
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Integrating Automated Range Registration with
Multiview Geometry for the Photorealistic Modeling

of Large-Scale Scenes

Ioannis Stamos†, Lingyun Liu†, Chao Chen†, George Wolberg‡, Gene Yu‡, Siavash Zokai††
†Dept. of Computer Science, Hunter College / CUNY, New York, NY, USA; and

‡Dept. of Computer Science, City College of New York / CUNY, New York, NY, USA; and
††Brainstorm Technology LLC, New York, NY, USA

E-mail: istamos@hunter.cuny.edu, lingyun77@gmail.com, cchen@gc.cuny.edu,
wolberg@cs.ccny.cuny.edu

The photorealistic modeling of large-scale scenes, such as urban structures, re-
quires a fusion of range sensing technology and traditional digital photography. This
paper presents a system that integrates automated 3D-to-3D and 2D-to-3D registra-
tion techniques, with multiview geometry for the photorealistic modeling of urban
scenes. The 3D range scans are registered using our automated 3D-to-3D registra-
tion method that matches 3D features (linear or circular) in the range images. A
subset of the 2D photographs are then aligned with the 3D model using our au-
tomated 2D-to-3D registration algorithm that matches linear features between the
range scans and the photographs. Finally, the 2D photographs are used to generate a
second 3D model of the scene that consists of a sparse 3D point cloud, produced by
applying a multiview geometry (structure-from-motion) algorithm directly on a se-
quence of 2D photographs. The last part of this paper introduces a novel algorithm
for automatically recovering the rotation, scale, and translation that best aligns the
dense and sparse models. This alignment is necessary to enable the photographs to
be optimally texture mapped onto the dense model. The contribution of this work is
that it merges the benefits of multiview geometry with automated registration of 3D
range scans to produce photorealistic models with minimal human interaction. We
present results from experiments in large-scale urban scenes.
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1. INTRODUCTION

The photorealistic modeling of large-scale scenes, such as urban structures, requires
a combination of range sensing technology with traditional digital photography. A sys-
tematic way for registering 3D range scans and 2D images is thus essential. This paper
presents a system that integrates multiview geometry and automated 3D registration tech-
niques for texture mapping 2D images onto 3D range data. The novelty of our approach
is that it exploits all possible relationships between 3D range scans and 2D images by per-
forming 3D-to-3D range registration, 2D-to-3D image-to-range registration, and structure
frommotion. Several papers, including this one, provide frameworks for automated texture
mapping onto 3D range scans [23, 29, 42, 46, 53]. These methods are based on extracting
features (e.g., points, lines, edges, rectangles or rectangular parallelepipeds) and matching
them between the 2D images and the 3D range scans. Our approach provides a solution
of increased robustness, efficiency and generality with respect to previous methods. Our
contribution is discussed in Sec. 2.
Despite the advantages of feature-based texture mapping solutions, most systems that

attempt to recreate photorealistic models do so by requiring the manual selection of fea-
tures among the 2D images and the 3D range scans, or by rigidly attaching a camera onto
the range scanner and thereby fixing the relative position and orientation of the two sen-
sors with respect to each other [16, 36, 41, 48, 52]. The fixed-relative position approach
provides a solution that has the following major limitations:

1. The acquisition of the images and range scans occur at the same point in time and
from the same location in space. This leads to a lack of 2D sensing flexibility since the
limitations of 3D range sensor positioning, such as standoff distance and maximum dis-
tance, will cause constraints on the placement of the camera. Also, the images may need
to be captured at different times, particularly if there were poor lighting conditions at the
time that the range scans were acquired.
2. The static arrangement of 3D and 2D sensors prevents the camera from being dynam-

ically adjusted to the requirements of each particular scene. As a result, the focal length
and relative position must remain fixed.
3. The fixed-relative position approach cannot handle the case of mapping historical

photographs on the models or of mapping images captured at different instances in time.
These are capabilities that our method achieves.

In summary, fixing the relative position between the 3D range and 2D image sensors
sacrifices the flexibility of 2D image capture. Alternatively, methods that require manual
interaction for the selection of matching features among the 3D scans and the 2D images
are error-prone, slow, and not scalable to large datasets. Laser range scanning is a labori-
ous, tedious, time consuming, and costly operation that precludes easy and cost-effective
recapturing of data. Therefore, it is best to separate the geometry capture mode from the
image acquisition mode so that the latter can be done quickly with fairly constant lighting
conditions. These limitations motivate the work described in this paper, making it essential
for producing photorealistic models of large-scale urban scenes.
The texture mapping solution described in this paper merges the benefits of multiview

geometry with automated 3D-to-3D range registration and 2D-to-3D image-to-range reg-
istration to produce photorealistic models with minimal human interaction. The 3D range
scans and the 2D photographs are respectively used to generate a pair of 3D models of the
scene. The first model consists of a dense 3D point cloud, produced by using a 3D-to-3D
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AUTOMATED REGISTRATION 3

registration method that matches 3D lines in the range images to bring them into a common
reference frame. The secondmodel consists of a sparse 3D point cloud, produced by apply-
ing a multiview geometry (structure-from-motion) algorithm directly on a sequence of 2D
photographs to simultaneously recover the camera motion and the 3D positions of image
features. This paper introduces a novel algorithm for automatically recovering the similar-
ity transformation (rotation/scale/translation) that best aligns the sparse and dense models.
This alignment is necessary to enable the photographs to be optimally texture mapped onto
the dense model. No a priori knowledge about the camera poses relative to the 3D sensor’s
coordinate system is needed, other than the fact that one image frame should overlap the
3D structure (see Sec. 4). Given one sparse point cloud derived from the photographs and
one dense point cloud produced by the range scanner, a similarity transformation between
the two point clouds is computed in an automatic and efficient way. The framework of
our system is shown in Fig. 1. Each of the framework elements listed below, is a distinct
system module in Fig. 1.

• A set of 3D range scans of the scene is acquired and co-registered to produce a dense
3D point cloud in a common reference frame (Sec. 3).
• An independent sequence of 2D images is gathered, taken from various viewpoints

that do not necessarily coincide with those of the range scanner. A sparse 3D point cloud
is reconstructed from these images by using a structure-from-motion (SFM) algorithm
(Sec. 5).
• A subset of the 2D images are automatically registered with the dense 3D point cloud

acquired from the range scanner (Sec. 4).
• Finally, the complete set of 2D images is automatically aligned with the dense 3D

point cloud (Sec. 6). This last step provides an integration of all the 2D and 3D data in
the same frame of reference. It also provides the transformation that aligns the models
gathered via range sensing and computed via structure from motion.

2. RELATED WORK

A robust method that extracts distinguishable features from range images is very impor-
tant for our method. Previous range image segmentation techniques include edge detection
[3, 49], region growing [5, 37], and polynomial surface fitting [5, 12]. Most of these meth-
ods provide edge maps and/or regions expressed as polynomial functions. This is useful
for object modeling and reconstruction, but may not be suitable for feature matching. Our
method detects precise edges and extracts geometric features with concise descriptors that
make them appropriate for feature matching.
Iterative Closest Point (ICP) is one of the most popular range registration algorithms

[6, 39]. ICP provides very accurate results but requires a good initial guess of the registra-
tion transformation. We, on the other hand, utilize ICP as a post-processing step after our
automated method brings scans into alignment. A method that does not require knowledge
of an initial registration transformation is presented in [21, 25] (spin images). The spin
images approach does not rely on features of specific geometric type, but is sensitive to
varying scan resolutions. Furthermore, the extracted point signatures have local support,
the extent of which is specified by the user. There are many approaches for the solution of
the pose estimation problem from both point correspondences [33, 38] and line correspon-
dences [11, 20], when a set of matched 3D and 2D points or lines are known, respectively.



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4 STAMOS, LIU, CHAO, WOLBERG, YU, ZOKAI

2D-image to 3D-range Registration

Structure From Motion

Dense Point Cloud + Sparse Pose Sparse Point Cloud + Dense PoseUnregistered Point Clouds

3D-range to 3D-SFM Registration

Texture

Mapping

Two Registered Point Clouds Final Output

3D-range to 3D-range Registration

2D IMAGES

3D RANGE DATA (LASER SCANS)

Point Cloud

FIG. 1. System framework. Several registered range scans of Shepard Hall (CCNY) constitute a dense
3D point cloud modelMrange shown in the leftmost column. The five white dots correspond to the locations of
five of the 26 color images (shown as thumbnails on top row) that are independently registered with the model
Mrange via a 2D-to-3D image-to-range registration algorithm. The rightmost image of the second row depicts
the 3D model Msfm produced by SFM. The points of Msfm as well as all the recovered camera positions for
the sequence of 2D images that produced Msfm are shown as red dots in the figure. Since SFM does not recover
scale,Mrange andMsfm are not registered when brought to the same coordinate system, as shown in the second
row. The 3D range modelMrange overlaid with the 3D modelMsfm is shown in the third row of the figure after
a 3D-range to 3D-SFM registration module aligns them together. The recovered camera positions from SFM can
now be used to project the26 color images ontoMrange , which now properly sits in theMsfm coordinate system,
to produce the richly textured 3D model (Final Output) shown in the right column.
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AUTOMATED REGISTRATION 5

In the early work of [15], the probabilistic RANSAC method was introduced for automati-
cally computing matching 3D and 2D points. RANSAC is a robust method and can handle
a large number of outliers. It is possible that the method may fail if presented with degen-
erate data configurations. In such cases, RANSAC may fit the model to outliers instead of
inliers. Solutions in automated matching of 3D with 2D features in the context of object
recognition and localization include [7, 18, 22, 24, 26, 50]. Very few methods, though, at-
tack the problem of automated alignment of images with dense point clouds derived from
range scanners. This problem is of major importance for automated photorealistic recon-
struction of large-scale scenes from range and image data. In [29, 42] two methods that
exploit orthogonality constraints (rectangular features and vanishing points) in man-made
scenes are presented. The methods can provide excellent results, but will fail in the ab-
sence of a sufficient number of linear features. Ikeuchi [23], on the other hand, presents an
automated 2D-to-3D registration method that relies on the reflectance range image. How-
ever, the algorithm requires an initial estimate of the image-to-range alignment in order
to converge. Finally, [46] presents a method that works under specific outdoor lighting
situations. A system whose goals are very similar to ours is described in [53]. In that
work, continuous video is aligned onto a 3D point cloud obtained from a 3D sensor. First,
an SFM/stereo algorithm produces a 3D point cloud from the video sequence. This point
cloud is then registered to the 3D point cloud acquired from the range scanner by applying
the ICP algorithm [6]. One limitation of this approach has to do with the shortcomings of
the ICP algorithm. In particular, the 3D point clouds must be manually brought close to
each to yield a good initial estimate that is required for the ICP algorithm to work. The
ICP may fail in scenes with few discontinuities, such as those replete with planar or cylin-
drical structures. Also, in order for the ICP algorithm to work, a very dense model from
the video sequence must be generated. This means that the method of [53] is restricted
to video sequences, which limits the resolution of the 2D imagery. Finally, that method
does not automatically compute the difference in scale between the range model and the
recovered SFM/stereo model.
Our contributions can be summarized as follows:

• We automatically register the 3D range scans by matching linear and circular features.
• Like [53], we compute a model from a collection of images via SFM. Our method for

aligning the range and SFM models, described in Sec. 6, does not rely on ICP and thus
does not suffer from its limitations.
• We are able to automatically compute the scale difference between the range and SFM

models.
• We perform 2D-to-3D image-to-range registration [28, 29] for a few (at least one)

images of our collection. This feature-based method provides excellent results in the pres-
ence of a sufficient number of linear features. Therefore, the images that contain enough
linear features are registered using that method. The utilization of the SFM model allows
us to align the remaining images with a method that involves robust point (and not line)
correspondences.
• We generate an optimal texture mapping result by using contributions of all 2D im-

ages.

3. 3D-TO-3D RANGE REGISTRATION
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6 STAMOS, LIU, CHAO, WOLBERG, YU, ZOKAI

The first step is to acquire a set of range scans Si(i = 1, . . . , K) that adequately covers
the 3D scene. The laser range scanner used in our work is a Leica HDS 2500 [27], an active
sensor that sweeps an eye-safe laser beam across the scene. It is capable of gathering
one million 3D points at a maximum distance of 100 meters with an accuracy of 5mm.
Each 3D point is associated with four values (x, y, z, l)T , where (x, y, z)T is its Cartesian
coordinates in the scanner’s local coordinate system, and l is the laser intensity of the
returned laser beam.
Each range scan then passes through an automated segmentation algorithm [43] to ex-

tract a set of major 3D planes and a set of geometric 3D lines Gi from each scan i =

1, . . . , K . The geometric 3D lines are computed as the intersections of segmented planar
regions and as the borders of the segmented planar regions. In addition to the geometric
linesGi, a set of reflectance 3D lines Li are extracted from each 3D range scan. The range
scans are registered in the same coordinate system via the automated 3D-to-3D feature-
based range-scan registration method of [9, 44]. The method is based on an automated
matching procedure of linear features of overlapping scans. As a result, all range scans are
registered with respect to one selected pivot scan. We have also developed a circle-based
registration method [10, 8] that we describe in the following sections. The set of registered
3D points from theK scans is calledMrange (Fig. 1).

3.1. 3D Edge Detection

Each range scan Si is represented as a 2D array of 3D points {P(k, l), k = 1 . . .W, l =

1 . . .H}1. Two such range images are shown in Fig. 2. Within each range image we
consider 3D edges of the following two types: (a) edges caused by surface normal dis-
continuities (roof edges), and (b) edges caused by depth discontinuities (step edges). Step
edges are further divided into edges caused by one surface occluding another (occlusion
edges), and edges caused by 3D surface boundaries (boundary edges).

(a) (b)

FIG. 2. Two range images of the interior of the Grand Central Terminal, NYC.

1The indices k, l define the position and orientation of the laser-beam which produces the 3D point P(k, l).
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AUTOMATED REGISTRATION 7

We briefly summarize the algorithm for detecting edges of various types. First the sur-
face orientation change at each point is decomposed into variations along four grid di-
rections. This grid is the 2D structured grid on which each range image is organized (as
mentioned in the previous paragraph). We thus obtain four values at every 3D point, that
we call directional variation values. In the structured 2D grid we form four 2D images.
The intensity value at each pixel is the surface variation (we define it properly in the next
paragraphs) of the corresponding 3D point. We call the four 2D images directional varia-
tion images. 2D Canny-based edge detection is performed on each image. Finally the 2D
edges are combined and projected2 back to the 3D range image space, providing the final
3D edges due to surface normal discontinuities or depth discontinuities.
The directional variation images are obtained as follows: At each point P , let B1 and

B2 be its two neighbors along one of the four grid directions (see Fig. 3(e)). The vector
from P to B1 is V1, and from P to B2 is V2. The variation at each direction for point P
is defined as Angle(V1,V2)/π. This provides a value in (0, 1] as the intensity value for
this 2D directional variation image.
2D edge detection is performed on each of the four directional variation images. First,

Gaussian smoothing is applied to suppress noise. Then, gradients along x and y direction,
gx and gy, are computed at each pixel using Sobel operators. With gx and gy we compute
the gradient magnitude g, and determine the edge direction at each point as one the fol-
lowings: horizontal, vertical, positive diagonal and negative diagonal. Our algorithm then
carries out hysteresis thresholding followed by non-maximum suppression to obtain thin
continuous edges.
To this point, we have detected all roof and step edges. However, occlusion edges need

to be identified and only the foreground edges should be kept in order to reflect the true
geometry of the scene (similar to the shadows in 2D images). The earlier step of non-
maximum suppression votes off edge points based on magnitude, regardless of whether it
is on a foreground surface or a background surface. To find occlusion edges, we map the
2D edge points back to 3D range scan and label a 3D point P if its corresponding pixel p
is an edge point. For each edge point P , we check its two neighbors perpendicular to its
edge direction. If one of these neighbors is much closer to the scanner and is not an edge
point, we mark this neighbor to be a foreground edge point and mark P as non-edge.
Next we remove corner points in order to break the connections between edges of dif-

ferent directions, thereby simplifying edge linking and fitting. Corner points are detected
by applying Harris corner detector to every edge point, and testing whether there are more
than one principle directions formed by all edge points in its local neighborhood.
The last step is the combination of four edge maps by taking the union of all edge points.

From the combined edge map, isolated edge points are deleted, and short gaps (1 or 2
pixels) are filled along the local edge direction. Then continuous edge points are linked
by tracing along edge directions. The edge linking utilizes the structured grid on which
the range image is represented for resolving neighbors. Only long edges (30 points or
more) are being kept for later processing. Fig. 3(f) shows The final combined edge map, in
which different colors indicate different edge directions, each detected by one directional
variation image.

2Each pixel p(k, l) in the grid-point image corresponds to a 3D point P(k, l).



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8 STAMOS, LIU, CHAO, WOLBERG, YU, ZOKAI

(a) (b)

(c) (d)

(e) (f)

FIG. 3. Edge points of range images of Fig. 2(a). Note that the color at each point
(red/green/yellow/magenta) indicates its edge direction (see text), hence the same point usually has
the same color in the four edge images. (a)-(d) Edge points detected from Fig. 2(a),(b) respectively.
(e) Four grid directions: 1-Horizontal, 2-Vertical, 3-Positive Diagonal, 4-Negative Diagonal. B1 and
B2 are P ’s neighbors along direction 1. (f) Combined edge image from (a)-(d).
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AUTOMATED REGISTRATION 9

3.2. 3D Feature Extraction

Our linear feature extraction is described in [9, 44]. In this section we present our
algorithms for detecting circular features in 3D space. This is necessary in those cases
where linear features are inadequate to register the circular arcs that may be present in
the scene. Although the ellipse also exists in our scenes, it is less robust to extract due to
its feature of having two focai. Any error or noise in edge point extraction might greatly
affect the parameters of the fitted ellipse, and further lead to incorrect computation on
transformation.
Each linked set of edges describes a curve in 3D space. For each linked edge from

Fig. 3(e), its best-fit line direction Vmax and best-fit plane normal Vmin are computed.
A curve is considered linear if the line fitting error (average distance of all points to the
fitted line) is less than a threshold 0.03m (approximate distance between two neighboring
3D range points). For nonlinear curves, the average perpendicular distance of all points to
the fitted plane is used to discard 3D curves that are non planar (a generous threshold of
0.5m is used). For each of the remaining planar curves, all points are projected onto their
fitted plane. After this process, the 3D curve becomes a set of 2D points in the 2D space Π

of the fitted plane. Circle fitting is done in this space.
Taking the common approach of least square fitting3, we compute the center (a, b) and

radius r of the circle by finding an approximate null-vector of a n × 4 design matrix,
where n is the number of points on the curve. Consider the circle function (x − a)2 +

(y − b)2 − r2 = 0. It can be written as x2 + y2 − 2ax − 2by + a2 + b2 − r2 = 0.
Let (xi, yi) be the 2D coordinates of all points pi(i = 1, ..., n) on the curve. Then the
circle equation for all points can be expressed as a multiplication of the n × 4 matrix
M = [M1 M2 ... Mn]T where Mi = [x2

i + y2
i − 2xi − 2yi 1] (for i = 1, ..., n),

with unknown vector [1 a b a2 + b2 − r2]T . The null-vector of the design matrix,
computed by SVD, provides the solution. Finally, the circle fitting error is computed as

cerr =

√
Σn

i
(distance(pi−center)−r)2

n
. The ratio ( cerr

r
) must fall below a threshold (0.02)

to verify that the planar 3D curve is a circular arc. Finally, the center of the fitted circle is
converted back from Π to the 3D space. We now have three parameters to represent each
oriented 3D circle: 3D center point, radius, and plane normal. Fig. 4 shows all the circles
with radii between 3.0m and 5.0m. These are the ones most useful for matching in the next
step. In the execution, we detect all circles with radii between 2.0m and 20.0m.

3.3. Feature Matching

Our linear feature matching is described in [9, 44]. In this section we present our algo-
rithms for matching circular features in 3D space.
After the oriented 3D circles are extracted from range images, possible matchings be-

tween them are hypothesized. The computed transformations are graded using surface
consistency[21] and average point distance in the overlapping area between the scans.
Similarity of radii, orientation and relative position between pairs of circles is utilized

in the matching phase. In particular, consider a pair of circles (C1, C2) from scan S1 and
another pair of circles (C′1, C

′
2) from scan S2. The pairs would be considered as matching

iff

1. Circles C1, C
′
1 have equal radii within a threshold (maximum difference of 0.1m);

3A 3D hough transform method will be inefficient, since the radii of circles are unknown and may vary wildly.
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(a) (b)

FIG. 4. Circles extracted from the range images of Figs. 2(a) and 2(b), respectively. All edge
points are in black, and all fitted circular arcs are represented with colored full circles, with green
lines indicating their normals. Note that three circular windows are detected in both images. The
images are rotated to the best angle to observe all circles. Therefore some of them appear as ellipses
due to the viewing direction.

2. Circles C2, C
′
2 have equal radii within a threshold (maximum difference of 0.1m);

3. The distance between the centers of C1, C
′
1 equals the distance between the centers

of C2, C
′
2 within a threshold (maximum difference of 0.2m);

4. The angle between the normals of C1, C
′
1 equals the angle between the normals of

C2, C
′
2 within a threshold (maximum difference of 10o).

Furthermore, consider a pair of circles (C1, C2) from scan S1 and another pair of circles
(C′1, C

′
2) from scan S2 that could be considered a valid match according to the previous

definitions. A transformation (rotationR followed by a translation T ) can be computed by
converting the correspondence of a pair of oriented circles to a pair of 3D oriented lines.
This approach leads to a robust transformation computation, since it is based on relative
position and orientation of the features rather than exact position and orientation of each
feature. In particular, two cases are considered:

Case 1: Circles (C1, C2) have parallel normals V1 and V2 (the same is true for the
normals V′

1 and V′
2 of circles (C′1, C

′
2)) (Fig. 5(a)). Let us consider the oriented line D

that connects the centers of (C1, C2) and the oriented line D′ that connects the centers of
(C′1, C

′
2). If D is not parallel to V1 (that means that D′ is not parallel to V′

1), the match
of the oriented line D with D′ and V1 with V′

1 can provide a reliable transformation
(closed form formula [44]). Otherwise (D is parallel to V1) a reliable transformation can
not be computed. Note that if the length ofD (orD′) is below an empirically determined
threshold (it is 5m for the Grand Central Terminal dataset) the above computation is not
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AUTOMATED REGISTRATION 11

performed (that means that the candidate match is discarded). This effectively improves
the performance by not considering pairs of spatially close features4.

Case 2: Circles (C1, C2) do not have parallel normalsV1 andV2 (the same is true for
the normals V′

1 and V′
2 of circles (C′1, C

′
2)) (Fig. 5(b)). Then, the two pairs of oriented

lines (V1,V2) and (V′
1,V′

2) are used for the computation of a reliable transformation
(closed form formula [44]).

(a) (b)

FIG. 5. Two cases of matching circle pairs. The dash line separates scan S1 from S2. The radii
and relative position of the two circles from S1 must be similar to those from S2. (a) Case 1: two
circles have parallel normals. V1, D and V ′

1 , D′are used to compute transformation. (b) Case 2: two
circle normals are not parallel. V1, V2 and V ′

1 , V ′

2are used to compute transformation.

From each valid matching circle pairs, a candidate transformation is computed as de-
scribed above. Each transformation is verified for correctness as follows. Based on the fact
that overlapping images are captured from nearby positions, we discard all rotation matri-
ces with diagonal elements smaller than 0.7 (allowing 45o tilting of the range scanner about
each of its x/y/z axes). Note that this step reduces the number of possible transformations
and thus speeds up the algorithm, but is not otherwise necessary. Then we test whether
the transformation causes surface inconsistency [21]. Finally, from all verified transforma-
tions, the one achieving the smallest average distance between overlapping range points is
chosen as the best.5

3.4. Experimental Results

Our automated method is used for registration of the interior scans of Grand Central
Terminal in NYC (a large-scale landmark urban structure). The best transformation of the
two corner scans of Fig. 2 provides a registration error (average point distance in the 55.7%

overlapping area) of 0.95cm. Within a few iterations of ICP an optimal transformationwith
a registration error of 0.90cm is obtained (Fig. 6).
Also, we registered other scans of this hall with the same technique. The entire hall

is roughly in rectangular shape with an arched ceiling. Fig. 7 shows a few typical scans
on the front wall ((a)(c)) and the side wall ((e)(g)), together with circles extracted from
them. Note that the lower parts of the walls (e.g.(c)(g)) contain lines and planes, and are
therefore registered with our linear-feature based technique [9, 44]. The upper regions with

4Our segmentation, as seen in Fig. 4, produces many similar spatially close circles. We decided not to average
them in order not to decrease accuracy.

5Note that an approach similar to association graphs [1] would generate a very large search space.
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(a) (b)

FIG. 6. Registered images of Figs. 2(a) and 2(b). They are colored to highlight overlapping
area. (a) All image points. (b) Edge points at overlapping area.

very few linear features, e.g.(a)(e), are registered with their lower neighboring scans (c)(g)
respectively, by matching overlapping circular windows.
In Fig. 9, registered edge points from 23 scans are visualized. There are another 14

scans not shown for clarity of presentation. Among all 37 scans, 20 of them are lower
parts registered with lines, 13 of them are the upper parts registered with their lower neigh-
bor scans based on overlapping circular windows. Three scans are manually registered,
because they are cylindrical ceiling patches without any distinguishing geometric shape
information. In Table 1 we report the performance of 13 registrations based on circles.
When registering the last two pairs, a long execution time is experienced due to a large
number of valid transforms from the precisely extracted circles around the window frame
(as in Fig. 7(b)(d)). To avoid unnecessary computations, we set the program to terminate
when the average distance falls below 0.03cm (approximate distance between two neigh-
boring points). The values in columns RT, Dist match, Time are therefore recorded up to
the point when an accurate enough result is reached. In Table 2 we report the performance
of line-based registration [9, 44] in the lower part of the building. In Fig. 8, more results
are shown, including registered scenes, edge points, and part of a 3D model constructed
using the registered range points.

4. 2D-TO-3D IMAGE-TO-RANGE REGISTRATION

We present our automated 2D-to-3D image-to-range registration method used for the
automated calibration and registration of a single 2D image In with the 3D range model
Mrange . The computation of the rotational transformation between In and Mrange is
achieved by matching at least two vanishing points computed from In with major scene di-
rections computed from clustering the linear features extracted fromMrange . The method
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 7. Four side wall scans (left column), extracted edges and fitted circles (right column).
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TABLE 1
Experimental results of circle-based 3D-to-3D registration. Grand Central Terminal

dataset. Columns: Number of circles in images ({left, right}); Number of
candidate transformations; Average point distance assuming best

transformation after circle-matching; Average point
distance after ICP optimization; Percentage of

overlap; Execution time, including
circle extraction and matching (on a
Linux-based 2GHz Xeon-Processor

with 2GB of RAM).

Circles RT Dist match Dist icp Overlap Time

{26, 24} 544 0.95 cm 0.90 cm 55.7% 6 min

{24, 39} 980 1.11 cm 1.00 cm 29.1% 9 min

{21, 39} 15 3.42 cm 1.28 cm 16.1% 1 min

{24, 20} 748 2.13 cm 0.77 cm 38.4% 7 min

{13, 30} 126 2.01 cm 0.84 cm 28.9% 2 min

{21, 26} 534 1.68 cm 0.90 cm 35.5% 6 min

{23, 11} 29 4.26 cm 0.87 cm 28.7% 1 min

{14, 31} 18 2.65 cm 0.93 cm 27.8% 2 min

{31, 13} 58 2.34 cm 0.98 cm 23.0% 2 min

{37, 26} 67 3.83 cm 0.87 cm 37.2% 2 min

{23, 35} 310 1.20 cm 0.84 cm 26.7% 7 min

{49, 41} 3054 2.81 cm 1.02 cm 38.7% 58 min

{50, 38} 931 1.83 cm 0.92 cm 44.6% 10 min
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TABLE 2
Experimental results of line-based 3D-to-3D registration [9, 44]. Grand Central

Terminal dataset. Columns: Number of lines in images ({left, right});
Number of matching line-pairs before ICP; Average point distance

assuming best transformation from line-based matches;
Number of matching line-pairs after ICP;

Average point distance after ICP
optimization; Execution time, for line
matching (on a Linux-based 2GHz
Xeon-Processor with 2GB of RAM).

Line Pairs N Dist match N Dist icp Time

{318, 214} 5 2.31 cm 8 0.934 cm 1 sec

{318, 261} 19 2.16 cm 21 1.02 cm 10 sec

{261, 239} 13 1.51 cm 13 1.14 cm 10 sec

{239, 236} 22 1.05 cm 22 0.988 cm 10 sec

{241, 230} 3 2.26 cm 2 1.30 cm 9 sec

{241, 230} 3 1.53 cm 3 1.33 cm 10 sec

{230, 175} 1 2.66 cm 2 1.49 cm 11 sec

{175, 175} 16 1.05 cm 17 0.932 cm 10 sec

{175, 247} 2 3.32 cm 4 0.981 cm 9 sec

{262, 175} 2 3.37 cm 4 1.39 cm 10 sec

{247, 262} 5 2.97 cm 10 1.04 cm 9 sec

{262, 275} 16 2.00 cm 18 1.04 cm 10 sec

{275, 254} 11 1.15 cm 11 1.08 cm 10 sec

{194, 262} 2 3.79 cm 8 1.10 cm 11 sec

{198, 239} 10 3.13 cm 19 1.39 cm 12 sec

{253, 230} 2 2.26 cm 2 1.19 cm 12 sec
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(a) (b)

(c) (d)

FIG. 8. Registration results. (a) Four out of the 37 automatically registered scans shown for
clarity. (b) Edge points of (a). Four colors represent edge points from four scans. (c) Eight out of
the 37 automatically registered scans shown for clarity. (d) 3D mesh model generated by the Ball
Pivoting Algorithm [4]. The smooth ceiling implies the registration is tight and seamless.

is based on the assumption that the 3D scene contains a cluster of vertical and horizontal
lines. This is a valid assumption in urban scene settings.
The internal camera parameters consist of focal length, principal point, and other param-

eters in the camera calibration matrix K [17]. They are derived from the scene’s vanishing
points, whereby the 2D images are assumed to be free of distortion after we remove lens
deformations, as described in [30]. Finally, the translation between In and Mrange is
computed after 2D and 3D lines from the 2D image and 3D model and are extracted and
automatically matched. With this method, a few 2D images can be independently regis-
tered with the modelMrange . The algorithmwill fail to produce satisfactory results in parts
of the scene where there is a lack of 2D and 3D features for matching. Also, since each
2D image is independently registered with the 3D model, valuable information that can
be extracted from relationships between the 2D images (SFM) is not utilized. In order to
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FIG. 9. Registered edges of 23 scans, with color indicating scans from upper parts (blue) and
lower parts (red). The other 14 scans are not displayed for clarity of presentation; these scans com-
pose a side wall closer to our point of view and symmetric to the wall being displayed. Tables 1 &
2 report the registration performance for the upper (circle-based registration) and lower (line-based
registration) parts.

solve the aforementioned problems, an SFM module (Sec. 5) and final alignment module
(Sec. 6) has been added into the system. These two modules increase the robustness of the
reconstructed model, and improve the accuracy of the final texture mapping results. There-
fore, the 2D-to-3D image-to-range registration algorithm is used in order to register a few
2D images (five shown in Fig. 1) that produce results of high quality. The final registration
of the 2D image sequence with the range modelMrange is performed after SFM is utilized
(Sec. 5).
In this section, we present a system that can automatically register 2D images with 3D

range data at interactive rates. Our contributions with respect to 2D-to-3D registration can
be summarized as follows:

• We have developed a working system that is able to independently register 2D images
to 3D models at interactive rates. This system requires minimal user interaction. Note that
after a few 2D images are registered to the 3D model the multiview geometry approach
(Sec. 5) is utilized for registering all images with the 3D range model.
• The whole space of possible matches between 3D and 2D linear features is explored

efficiently (unlike probabilistic methods like [42]). That improves the possibility of con-
vergence of our algorithm.
• Earlier systems ([29, 42]) require the extraction of major facades, rectangles, or other

higher-order structures from the 2D and 3D datasets. Our new method, on the other hand,
utilizes 3D and 2D linear features for matching without significant grouping. This in-
creases the generality of our algorithm since we make fewer assumptions about the 3D
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scene. Scenes with various layers of planar facades, or without clear major facades can
thus be handled.

• This paper’s method utilizes vanishing points and major 3D directions, but it does not
require them to be orthogonal as most earlier methods assume.

4.1. 3D Feature Extraction for 2D-to-3D Registration

The range-image acquisition process and segmentation is described in Sec. 3. As we
described in that section, all range scans are registered with respect to one selected pivot
scan, in the scene’s coordinate system. The 3D line extraction step is based on the seg-
mentation method of [43], whereas the major directions clustering is based on [29]. (Note
that if 3D information is provided in terms of a CAD model, then the 3D line extraction
step is trivial.) The result of this process is a set of line clusters L3D. Each line in a cluster
has similar orientation as every other line in the same cluster. The set of line clusters are
then sorted based on the number of lines in each cluster. We do not assume knowledge
of vertical or horizontal directions for the line clusters as in our previous method [29].
Each 3D line is thus associated with a cluster id, e.g. for the 3D lines in cluster L3D

i , their
cluster id is i. In the next step, 3D features are extracted. First, an initial user-defined
radius (e.g. 0.1m) is assigned to each 3D line. Then, a line merging step generates the final
3D features. This reduces the number of features, and thus increases the efficiency of the
matching stage (Sec. 4.3). In this step, each pair of 3D lines (la, lb) with the same cluster
id are merged into a new line lc (Fig. 10) iff a) the distance between them are smaller than
the sum of their radii, and b) their projections on lc overlap. The merging procedure is
continued until there are no two remaining 3D lines that can be merged. The final result is
a set of 3D lines, each of which is associated with a cluster id and radius.

4.2. 2D Feature Extraction, Internal Camera Calibration, & Rotation

Computation

The internal camera parameters (focal length and principal point) of the camera sensor
can be calculated from one 2D image if the image contains at least two vanishing points
(i.e. the 3D scene that the image is viewing has at least two major scene directions). We
use our previously developed robust methods to generate and cluster 2D lines from a 2D
image [42]. The result is a set of major vanishing pointsVP = {VP1,VP2, · · · ,VPn}.
Using the methods described in [42] we can compute the center of projection COP =

[Cx, Cy, Cz ]
T (effective focal length and principal point expressed in pixels) by utilizing

three orthogonal vanishing points. In [29] we described an iterative method for estimating
the internal calibration parameters from two orthogonal vanishing points.
In this section we present an additional method [28] for the calculation of the effective

focal length f and of the rotationR. We are using two vanishing points and two major 3D
directions. We, however, do not assume that these directions are orthogonal to each other.
Orthogonality is prominent in urban scenes, but is not always present. Our method starts
with an initial estimate finit of the effective focal length, and of the principal point Pinit.
finit is included in the Exif meta-data, information that is now provided by most digital
cameras. Pinit is estimated by the center of the image. Based on these estimates an initial
center of projectionCinit is determined. This is the origin of the camera coordinate system
(Fig. 11). Let us consider a vanishing pointVi extracted from a 2D image. The 3D coordi-
nates ofVi in the camera coordinate system are [(Vi)x−(Pinit)x, (Vi)y−(Pinit)y, finit]

T .
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la

lb

lc

la

lb

3D feature merging ( la and lb merged into lc )

lc

2D feature merging ( la and lb merged into lc )

FIG. 10. Example of new type of 3D and 2D features and their merging steps.

Thus, the normalized vector D2D
i = u(CinitVi)

6 represents the 3D direction that gener-
ates the vanishing point Vi. This direction is expressed in the camera coordinate system.
Our goal is to match each vanishing point with its corresponding 3D direction extracted
by the 3D range model (see Sec. 4.1). This correspondence leads to the calculation of the
focal length and of the rotationR. Let us represent each 3D line cluster in L3D (Sec. 4.1)
by its 3D directionD3D

j , j = 1 . . . n (where n is the number of extracted 3D clusters).
The next step is to find the matching pairs of directions < D2D

i ,D3D
j >. Consider

for the moment that we know the correspondence between vanishing points (expressed
in the camera coordinate system) and 3D directions (expressed in the world coordinate
system). It is known that with the principal point fixed at the center of image, two pairs
(< D2D

a ,D3D
a >,< D2D

b ,D3D
b >) of matching vanishing point/3D directions are enough

for the computation of the focal length f . The focal length f (which is |CP| in Fig. 11)
can be computed via the following equations (trianglesCVaP,CVbP andCVaVb):

|CVa|
2 = |PVa|

2 + f2

|CVb|
2 = |PVb|

2 + f2

|VaVb|
2 = |CVa|

2 + |CVb|
2 − 2 · |CVa| · |CVb| · cosα

where α is the angle betweenD3D
a andD3D

b . (Note that the vanishing pointsVa andVb

have been computed by using the initial estimates finit andPinit. The above computation

6We use the notation u(v) for describing the unit vector derived from v.
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leads to the calculation of a focal length that conforms to the 3D directionsD3D
a andD3D

b .)
From the above equations, we can get a quartic equation:

a · f4 + b · f2 + c = 0

where a = sin2 α, b = sin2 α(|PVa|
2+|PVb|

2)−|VaVb|
2, c = ( |VaVb|2−|PVa|2−|PVb|2

2 )2−

cos2 α|PVa|
2|PVb|

2. Solving this equation, one obtains the refined focal length: f =√√
b2−4ac−b

2a
. Since D3D

a �= D3D
b , sinα will never be equal to 0. Finally, the rotation R

is computed based on these two pairs of matching directions [13].
Based on the above analysis, the task of our system is to find two matching pairs of

vanishing point/3D directions. Intuitively, pairs (< D2D
a ,D3D

a >, < D2D
b ,D3D

b >) for
which the angle betweenD2D

a andD2D
b is not similar to the angle betweenD3D

a andD3D
b

can be rejected. As a result, we have a list of matching candidates, each of which contains
two pairs of matching vanishing points and 3D directions, a refined focal length and a
rotation. For each one of these candidates we can apply the algorithm described in the next
section for calculating the camera position, and finally keep the result that provides the
maximal alignment between the 2D image and 3D model.
In the worst case scenario though all pairs of directions have similar angles (this sce-

nario is easily realizable in urban scenes where most angles between major directions is 90
degrees). In this case there are

(
n
2

)(
m
2

)
candidate matching pairs of directions (where n is

the number of 3D andm the number of vanishing points). Even though this is not a large
search space (n andm are small in most urban scenes), testing all hypotheses involves the
computation of the translation (see Sec. 4.3). This is computationally inefficient for the
purposes of an interactive system, where a response time of up to 10 seconds per image
is appropriate. For these reasons we let the user to implicitly provide the correct pair of
matching directions, by rotating the 3D model to an orientation that produces a rendering
that is similar (but not exactly the same) to the real 2D image. As shown in Figs. 15(b)
and 16(c), the rotated 3D view (left) is similar (but not exactly the same) to the 2D image
(right). This user-assisted rotation can approximately align the corresponding 2D and 3D
directions.
The aforementioned user interaction not only increases the computational efficiency of

the whole system, but also makes the registration problem tractable. In general, without
constraining the possible locations of 2D cameras wrt the 3D model, the 2D-to-3D regis-
tration problem becomes intractable. This is due to the existence of a possible large set
of solutions. For example, a photograph of one of the columns of the 3D structure of Fig.
16 can be matched with any of the symmetric 3D columns of the real scene. By selecting
a synthetic view that is similar, but not exactly the same as the 2D image, the user can
provide an approximate field of view to help the matching algorithm. In particular, only
3D features that are viewable in the synthetic 3D view are used for matching 2D image
features. Note here that all earlier approaches still require implicit user interaction in order
to assist in that direction. For example in our earlier work [29] the user needs to explic-
itly provide the match between vanishing points and 3D directions. In that earlier system,
the user also needs to match facades between the 2D image and 3D model. The approach
presented in this section is more natural and leads to faster interaction time.

4.3. Translation Computation
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C

Xc

Yc

Zc

Image Plane

Zw

Yw

Xw

Ow

Va
Vb

P

f

FIG. 11. Rotation and focal length computation based on two vanishing points and their corre-
sponding 3D directions (not shown in this image).

In this section we present the algorithm that automatically computes the translation be-
tween one 3D range scan and one 2D image (Fig. 13).
As described in section 4.2, a list of matching candidates, namedM, is obtained. Each

element inM contains a matching pair of two vanishing points and two 3D directions, a re-
fined focal length and a rotation. In this section, a 2D camera position will be computed for
each candidate inM. Our method of finding the camera position follows a hypothesis-and-
test scheme by matching the extracted 3D and 2D features based on our original framework
[29]. A number of major differences with the aforementioned method make our algorithm
more general and more robust. In particular, our current algorithm does not require the
extraction of planar facades, and does not require the grouping of low-level features in
higher-order structures. Scenes that do not pertain clear major facades (such as the ex-
ample of Figs. 16, where various layers of planar facades exist) can now be successfully
handled. Also since all low-level features are used without significant grouping, more ro-
bust results are achieved. We now present a detailed description of our algorithm. First, a
candidate fromMi is selected, i.e. the matching pair of vanishing points and 3D directions
are < Va,Vb > and < D3D

a ,D3D
b >; the refined focal length is fi and the rotation isRi.

The camera position (translation) is then computed in the following six steps (Fig. 13):

Step 1 A hypothetical match between two pairs of 3D and 2D lines is selected (the
algorithm will go over all possible such selections). Let us call these pairs < l3D

a , l2D
a >

and < l3D
b , l2D

b > (l3D
a and l3D

b are 3D lines extracted from the 3D model, and l2D
a and

l2D
b 2D lines extracted from the 2D image).
Step 2 [Computation of camera position in world coordinate system (translation) based

on the match of l3D
a with l2D

a ] As shown in Fig. 12, A and B are the endpoints of l3D
a and
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C

Xc

Zc

Image Plane

S

T

A

B

l3D
a

Yc

Zw

Yw

Xw

Ow

R

l2D
a

FIG. 12. Camera position computation based on a match between 3D feature AB with image
feature ST.

S and T are the endpoints of l2D
a . C is the center of projection. If l3D

a matches exactly
with l2D

a , then in the camera coordinate system, C, S and A should be collinear. The
same applies for C, T and B. We thus consider C as the intersection point of the following
two lines: a) one that passes through A having the orientation of line CS and b) one that
passes through B having the orientation of line CT. To compute the world coordinates
of C, we need to know the orientations of CS and CT in the world coordinate system.
We know, however, the orientations of CS and CT in the camera coordinate coordinate
system, say na and nb. We have also computed the rotationR which brings the camera and
world coordinate systems into alignment (see previous section). We can thus compute the
orientations of CS and CT in the world coordinate system as: R · na and R · nb. Then,
the camera position is obtained by finding the intersection of two 3D lines: a) one of which
passes through A with the orientation of R · na and b) one which passes through B with
the orientation of R · nb

7. Finally, this computed center of projection is used to project
l3D
b onto the image plane. If the projection of l3D

b overlaps with l2D
b (within a threshold

of 80%), then the camera position computed using (l3D
a , l2D

a ) is verified by the pair (l3D
b ,

l2D
b ). We therefore move to the next step. Otherwise, we return to step 1 (i.e. the match is
discarded) to pick another set of hypothetical matching lines.

Step 3 Step 2 is repeated assuming as hypothesis the match between l3D
b and l2D

b . The
newly computed center of projection is used to compute the overlap between l2D

a and the
projection of l3D

a . If this overlap is less than a threshold (i.e. the computedC is not verified

7A and B are both expressed in the world coordinate system
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by (l3D
a , l2D

a ), we return to step 1 (i.e. the match is discarded). Otherwise, we proceed to
the next step.
Step 4 Step 2 has thus computed a camera position C1 by the hypothesis (l3D

a , l2D
a )

[verified by (l3D
b , l2D

b )], while step 3 has computed a camera positionC2 by the hypothesis
(l3D

b , l2D
b ) [verified by (l3D

a , l2D
a )]. In this step, the weighted average (based on the amount

of overlap) of these two camera positions is computed and saved in a list T .
Step 5 Steps 1 to 4 are repeated for all possible pairs of pairs of 3D and 2D lines (<

l3D
a , l2D

a >, < l3D
b , l2D

b >). All verified camera positions (see Step 4) are stored in a list
T . Then, for each position in T , all 3D lines are projected onto the image plane. For each
of the projected 3D lines, a possible matching 2D line is found by searching around its
projection. This region is bounded by the radius of the 3D and 2D lines. The number of
found matches grades this camera position. If the grade of a camera position is less than a
threshold, it is removed from the list T .
Step 6 The remaining camera positions in T are optimized by two steps. First, for each

camera position Ci a refined position is found. This is achieved by searching around a
small neighborhood of Ci in order to maximize the overlap between the matching 3D and
2D lines. Then this refined position is further optimized by an iterative algorithm. In each
iteration, the current camera position is used to generate a list of matching 2D and 3D lines
from the whole 2D and 3D feature space. A new camera position is found by minimizing
the error distance between the 2D lines and the projections of their matching 3D lines. The
algorithm converges at the point when the error distance remains constant. The camera
position computed after the two optimization steps are the final result.

The camera position in T with the maximum grade is picked as the best one for the
matching candidateMi. This is normally correct, but the list is still kept as well in case
that the one with the maximum grade is not the best. Then, the user can select other
positions in the list. This maximum grade is also used as the grade forMi. For each
matching candidate inM, a list of camera positions is computed by these 6 steps and a
grade is assigned. Then, the list M is sorted based on the grade and the one with the
maximum grade is selected as the best one but the user also can select other results inM.

4.4. Results & Conclusions

We are presenting results from real experiments in three urban settings that we name 1
(Fig. 15), 2 (Fig. 14), and 3 (Fig. 16). Buildings 1 and 2 are the exteriors of regular urban
structures. Building 3 is the interior of Grand Central Station, a scene of architectural com-
plexity and beauty. The 3D range model for all buildings was generated by our group. First
a number of 3D range scans of each structure was acquired using a Leica HDS 2500 time-
of-flight laser range scanner [27]. This scanner provides absolute 3D range measurements
up to a distance of 100 meters, and at an accuracy of 6mm. Each 3D point is associated
with reflectance information, that corresponds to the amount of laser-intensity getting back
to the range sensor8. We then segment each range scan, extract linear 3D features, and
register the scans in a common coordinate system. Figs. 14, 15, and 16 provide individual
registration results, as described in our technical sections. Note than in the case of 15(b)
and 16(c) the user needs to orient the 3D range model in a position that simulates the 2D

8Note that the reflectance depends on various parameters (distance, orientation and surface material) and is not
the actual color of the object as captured by a 2D digital camera.
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FIG. 13. Camera position (translation) computation flowchart [COP stands for camera position
(or center of projection) in this flowchart]. Through step 1 all possible pairs of matched 3D and
2D lines (< l3D

a , l2D

a > and < l3D

b , l2D

b >) are selected (l3D

a and l3D

b are 3D lines extracted from
the 3D model, and l2D

a and l2D

b 2D lines extracted from the 2D image). Step 2 computes a camera
position based on < l3D

a , l2D

a >. The pair < l3D

b , l2D

b > is used for the verification of this position.
If the overlap between l2D

b and the projection of l3D

b on the image is smaller thanOth (20%) (i.e. the
position is not verified) a new pair is selected (step 1). Otherwise a similar computation is carried
out for the pair < l3D

b , l2D

b > (step 3). If steps 2 and 3 produce two verifiable camera positions, a
weighted average is computed (step 4). This average represents the position that is generated by the
hypothesis (< l3D

a , l2D

a > and < l3D

b , l2D

b >). All verified camera positions are stored in a list T .
After all pairs have been explored, each position in T is graded by projecting all 3D lines on the 2D
image space (step 5). Positions with high grade (greater than Gth number of matches) survive to the
final optimization step 6.

color image. As you can see from these figures this simulation need not be exact. It is
necessary for assistance in matching vanishing points with 3D directions (Sec. 4.2) in or-
der for our system to perform in interactive rates (5-10 seconds for matching per image).
Table 3 presents quantitative results for successful automated registrations (see caption for
more details). A 3-5 pixel distance between the matched 2D and projected 3D lines is
due to noise in the line extraction process. Our texture-map results are of extremely high
quality though. Out of 18 total images tried for building 1, 13 were registered successfully,
whereas 5 have slight errors. Out of 8 total images tried for building 2, 7 were registered
successfully, whereas 1 has slight errors. Finally, out of 10 total images tried for building
3, 6 were registered successfully, whereas 4 have slight errors. In all cases the first step
(Sec. 4.2) never fails since these scenes contain at least two vanishing points. The second
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FIG. 14. Registration result of Building 2. Top row: Initial state (before registration). The 3D
range model (left column) and 2D image (right column) are loaded and displayed in the interface.
Middle row: The state of the system after the feature extraction. The 3D viewer (left column) shows
the clustered 3D lines while the 2D viewer (right column) shows the clustered 2D lines that are drawn
on the original 2D image. Different clusters are represented by different colors for clarity. Bottom
row: The final registration. The 2D image is automatically registered with the 3D range data. The
3D viewer (left) shows the texture mapped 3D range data. The 2D viewer (right) shows the matching
2D and 3D line features (2D lines are displayed as red, while projected 3D lines are highlighted in
green). Note that objects that are not part of the 3D model cannot be texture-mapped (corner of other
building shown in the 2D image). A real-time video of the whole process is included as supplemental
material.

step however (Sec. 4.3) depends on the quality of the extracted low-level 2D and 3D linear
features. In cases that we cannot extract features of high quality (due to low contrast in
2D images), this method will not be able to perform correctly. On the other hand few cor-
rect 2D-to-3D registrations can be enhanced with multiview-geometry solutions to bring
sequences in alignment with a model (see Sec. 5).
We have presented a systematic way for registering individual 2D images with a 3D

range model. Our methods assume the existence of at least two vanishing points in the
scene (not necessarily orthogonal). No higher-order grouping of features is necessary. Our
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(a)

(b)

FIG. 15. Registration results from building 1. (a) For description see caption of Fig. 14. (b)
(Top row): The user rotates the 3D model so that it is orientated similarly (note that it does not have
to be exactly matched) to the 2D image. (Bottom row): The right image shows the 2D image along
with the matched 2D and projected 3D features (see caption of Fig. 14). The left image shows the
texture-mapped 3D range model after successful registration.
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(a)

(b)

(c)

FIG. 16. Registration results from the interior of building 3 (Grand Central Terminal, NYC). (a)
Registered point cloud of building 3. (b) For description see caption of Fig. 14. (c) (Top row): The
user rotates the 3D model so that it is orientated similarly (note that it does not have to be exactly
matched) to the 2D image. (Bottom row): The right image shows the 2D image along with the
matched 2D and projected 3D features (see caption of Fig. 14). The left image shows the texture-
mapped 3D range model after successful registration. Note that surfaces that are not part of the 3D
model cannot be texture-mapped and appear as black holes. For example the floor is missing from
our range model.



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

28 STAMOS, LIU, CHAO, WOLBERG, YU, ZOKAI

system allow us to register 2D images with a 3D model at interactive rates. In our future
work we would like to be able to handle scenes of general configuration not containing
any major vanishing points. This would let the exploration of registration algorithms in
non-urban scenes.

5. MULTIVIEW POSE ESTIMATION AND 3D STRUCTURE

RECONSTRUCTION

The input to our system is a sequence I = {In|n = 1, . . . , N} of high resolution still
images that capture the 3D scene. This is necessary to produce photorealistic scene rep-
resentations. Therefore we have to attack the problem of finding correspondences in a
sequence of wide-baseline high resolution images, a problem that is much harder than fea-
ture tracking from a video sequence. Fortunately, there are several recent approaches that
attack the wide-baseline matching problem [40, 47, 31]. For the purposes of our system,
we have adopted the scale-invariant feature transform (SIFT) method [31] for pairwise fea-
ture extraction and matching. In general, structure from motion (SFM) from a set images
has been rigorously studied [14, 17, 32]. Our method for pose estimation and partial struc-
ture recovery is based on sequential updating. The method is similar to work explained in
[2, 35]. In order to get very accurate pose estimation, we assume that the camera(s) are
pre-calibrated. It is, of course, possible to recover unknown and varying focal length by
first recovering pose and structure up to an unknown projective transform and then upgrad-
ing to Euclidean space as shown in [19, 34, 45]. However, some of the assumptions that
these methods make (e.g., no skew, approximate knowledge of the aspect ratio and princi-
pal point) may produce visible mismatches in a high resolution texture map. Thus, for the
sake of accuracy we are utilizing the camera calibration method of [51]. More details of
our structure-from-motion method can be found in [30].

6. ALIGNMENT OF 2D IMAGE SEQUENCES ONTO 3D-RANGE

POINT CLOUDS

The 2D-to-3D registration module described in Sec. 4 facilitates the texturing of the 3D
range model Mrange with photographs taken of the scene. A drawback to this approach
is that only a subset of the images are successfully registered with Mrange and so the
texturing is restricted to these images for which the camera pose information is recovered.
In order to more fully exploit the use of all images, we opt to use multiview geometry to
derive a dense set of camera pose information and a sparse 3D model directly from the
images. Merging the results of Sec. 4 with a structure-from-motion algorithm will produce
a superior phototextured result that captures the full detail of a complete collection of
photographs. We therefore create a sparse 3D model, Msfm , and register it to Mrange .
The rotation, scale, and translation necessary to align these two models also applies to the
dense set of camera poses derived from the images. After applying this transformation to
the camera poses derived from structure-from-motion, the cameras will sit in the coordinate
frame of Mrange where images can then be projected onto the dense model. The method
is described more fully below.
The set of dense range scans {Si|i = 1, . . . , K} are registered in the same reference

frame (Sec. 3), producing a 3D range model called Mrange . On the other hand, the se-
quence of 2D images I = {In|n = 1, . . . , N} produces a sparser 3D model of the scene
(Sec. 5) calledMsfm . Both of these models are represented as clouds of 3D points. The dis-
tance between any two points inMrange corresponds to the actual distance of the points in
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TABLE 3
Building 1 (13 images) - Building 2 (7 images) - Building 3 (6 images). Each row

presents results from successful registration of a different 2D image with
the 3D range model. The upper part of the table presents results

of the registration of 13 images with a 3D range model
of building 1. The middle part shows results

from registering 7 images with a 3D
range model of building 2. Finally,
the lower part describes results from
the registration of 6 images with the
3D range model of building 3. The
registration (matching phase) of each
image requires on average 5 to 10
seconds (2GHz Xeon Intel processor,
2GB of RAM). The first two columns
show the numbers of 3D and 2D
features used for matching. ”Fi” is
the initial focal length extracted from
the Exif meta-data of the image, while
”Fr” is the refined focal length. ”M”
is the number of matched features of
the best transformation. Finally, ”E”
is the average line-to-line distance (in
pixels) after the optimization (Step 6).

F3D F2D Fi Fr M E

672 412 3065.83 3072.42 119 4.4492
583 345 3065.83 3075.34 103 4.9394
409 390 3065.83 3071.90 112 4.8973
392 230 3065.83 3069.45 93 4.2109
321 312 3065.83 3073.23 187 4.9021
456 387 3065.83 3072.12 134 4.3902
402 390 3065.83 3071.29 94 3.9827
390 219 3065.83 3069.22 87 4.2023
592 539 3065.83 3071.90 212 4.3003
390 416 3065.83 3061.39 145 3.9203
271 392 3065.83 3073.38 123 3.2900
430 456 3065.83 3076.19 209 4.1293
390 549 3065.83 3063.56 115 4.5902

438 789 1185.03 1165.65 114 4.3215
421 654 1185.03 1175.89 83 4.2142
389 520 1185.03 1172.90 88 3.8992
402 432 1185.03 1179.34 101 4.2390
389 598 1185.03 1172.90 91 4.5009
435 621 1185.03 1169.39 156 4.1290
419 535 1185.03 1178.17 182 4.4923

543 245 2805.81 2833.45 63 4.4439
569 312 2805.81 2831.32 45 3.9082
389 245 2805.81 2829.39 42 4.2312
390 190 2805.81 2839.93 50 4.9821
493 231 2805.81 2812.24 63 3.9023
301 189 2805.81 2829.39 58 3.8910
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3D space, whereas the distance of any two points inMsfm is the actual distance multiplied
by an unknown scale factor s. In order to align the two models a similarity transformation
that includes the scale factor s, a rotation R and a translation T needs to be computed.
In this section, a novel algorithm [30] that automatically computes this transformation is
presented. The transformation allows for the optimal texture mapping of all images onto
the denseMrange model, and thus provides photorealistic results of high quality.
Every point X from Msfm can be projected onto a 2D image In ∈ I by the following

transformation:

x = Kn[Rn |Tn ]X (1)

where x = (x, y, 1) is a pixel on image In,X = (X, Y, Z, 1) is a point ofMsfm , Kn is the
projection matrix, Rn is the rotation transformation and Tn is the translation vector. These
matrices and pointsX are computed by the SFM method (Sec. 5).
Some of the 2D images I′ ⊂ I are also automatically registered with the 3D range model

Mrange (Sec. 4). Thus, each point ofMrange can be projected onto each 2D image In ∈ I′

by the following transformation:

y = Kn[R′n |T ′n ]Y (2)

where y = (x, y, 1) is a pixel in image In, Y = (X, Y, Z, 1) is a point of modelMrange ,
Kn is the projection matrix of In, R′n is the rotation and T ′n is the translation. These
transformations are computed by the 2D-to-3D registration method (Sec. 4).
The key idea is to use the images in In ∈ I′ as references in order to find the correspond-

ing points betweenMrange andMsfm . The similarity transformation betweenMrange and
Msfm is then computed based on these correspondences. In summary, the algorithm works
as follows:

1. Each point of Msfm is projected onto In ∈ I′ using Eq. (1). Each pixel p(i,j) of In

is associated with the closest projected point X ∈ Msfm in an L × L neighborhood on
the image. Each point of Mrange is also projected onto In using Eq. (2). Similarly, each
pixel p(i,j) is associated with the projected point Y ∈ Mrange in an L × L neighborhood
(Fig. 17). Z-buffering is used to handle occlusions.
2. If a pixel p(i,j) of image In is associated with a pair of 3D points (X,Y), one from

Msfm and the other from Mrange , then these two 3D points are considered as candidate
matches. Thus, for each 2D-image in I′ a set of matches is computed, producing a col-
lection of candidate matches named L. These 3D-3D correspondences between points of
Mrange and points ofMsfm could be potentially used for the computation of the similarity
transformation between the two models. The set L contains many outliers, due to the very
simple closest-point algorithm utilized. However,L can be further refined (Sec. 6.1) into a
set of robust 3D point correspondences C ⊂ L.
3. Finally, the transformation betweenMrange andMsfm is computed by minimizing a

weighted error function E (Sec. 6.1) based on the final robust set of correspondences C.

Even though the two models (Msfm and Mrange ) have different noise characteristics,
they have similar errors in the operating range that we are using them. We ultimately
exploit principles from close-range photogrammetry and therefore we do not use photos
that are too far from the object. In that case, points that are recovered that are deemed to be
too far away (which also may be due to small baseline) will be dismissed. The remaining
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projected points from the SFM model can therefore be matched against the projections of
the 3D points from the range data.

6.1. Correspondence Refinement and Optimization

FIG. 17. Left column: The points of modelMsfm projected onto one 2D image In (Sec. 5). The projected
points are shown in green. Right column: The points of model Mrange projected onto the same 2D image
In (projected points shown in green) after the automatic 2D-to-3D registration (Sec. 4). Note that the density
of 3D range points is much higher than the density of the SFM points, due to the different nature of the two
reconstruction processes. Finding corresponding points between Mrange andMsfm is possible on the 2D image
space of In. This yields the transformation between the two models (Sec. 6).

The set of candidate matches L computed in the second step of the previous algorithm
contains outliers due to errors introduced from the various modules of the system (SFM,
2D-to-3D registration, range sensing). It is thus important to filter out as many outliers
as possible through verification procedures. A natural verification procedure involves the
difference in scale between the two models. Consider two pairs of plausible matched 3D-
points (X1,Y1) and (X2,Y2) (Xi denotes points from theMsfm model, whileYj points
from the theMrange model). If these were indeed correct correspondences, then the scale
factor between between the two models would be s = ‖X1−X2‖/‖Y1−Y2‖. Since the
computed scale factor should be the same no matter which correct matching pair is used,
then a robust set of correspondences from L should contain only these pairs that produce
the same scale factor s. The constant scale factor among correctly picked pairs is thus
an invariant feature that we exploit. We now explain how we achieve this robust set of
correspondences.
For each image In ∈ I′, let us call the camera’s center of projection as Csfm

n in the
local coordinate system ofMsfm andCrng

n in the coordinate system ofMrange . These two
centers have been computed from two independent processes: SFM (Sec. 5) and 2D-to-3D
registration (Sec. 4). Then for any candidate match, (X,Y) ∈ L, a candidate scale factor



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

32 STAMOS, LIU, CHAO, WOLBERG, YU, ZOKAI

s1(X,Y) can be computed as:

s1(X,Y) =
‖X−Csfm

n ‖

‖Y −C
rng
n ‖

If we keep the match (X,Y) fixed and we consider every other match (X′,Y′) ∈ L, L−1

candidate scale factors s2(X
′,Y′) and L − 1 candidate scale factors s3(X

′,Y′) (L is the
number of matches in L) are computed as:

s2(X
′,Y′) =

‖X′ −Csfm
n ‖

‖Y′ −C
rng
n ‖

, s3(X
′,Y′) =

‖X−X′‖
‖Y −Y′‖

That means that if we keep thematch (X,Y) fixed, and consider all othermatches (X′,Y′)
we can compute a triple of candidate scale factors: s1(X,Y), s2(X

′,Y′), and s3(X
′,Y′).

We then consider the two pairs of matches (X,Y) and (X′,Y′) as compatible if the scale
factors in the above triple are close with respect to each other. By fixing (X,Y), all
matches that are compatible with it are found. The confidence in the match (X,Y) is the
number of compatible matches it has. By going through all matches in L, their confidence
is computed via the above procedure. Out of these matches the one with the highest con-
fidence is selected as the most prominent: (Xp,Yp). Let us call Ln the set that contains
(Xp,Yp) and all other matches that are compatible with it. Note that this set is based
on the centers of projection of image In as computed by SFM and 2D-to-3D registration.
Let us also call sn the scale factor that corresponds to the set Ln. This scale factor can be
computed by averaging the triples of scale factors of the elements in Ln. Finally a different
set Ln and scale factor sn is computed for every image In ∈ I′.
From the previous discussion it is clear that each Ln is a set of matches that is based on

the center of projection of each image In independently. A set of matches that will provide
a globally optimal solution should consider all images of I′ simultaneously. Out of the
scale factors computed from each set Ln, the one that corresponds to the largest number of
matches is the one more robustly extracted by the above procedure. That computed scale
factor, sopt, is used as the final filtration for the production of the robust set of matches C
out of L. In particular, for each candidate match (X,Y) ∈ L, a set of scale factors are
computed as

s′n =
‖X−Csfm

n ‖

‖Y −C
rng
n ‖

where n = 1, 2, ..., J , and J is the number of images in I′. The standard deviation of
those scale factors with respect to sopt is computed and if it is smaller than a user-defined
threshold, (X,Y) is considered as a robust match and is added to the final list of corre-
spondences C. The robustness of the match stems from the fact that it verifies the robustly
extracted scale factor sopt with respect to most (or all) images In ∈ I′. The pairs of center
of projections (Csfm

n ,Crng
n ) of images in I′ are also added to C.

The list C contains robust 3D point correspondences that are used for the accurate com-
putation of the similarity transformation (scale factor s, rotation R, and translation T ) be-
tween the modelsMrange andMsfm . The following weighted error function is minimized
with respect to sR and T :

E =
∑

(X,Y)∈C
w‖sR ·Y + T −X‖2
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where the weight w = 1 for all (X,Y) ∈ C that are not the centers of projection of the
cameras, and w > 1 (user-defined) when (X,Y) = (Csfm

n ,Crng
n ). By associating higher

weights to the centers we exploit the fact that we are confident in the original pose produced
by SFM and 2D-to-3D registration. The unknown sR and T are estimated by computing
the least square solution from this error function. Note that s can be easily extracted from
sR since the determinant of R is 1.
In summary, by utilizing the invariance of the scale factor between corresponding points

in Mrange andMsfm , a set of robust 3D point correspondences C is computed. These 3D
point correspondences are then used for an optimal calculation of the similarity transfor-
mation between the two point clouds. This provides a very accurate texture mapping result
of the high resolution images onto the dense range modelMrange .

7. RESULTS & CONCLUSIONS

We tested our algorithms using range scans and 2D images acquired from a large-scale
urban structure (Shepard Hall/CCNY) and from an interior scene (Great Hall/CCNY). 22
range scans of the exterior of Shepard Hall were automatically registered (Fig. 1) to pro-
duce a dense modelMrange . In one experiment, ten images where gathered under the same
lighting conditions. All ten of them were independently registered (2D-to-3D registration
Sec. 4) with the modelMrange . The registration was optimized with the incorporation of
the SFM model (Sec. 5) and the final optimization method (Sec. 6). In a second experi-
ment, 22 images of Shepard Hall that covered a wider area were acquired. Although the
automated 2D-to-3D registration method was applied to all the images, only five of them
were manually selected for the final transformation (Sec. 6) on the basis of visual accu-
racy. For some of the 22 images the automated 2D-to-3D method could not be applied
due to lack of linear features. However, all 22 images where optimally registered using
our novel registration method (Sec. 6) after the SFM computation (Sec. 5). Fig. 1 shows
the alignment of the range and SFM models achieved through the use of the 2D images.
In Fig. 18(a) the accuracy of the texture mapping method is visible. Fig. 18(b) displays
a similar result of an interior 3D scene 9. Table 4 provides some quantitative results of
our experiments. Notice the density of the range models versus the sparsity of the SFM
models. Also notice the number of robust matches in C (Sec. 6) with respect to the possi-
ble number of matches (i.e., number of points in SFM). The final row Table 4 displays the
elapsed time for the final optimization on a Dell PC running Linux on an Intel Xeon-2GHz,
2GB-RAM machine.
We have presented a system that integrates multiview geometry and automated 3D reg-

istration techniques for texture mapping high resolution 2D images onto dense 3D range
data. The benefits of multiview geometry (SFM) and automated 2D-to-3D/3D-to-3D reg-
istration are merged for the production of photorealistic models with minimal human inter-
action. Our approach provides a solution of increased robustness, efficiency and generality
with respect to previous methods.

9http://www.cs.hunter.cuny.edu/˜ioannis/IjcvSI contains images and videos of our re-
sults.
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(a)

(b)

FIG. 18. (a) Range model of Shepard Hall (CCNY) with 22 automatically texture mapped high resolution
images. (b) Range model of interior scene (Great Hall) with seven automatically texture mapped images. The
locations of the recovered camera positions are shown. Notice the accuracy of the photorealistic result.
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TABLE 4
Quantitative results.

Shepard Hall Great Hall

Number of points (Mrange ) 12,483,568 13,234,532

Number of points (Msfm ) 2,034 45,392 1,655

2D-images used 10 22 7

2D-to-3D registrations (Sec. 4) 10 5 3

No. of matches in C (Sec. 6) 258 1632 156

Final optimization (Sec. 6) 8.65 s 19.20 s 3.18 s
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