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ABSTRACT
In crowded environments, the shortest path for an autonomous ro-

bot navigator may not be the best choice — another plan that avoids

crowded areas might be preferable. Such a crowd-sensitive path plan-
ner, however, requires knowledge about the crowd’s global behavior.

This paper formulates a Bayesian approach that relies only on an

onboard range scanner to learn a global crowd model online. Two

new algorithms, CUSUM-A* and Risk-A*, use local observations

to continuously update the crowd model. CUSUM-A* tracks the

spatio-temporal changes in the crowd; Risk-A* adjusts for changes

in navigation cost due to human-robot interactions. Extensive eval-

uation in a challenging simulated environment demonstrates that

both algorithms generate plans that significantly reduce their prox-

imity to moving obstacles, and thereby protect people from actuator

error and inspire their trust in the robot.

KEYWORDS
path planning; robot navigation; online learning; human crowds

ACM Reference Format:
Anoop Aroor, Susan L. Epstein, and Raj Korpan. 2018. Online Learning for

Crowd-sensitive Path Planning. In Proc. of the 17th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2018), Stockholm,
Sweden, July 10–15, 2018, IFAAMAS, 9 pages.

1 INTRODUCTION
Now that robots have begun to serve as museum tour guides [18],

telepresence robots [21], and assistants in hospitals and offices [24],

autonomous navigation in crowds has become an increasingly im-

portant problem. Crowds can slow, divert, or halt the robot, and

thereby increase its navigation costs (travel time and distance). A

service robot should not only travel economically, however. It must

also respect humans’ personal space and safety, even as its very

presence may attract some people and repel others. The thesis of

our work is that a Bayesian model for the robot’s experience fa-

cilitates online learning about crowd behavior and can support

crowd-sensitive planning. This paper reports on two new meth-

ods tested extensively in a challenging simulated environment.

The principal results reported here are statistically significant im-

provements in the robot’s ability to maintain a safe distance from

pedestrians while it travels among them.

Local planners generate short-term plans focused on the robot’s

immediate vicinity, while global planners generate complete end-

to-end plans. A common approach to crowds initially generates a
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global plan that ignores them, and then adjusts that path locally

with human-aware planners [11]. Given a graph of nodes that

represent locations and edge weights that represent distances, the

A* algorithm finds a shortest path [9]. Because it ignores the costs

of navigation through a crowd, however, such a plan may prove

globally inefficient. For example, the robot in Figure 1 has two plans;

the uninformed plan is shorter but ignores the crowd, while the

crowd-sensitive plan is less direct but aware of the likely congestion

ahead. One approach might be to anticipate these global costs

through a dataset of end-to-end human trajectories observed by

external sensors (e.g., wall-mounted or overhead cameras) [26].

This is impractical or infeasible in many environments.

Instead, we consider here how a robot limited to only an onboard

2D range sensor can learn a cost map, a grid-based spatial model

of global navigation costs in an indoor environment. This paper

describes two methods that learn a cost map and plan from it.

The first method detects dynamic changes in crowd-movement

patterns; the second records the impact of the robot’s presence on

those patterns.

Over time, crowds behave differently. A shopping mall crowd, for

example, is likely to be larger on some evenings and weekends, as

well as for holidays or special events. Such spatio-temporal changes

make navigation costs dynamic. To plan effectively, a robot must

learn and update a crowdmodel that records where people are likely

to be found. The first method, CUSUM-A*, learns a crowd-density

cost map that records the average number of people in each grid

cell per unit of time. It uses CUSUM, a statistical change detector

[16], to track spatio-temporal changes in crowd density that are

likely to impact navigation cost.

Crowd behavior also changes when a robot is present [15, 20]. An

action is deemed risky if it brings the robot within some specified

Figure 1: Because A* lacks knowledge of global crowd costs,
it travels through the crowd



distance of a person. Some people make way for a robot; others

approach it, hindering its motion. This changes risk, the frequency
with which the robot comes unacceptably close to a person. In

a shopping mall, for example, areas that attract children might

incur more risk than other crowded areas, despite similar crowd

density. The second method, Risk-A*, combines crowd density and

observations of human-robot interaction to build a cost map that

records the level of risk in each grid cell.

This paper applies both approaches to path planning in crowded

indoor environments. The algorithms, CUSUM-A* and Risk-A*,

learn their cost maps online, as the robot travels through a crowd.

CUSUM-A* uses its cost map to plan crowd-sensitive paths that re-

spond to dynamic crowd density, while Risk-A* responds to human-

robot interaction effects. The next two sections discuss related

work and provide background on robot navigation, the cost maps,

and Bayes filters. Subsequent sections describe CUSUM-A* and

Risk-A*, their implementation in ROS, and their integration into

a cognitively-inspired robot controller. These are followed by the

experimental design, empirical results, and a discussion.

2 RELATEDWORK
Early robot research used sensors to detect local obstacles in the

environment and then sought to avoid them with local planners; it

did not predict obstacles’ future motion [8]. Many recent methods

make local, short-term predictions about the future trajectories

of moving obstacles and use them to improve collision avoidance.

These approaches have predicted human trajectories and planned

a path around them with a Gaussian process [19], with neural net-

works [1], or with bio-mechanical turn indicators [22]. One local

path planner learned reward functions on data from human experts

who controlled the robot [12]. Yet another approach used pedes-

trian trajectory datasets to learn a model that jointly predicted

the trajectories of both a robot and nearby pedestrians, and then

generated socially compliant paths [13]. All of these human-aware

planners improved collision avoidance and navigation, but they

were restricted to local scenarios where the robot could completely

observe its surroundings. In contrast, the work reported here ad-

dresses a complementary problem: how to learn global navigation

costs in a given crowded environment and then use them to improve

global path planning.

Other work has made global, long-term predictions about the

behavior of a crowd, and adapted navigation behavior accordingly,

typically with end-to-end pedestrian trajectories. One approach

treated a single trajectory as a Markov decision process, learned a

distribution over trajectories, applied inverse reinforcement learn-

ing to find the reward function that best fit those trajectories, and

used it to predict new ones [26]. Another approach used an end-to-

end simulated pedestrian trajectory dataset to initialize a Gaussian-

process-based model, updated it from local sensor observations, and

then used inverse reinforcement learning to make the robot’s be-

havior more human-like [10]. In contrast, the approach proposed in

this paper learns online and does not require end-to-end pedestrian

trajectory datasets.

The online learning problem addressed here was originally pro-

posed in [2], which also introduced the CSA* algorithm. CSA* learns

a cost map from local data collected by range sensors as it moves

through a simulated environment. For each cell in a grid super-

imposed on the footprint of the environment, CSA* calculates a

running average for crowd density and records it in a crowd density
map. CSA*, however, does not work well in environments where

crowd-movement patterns change over time, and it ignores the

impact of the robot’s presence on human behavior. Both are neces-

sary considerations in real-world navigation, addressed here with a

novel Bayesian formulation. The resultant algorithms, CUSUM-A*

and Risk-A*, prove effective in scenarios where crowd-movement

patterns change over time, and incorporate human-robot interac-

tion effects to learn more accurate cost maps for global navigation.

3 BACKGROUND
Our approach makes several fundamental assumptions. The robot’s

laser range sensors are mounted at a uniform level near the floor,

and it has a two-dimensional map of its environment with static

features. The robot can localize, that is, it knows its pose (location
and orientation) with respect to an allocentric coordinate system.

Within its sensor range, the robot can also detect local crowd data,
the location and orientation of each person [14].

The robot receives an ordered set of targets (< x ,y > coordinate

pairs) in its environment. Its task is to reach (arrive at a location less

than 0.5m from) these targets in their specified order. Moreover, the

robot should do so quickly, travel relatively short distances, avoid

collisions, and take relatively few risks. We also assume that the

robot, as it visits its targets, learns online about the crowd, without

separate phases for learning and testing.

For a crowd density map, each cell is modeled as a Poisson

distribution with rate λ, both because the crowd density is always

non-negative and because empirical observations in the simulator

indicated Poisson was plausible. The likelihood that a crowd of size

z is present in an individual grid cell for a fixed duration is thus

P(CrowdSize = z |λ) =
λze−λ

z!
(1)

Within a given grid cell, let z1:n represent the sequence ofn observa-

tions z1, z2, ..., zn made by the robot. Each observation zi represents
the number of people detected from the range scan data. To estimate

the value of λ for a particular grid cell from z1:n , we assume that

z1, z2, .., zn are conditionally independent given λ. This yields a
recursive Bayesian filter that computes P(λ |z1:n+1) given P(λ |z1:n )
and a new observation zn+1, with normalization constants η, as
follows.

P(λ |z1:n ) = η1P(z1:n |λ)P(λ) (Bayes rule) (2)

P(λ |z1:n+1) = η2P(z1:n+1 |λ)P(λ) (Bayes rule)

= η2P(z1:n , zn+1 |λ)P(λ)

= η2P(z1:n |zn+1, λ)P(zn+1 |λ)P(λ)

= η2P(z1:n |λ)P(zn+1 |λ)P(λ)

= η3P(λ |z1:n )P(zn+1 |λ) (by (2)) (3)

Let P(λ) be a Gamma distribution with (prior) parameters α and

β , and let P(zn+1 |λ) be the Poisson distribution (evidence). Then

given

P(λ |z1:n ) = Γ(α +
n∑
i=1

zi , β + n)



the update rule that tracks the crowd density in a given cell is

P(λ |z1:n+1) = P(λ |z1:n )P(zn+1 |λ) (by (3))

= Γ(α +
n∑
i=1

zi , β + n) ∗ (
λzn+1e−λ

zn+1!
) (by (1))

= Γ(α +
n∑
i=1

zi + zn+1, β + n + 1)

Thus the new values of α and β after a new observation zn+1 are
readily computed from the old values of α and β , and the expected

value of λ is the ratio of α and β :

αnew = αold + zn+1 (4)

βnew = βold + 1 (5)

E(λ) =
α

β
(6)

For a given grid cell, update rules (4) - (6) mean that the crowd

density can be estimated as the running average of observations

there, the same way CSA* computes it. This assumes, however, that

λ is constant, which is not the case in most real-world environments.

The next section explains how CUSUM can monitor changes in λ
and take corrective action whenever change occurs.

4 CUSUM-BASED CROWD DENSITY MAP
CUSUM is an online statistical change detector. Given a sequence

z1, z2, .., zn of observations of a random variable Z that follows

some probability distribution, CUSUM detects a change in Z ’s dis-
tribution parameter θ . Because z1, z2, .., zn come from a probability

distribution, some variation is to be expected. What CUSUM seeks

to identify, however, is a persistent and significant change.

Assume that a change in the distribution parameter happens

before the observation zc . Let θ0 be the distribution parameter be-

fore that change and θ1 the distribution parameter after it. CUSUM

tracks the summation score, the sum of the log-likelihood ratios. For

observations before zc , the likelihood ratio
p(zi |θ0)
p(zi |θ0)

is 1, and the log-

likelihood ratio ln
p(zi |θ0)
p(zi |θ0)

is 0. For observations from zc onward, the

likelihood ratio is
p(zi |θ1)
p(zi |θ0)

, and the log-likelihood ratio is ln
p(zi |θ1)
p(zi |θ0)

.

If the observations match the changed distribution parameter θ1,
the log-likehood ratio will eventually become positive. CUSUM

uses the summation score to guarantee that a change has occurred.

Because the precise instant c of the change is unknown, CUSUM
assumes c is the instant when the summation score is maximized:

G[n] = max

1≤c≤n

n∑
i=c

ln

p(zi |θ1)

p(zi |θ0)
(7)

To be certain that the change at c is significant, CUSUM requires

that G[n] exceed some threshold τ .
To detect a change in the distribution of the crowd density in

a given cell, we take θ0 as λ0 and θ1 as λ1, where λ0 and λ1 are

the parameters of the Poisson distribution for that cell before and

after the change. By substitution from (1), the instantaneous log-

likelihood ratio s[i] of ith observation is

s[i] = ln

p(zi |λ0)

p(zi |λ1)

= ln(
λzi
0
e−λ0

zi !
) − ln(

λzi
1
e−λ1

zi !
)

= zi ln(
λ0
λ1

) − (λ0 + λ1)

A cumulative sum S[j] from 1 to j is defined as

S[j] =

j∑
i=1

s[i]

S[j] can be used to reformulate G[n] as a minimization problem, a

common CUSUM technique for more efficient computation:

G[n] = S[n] − min

1≤j≤n
S[j − 1]

Before the robot travels, α is initialized to 0 and β to 1 for each cell.

Whenever CUSUM detects a change in the crowd recorded for a

cell, the parameters of that cell are reinitialized. Given a current

observation zn , Algorithm 1 estimates the crowd density map with

CUSUM, where γ is a discount factor in (0,1).

5 RISK MAP
In real environments, where people behave differently in the pres-

ence of a robot, the crowd density map computed in Algorithm 1

is not an accurate reflection of the true cost of navigation. If, for

example, people consistently make way for a robot as it travels,

the crowd density map would overestimate navigation difficulty.

Instead, we estimate the expected number of risky actions in a given

grid cell per unit time as a proxy for the cost of navigation through

that cell. The expected risky action rate λr in a grid cell depends

Algorithm 1: CUSUM crowd density map(дrid,γ ,τ , zn )

/* Initialize */

for each cell in дrid do
(α , β, S[0], SMIN old ) = (0, 1, 0, 0);

end
/* Online update step */

for each cell in дrid do
αnew = (αold ∗ γ ) + zn ;

βnew = (βold ∗ γ ) + 1;

S[n] = S[n − 1] + zn ln(
λ0
λ1
) − (λ0 + λ1);

SMINnew =min(S[n − 1], SMIN old );

G[n] = S[n] − SMINnew
;

/* Reset if CUSUM detects change */

if G[n] ≥ τ then
αnew = 0;

βnew = 1;

end
E(λ) = αnew

βnew ;

end



both on the crowd density there, as estimated from the laser range

data, and on the crowd behavior when a robot is present in that

cell. This section describes an online algorithm for learning λr .
To examine risky actions across time, for each grid cell we count

the risk experience ai , the number of risky actions the robot took

when it moved through that cell for the ith time. Let a
1:k be the

sequence of risk experiences that the robot observes in the same

cell from time 1 to time k . We assume that the occurrence of one

risky action does not influence the next, given the crowd density

in that cell. We then model the risky actions in any given grid cell

as a Poisson distribution with rate λr . To learn λr , let z1:n be the

sequence of crowd counts in that grid cell based on laser scans,

and let λ be the estimated crowd density there. If we assume that

λr is conditionally independent of z1:n given λ, the probability

P(λr |λ, z1:n ,a1:k ) of risky actions after k experiences is equal to

P(λr |λ,a1:k ). We can then compute P(λr |λ,a1:k ) recursively, again
with normalization constant η, as follows.

Let the prior P(λr |λ,a1:k ) be a gamma distribution with parame-

ters λ and c , where λ is the current crowd density estimate for the

cell and c indicates how much crowd density affects risky actions.

Then, given a new experience ak+1 where the robot moves through

a crowd in that cell, we can construct a Bayes filter by reasoning

similar to the derivation in the previous section:

P(λr |λ,a1:k ) = η1P(a1:k |λ, λr )P(λr |λ) (8)

P(λr |λ,a1:k+1) = η2P(a1:k+1 |λ, λr )P(λr |λ)

= η2P(a1:k ,ak+1 |λ, λr )P(λr |λ)

= η2P(a1:k |ak+1, λ, λr )P(λr |λ)P(ak+1 |λ, λr )

= η2P(a1:k |λ, λr )P(λr |λ)P(ak+1 |λ, λr )

= η3P(λr |λ,a1:k )P(ak+1 |λr ) (9)

with risky-action update rule:

P(λr |λ,a1:k+1) = Γ(λ +
k∑
i=1

ai , c + k) ∗ (
λ
ak+1
r e−λr

ak+1!
)

= Γ(λ +
k∑
i=1

ai + ak+1, c + k + 1)

E(λr ) =
λ +

∑k
i=1 ai

c + k

E(λr ) =

∑n
j=1 zj
n +

∑k
i=1 ai

c + k
(10)

Given current observations for crowd density zn and risky action

count ak , Algorithm 2 estimates the risk map with equation (10),

where γ is a discount factor in (0,1), αnewr replaces the sum on ak ,
and βnewr counts k . This approach balances the evidence collected

from the laser range scanner about crowding in a given location

against the realized cost of navigation. Given a cell where the robot

has no risk observation ak , the algorithm depends on evidence

from the laser scanner to estimate navigation cost. As the robot

gathers more evidence about how crowds in that cell behave, it

progressively adjusts the risky action count. When crowds vary in

their response to a robot, this should make risk-sensitive planning

more robust than CUSUM alone.

Algorithm 2: Risk map(дrid,γ , zn ,ak )

/* Initialize */

for each cell in grid do
(α , β,αr , βr ) = (0, 1, 0, 1);

end
/* Given a new Observation zn */

for each cell in grid do
αnew = (αold ∗ γ ) + zn ;

βnew = (βold ∗ γ ) + 1;

E(λ) = αnew
βnew ;

end
/* Given a new Risk experience ak */

for each cell in grid do
αnewr = αoldr + ak ;

βnewr = βoldr + 1;

E(λr ) =
E(λ)+αnewr
c+βnewr

;

end

6 ONLINE CROWD-SENSITIVE PLANNING
Algorithms 1 and 2 both estimate the added costs of navigation

incurred by crowds. This paper leverages that knowledge to for-

mulate crowd-sensitive plans with an A* planner. A regular grid

is superimposed upon the map, and a weighted graph is built that

represents each grid cell as a node. A node in the graph has edges

to at most eight cells that adjoin it in the grid. (There are fewer

than eight if the cell lies on the border of the grid or if a wall in-

tervenes.) The weight of edge emn that connects nodesm and n is

the Euclidean distance between their centers. A* finds an optimal

(shortest) path in this graph.

When presented with its first target in a new environment, a

crowd-sensitive robot makes an A* plan in the same weighted graph

and retains that plan until it reaches the target. As it travels and

observes the crowd, however, the robot updates its cost map (here,

either CUSUM’s crowd density map or the risk map). Then, before

each subsequent target, the robot estimates from its cost map the

likely impact of crowds on its navigation, and updates the graph’s

edge weights. Let the cost recorded for grid cell i in the cost map

be ci . Then the new, crowd-sensitive edge cost to travel from node

m to node n is

e ′mn = emn +w ∗ ((cm + cn )/2)

where the parameterw controls the severity of the penalty on the

edge due to crowding (here,w = 0.5). A* returns a plan that avoids

highly crowded areas unless the alternative is a very long path.

CUSUM-A* uses the CUSUM crowd density map with A*, and

Risk-A* uses the risk map with A*. Recall that the robot’s task is to

navigate to a sequence of targets. Initially, when the robot has no

information about the crowd, both CUSUM-A* and Risk-A* generate

plans identical to those of A*. Then, as the robot gathers information

about the crowd, the relevant cost map is continuously updated by

Algorithm 1 or Algorithm 2. The computational complexity of both

update algorithms is O(n + q), where n is the number of people in

the environment and q is the number of grid cells. For fixed n and



q these updates are fast. (We have used as many as 3600 grid cells

with no noticeable computation delay.) Once enough information

is gathered through map updates, the cost maps force the planner

to avoid crowded areas, as the next sections demonstrate.

7 IMPLEMENTATION
7.1 ROS, the Robot Operating System
ROS is the state-of-the-art operating system for robot navigation

[17]. Crowd-sensitive planning is implemented here as three inter-

acting ROS nodes, shown in Figure 2.

MengeROS. To simulate crowding and the robot in a single

environment, we use MengeROS [3], a ROS extension of the open-

source crowd simulator Menge [4]. MengeROS requires a map of

the environment, a robot, and crowd specifications.

SemaFORR. The SemaFORR node controls the robot by sending

it actuator commands. It receives the simulated robot’s position

and laser scan data from the MengeROS node, and returns to the

MengeROS node the actuator commands that drive the robot. The

MengeROS node then simulates these actions on the robot.

Crowd Learner. The Crowd Learner is a standalone ROS node;

it too receives the robot’s position and laser scan data as messages

from MengeROS. The Crowd Learner uses Algorithm 1 or Algo-

rithm 2 to build a cost map, and forwards the current cost map to

the SemaFORR node upon request. This modular implementation

is important because it allows the learner node to be used with any

other ROS-compatible simulator and any other ROS-compatible

controller.

7.2 SemaFORR navigation architecture
In this work, the robot’s decision algorithm is SemaFORR, a con-
troller for autonomous navigation [7]. SemaFORR is a cognitively-

based hybrid architecture that involves both reactive and deliber-

ative reasoning. The deliberative reasoning component generates

a plan that is a sequence of intermediate locations (waypoints) on
the way to the target. As in Figure 3, SemaFORR’s input includes

the actions available to the robot, its pose and current target, the

current laser scan data, and the cost map. Because SemaFORR is

based on the FORR cognitive architecture [6], it uses a combina-

tion of heuristic procedures called Advisors to choose an action.

SemaFORR’s Advisors form a three-tier hierarchy.

Tier-1 Advisors are reactive decision-making rules that assume

perfect knowledge. As a result, they are fast and correct. Each

Advisor can either choose an action to execute or eliminate actions

Figure 2: ROS node interactions

Figure 3: SemaFORR’s decision cycle

from further consideration. Victory is a tier-1 Advisor; it chooses

the action that gets the robot closest to a target within sensory

range when no obstacles block the robot’s path. If the robot has a

plan to reach the target, at least one of its unvisited waypoints is

within sensory range, and no obstacles block the robot’s path there,

Enforcer chooses the action that best approaches the waypoint

closest to the target. Otherwise, AvoidObstacles, another tier-1

Advisor, eliminates actions that would cause a collision. It uses the

laser range scan data to remove actions that would bring it too

close to static or dynamic obstacles. If only one action remains, it

is returned. Otherwise, SemaFORR forwards the remaining actions

to the next tiers.

Tier-2 Advisors are the four deliberative planners: A*, CSA*,

CUSUM-A*, and Risk-A*. When control reaches tier 2, if there is no

current plan, the user-specified planner generates one and forwards

it to the plan store and the cycle ends. Otherwise, if a plan is already

in place, SemaFORR forwards control to tier 3, which selects an

action from the remaining, collision-free, plan-compliant actions.

Each tier-3 Advisor makes heuristic recommendations based

on its own rationale. Given the current plan, tier-3 Advisors treat

the next waypoint as if it were the target. For example, Greedy

prefers actions that move the robot closer to that waypoint, and

Explorer prefers actions that keep the robot away from previously

visited areas. To express its preferences, a tier-3 Advisor assigns a

numeric value to each possible action that survived tier 1. A voting

mechanism aggregates the preferences of all tier-3 Advisors and

returns the most preferred action. Further details on SemaFORR

are available in [7].

8 EXPERIMENTS
This section describes experiments conducted in simulation to eval-

uate CUSUM-A* and Risk-A* on navigation through crowded envi-

ronments. MengeROS simulated both the robot and the crowds. The

system’s parameters support a broad variety of crowd scenarios,

including not only the number of pedestrians in an environment,

but also their initial positions, their intended goals, their decision-

making strategy, and their collision avoidance strategy. Maps of



Figure 4: The fifth floor with elevators at E

the fourth and fifth floors of a 110m × 70m urban office building

served as the environments. Both floors support alternative routes

when crowds obstruct an area.

MengeROS requires that all pedestrians use the same collision

avoidance strategy to avoid one another and the robot. In prelimi-

nary work we tested two of these, ORCA[23] and PedVO [5], both

based on velocity obstacles. The velocity obstacle (VO) of a per-

son is the set of all velocity vectors that will result in a collision.

Collision-free motion requires that every agent has a velocity vector

outside its VO. ORCA has each agent address this problem equally

to produce an optimal solution. PedVO adapts ORCA to incorporate

such human behaviors as aggression, social priority, authority, and

right of way. Because we detected no significant difference in the

robot’s behavior or performance on our tasks when confronted by

PedVO or ORCA crowds, we report here only on ORCA.

In these experiments, MengeROS simulates the footprint and

sensor readings of Freight, a standard platform for mobile service

robots [25]. Freight has a 2-D laser range scanner with a range

of 25m and a 220 degree field of view, a 15Hz update rate, and an

angular resolution of 1/3 degree. Each experiment sets a task for

Freight in an environment that it shares with a crowd controlled by

MengeROS. SemaFORR controls Freight, with a 500-step limit per

target, that is, a target is abandoned if the robot has not reached it

after 500 decisions. The global cost map is represented as a discrete

grid with 2m × 2m cells.

8.1 CUSUM-A* experiment
We compared CUSUM-A* to CSA* and A* in the simulated fifth

floor of Figure 4 while the crowd changed its flow pattern across

time. Initially, 40 pedestrians begin from the elevators, move along

the hallway that follows the arrows in Figure 6, and return to

their starting position. Whenever a simulated pedestrian returns

to the elevators, it is chosen to repeat the trip with probability

0.98; otherwise, the pedestrian leaves the environment. As a result,

the pedestrian population gradually decreases. The robot’s task is

to visit targets 1, 2, 1, 3, 1, 4, 1 in Figure 4 in that order. This is

repeated until the robot has attempted to reach 40 targets. When

the robot has addressed about half its targets, a second group of

40 pedestrians enters the environment; they too begin and end at

the elevators, but they cycle instead through a smaller inner path,

shown by the arrows in Figure 7, and always repeat their trips.

Figure 5: The fourth floor with elevators at E

Table 1: CUSUM-A* improves navigation performance

A* CSA* CUSUM-A*

Risky actions 4309.40 3475.67 2635.33

Failures 9.00 11.21 6.50

Distance (m) 2460.16 2518.70 2755.71

Total time (sec) 4452.49 4244.01 4597.19

Mean success time (sec) 99.68 95.00 105.00

This change in crowd pattern, where the first group gradu-

ally leaves and another group is suddenly introduced, tests an

algorithm’s ability to track changes in crowd behavior efficiently.

CUSUM’s parameters were set to detect a sudden increase in the

crowd in any cell. The threshold τ was 10, λ0 was the current mean

arrival rate at the cell, and λ1 = λ0 − 4.

Targets were chosen to force the robot to interact with the crowd,

and there was always more than one path from one target to the

next. We evaluated the robot’s performance under A*, CSA* and

CUSUM-A* planners by total travel distance, total travel time, to-

tal number of risky actions (those that brought the robot within

0.5 meters of a pedestrian), and number of failures (targets the

robots failed to reach within its decision limit). The results of the

experiment, averaged over 15 trials, appear in Table 1.

Because it has no knowledge of the global cost incurred by the

crowds, A*’s plans move through them. Distance traveled was not

statistically significantly different with any of the planners. The

most noteworthy differences were in risky actions and failure rate;

CSA* took fewer risks than A* (p < 0.001) and CUSUM-A* took

even fewer than CSA* (p < 0.001). This is because CSA* relies on

a running average for crowd density, and therefore is slower than

CUSUM-A* to recognize sudden changes in crowd patterns. Time

on task is discussed in the final section.

Figure 6 overlays the 15 plans (one for each trial) generated by

A*, CSA*, and CUSUM-A* on the 15th task as the original crowd

circles along the arrows. On the 20th task, the second group of

pedestrians enters and circles along the arrows in Figure 7. Figure

7 overlays all 15 plans generated by A*, CSA*, and CUSUM-A* on

the 29th task. CUSUM-A* plans avoid the crowd flow, while CSA*

plans go through the inner hallway, even though it is crowded.



Figure 6: All plans generated by A*(top), CSA*(middle) and
CUSUM-A*(bottom) to reach the (circled) 15th target

8.2 Risk-A* experiment
We compared Risk-A* to CSA* and A* in the simulated fourth floor

environment in Figure 5. The robot’s task here is to visit target

positions 2, 5, 3, 4, 1, 6, 2 in Figure 5 in that order until the robot

addresses 40 targets. This time, two groups of 35 people move as

shown in Figure 8, where the blue arrows describe the first group’s

path ⟨E,A,B,E⟩ and black arrows describe the second’s ⟨E,D,C,E⟩.
Both groups begin and end at the elevators, but they visit different

parts of the space. Agents in both groups always repeat their trip

when they return to the elevator area; this ensures a steady stream

of crowd flow. The important difference between the two groups

is that the agents in the second group (black arrows) deviate from

their normal path and come closer to the robot. When an agent in

the second group comes within 1m of the robot, it generates a new

path that brings it closer to the robot. This makes it more difficult

for the robot to navigate through the second group.

Risk-A* addresses risky actions in its cost map when it plans.

We compared the performance of Risk-A* to A* and to CSA*, which

only considers the crowd density estimate when it predicts the cost.

The results, averaged over 15 trials, appear in Table 2. There are no

statistically significant differences in distance. Again the focus is

on risky actions. CSA* takes fewer than A* (p < 0.001), and Risk-A*,

Figure 7: All plans generated by A*(top), CSA*(middle) and
CUSUM-A*(bottom) to reach the (circled) 29th target

takes fewer than CSA* (p < 0.001). Figure 8 compare the differences

in plans generated by A*, CSA*, and Risk-A* as the robot navigates

to the 4th target. Risk-A* now mostly generates plans that seek to

avoid the second group. Time is discussed in the next section.

Table 2: Risk-A* improves navigation performance

A* CSA* Risk-A*

Risky actions 2394.57 1760.93 1260.64

Failures 6.57 5.21 4.93

Distance (m) 1946.47 1976.50 2199.76

Total time (sec) 4373.02 4654.84 4660.85

Mean success time (sec) 96.76 100.08 108.54

9 DISCUSSION
Because the robot learns online, it can use CUSUM-A* or Risk-A* in

a new indoor environment without previous training. This is a sig-

nificant advantage over methods that learn crowd behavior offline

from pedestrian datasets. Another drawback of pedestrian datasets

is the assumption that they sufficiently capture future crowd behav-

ior. In most indoor environments, new crowd patterns arise quite

frequently. Each time CUSUM-A* resets its model, the robot begins



Figure 8: All plans generated by A*(top), CSA*(middle) and
Risk-A*(bottom) to reach the (circled) 4th target. Arrows and
numeric labels describe crowd behavior. (See text.)

to detect and adjust to these unpredictable changes. Moreover, both

CUSUM-A* and Risk-A* are efficient; their runtime complexity is

constant for a given map and a pedestrian crowd size. This makes

both methods real-time and suitable for onboard processing. More-

over, the algorithms themselves are easy to implement. We tested

CUSUM-A* and Risk-A* separately here, to evaluate their individual

performance. CUSUM-A* was tested on the 5th floor because it

provides more alternative paths than the 4th floor. Realistically,

both dynamic changes and human-robot interaction effects can

occur simultaneously, and it is possible to apply both algorithms at

once. CUSUM would then detect changes in both the crowd density

map and the risk map, and adjust edge weights appropriately.

CSA* finishes all 40 tasks more quickly than the other two plan-

ners in Table 1, and A* finishes more quickly than the other two

in Table 2. The average time only on tasks completely successfully,

however, is not statistically significantly different (p = 0.05). This

is because a robot guided by CSA* in the first experiment or by A*

in the second often becomes mired in the crowd. When unable to

move, it quickly and repeatedly selects "pause" as its action, until it

exhausts its 500 decision-step limit, and fails.

CUSUM-A* detects only sudden increases in the crowd, but it

can be easily extended to detect sudden decreases by running a

second instance of CUSUM. Although the threshold τ that registers

change is hard-coded into CUSUM, that does not limit the size of

the crowd that CUSUM can detect. Because each grid cell has its

own CUSUM, the arrival of a large crowd that covers multiple grid

cells will be detected by multiple CUSUMs, while a smaller crowd

that covers fewer grid cells will be detected by fewer CUSUMs.

Increased granularity in the cost map would increase the number

of CUSUMs and provide more accurate change detection, but it

would also incur increased computation cost. CUSUM is tuned to

detect change if it collects enough evidence in a given grid cell for

a change in crowd dynamics. The threshold for evidence τ can be

decreased to make CUSUM highly sensitive to changes.

This work assumes that the robot has access to precise localiza-

tion and laser scan values. Because the algorithms presented here

learn a cost map on a grid, localization or sensor errors will not

affect the final cost map, as long as the error in the exact location of

a person is within the grid size (here, 2m × 2m). Additional onboard

sensors, such as a camera or a Kinnect, could also improve the

accuracy of both localization and crowd detection.

The Bayesian framework in Section 3 could also address naviga-

tional challenges other than crowds: travel time, travel distance, or

energy usage. A learned global cost map applies to other important

problems for indoor service robots as well. For example, a service

robot that distributes pamphlets or offers directions in a shopping

mall should plan a path though the mall’s most crowded areas from

a global cost map. Current work also includes testing γ values to

decay knowledge over time. (These experiments set γ = 1.)

Both CUSUM-A* and Risk-A* are global planners, but they do

not preclude concurrent local collision-avoidance planners. Risk-A*

adapts the robot’s behavior based on the number of risky actions

it has experienced. Since the choice of a local collision-avoidance

planner directly impacts the number of risky actions, the choice

of a local planner influences the performance of Risk-A*. If a robot

uses a local planner that does not perform well in specific areas of

the environment, the number of risky actions in those areas would

increase, and Risk-A* would make plans that avoid those areas. In

this sense, Risk-A* is an example of metacognition.

In summary, path planning in crowded environments is essential

for autonomous service robots, but it requires knowledge about

the global costs of navigation. Previous approaches that learned

the global cost map online assumed simple static crowd patterns

[2]. Our novel Bayesian formulation supports two algorithms that

learn global cost maps online and are therefore more responsive

to the dynamics of a crowded environment. We have tested the

algorithms in simulation on complex real-world maps, and demon-

strated statistically significant reductions in the number of risky

actions, despite realistic changes in the behavior of the crowd.
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