — they read it first, and it was typically correct if the
return included the correct title. Thus a wizard’s skill at
finding the title when it is present is less noteworthy than
W4’s ability to question the relevance of all the candidates.

The focus here has been on a single book request by title.
Current work extends this approach to full dialogue. Wiz-
ards will see ASR and query results, and will have a prede-
fined set of system-actions from which to choose. Dialogue
interactions will include greeting, user identification, and
four book requests by author and catalogue number, as well
as by title. In full dialogue, context will have more rele-
vance and can be measured more realistically by metrics in
addition to RecentSuccess, Analysis of wizards’ questions
from this experiment will motivate a pre-defined set of
questions for wizards in the full dialogue study.

This work successfully learned models that predict wizard
action primarily from system features. (The only prevalent
wizard-specific feature was RecentSuccess, which is readily
replaced by the system’s recent success.) Similar learned
models will be incorporated into CheckItOut. Our next ex-
periment will train models to predict wizards’ actions during
full dialogue with our baseline version of CheckItOut, and
then refine the system with the learned models. We predict
that evaluation of the refined, wizard-informed CheckItOut
will provide better performance.

Acknowledgments
This research was supported in part by the National Science
Foundation under IIS-084966, IIS-0745369, and IIS-
0744904. We thank the staff of the Heiskell Library, the
Olympus/Ravenclaw developers at Carnegie Mellon, and
our tireless undergraduate research assistants.

References
Aist, G. S., Allen, J., Campana, E., Gomez Gallo, C.,
Stoness, S., Swift, M. and Tanenhaus, M. K. (2007).
Incremental dialogue system faster than and preferred to its
nonincremental counterpart. CogSci 2007, 779-774.
Nashville, Tennessee.

Bohus, D. (2004). Error Awareness and Recovery in Task-
Oriented Spoken Dialog Systems. Ph.D. Thesis. Computer
Science Carnegie Mellon University.

Bohus, D., Raux, A., Harris, T. K., Eskenazi, M. and
Rudniky, A. I. (2007). Olympus: an open-source
framework for conversational spoken language interface
research. Proceedings of Bridging the Gap: Academic and

Industrial Research in Dialog Technology workshop at
HLT/NAACL 2007, 32-39.

Bohus, D. and Rudniky, A. I. (2003). RavenClaw: Dialog
Management Using Hierarchical Task Decomposition and
an Expectation Agenda. Proceedings of Eurospeech 2003,
597-600.

Dix, A., Finlay, J., Abowd, G. D. and Beale, R. (2003).
Human-Computer Interaction, Prentice Hall.

Forbes-Riley, K. and Litman, D. (2009). Adapting to
Student Uncertainty Improves Tutoring Dialogues.
Proceedings of the 14th International Conference on
Artificial Intelligence in Education, AIED, 33-40.
Brighton, UK.

Franceschetti, D. R., Adcock, A. B. and Graesser, A. C.
(2003). Analysis of strategies in expert tutoring dialog for
use in Intelligent Tutoring System Development. CogSci
2003, 1344. Boston, Massachusetts.

Hall, M. (1999). Correlation-based Feature Selection for
Machine Learning. Ph.D. Thesis. Department of Computer
Science University of Waikato.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann,
P. and Witten, I. H. (2009). The WEKA Data Mining
Software: An Update. SIGKDD Explorations 11(1).

Levin, E. and Passonneau, R. (2006). A WOZ variant with
contrastive conditions. Proceedings of the Interspeech
Satellite Workshop, Dialogue on Dialogues:
Multidisciplinary Evaluation of Speech-Based Interactive
Systems, 17-21.

Ohlsson, S., Corrigan-Halpern, A., Di Eugenio, B., Lu, X.
and Glass, M. (2003). Explanatory Content and Multi-Turn
Dialogues in Tutoring. CogSci 2003, 48. Boston,
Massachusetts.

Passonneau, R., Epstein, S. L. and Gordon, J. B. (2009).
Help Me Understand You: Addressing the Speech
Recognition Bottleneck. AAAI Spring Symposium on
Agents that Learn from Human Teachers, 119-126. Paolo
Alto, CA.

Quinlan, J. R. (1993). C4.5: Programs for Machine
Learning, Morgan Kaufmann.

Ratcliff, J. W. and Metzener, D. (1988). Pattern Matching:
The Gestalt Approach. Dr. Dobb's Journal 7, 46.

Raux, A. and Eskenazi, M. (2004). Non-Native Users in the
Let's Go!! Spoken Dialogue Systems: Dealing with
Linguistic Mismatch. HLT/NAACL, 217-224. Boston, MA.

Rieser, V. and Lemon, O. (2006). Using Machine Learning
to Explore Human Multimodal Clarification Strategies.
COLING/ACL-06, 659-666. Sidney, Australia.

Skantze, G. (2005). Exploring human error recovery
strategies: Implications for spoken dialog systems. Speech
Communication 45(3), 325-341.

Stoyanchev, S. and Stent, A. (2009). Predicting Concept
Types in User Corrections in Dialog. EACL Workshop
SRSL, 42-49.

Witten, I. H. and Frank, E. (2005). Data Mining: Practical
Machine Learning Tools and Techniques. San Francisco,
Morgan Kaufmann.

