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Using Spin Images for Efficient Object
Recognition in Cluttered 3D Scenes

Andrew E. Johnson, Member, IEEE, and Martial Hebert, Member, IEEE

Abstract—We present a 3D shape-based object recognition system for simultaneous recognition of multiple objects in scenes
containing clutter and occlusion. Recognition is based on matching surfaces by matching points using the spin image
representation. The spin image is a data level shape descriptor that is used to match surfaces represented as surface meshes. We
present a compression scheme for spin images that results in efficient multiple object recognition which we verify with results
showing the simultaneous recognition of multiple objects from a library of 20 models. Furthermore, we demonstrate the robust
performance of recognition in the presence of clutter and occlusion through analysis of recognition trials on 100 scenes.

Index Terms—3D object recognition, surface matching, spin image, clutter, occlusion, oriented point, surface mesh, point
correspondence.
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1 INTRODUCTION

URFACE matching is a technique from 3D computer vi-
sion that has many applications in the area of robotics

and automation. Through surface matching, an object can
be recognized in a scene by comparing a sensed surface to
an object surface stored in memory. When the object surface
is matched to the scene surface, an association is made be-
tween something known (the object) and something un-
known (the scene); information about the world is ob-
tained. Another application of surface matching is the
alignment of two surfaces represented in different coordi-
nate systems. By aligning the surfaces, the transformation
between the surface coordinate systems is determined. Sur-
face alignment has numerous applications including local-
ization for robot navigation [27] and modeling of complex
scenes from multiple views [13].

Shape representations are used to collate the information
stored in sensed 3D points so that surfaces can be compared
efficiently. Shape can be represented in many different
ways, and finding an appropriate representation for shape
that is amenable to surface matching is still an open re-
search issue. The variation among shape representations
spans many different axes. For instance, shape representa-
tions can be classified by the number of parameters used to
describe each primitive in the representation. Representing
objects using planar surface patches [7] uses many primi-
tives, each with a few parameters. On the other hand, rep-
resenting an object with generalized cylinders [5] requires
fewer primitives, but each has many parameters. Another
axis of comparison is the local versus global nature of the

representation. The Gaussian image [17] and related spheri-
cal representations [10] are global representations useful for
describing single objects, while surface curvature [3] meas-
ures local surface properties and can be used for surface
matching in complex scenes. The multitude of proposed
surface representations indicates the lack of consensus on
the best representation for surface matching.

Another factor determining the appropriate surface repre-
sentation is the coordinate system in which the data is de-
scribed. Surfaces can be defined in viewer-centered coordi-
nate systems or object-centered coordinate systems. Viewer-
centered representations [6] describe surface data with re-
spect to a coordinate system dependent on the view of the
surface. Although viewer-centered coordinate systems are
easy to construct, the description of the surface changes as
viewpoint changes, and surfaces must be aligned before they
can be compared. Furthermore, to represent a surface from
multiple views, a separate representation must be stored for
each different viewpoint.

An object-centered coordinate system describes an object
surface in a coordinate system fixed to the object. In object-
centered coordinates, the description of the surface is view-
independent, so surfaces can be directly compared, without
first aligning the surfaces. Object-centered representations
can be more compact than viewer-centered representations
because a single surface representation describes all views
of the surface. Finding an object-centered coordinate system
is difficult because these systems are generally based on
global properties of the surface. However, if an object-
centered coordinate system can be extracted robustly from
surface data, then is view independence prompts its use
over viewer-centered coordinate system.

In 3D object recognition, an important application of
surface matching, an object surface is searched for in a
scene surface. Real scenes contain multiple objects, so sur-
face data sensed in the real world will contain clutter, sur-
faces that are not part of the object surface being matched.
Because clutter will corrupt global properties of the scene
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data, generating object-centered coordinate systems in the
cluttered scenes is difficult. The usual method for dealing
with clutter is to segment the scene into object and non-
object components [1], [7]; naturally, this is difficult if the
position of the object is unknown. An alternative to seg-
mentation is to construct object-centered coordinate sys-
tems using local features detected in the scene [9], [18];
here again there is the problem of differentiating object
features from non-object features. Another difficulty oc-
curs because surface data often has missing components,
i.e., occlusions. Occlusions will alter global properties of
the surfaces and therefore, will complicate construction of
object-centered coordinate systems. Consequently, if an
object centered surface matching representation is to be
used to recognize objects in real scenes, it must be robust
to clutter and occlusion.

Object representations should also enable efficient
matching of surfaces from multiple models, so that recog-
nition occurs in a timely fashion. Furthermore, the repre-
sentation should be efficient in storage (i.e., compact), so
that many models can be stored in the model library. With-
out efficiency, a recognition system will not be able to rec-
ognize the multitude of objects in the real world.

1.1 A Representation for Surface Matching
In our representation, surface shape is described by a
dense collection of 3D points and surface normals. In ad-
dition, associated with each surface point is a descriptive
image that encodes global properties of the surface using
an object-centered coordinate system. By matching im-
ages, correspondences between surface points can be es-
tablished and used to match surfaces independent of the
transformation between surfaces. Taken together, the
points, normals and associated images make up our sur-
face representation. Fig. 1 shows the components of our
surface matching representation.

Representing surfaces using a dense collection of points
is feasible because many 3D sensors and sensing algorithms
return a dense sampling of surface shape. Furthermore,
from sensor geometry and scanning patterns, the adjacency
on the surface of sensed 3D points can be established. Using
adjacency and position of sensed 3D points surface normal
can be computed. We use a polygonal surface mesh to com-
bine information about the position of 3D surface points
and the adjacency of points on the surface. In a surface
mesh, the vertices of the surface mesh correspond to 3D
surface points, and the edges between vertices convey adja-

cency. Given enough points, any object can be represented
by points sensed on the object surface, so surface meshes
can represent objects of general shape. Surface meshes can
be generated from different types of sensors and do not
generally contain sensor-specific information; they are sen-
sor-independent representations. The use of surface mesh
as representations for 3D shapes has been avoided in the
past due to computational concerns. However, our research
and the findings of other researchers have shown that proc-
essing power has reached a level where computations using
surface meshes are now feasible [2], [26].

Our approach to surface matching is based on matching
individual surface points in order to match complete sur-
faces. Two surfaces are said to be similar when the images
from many points on the surfaces are similar. By matching
points, we are breaking the problem of surface matching
into many smaller localized problems. Consequently,
matching points provides a method for handling clutter
and occlusion in surface matching without first segmenting
the scene; clutter points on one surface will not have
matching points on the other, and occluded points on one
surface will not be searched for on the other. If many points
between the two surfaces match then the surfaces can be
matched. The main difficulty with matching surfaces in this
way is describing surface points so that they can be differ-
entiated from one another, while still allowing point
matching in scenes containing clutter, occlusion and 3D
surface noise.

To differentiate among points, we construct 2D images
associated with each point. These images are created by
constructing a local basis at an oriented point (3D point
with surface normal) on the surface of an object. As in geo-
metric hashing [18], the positions with respect to the basis
of other points on the surface of the object can then be de-
scribed by two parameters. By accumulating these pa-
rameters in a 2D histogram, a descriptive image associated
with the oriented point is created. Because the image en-
codes the coordinates of points on the surface of an object
with respect to the local basis, it is a local description of the
global shape of the object and is invariant to rigid transfor-
mations. Since 3D points are described by images, we can
apply powerful techniques from 2D template matching and
pattern classification to the problem of surface matching.

The idea of matching points to match surfaces is not a
novel concept. Stein and Medioni [24] recognize 3D objects
by matching points using structural indexing and their
“splash” representation. Similarly, Chua and Jarvis match

Fig. 1. Components of our surface representation. A surface described by a polygonal surface mesh can be represented for matching as a set of
(a) 3D points and surface normals and (b) spin images.
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points to align surfaces using principal curvatures [3] and
“point-signatures” [4]. Our methods differs from these in
the way that points are represented for matching and the
way that points, once matched, are grouped to match sur-
faces. Our representation is a 2D image that accumulates
information about a surface patch while splashes and point
signatures are 1D representations that accumulate surface
information along a 3D curve. This difference makes our
representation potentially more descriptive than the other
two. Furthermore, our representation does not rely on the
definition of a possibly ambiguous three-axis orthonormal
frame at each point, but instead uses an oriented point basis
which can be defined robustly everywhere on a surface
using just surface position and normal. Finally, because we
use an image based representation, techniques from image
processing can be used in our matching algorithms, allow-
ing for elegant solutions to point-based surface matching.

To distinguish our point matching representation from
camera images common in computer vision, we have cho-
sen the name spin image; image because the representation is
a 2D array of values, and spin because the image generation
process can be visualized as a sheet spinning about the
normal of the point. Previous papers, [12] and [15], intro-
duced the concept of spin images and showed how they
can be used to match surfaces. Therefore, in Section 2, we
briefly review the spin image generation and its application
to surface matching. This section also presents an analysis
of the parameters used in spin image generation showing
the effect of different parameter values on the accuracy of
spin image matching.

The main contribution of this paper is the description
and experimental analysis of the use of spin images in
efficient multi-model object recognition in scenes con-
taining clutter and occlusion. Two major improvements
to spin image matching enable efficient object recogni-
tion. First, localization of spin images by reducing spin
image generation parameters enables surface matching
in scenes containing clutter and occlusion. Second, since
the large number of spin images comprising our surface
representation are redundant, statistical eigen-analysis
can be employed to reduce the dimensionality of the im-
ages and speed up spin image matching. The techniques
employed are similar to those used in appearance based
recognition [19], and in particular, the combination of
localized images and image compression is similar to the
work in eigen-features [21] and parts-based appearance
recognition [11]. Section 3 describes our algorithm for
multi-model object recognition using spin images, and
Section 4 describes our experimental validation of recog-
nition using spin images on 100 complex scenes. A
shorter description of this work has appeared as a con-
ference paper [14].

2 SURFACE MATCHING

This section provides the necessary background for under-
standing spin image generation and surface matching using
spin images. More complete description of spin images and
our surface matching algorithms are given in [12], [15].

2.1 Spin Images
Oriented points, 3D points with associated directions, are
used to create spin images. We define an oriented point at a
surface mesh vertex using the 3D position of the vertex and
surface normal at the vertex. The surface normal at a vertex
is computed by fitting a plane to the points connected to the
vertex by edges in the surface mesh.

An oriented point defines a partial, object-centered, co-
ordinate system. Two cylindrical coordinates can be defined
with respect to an oriented point: the radial coordinate a,
defined as the perpendicular distance to the line through
the surface normal, and the elevation coordinate b, defined
as the signed perpendicular distance to the tangent plane
defined by vertex normal and position. The cylindrical an-
gular coordinate is omitted because it cannot be defined
robustly and unambiguously on planar surfaces.

A spin image is created for an oriented point at a vertex
in the surface mesh as follows. A 2D accumulator indexed
by a and b is created. Next, the coordinates (a, b) are com-
puted for a vertex in the surface mesh that is within the
support of the spin image (explained below). The bin in-
dexed by (a, b) in the accumulator is then incremented;
bilinear interpolation is used to smooth the contribution of
the vertex. This procedure is repeated for all vertices within
the support of the spin image. The resulting accumulator
can be thought of as an image; dark areas in the image cor-
respond to bins that contain many projected points. As long
as the size of the bins in the accumulator is greater than the
median distance between vertices in the mesh (the defini-
tion of mesh resolution), the position of individual vertices
will be averaged out during spin image generation. Fig. 2
shows the projected (a, b) 2D coordinates and spin images
for three oriented points on a duck model. For surface
matching, spin images are constructed for every vertex in
the surface mesh.

Spin images generated from two different surfaces rep-
resenting the same object will be similar because they are
based on the shape of the object, but they will not be exactly
the same due to variations in surface sampling and noise.
However, if the surfaces are uniformly sampled then the
spin images from corresponding points on the different
surfaces will be linearly related. (Uniform surface sampling
is enforced by preprocessing the surface meshes using a
mesh resampling algorithm [16].) A standard method for
comparing linearly related data sets is the linear correlation
coefficient, so we use correlation coefficient between two
spin images to measure spin image similarity. As is shown
in Section 3, for efficient object recognition, the similarity
measure between spin images must be changed to the l2

distance between images. The l2 distance between images
performs as well as correlation coefficient for spin image
matching, as long as the images are properly normalized.

2.2 Spin Image Generation Parameters
Bin size is the geometric width of the bins in the spin im-
age. Bin size is an important parameter in spin image gen-
eration because it determines the storage size of the spin
image and the averaging in spin images that reduces the
effect of individual point positions. It also has an effect on
the descriptiveness of the spin images. The bin size is set
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as a multiple of the resolution of the surface mesh in order
to eliminate the dependence of setting bin size on object
scale and resolution. Setting bin size based on mesh resolu-
tion is feasible because mesh resolution is related to the size
of shape features on an object and the density of points in
the surface mesh. Spin images generated for the duck
model using different bin sizes are shown in Fig. 3. The spin
image generated for a bin size of four times the model
resolution is not very descriptive of the global shape of the
model. The spin image generated with a bin size of one
quarter the mesh resolution does not have enough averag-
ing to eliminate the effect of surface sampling. The spin
image generated with a bin size equal to the mesh resolu-
tion has the proper balance between encoding global shape
and averaging of point positions.

Fig. 6 gives a quantitative analysis of the effect of bin
size on spin image matching. To create the graph, first,
the spin images for all vertices on the model were cre-
ated for a particular bin size. Next, each spin image was

compared to all of the other spin images from the model,
and the Euclidean distances between the vertex and the
vertices corresponding to the best matching spin images
were computed. After repeating this matching for all
spin images on the model, the median Euclidean dis-
tance (match distance) was computed. By repeating this
procedure for multiple bin sizes using the duck model,
that graph on the left of Fig. 6 was created. Match dis-
tance is a single statistic that describes the correctness of
spin image matches, the lower the match distance, the
more correct the matches.

The graph shows that for bin sizes below the mesh
resolution (1.0) the match distance is large while for bin
sizes greater than the mesh resolution, the match distance
increases. Consequently, the best spin image matching oc-
curs when bin-size is set close to the mesh resolution; this
analysis confirms our qualitative observations from Fig. 3.
For the results in this paper, the bin size is set to the exactly
the mesh resolution.

Fig. 2. Spin images of large support for three oriented points on the surface of a rubber duck model.

Fig. 3. The effect of bin size on spin image appearance. Three spin images of decreasing bin size for a point on the duck model are shown. Set-
ting the bin size to the model resolution creates descriptive spin images while averaging during point accumulation to eliminate the effect of indi-
vidual vertex positions. (a) 4x mesh resolution. (b) 1x mesh resolution. (c) 1/4x mesh resolution.
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Although spin images can have any number of rows and
columns, for simplicity, we generally make the number of
rows and columns in a spin image equal. This results in
square spin images whose size can be described by one pa-
rameter. We define the number of rows or columns in a
square spin image to be the image width. To create a spin
image, an appropriate image width needs to be determined.
Image width times the bin size is called the spin image sup-
port distance (Ds); support distance determines the amount
of space swept out by a spin image. By setting the image
width, the amount of global information in a spin image
can be controlled. For a fixed bin size, decreasing image
width will decrease the descriptiveness of a spin image be-
cause the amount of global shape included in the image
will be reduced. However, decreasing image width will also
reduce the chances of clutter corrupting a spin image. Im-
age width is analogous to window size in 2D template
matching. Fig. 4 shows spin images for a single oriented
point on the duck model as the image width is decreased.
This figure shows that as image width decreases, the de-
scriptiveness of the images decreases.

The graph in the middle of Fig. 6 shows the effect of im-
age width on spin image matching. As image width de-
creases, match distance decreases. This confirms our obser-
vation from Fig. 4. In general, we set the image width so
that the support distance is on order of the size of the
model. If the data is very cluttered, then we set the image
width to a smaller value. For the results presented in this

paper, image width is set to 15, resulting in spin images
with 225 bins.

The final spin image generation parameter is support an-
gle (As). Support angle is the maximum angle between the
direction of the oriented point basis of a spin image and the
surface normal of points that are allowed to contribute to
the spin image. Suppose we have an oriented point $ with

position and normal (p$, n$) for which we are creating a
spin image. Furthermore, suppose there exists another ori-
ented point % with position and normal (p%, n%). The sup-
port angle constraint can then be stated as: % will be accu-
mulated in the spin image of $ if

acos(n$ ¼ n%) < As.

Support angle is used to limit the effect of self occlusion
and clutter during spin image matching. Fig. 5 shows the
spin image generated for three different support angles
along with the vertices on the model that are mapped into
the spin image. Support angle is used to reduce the number
of points on the opposite side of the model that contribute
to the model spin image. This parameter decreases the ef-
fect of occlusion on spin image matching; if a point has sig-
nificantly different normal from the normal of the oriented
point, then it is unlikely that it will be visible when the ori-
ented point is imaged by a rangefinder in some scene data.

Decreasing support angle also has the effect of decreas-

Fig. 4. The effect of image width on spin images. As image width decreases, the volume swept out by the spin image (top) decreases, resulting in
decreased spin image support (bottom). By varying the image width, spin images can vary smoothly from global to local representations. (a) A 40-
pixel image width. (b) A 20-pixel image width. (c) A 10-pixel image width.

Fig. 5. The effect of support angle on spin image appearance. As support angle decreases, the number of points contributing to the spin image
(top) decreases. This results in reduction in the support of the spin images (bottom). (a) A 180 degree support angle. (b) A 90 degree support
angle. (c) A 60 degree support angle.
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ing the descriptiveness of spin images. The graph on the
right in Fig. 6 shows the effect of support angle on spin im-
age match distance. The graph shows that as support angle
decreases, the match distance increases because the spin
images are becoming less descriptive. However, a small
support angle is necessary for robustness to clutter and oc-
clusion. We found that a balance can be struck between
shape descriptiveness and matching robustness; in this pa-
per, all results are generated for a spin images generated
with a support angle of 60 degrees.

Fig. 7 shows how spin image generation parameters lo-

calize spin images to reduce the effect of scene clutter on
matching. When the spin images are not localized, the
model and scene spin images are very different in appear-
ance, a fact which is born out by the linear correlation coef-
ficient of the two images (r = 0.636). As the spin images are
localized by decreasing the support angle As and support
distance Ds, the spin images become much more similar.
When creating spin images with large support angle and
distance, many scene points that do not belong to the model
are spin mapped into the scene spin image. This causes the
scene spin image to become uncorrelated with the model

Fig. 6. Effect of spin image generation parameters bin size, image width, and support angle on match distance.

Fig. 7. Localizing generation parameters increases the similarity of spin images. The top shows a scatterplot of the model and scene spin images
generated using global parameters. The scatterplot shows that the spin images are not particularly correlated. The bottom shows a scatterplot of
the model and scene spin images generated using local parameters. The scatterplot shows that the spin images are much more linearly corre-
lated. Localizing the spin images throws away image pixels where the images disagree.
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spin image because, as shown in the scatterplot of the two
images, scene spin image pixels are being corrupted by
clutter. When smaller support angle and distance are used,
the spin images become similar; the pixel values shown in
the scatterplot of the images created with local parameters
are linearly related (r = 0.958). By varying spin image gen-
eration parameters, we are using knowledge of the spin
image generation process to eliminate outlier pixels, mak-
ing the spin images much more similar.

2.3 Surface Matching Engine
As shown in Fig. 8, two surfaces are matched as follows.
Spin images from points on one surface are compared by
computing correlation coefficient with spin images from
points on another surface; when two spin images are
highly correlated, a point correspondence between the
surfaces is established. More specifically, before matching,

all of the spin images from one surface (the model) are
constructed and stored in a spin image stack. Next, a ver-
tex is selected at random from the other surface (the
scene) and its spin image is computed. Point correspon-
dences are then established between the selected point
and the points with best matching spin images on the
other surface. This procedure is repeated for many points
resulting in a sizeable set of point correspondences (~100).
Point correspondences are then grouped and outliers are
eliminated using geometric consistency. Groups of geo-
metrically consistent correspondences are then used to
calculate rigid transformations that aligns one surface
with the other. After alignment, surface matches are veri-
fied using a modified iterative closest point algorithm.
The best match is selected as the one with the greatest
overlap between surfaces. Further details of the surface
matching engine are given in [12].

Fig. 8. Surface matching block diagram.

Fig. 9. Spin images generated while traversing a path along the surface of the duck model. (a) Spin images from proximal oriented points are
similar, resulting in one cause of redundancy in spin images. (b) Two pairs of similar spin images caused by symmetry in the duck model.
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3 OBJECT RECOGNITION

Surface matching using spin images can be extended to
object recognition as follows. Each model in the model li-
brary is represented as a polygonal mesh. Before recogni-
tion, the spin images for all vertices on all models are cre-
ated and stored. At recognition time, a scene point is se-
lected and its spin image is generated. Next, its spin image
is correlated with all of the spin images from all of the
models. The best matching model spin image will indicate
both the best matching model and model vertex. After
matching many scene spin images to model spin images,
the point correspondences are input into the surface
matching engine described in Section 2.3. The result is si-
multaneous recognition and localization of the models that
exist in the scene.

This form of surface matching is inefficient for two rea-
sons. First, each spin image comparison requires a correla-
tion of two spin images, an operation on order of the rela-
tively large (~200) number of bins in a spin image. Second,
when a spin image is matched to the model library, it is
correlated with all of the spin images from all of the mod-
els. This operation is linear in the number of vertices in
each model and linear in the number of models. This line-
arly growth rate is unacceptable for recognition from large
model libraries. Fortunately, spin images can be com-
pressed to speed up matching considerably.

3.1 Spin Image Compression
Spin images coming from the same surface can be correlated
for two reasons: First, as shown in Fig. 9, spin images gener-
ated from oriented point bases that are close to each other on
the surface will be correlated. Second, as shown in Fig. 9,
surface symmetry and the inherit symmetry of spin image
generation will cause two oriented point bases on equal but
opposite sides of a plane of symmetry to be correlated. Fur-
thermore, surfaces from different objects can be similar on
the local scale, so there can exist a correlation between spin
images of small support generated for different objects.

This correlation can be exploited to make spin image
matching more efficient through image compression. For
compression, it is convenient to think of spin images as
vectors in an D-dimensional vector space where D is the
number of pixels in the spin image. Correlation between
spin images places the set of spin images in a low dimen-
sional subspace of this D-dimensional space.

A common technique for image compression in object
recognition is principal component analysis (PCA) [19].
PCA or Karhunen-Loeve expansion is a well-known
method for computing the directions of greatest variance
for a set of vectors [8]. By computing the eigenvectors of the
covariance matrix of the set of vectors, PCA determines an
orthogonal basis, called the eigenspace, in which to de-
scribe the vectors.

PCA has become popular for efficient comparison of im-
ages because it is optimal in the correlation sense. The l2

distance between two spin images in spin image space is
the same as the l2 distance between the two spin images
represented in the eigenspace. Furthermore, when vectors
are projected into a subspace defined by the eigenvectors of
largest eigenvalue, the l2 distance between projected vectors

is the best approximation (with respect to mean square er-
ror) to the l2 distance between the unprojected vectors,
given the dimension of the subspace [8]. By minimizing
mean-square error, PCA gives us an elegant way to balance
compression of images against ability to discriminate be-
tween images.

PCA is used to compress the spin images coming from
all models simultaneously as follows. Suppose the model
library contains N spin images xi of size D; the mean of all
of the spin images in the library is

x xi
i

N

=
=
Ê

1

.                                       (1)

Subtracting the mean of the spin images from each spin
image makes the principal directions computed by PCA
more effective for describing the variance between spin
images. Let

$x x xi i= -                                       (2)

be the mean-subtracted set of spin images which can be
represented as a D � N matrix with each column of the ma-
trix being a mean-subtracted spin image

S x x xm
i N= $ $ $2 L .                                 (3)

The covariance of the spin images is the D � D matrix C
given by

C S Sm m m T
= 4 9 .                                    (4)

The eigenvectors of C are then computed by solving the
eigenvector problem

l i
m

i
m m

i
me C e= .                                      (5)

Since the dimension of the spin images is not too large
(~200), the standard Jacobi algorithm from the book Nu-
merical Recipes in C [22] is used to determine the eigenvec-
tors ej

m  and eigenvalues l j
m  of Cm. Since the eigenvectors of

Cm can be considered spin images, they will be called eigen-
spin images.

Next, the model projection dimension, s, is determined
using a reconstruction metric that depends on the needed
fidelity in reconstruction and the variance among images
(see [15]). Every spin image from each model is then pro-
jected into the s-dimensional subspace spanned by the s
eigenvectors of largest eigenvalue; the s-tuple of projection
coefficients, pj, becomes the compressed representation of
the spin image.

p x e x e x ej j
m

j
m

j s
m= $ , $ , . . . , $1 24 9 .                              (6)

The amount of compression is defined by s/D. The com-
pressed representation of a model library has two compo-
nents: the s most significant eigenvectors and the set of s-
tuples, one for each model spin image. Since the similarity
between images is determined by computing the l2 distance
between s-tuples, the amount of storage for spin images
and the time to compare them is reduced.

3.2 Matching Compressed Spin Images
During object recognition, scene spin images are matched
to compressed model spin images represented as s-tuples.
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Given the low dimension of s-tuples, it is possible to match
spin images in time that is sublinear in the number of
model spin images using efficient closest point search
structures.

To match a scene spin image to a model s-tuple, a scene
s-tuple must be generated for the scene spin image. The
scene spin image is generated using the model spin image
generation parameters. Suppose the scene spin image for
scene oriented point j is represented in vector notation as yj.
The first step in constructing the scene s-tuple is to subtract
the mean of the model spin images

$y y xj j= - .                                       (7)

Next the mean-subtracted scene spin image is projected
onto the top s library eigen-spin images to get the scene s-
tuple qj

q y e y e y ej j
m

j
m

j s
m= $ , $ , . . . , $1 24 9 .                            (8)

The scene s-tuple is the projection of the scene spin im-
age onto the principal directions of the library spin images.

To determine the best matching model spin image to
scene spin image, the l2 distance between the scene and
model tuples is used. When comparing compressed model

spin images, finding closest s-tuples replaces correlating
spin images. Although the l2 distance between spin images
is not the same as the correlation coefficient used in spin
image matching (correlation is really the normalized dot
product of two vectors), it is still a good measure of the
similarity of two spin images.

To find closest points, we use the efficient closest point
search structure proposed by Nene and Nayar [20]. The
efficiency of their data structure is based on the assump-
tion that one is interested only in the closest point, if it is
less than a predetermined distance e from the query point.
This assumption is reasonable in the context of spin image
matching, so we chose their data structure. Furthermore,
in our experimental comparison, we found that using
their data structure resulted in order of magnitude im-
provement in matching speed over matching using kd-
trees or exhaustive search. The applicability of the algo-
rithm to the problem of matching s-tuples is not surpris-
ing; the authors of the algorithm demonstrated its effec-
tiveness in the domain of appearance-based recognition
[19], a domain that is similar to spin image matching. In
both domains, PCA is used to compress images resulting
in set of structured s-tuples that must be searched for clos-

Fig. 10. Procedure for simultaneous matching of multiple models to a single scene point.
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est points. In our implementation, the search parameter e
was automatically set to the median of the distances be-
tween pairs of closest model s-tuples. Setting e in this way
balances the likelihood of finding closest points against
closest point lookup time.

Spin image matching with compression is very similar to
the recognition algorithm without compression. Fig. 10
shows a pictorial description for the procedure for match-

ing of multiple models to a single scene point. Before rec-
ognition, all of the model surface meshes are resampled to
the same resolution to avoid scale problems when com-
paring spin images from different models. Next, the spin
images for each model in the model library are generated,
and the library eigen-spin images are computed. The pro-
jection dimension s is then determined for the library. Next,
the s-tuples for the spin images in each model are com-

Fig. 11. The 20 models used for recognition. (a) Toy sublibrary. (b) Plumbing sublibrary.

Fig. 12. Simultaneous recognition of seven models from a library of 20 models in a cluttered scene.
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puted by projecting model spin images onto library eigen-
spin images. Finally, model s-tuples are then stored in an
efficient closest point search structure.

At recognition time, a fraction of oriented points are
selected at random from the scene. For each scene ori-
ented point, its spin image is computed using the scene
data. Next, for each model, the scene spin image is pro-
jected onto the model’s eigen-spin images to obtain a
scene s-tuple. The scene s-tuple is then used as a query
point into the current model’s efficient closest point search
structure which returns a list of current model s-tuples
close to the scene s-tuple. These point matches are then
fed into the surface matching engine to find model/scene
surface matches.

3.3 Results
To test our recognition system we created a model library
containing 20 complete object models. The models in the
library are shown in Fig. 11; each was created by register-
ing and integrating multiple range views of the objects
[13]. Next, cluttered scenes were created by pushing ob-
jects into a pile and acquiring a range image with a K2T
structured light range finder. The scene data was then
processed to remove faces on occluding edges, isolated
points, dangling edges and small patches. This topological
filter was followed by mesh smoothing without shrinking
[25] and mesh resampling [16] to change the scene data
resolution to that of the models in the model library. In all
of the following results, the spin image generation pa-
rameters are: a bin size equal to mesh resolution, an image

Fig. 13. Simultaneous recognition of six models from a library of 20 models in a cluttered scene.
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width of 15 bins (225 bins per image), and a support angle
of 60 degrees.

Fig. 12 shows the simultaneous recognition of seven
models from the library of 20 models. In the top right of
the figure is shown the intensity image of the scene, and
in the top left is shown the scene intensity image with the
position of recognized models superimposed as white
dots. In the middle is shown a frontal 3D view of the scene
data, shown as wireframe mesh, and then the same view
of the scene data with models superimposed as shaded
surfaces. The bottom shows a top view of the scene and
models. From the three views it is clear that the models
are closely packed a condition which creates a cluttered
scene with occlusions. Because spin image matching has
been designed to be resistant to clutter and occlusion, our
algorithm is able to recognize simultaneously the seven
most prominent objects in the scene with no incorrect rec-
ognitions. Some of the objects present were not recognized
because insufficient surface data was present for match-

ing. Fig. 13 shows the simultaneous recognition of six ob-
jects from a library of 20 objects in a similar format to Fig. 12.
Fig. 14 shows some additional results using the different
libraries shown in Fig. 11. These results show that objects
can be distinguished even when multiple object of similar
shape appear in the scene (results B, D, F, G, H). They also
show that recognition does not fail when a significant
portion of the scene surface comes from objects not in the
model library (results B, C, D).

4 ANALYSIS OF RECOGNITION IN COMPLEX SCENES

Any recognition algorithm designed for the real world
must work in the presence of clutter and occlusion. In Sec-
tion 2, we claim that creating spin images of small support
will make our representation robust to clutter and occlu-
sion. In this section, this claim is verified experimentally.

We have developed an experiment to test the effectiveness
of our algorithm in the presence of clutter and occlusion.

Fig. 14. Additional recognition results using the 20-model library, plumbing library, and toy library shown in Fig. 11. Each result shows a scene
intensity image and a recognition result with recognized models overlaid on the scene surface mesh.
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Stated succinctly, the experiment consists of acquiring many
scene data sets, running our recognition algorithms on the
scenes, and then interactively measuring the clutter and oc-
clusion in each scene along with the recognition success or
failure. By plotting recognition success or failure against the
amount of clutter or occlusion in the scene, the effect of clut-
ter and occlusion on recognition can be determined.

4.1 Experiments
Recognition success or failure can be broken down into four
possible recognition states. If the model exists in the scene
and is recognized by the algorithm, this is termed a true-
positive state. If the model does not exist in the scene, and
the recognition algorithm concludes that the model does
exist in the scene or places the model in an entirely incor-
rect position in the scene, this is termed a false-positive state.

If the recognition algorithm concludes that the model does
not exist in the scene when it actually does exist in the
scene, this is termed a false-negative state. The true-negative
state did not exist in our experiments because the model
being searched for was always present in the scene.

In our experiment for measuring the effect of clutter
and occlusion on recognition, a recognition trial consists of
the following steps. First, a model is placed in the scene
with some other objects. The other objects might occlude
the model and will produce scene clutter. Next, the scene
is imaged, and the scene data is processed as described in
Section 3.3. A recognition algorithm that matches the
model to the scene data is applied and the result of the
algorithm is presented to the user. Using a graphical inter-
face, the user then interactively segments the surface
patch that belongs to the model from the rest of the sur-

Fig. 15. Recognition states versus clutter and occlusion for compressed and uncompressed spin images.
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face data in the scene. Given this segmentation, the
amounts of clutter and occlusion are automatically calcu-
lated as explained below. By viewing the model superim-
posed on the scene, the user decides the recognition state;
this state is then recorded with the computed clutter and
occlusion. By executing many recognition trials using dif-
ferent models and many different scenes, a distribution of
recognition state versus the amount of clutter and occlu-
sion in the scene is generated.

The occlusion of a model is defined as

occlusion
model surface patch area
total model surface area= -1 .                    (9)

Surface area for a mesh is calculated as the sum of the
areas of the faces making up the mesh. The clutter in the
scene is defined as

clutter
clutter points in relevant volume
total points in relevant volume= .                (10)

Clutter points are vertices in the scene surface mesh
that are not on the model surface patch. The relevant
volume is the union of the volumes swept out by each
spin image of all of the oriented points on the model sur-
face patch. If the relevant volume contains points that
are not on the model surface patch, then these points will

corrupt scene spin images and are considered clutter
points.

We created 100 scenes for analysis as follows. We se-
lected four models from our library of models (Fig. 11):

1)�bunny,
2)� faucet,
3)�Mr. Potato Head, and
4)�y-split.

We then created 100 scenes using these four models; each
scene contained all four models. The models were placed
in the scenes without any systematic method. It was our
hope that random placement would result in a uniform
sampling of all possible scenes containing the four ob-
jects. Using four models, we hoped to adequately sample
the possible shapes to be recognized, given that sam-
pling of all possible surface shapes is not experimentally
feasible.

4.2 Analysis
For each model, we ran recognition without compression
on each of the 100 scenes, resulting in 400 recognition trials.
The recognition states are shown in a scatterplot in the top
of Fig. 15. Each data point in the plot corresponds to a sin-
gle recognition trial; the coordinates give the amount of

Fig. 16. Recognition state probability versus occlusion for compressed and uncompressed spin images (left). Recognition state probability versus
clutter (right).
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clutter and occlusion and the symbol describes the recogni-
tion state. This same procedure using the same 100 scenes
was repeated for the matching spin images with compres-
sion (s/D = 0.1), resulting in 400 different recognition runs.
A scatterplot of recognition states for compressed spin im-
ages is shown at the bottom of Fig. 15. Briefly looking at
both scatterplots shows that the number of true-positive
states is much larger than the number of false-negative
states and false-positive state. Furthermore, as the lines in
the scatterplots indicate, no recognition errors occur below
a fixed level of occlusion, independent of the amount of
clutter.

Examining the scatterplots in Fig. 15, one notices that
recognition rate is effected by occlusion. At low occlusion
values, no recognition failures are reported, while at high
occlusion values, recognition failures dominate. This indi-
cates that recognition will almost always work if sufficient
model surface area is visible. The decrease in recognition
success after a fixed level of occlusion is reached (70 per-
cent) indicates that spin image matching does not work
well when only a small portion of the model is visible. This
is no surprise since spin image descriptiveness comes from
accumulation of surface area around a point. On the left in
Fig. 16 are shown the experimental recognition rates versus
scene occlusion. The rates are computed using a Gaussian
weighted running average (averaging on occlusion inde-
pendent of clutter level) to avoid the problems with bin-
ning. These plots show that recognition rate remains high
for both forms of compression until occlusion of around 70
percent is reached, then the successful recognition rate be-
gins to fall off.

Examining the experiment scatterplots in Fig. 15, one
notices that the effect of clutter on recognition is uniform
across all levels of occlusion until a high level of clutter is
reached. This indicates that spin image matching is inde-
pendent of the clutter in the scene. On the right in Fig. 16,
plots of recognition rate versus amount of clutter also show
that recognition rate is fairly independent of clutter. As
clutter increases, there are slight variations about a fixed
recognition rate. Most likely, these variations are due to
nonuniform sampling of recognition runs and are not ac-
tual trends with respect to clutter. Above a high level of
clutter, the successful recognitions decline, but from the
scatterplots we see that at high levels of clutter, the number

of experiments is small, so estimates of recognition rate are
imprecise.

In all of the plots showing the effect of clutter and occlu-
sion, the true-positive rates are higher for recognition with
spin images without compression when compared with the
true-positive rates for recognition with compression. This
validates the expected decrease in the accuracy of spin im-
age matching when using compressed spin images. How-
ever, it should be noted that the recognition rate for both
matching algorithms remain high. For all levels of clutter
and occlusion, matching without compression has an aver-
age recognition rate of 90.0 percent and matching with
compression has an average recognition rate of 83.2 per-
cent. Furthermore, the false-positives rate for both algo-
rithms are low and nearly the same.

The right graph in Fig. 17 shows the result of an experi-
ment that measured the average number of true positive
recognitions for ten scenes versus the number of models in
the model library. As the number of models in the library
increases, the number of models correctly recognized in-
creases linearly. This is caused by the model library con-
taining more and more of the models that are present in the
scene. The graph shows that matching without compres-
sion matches slightly more models than matching with 10:1
compression, a consequence of uncompressed spin images
being more discriminating.

The time needed to match a single scene spin image to
all of the spin images in the model library as the number of
models in the library increases is shown in the graph on the
left in Fig. 17. All times are real wall clock times on a Silicon
Graphics O2 with a 174-MHz R10000 processor. As ex-
pected, matching of spin images grows linearly with the
number of models in the model library because the number
of spin images being compared increases linearly with the
number of models. This is true of matching with compres-
sion and matching without compression; however, the
matching times with compression grow significantly slower
than the matching times without compression. With 20
models in the library, matching with 10:1 compression is 20
times faster than matching without compression. Since
there is only a slight decrease in recognition performance
when using compression (right in Fig. 17,) compressed spin
images should be used in recognition. Another factor in
matching time, is the number of points in the scene. To ob-

Fig. 17. Numbers of models recognized (a) and spin image matching time (b) versus library size for compressed and uncompressed spin images.
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tain the total match time for the algorithms, the match times
shown in Fig. 17 should be multiplied by the number of
points selected from the scene for matching.

5 CONCLUSION

We have presented an algorithm for simultaneous shape-
based recognition of multiple objects in cluttered scenes
with occlusion. Our algorithm can handle objects of general
shape because it is based on the spin image, a data level
shape representation that places few restrictions on object
shape. Through compression of spin images using PCA, we
have made the spin image representation efficient enough
for recognition from large model libraries. Finally we have
shown experimentally, that the spin image representation is
robust to clutter and occlusion. Through improvements and
analysis, we have shown that the spin image representation
is an appropriate representation for recognizing objects in
complicated real scenes.

Spin images are a general shape representation, so their
applicability to problems in 3D computer vision is broad.
This paper has investigated the application of spin images
to object recognition, however, other spin image applica-
tions exist. For instance, the general nature of spin images
makes them an appropriate representation for shape analy-
sis, the process that quantifies similarities and differences
between the shape of objects. Shape analysis can lead to
object classification, analysis of object symmetry and parts
decomposition, all of which can be used to make object rec-
ognition more efficient. Other possible applications of spin
images include 3D object tracking and volumetric image
registration.

There still exist some algorithmic additions which could
be implemented to make spin image matching more effi-
cient and robust. Some extensions currently being investi-
gated are multiresolution spin images for coarse to fine rec-
ognition, automated learning of descriptive spin images,
and improved spin image parameterizations.
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