Improvements on Automated Registration

CSc83020 Project Presentation
Cecilia Chao Chen
References

[1] Automated Feature-based Range Registration of Urban Scenes of Large Scale, Ioannis Stamos and Marius Leordeanu

Motivations

- Three phases of 3D rendering large scale scenes:
 - Segmentation, Registration, Texture Mapping
- Registration – an automated procedure in [1]
 - Pair-wise match two lines
 - Compute R, T and evaluate them
 - Keep the best R and T
 - Refine best R, T
Motivations

- Problems of automated registration
 - Mismatching

- Overlapping area

- Wrong rotation

- Wrong translation
Motivations

- Other problems
 - Slow for images with many parallel lines
 - lines in same direction => many possible R, T => long time to check
 - Error accumulation
 - I_1-I_2, I_2-I_3, I_3-I_4, I_4-I_5 pair-wise image registration
 - Err1, err2, err3, err4 from each registration above
 - $I_5-I_1 == err$?
Implementations

- Improving the correctness
 - User interaction

Automatic registration and display result → Is this correct? (Yes/No)

Hand-pick 3 point pairs to register → Is any correct? (Yes/No)

Display other best match results
Results

- Hard to auto-register poorly overlapping images

Different viewpoints \rightarrow different details \rightarrow no matching lines in overlapping area
Results

- Hand-picking results in good registrations
Results

- More hand-picking results

wrong translation

correct registration

9
Future Implementations

- Improving speed
 - Cluster lines and find major directions
 - Estimate R
 - Compute T similarly to the original method
 - Expected to be much faster: $O(m+n)$ vs. $O(mn)$

- Improving global performance
 - Combine information after each registration
 - Global optimization by minimizing error function

- Build user interface