3D Photography

Wednesdays 09:30-11:30 – Room 3305 Ioannis Stamos

istamos@hunter.cuny.edu

Office: 1090G, Hunter North (Entrance at 69th bw/ Park and Lexington Avenues) Class website: http://www.cs.hunter.cuny.edu/~ioannis/3D_f11.html

Overview

- Create geometric and photometric 3D models
- Use Range and Image Sensing
- Fusing image data
- Comprehensive system with automation

3D Photography & Graphics

Modeling [Representation of 3D objects]
Rendering [Construction of 2D images from 3D models]
Animation [Simulating changes over time]

Applications

- Virtual environment generation
 - Google Earth
 - acquire model for use in VRML, entertainment, etc
 - Realistic sets: movies and video games
- Reverse engineering
 - acquiring a model from a part copying/modification
- Part inspection
 - compare acquired model to "acceptable" model
- 3D FAX
 - transmit acquired model to remote RP machine
- Architectural site modeling
- Urban Planning
- Historical Preservation and Archaeology
- Reverse Engineering of Buildings

M. Reed – Columbia University [3D Fax]

Industrial Inspection

• Determine whether manufactured parts are within tolerances

3D Modeling (people)

Ioannis Stamos – CSCI 493.69 F08

3D PHOTOGRAPHY EXAMPLE

Buildings

Automatic registration. Each scan has a different color.

Registration details

3D PHOTOGRAPHY EXAMPLE

24 scans were acquired of façade of Shepard Hall (City College of NY)

Data Acquisition, Leica Scan Station 2, Park Avenue and 70th Street, NY

Art

 The Pietà Project IBM Research

- The Digital Michelangelo Project Stanford University
- The Great Buddha Project University of Tokyo

Photograph

Combined 3D mesh

(with P. K. Allen, Columbia University)

Inserting models in Google Earth

Ioannis Stamos – CSCI 493.69 F08

3D Acquisition Pipeline

Main Topics

Data Acquisition and Representation

Segmentation

3D Modeling (Mesh or volumetric)

Model simplification

Passive techniques: Stereo and Structure from Motion

Augmented pin-hole camera model

- Focal point, orientation
- · Focal length, aspect ratio, center, lens distortion

2D ⇔ 3D correspondence "Classical" calibration

2D ⇔ 2D correspondence SFM, "Self-calibration"

3D range to 2D image registration

3D scene

2D image

3D range to 2D image registration

Texture mapped 3D model Corresponding 2D/proj. 3D lines

TEXTURE MAP ANIMATION

The Façade Modeling System

Symmetry Detection

Image-Based Rendering

- Chen and Williams (1993) view interpolation
- McMillan and Bishop (1995) plenoptic modeling
- Levoy and Hanrahan (1996) light field rendering

The graphics pipeline

the traditional pipeline

the new pipeline?

Slide courtesy Marc Levoy

Dynamic Scenes

Image sequence (CMU, Virtualized Reality Project) http://www.ri.cmu.edu/projects/project_144.html

Dynamic Scenes

Dynamic 3D model (CMU, Virtualized Reality Project) http://www.ri.cmu.edu/projects/project_144.html

Dynamic Scenes

Dynamic texture-mapped model (CMU, Virtualized Reality Project) http://www.ri.cmu.edu/projects/project_144.html

Libraries

- Open Inventor Graphics Libraries
- Coin3D implements Open Inventor API: <u>http://www.coin3d.org/</u>
- Online book:

http://www-evasion.imag.fr/Membres/Francois.Faure/doc/inventorMentor/sgi_html/

• **Book:** The Inventor Mentor : Programming Object-Oriented 3D Graphics with Open Inventor, Release 2