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Abstract Laser range scans of urban areas have a distinc-
tive geometry dominated by facade and ground planes and
repetitive regular fenestration. Detection of these ubiqui-
tous features provides profound insights into the scene. We
present a novel method for detecting major planes and repet-
itive architectural features. Armed with this knowledge we
illustrate its application in compression and registration of
range scans. What is more our algorithm operates online,
processing the scan as it is retrieved by the scanner. This
realtime approach opens up new possibilities in range data
segmentation, compression and registration.

Keywords Urban range scans · 3D scan registration · 3D
scan compression · Regularity detection

1 Introduction

Understanding 3D images is increasingly important in fields
as diverse as navigation, architecture, and biology. Each do-
main is replete with unique patterns that practitioners must
uncover as they struggle to make sense of their data. In ur-
ban scenes, for example, the topology is characterized by
the broad planes of facades, the slightly curving manifold
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of the street, and the fenestration of regular repeated archi-
tectural features like windows, balconies and cornices. Also
notable is the fractal noise of vegetation, the Bezier curves
of parked cars, and the high frequency spikes of objects in
motion faster than the laser can catch them. In this paper we
show how a focus on the repeated architectural structures
yields significant scene understanding and can be used for
compressing and registering range scans. We demonstrate
a method to discover these regular structures online, as the
scanner scans. We apply knowledge of these structures to
facilitate compression and registration.

Processing point clouds quickly is crucial in many sce-
narios. Analyzing scans column by column allows seamless
integration with the 3D camera because the camera is like-
wise scanning the scene column by column. This synchro-
nizes the execution of the algorithm with gathering the data,
accelerating our work to the point of just-in-time scene un-
derstanding. While focusing on individual columns gives ex-
cellent local knowledge on the scene we do not wish to lose
sight of the big picture. After all, each column is just a sliver
of a much larger tableau. However, by keeping an evolv-
ing data structure with macro features and greedily updating
as the scan unfolds we are not forced to choose between
speed and global knowledge, in fact our algorithm achieves
both.

We can imagine this online processing as a line sweep
algorithm. The scanline or column of measurements moves
across the scene in discrete steps. At each step we search for
periodicity and planes. We aggregate and update this data
maintaining best estimates about higher level features in the
scene. The processing occurs on the fly so that by the time
the scanline reaches the edge of the scene our algorithm has
done its work and requires no further manipulations of the
data. Integration into the 3D camera hardware is a natural
step forward for these types of algorithms.
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2 Related Work

Modeling 3D urban scenes from range scan data is a field
of active research (Allen et al. 2003; Stamos et al. 2008;
Zhao and Shibasaki 2003). There is a plethora of range
image segmentation techniques from range data including
edge detection (Bellon and Silva 2002; Wami and Batchelor
1994), region growing (Besl and Jain 1988; Pulli and Pietiki-
nen 1993), and polynomial surface fitting (Besl and Jain
1988; Marshall et al. 2001). Most of these methods provide
edge maps or regions expressed as polynomial functions.
Yu et al. (2001) utilizes a graph-cut approach for segmen-
tation. Our earlier work includes segmentation algorithms
for the extraction of planar, smooth non-planar, and non-
smooth connected components (Chao and Stamos 2007;
Stamos and Allen 2002; Stamos et al. 2006).

Detecting symmetries and repetitive structures (such as
windows and balconies) can be an important element of
scene understanding. The concept of shape grammars for
buildings introduced by Stiny (1982) as a formal approach
to architectural design has been used for the image-based
modeling of facades acquired through aerial photographs
(Muller et al. 2007) and for the generation of synthetic
cities (Muller et al. 2006). A shape-grammar approach that
uses ground-based images was presented in Teboul et al.
(2010, 2011). An earlier approach is the one of Lee and
Nevatia (2004). The work of Mayer and Reznik (2007) uses
a sequence of images to produce a sparse 3D point cloud as
input to the detection algorithms. Work on the same topic
is presented in Wu et al. (2010). Finally Park et al. (2009)
detects regular patterns in images that are not constrained to
be buildings.

Fewer approaches exist when the input is a 3D range
scan. Pauly et al. (2008) derives regularities of substructures
from a 3D model or range scan of a scene. This works by
detecting symmetries (or similarity transformations) of ba-
sic structures in a regular grid. This general approach can be
used for extracting regularities but it is sensitive in the cal-
culation of curvatures and computationally intensive. Shen
et al. (2011) presents a partitioning of urban facades which
detects grids in an adaptive way. This extends the transfor-
mation voting technique of Pauly et al. (2008) to facades
that are not globally rectilinear. In Stamos and Allen (2002)
window-like rectangular features were extracted by using
3D edge detection on high-resolution 3D data. Line features
are again utilized in Bokeloh et al. (2009) for symmetry de-
tection. This symmetry detection of line features builds upon
a graph based method for detecting symmetry presented in
Berner et al. (2008). Nan et al. (2010) presents an interactive
interface which exploits regular structures in urban scenes
to improve sparse point clouds. Employing a Markov Net-
work approach (Triebel et al. 2006) labels points as win-
dows, but requires training. The work of Li et al. (2011)

provides a fusion of 2D- and 3D-segmentation and symme-
try detection for decomposition of urban facades. The au-
thors of Martinet et al. (2006) use spherical harmonic de-
compositions to detect rotational and reflective symmetries
in meshes. Our work also exploits harmonics, but we use
them to detect translational symmetries per scanline. Our pa-
per provides algorithms that work online and purely on 3D-
range input without relying at all on 2D-images. We have
presented work in the online detection of repeated patterns
in urban scenes using 3D-information (Friedman and Sta-
mos 2011). This paper extends the applicability of that work
into the area of 3D-range registration. Table 1 compares and
contrasts several of the algorithms discussed above.

There is a vast literature in the area of 3D-range regis-
tration Iterative Closest Point (ICP) is one of the most pop-
ular range registration algorithms (Besl and McKay 1992;
Rusinkiewicz and Levoy 2001). ICP provides very accurate
results but requires a good initialization of the registration
transformation. Methods that do not require initialization in
most cases detect and match features such as spin images
(Huber and Hebert 2003) or lines (Stamos and Leordeanu
2003). A RANSAC-type automated ICP algorithm is pre-
sented in Aiger et al. (2008). In our paper we are describ-
ing an automated range registration algorithm that is based
on online detection and matching of repeated patterns. Our
algorithm is extremely fast and accurate without being con-
fused by parts of the scene that may be different (for instance
objects such as cars that can move and change positions dur-
ing acquisition, or vegetation that may change between sea-
sons).

Our contributions with respect to earlier work can be
summarized as follows:

(a) We extract repeated structures from large-scale scenes
online, processing the data as it is acquired while also
enabling extremely efficient offline processing.

(b) Using periodicity as the basis of our detection, we have
robust results even in low resolution areas of the scene.

(c) We compress data-rich range scans while maintaining
their architectural regularity.

(d) We present automatic registration opening the door to
simultaneous acquisition and realtime registration from
many range scanners at once.

(e) All of the above are achieved without requiring user in-
teraction, or training data.

3 Data Acquisition

Our lab operates a Leica ScanStation2 laser scanner (Le-
ica Geosystems 2012). The data retrieved is organized into
a two dimensional array. The direction of the laser is con-
trolled by delicately calibrated stepper motors. The laser ro-
tates a small consistent angle vertically and records a mea-
surement and then repeats. Once an entire column has been
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Table 1 Comparison of regularity detecting algorithms. This table is adapted from Mitra et al. (2012)

Reference Method Input Feature Transforms

Berner et al. (2008) feature graph matching meshes points slippage features rigid

Bokeloh et al. (2009) feature graph matching meshes lines rigid

Martinet et al. (2006) generalized moment functions meshes moments rotation reflection

Pauly et al. (2008) transformation voting points curvature similarity transforms

Our Method harmonics points eigenvalues curvature translations

recorded another motor rotates the laser a small consistent
angle horizontally and another column is recorded. In the
pages that follow we will refer to single arrays within the
2D array as both columns and scanlines. In the coordinate
system returned by the scanner the z-axis corresponds to the
vertical vector.

This data is considered 2.5 dimensional because the 2D
array of 3D points contains valuable information that dis-
tinguishes the scan from an unstructured point cloud. For
example, investigating neighborhoods in the 2D array we
are able to fit normals in constant time without resorting
to an exhaustive search of nearest neighbors, or the addi-
tional overhead of an approximate nearest neighbors (ANN)
library.

4 Extraction of Repeated Architectural Features
Through Fourier Analysis

Windows and balconies are intriguing data points in urban
laser scans. They are ubiquitous: virtually every commercial
and residential structure is perforated by some kind of fen-
estration. In general, they are regular, occurring at a defined
period within the building. Yet despite this regularity they
are challenging to detect because of their high variability of
appearance.

Glass windows without any shades often allow the laser
into an interior from which only negligible light can return,
yielding a missing data point. Some materials used to make
window blinds appear extremely planar and may be mis-
taken for facades. Other materials like fabrics and plastic
shades will present highly irregular geometry depending on
the wind, the angle of incidence and other factors.

To compound the confusion many window sills are
crowded with house plants, children’s toys and other ac-
couterments of apartment interiors. Balconies are marked
by prominent self occlusions. Terraces which protrude from
a building cast shadows on the facade which grow with the
incident angle of the laser. This produces vastly different
results for the same structure depending on its altitude.

All these facts make detection of regular architectural
features difficult. Nevertheless the periodicity of the fea-
tures is salient. While each individual feature may be un-

predictable when analyzed together they are predictably un-
predictable. This regularity can be extracted through Fourier
analysis and this knowledge is fertile ground for down-
stream processing.

4.1 Finding the Major Planes

We begin by approximating the major planes for each col-
umn.1 Most scanlines in the urban setting are dominated
by points belonging to the ground and points from a fa-
cade. In general facades are extremely planar. The mani-
fold of a city’s pavement is usually curved, but its curva-
ture is in general low and a planar approximation is often
sufficient. To extract these major planes we fit minor planes
in small neighborhoods around each point in the scanline.
Using Principal Component Analysis (PCA) we determine
the normal to these minor planes as the eigenvector corre-
sponding to the smallest eigenvalue of the covariance ma-
trix of the neighborhood. The eigenvalue itself is also stored
as its magnitude is a measure of the goodness of fit of
the local plane to the local data. Throughout the scan we
maintain our best estimates of the facade and ground nor-
mals.

Buildings rise more or less perpendicularly from the
more or less horizontal ground. So we may filter potential
ground normals from potential facade normals by taking the
dot product with the vertical vector. We assume the vertical
vector is known as there a number of simple ways to de-
termine it. We expect this product to be near 0 for ground
normals and near 1 for facade normals. Now we have gath-
ered two groups of small local planes from which we would
like to deduce two global planes. The eigenvalues computed
earlier help separate the noise from the signal by measuring
the reliability of each local plane. However, simply selecting
the normals corresponding to the smallest eigenvalues in the
column would be a mistake. It is common, for example for a
facade with a balcony to register two reliable vertical planes,
or a scan that passes over a box truck or a ceiling from an in-
terior may contain two or more horizontal planes with very
low eigenvalues. To insure against these misdetections, the

1We will use the terms column and scanline interchangeably.
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major planes are chosen as those with low eigenvalues and
agreement with the majority of other potential vertical or
horizontal planes.

As the scan progresses and more columns are recorded
we greedily update our major plane estimates. While search-
ing for the most reliable facade normal, it is important that
we remain vigilant against facade shifts that occur when the
scanner passes over a corner of a building or two adjacent
facades. Before the running estimate of the facade is up-
dated the angle between the old normal and the new nor-
mal is measured. If it is insignificant and the current normal
is more reliable than the previous it is updated. If this an-
gle is near π/2 we note a corner. If this angle is not near

Fig. 1 The red lines indicate the edges of the major planes. The in-
tersection of the ground plane with the facade plane can be computed
even though this vector is often obscured in the raw data by vegetation,
vehicles and pedestrians. The darker blue points are candidates for the
facade plane and the lighter yellow points are ground plane candidates.
Note that the facade shift has been correctly identified by the algorithm
(Color figure online)

zero and not near π/2 this may be a noisy column or mod-
ern architecture. The angle between facade normals does not
detect facade translation which are common when adjacent
buildings are offset from the street by different amounts. To
ensure that the facade has not been translated we must check
that:

(f1 − f2) · n1 ≈ (f1 − f2) · n2 ≈ 0, (1)

where f1 is a point on the old facade, f2 is a point on the
new facade and n1 and n2 are normals of the two facades.
If this is not the case then we must note a facade shift and
going forward greedily improve the new facade. See Fig. 1.
In settings where online processing is unnecessary, it is pos-
sible to improve previous global estimates after one pass has
been made over the data.

4.2 The Column Function

The global features of the major planes are complemented
by the meso-level features of regular fenestration in win-
dows and balconies. Fenestration tends to be regular occur-
ring once for each floor. The first step in the detection of
this regularity is construction of a column function. The es-
timates of the ground and facade planes allow us to distin-
guish all the points in the column on or near the facade. The
rest of our analysis will focus on this subset.

The column function is derived from a local measure
taken at each point in the column. Conceivably curva-
ture, eigenvalues, or consecutive angles could be used.
In our work we have chosen consecutive angles for the
simplicity and speed of their computation. Two column
functions are shown in Fig. 2. Despite being a noisy and
simple metric the regularity of repetitive features shines
through.

Before this regularity can be extracted the column func-
tion must be interpolated. As it stands the column function is
distorted by an oversampling of close features and an under
sampling of distant ones. Figure 3 illustrates the predica-

Fig. 2 Two column functions
are displayed. The lighter one
has covered a planar region
wheres as the darker scanline
and corresponding column
function pass over a section of
the building with windows. The
regularity of the windows shines
through the noisy column
function. This regularity can be
precisely extracted using Fourier
analysis (Color figure online)
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Fig. 3 The scanner
over-samples near features and
under-samples distant ones. As
a result the beginning of the
column function before
interpolation displays a lower
frequency period. It appears that
the frequency increases
throughout the column function
when in fact the period is
constant, as can be seen in the
column function after
interpolation. Interpolation is
critical to precisely detect the
period of the column function

Fig. 4 The Fourier Transform of a column function containing win-
dows has noticeable peaks corresponding to the frequency of the pe-
riod. The column function is a real signal so the transform is symmetric
which accounts for the double penultimate highest peaks. The highest
peak in this transform is the zeroth frequency

ment. To rectify this, points are sorted by their height. The
column function is scaled to reflect these heights. After the
linear interpolation, the column function shows actual dis-
tances in the scene and not the concentration of measure-
ments returned by the laser scanner.

4.3 Frequency Space

The signal after interpolation is truly periodic. Fourier anal-
ysis will indicate exactly which period is present in the func-

tion. The Discrete Fourier Transform maps our signal into
the frequency domain. Figure 4 displays one such trans-
form. It is symmetric because the column function input
is real. In frequency space periodic functions have salient
peaks at the frequencies of the period in the signal. The ze-
roth frequency is the average of the signal and is the largest
peak in the transform, but tells us nothing about the period.
Rather it is the secondary spikes which indicate the domi-
nant period of a column function. These secondary spikes
are detected in one pass over the data. At this point it is
possible to return to the spatial domain and plot the peri-
ods found in the frequency space. The results are displayed
in Fig. 5. The results show that analysis of a single column
is enough to discover the period of repetitive architectural
features.

4.4 Aggregation

The estimation of the period from a single column may
be improved through aggregation. Since the algorithm is
processing data online directly after uncovering the period
latent in one column function another column function is

Fig. 5 The dominant period
from a selection of column
functions which covered areas
of periodicity
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Fig. 6 Aggregating Fourier
Transforms provides a more
robust measure of the
periodicity of a set of adjacent
periodic columns. The second
highest peak in the aggregated
transform is more prominent
than in the transform of any
single column. The black
columns are planar regions and
the colored columns are
repeated structures (Color figure
online)

Fig. 7 A square wave can be fit
to the column functions. This
yields more information about
the features and can be used to
obtain robust translation vectors
between different views

Fig. 8 The square wave gives a good estimation of the window cen-
ters. Note that the periodic points from the individual column do con-
tain both high and low frequency outliers. However in the aggregate
our window center estimation is robust. Furthermore high frequency
“outliers” often contain additional information such as the frequency
of panes within each window. See Fig. 9 for the aggregate centroids
that are the medians of the many centers shown above

ready for processing. With high probability this column will
record data from the same repeated architectural features
that were uncovered previously. Adjacent columns with near
identical period can then be grouped providing higher level

insight into the features present in the facade. The period es-
timates can be improved by detecting the secondary spikes
in the sum of all the transforms of the neighboring columns.
Before summing the transforms must be centered about the
zeroth frequency. This is because the columns are not neces-
sarily the same size as occlusions may obstruct some scan-
lines and not others. Figure 6 illustrates this process. The
resultant period is a more robust measure of the frequency
of the repetitive features.

4.5 Fenestration Centroids from Square Waves

Deeper insight into the periodic feature can be obtained if
we fit a square wave to the column function. This wave
measures the actual height of the architectural feature and
allows us to extract the exact middle of the windows and
balconies, see Figs. 8 and 9. The previously gathered infor-
mation about periodicity in the column allows us to uncover
the best-fitting square wave quickly. It is practical to exhaus-
tively check all possible square waves up to some finite res-
olution whose period coincides with the period the Fourier
analysis uncovered in the column. The square wave that fits
the column function will be our estimate of both the height
and centers of the architectural features.

To fit a square wave the column function is turned into a
binary function by taking all values above a threshold as 1
and all values below it as 0. We measure the difference be-
tween square waves and this binary thresholded version of
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Fig. 9 The median feature
middle from all the columns in
the group is selected as the
height of the groups centroid.
The horizontal location is
determined by the Chebyshev
distance in x and y dimensions
between the first and last
scanlines in the group (Color
figure online)

Fig. 10 The green polygons indicate the areas the algorithms detected
as window regions. The size of each period is determined by the dom-
inant frequency. The size and centering of the polygons is determined

by the square wave fitting as described in Sect. 4.5. We compare these
polygons against the ground truth from Fig. 11 to obtain Table 2 (Color
figure online)

Fig. 11 Points belonging to
window regions are colored red.
These labeled scans are
compared against our
algorithms output to evaluate
the regularity detection. The
quantitative results are shown in
Table 2 (Color figure online)

the column function. We repeat this process for every possi-
ble square wave within the period of the column, up to some
discrete resolution. The wave with the smallest difference

is chosen as the square wave approximation of the column
function. A typical square wave and the column function it
fits are shown in Fig. 7.
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Table 2 The precision and
recall of the regularity detection
is presented here

Scan Name True Positives False Positives False Negatives Precision Recall

Scan 1 95 1 7 .9896 .9314

Scan 2 124 6 9 .9538 .9323

Scan 3 53 3 4 .9492 .9333

Scan 4 56 1 3 .9824 .9491

Scan 5 58 1 4 .9830 .9355

Table 3 This table shows the algorithm’s running time on range scans of various sizes. Run time is not completely proportional to scan size. This
is because the individual column size and the ratio of periodic columns also factor into the algorithm’s performance

Scan Points Column Size Periodic Columns Run Time (in milliseconds) Time Per Point

Scan 8 764154 7209 30 4859 .0064

Scan 2 546964 1364 232 6929 .0127

Scan 11 773376 2432 151 8390 .0012

Scan 14 1256904 4761 69 9415 .0075

Scan 9 1006740 1260 144 11419 .0113

Scan 6 1219106 3286 235 12705 .0104

Scan 3 1303359 2721 299 13951 .0030

Scan 1 805176 636 502 13316 .0165

Scan 4 1326117 2757 216 14943 .0112

Fig. 12 Our framework for
scan compression. The
compressed scan has reduced all
the windows above while
maintaining the ornamentation
and irregularities

The middle of the high edge of the square wave corre-
sponds with the middle of the repeated fenestration. Square
waves are generated for each column in each aggregated
window group computed in Sect. 4.4. The center of the fea-
ture can then be estimated as the median of the vertical cen-
ters of each column and the mean of the horizontal distance
between the first and last column. The centers computed for
each column can be seen in Fig. 8 and the aggregate centers
are shown in Figs. 9 and 21.

4.6 Evaluating Regularity Detection

We employ several methods to evaluate the quality of the
detected translational symmetries. First, polygons of the re-
peated architectural features are superimposed on the scan
data. This gives a visual verification of the detection of both
the period and the phase of the features. Figure 10 displays
the superpositions in several different scans.
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Fig. 13 The top image is a segmented scan. The middle image is a
compressed version of the scan above it. The bottom image shows the
amount of reduction. In the bottom image the grey points indicate the
representative regions which are copied and translated to achieve the
compression. See Sect. 5.3. The compression ratio is 48 % with 383735
points removed out of 805176. Even though some window groups con-
tain multiple columns of windows compression is unaffected because
the periodicity of all of them has been correctly identified (Color figure
online)

For a quantitative assessment we have annotated the
scans with labels for the regular features. For example, the
red points in Fig. 11 are labeled as windows by a human vi-
sually selecting them. This ground truth is compared against
the polygons displayed in Fig. 10. If 90 % or more of the
labeled points fall within the area detected as a window it is
considered a true positive. If there is a detected window and
no labeled points fall within it, then it is a false positive, and
lastly, if there are labeled points but no detected window it
is a false negative. In this way, Table 2 is obtained.

4.6.1 Runtime Analysis

The algorithms presented here run in O(n logn) time where
n is the size of a single column. The sorting of the column
function and the subsequent Fast Fourier transform both
come with a cost of O(n logn). The aggregation of adjacent
columns has the effect of multiplying n by a constant but
does not change our big-O analysis. This is because win-
dows and other periodic features do not scale up with the
size of the scan. A larger city does not have larger windows.
Rather the windows have a more or less constant range of
widths and heights regardless of the size of the scan in which
they occur. By a similar argument our exhaustive search for
a square wave approximation of the column function is lim-
ited by the size of the period.

We conducted time tests of our algorithm running a vari-
ety of scans. The results are presented in Table 3. The per
point processing time varies from 3 to 16 microseconds.
This is several orders of magnitude faster than the rate at
which the scanner acquires a single point. Additionally, our
code is implemented in Java and not optimized.

4.6.2 Limitations

Many buildings in modern cities exhibit vertical periodic-
ity. However many buildings contain aperiodic fenestration.
Our algorithm can detect the major planes of such structures
but will not detect regularity. Our algorithm is not appropri-
ate for low-rise residential structures. These structures are
unlikely to contain vertically repeated features.

In low resolution scans, the local planes fit to each point
become unreliable. This obscures the alternation between
planar facade and architectural features. If the resolution is
very low even major plane estimation will become error-
prone.

5 Compressing Range Scans

Range scans of urban scenes are dense. Data-rich point
clouds of millions of points are not practical for many ap-
plications. Navigational robots may have limited computa-
tional resources onboard and processing millions of points
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Fig. 14 The left image is a
segmented scan. The middle
image is a compressed version
of the scan to the left. The right
image shows the data reduction.
The grey points are the
representative regions. The
compression ratio is 47 %,
513983 points have been
removed out of a total of
1082958 points (Color figure
online)

Fig. 15 The left image is a
segmented scan. The middle
image is a compressed version
of the scan to the left. The right
image shows the amount of
reduction. The grey points are
the representative regions. The
compression ratio is 55 %, with
300628 points removed out of
546964 total points (Color
figure online)

may exceed their capacity. Networked applications may not
have the bandwidth necessary to transmit this huge vol-
ume of data. However, much of the urban scene is repet-
itive, especially fenestration. This redundancy can be re-
duced through compression.

5.1 Segmentation and the Representative Region

Compression begins by identifying a representative region
which will be stored in full, and used as a replacement for
the data we remove. The vertical period of the facade was

discovered in Sect. 4. Moreover, in Sect. 4.4 horizontal sec-
tions of the facade were grouped and classified as planar or
periodic. We now wish to segment the facade into like re-
gions. One of these regions ought to be able to replace all the
others vertically aligned with it, without compromising the
character of the facade. Furthermore, the planar sections of
the facade which are interspersed with the periodic sections
of windows and balconies are also ripe for compression.

Segmentation proceeds by creating a rectangle around
each periodic feature. The height of the rectangle is deter-
mined by the period detected in Sect. 4.3. The width of the
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Fig. 16 These facades have
been segmented by their
periodicity. The Chebyshev
metric identified the rectangles
containing each periodic feature
(Color figure online)

rectangle is determined by taking half the distance to the
center of the neighboring periodic features, unless these fea-
tures occur in the beginning or end of a facade in which case
the rectangle is stretched to the facade’s edge. We use the
Chebyshev distance to extract this rectangle. If we used the
Euclidean distance we would extract the circle around each
window center.

Because windows typically have vertical and horizontal
symmetry we wish to extract the feature’s surrounding rect-
angle. The Chebyshev distance between two points α and β

in R
3 is defined as:

DChebyshev(α,β) : max
i∈(x,y,z)

(|αi − βi |
)
. (2)

We use this metric to determine the rectangular region with
sides equal to the length of the dominant period. One of
these regions is chosen as the representative, in our exper-
iments we choose the median size feature from the sets ag-
gregated in Sect. 4.4. At first glance it is tempting to choose
the densest region as the representative. This strategy is of-
ten a mistake. Usually the region that is densest has a unique
feature that distinguishes it from the rest of regions and dis-
qualifies it as fair representative. Instead the region with me-
dian density is chosen.

To complete the compression we translate the chosen re-
gion vertically by the distance of the period. In this way the
size of the column can be reduced by the number of win-
dows found in the group of columns.

For a more ambitious reduction we assume that the build-
ing facade is planar. The vertical distance that came from the
Fourier analysis can be coupled with the horizontal distance
to the next adjacent group of periodic columns. The Cheby-
shev metric is altered to handle two different distances one
vertical, the other horizontal. In the coordinate system given
by the scanner the vertical axis corresponds to the z-axis
of the points. However, the horizontal direction along the
facade may be a combination of both the x and y coordi-
nates. So, to find the horizontal distance to the next group of
columns we take the Chebyshev distance in both the x and y

directions.

DV ertical(α,β) : (|αz − βz|
)

(3)

DHorizontal(α,β) : max
(|αx − βx |, |αy − βy |

)
(4)

Now much larger swaths of the building are included
in the compression, see Fig. 16. The entire facade is com-
pressed by a factor equal to the number of periodic elements
it contains.

5.2 Comparison of Facade Segments

Some regions may contain extra information that should not
be discarded when we compress with the median region. To
avoid compressing regions with something that is not truly
representative, the regions in question should be compared.
Comparing 3D point clouds can be computationally inten-
sive. To maintain the realtime flavor of the algorithm we
choose a method based on Osada et al. (2002). Histograms
are generated from a subset of points within each region.
The histogram contains the Euclidean distance of randomly
selected pairs of points from the subset. To prevent spuri-
ous matches, it is sensible to choose high curvature points
(computed as in Cazals and Pouget 2005), or points whose
eigenvalues computed during the local PCA were high, see
Fig. 17. These points contain more of the unique character of
each region rather than the homogeneous planarity. Compar-
ing histograms is simple: one is subtracted from the other.
Alternative histogram distance metrics exist as detailed in
Pele and Werman (2010), however the L1 metric is sim-
ple and efficient for our purposes. A large absolute value in
the difference between histograms indicates two distinct re-
gions, both of which should be preserved in the compressed
scan. Here we introduce a parameter γ as the threshold by
which regions are declared similar. This parameter allows
user’s discretion over the degree to which their scans are
compressed and the amount of data loss they will tolerate.
Figure 18 shows the same scan with different levels of com-
pression achieved by altering this threshold. The graphs in
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Fig. 17 Histograms are used as
shape signatures to efficiently
distinguish between distinct
regions. Left: some regions of
high curvature points. Right:
same regions with their shape
histograms. Similar regions
have similar histograms

Fig. 18 The same scan with
different levels of compression
applied. The amount of
compression is determined by
changing the threshold which
separates the histogram shape
signatures, as described in
Sect. 5.2. From left to right the
compression rates are 57 %,
47 % and 13 %, and the
histogram difference thresholds,
γ are 2000, 700, and 500

Fig. 19 At left the compression
rates achieved at various
histogram thresholds. At right
the cumulative error at various
histogram thresholds. The error
is measured by averaging the
Hausdorff distance (in meters)
between the original regions and
the representative that replaces
them

Fig. 20 Scans are compressed
by repeating a representative
region in place of the original
data (Color figure online)
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Fig. 21 The left image is the
original scan. The middle
images shows the feature
centroids superimposed over the
compressed scan. The right
image shows all the points
remaining after the compressed
points are removed. The
centroid of the architectural
features discovered in Sect. 4.5
improve the compression results
by aligning the groups by floor

Fig. 22 Two views were
synthesized from a single scan
by applying a known
transformation T . Our method
then estimates a transformation
T −1∗ , using the methods of
Sect. 6

Fig. 23 A single group of
regular features occurring in
both scans is sufficient to
achieve an accurate registration

Fig. 19 show the compression rates and error at different his-
togram thresholds. We measure the error by averaging the
Hausdorff distance between the translated representative re-
gion and the region it replaces.

5.3 Replacing Regions with Translations of the
Representative

Once the regions which are sufficiently similar to the rep-
resentative are identified they can be removed. Scans with
repetitive features removed are shown in Figs. 12, 13, 14,

15, 20 and 21. Working just with this reduced set it is still
possible to recreate the look and feel of the initial scan.
By translating the representative region vertically by mul-
tiples of the dominant period we are able to fill the missing
data.

6 Registering in Real Time

Registration is a major topic of research in 3D com-
puter vision community. Here we present a realtime reg-
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Fig. 24 Fours views of two
distinct scans that have been
registered following Sect. 6. The
points from one scan are shown
in blue and points from the other
scan are shown in black

Fig. 25 Six views of two
distinct scans one with blue
points the other with black
points. Despite a wide variance
of resolution and incident angle
of the laser, the transformation
between the views can be
computed online and
automatically (Color figure
online)

istration technique which builds upon the information ac-
quired from the analysis of the periods of the windows
and balconies. This strategy could be employed by two
or more scanners, for simultaneous realtime multi-view
scene acquisition. Our algorithm is extremely efficient
and robust for scenes with repetitive patterns. Figures 22
and 23 show synthetic views, while Figs. 24 and 25 show
two distinct real world scans registered using our algo-
rithm.

6.1 Orthonormal Bases of Aggregated Columns

Solving for the rotation between two overlapping scans is
essentially a problem of defining bases. We must find the
orthonormal bases that describe the two sets to be registered.
Let us call these two sets S1 and S2. For each point x1 ∈ S1
its corresponding point in S2 called xrot is given by:

xrot = B2B
−1
1 x1, (5)
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Fig. 26 Basis vectors for two window groups

where B1 is the matrix composed of the orthonormal bases
of S1 and B2 is a similar matrix for S2. To find the orthonor-
mal bases B1 and B2 we find the vertical vector v and the
orthogonal facade vector f . The facade vector is established
by taking the vector between any two points within the fa-
cade, called fstart and projecting this vector onto v. The
facade vector is the vector between fstart and its projection
onto v. By subtracting out the component of fstart in the
direction of v we ensure that f is orthogonal to v.

f = fstart − (
(fstart · v)v

)
. (6)

Both vectors f and v are normalized. Now their cross
product yields the complete set of three basis vectors:

B∗ =
⎛

⎝
f

v

f × v

⎞

⎠ (7)

Figure 26 shows two sets of basis vectors and the repeated
architectural features they were computed from.

6.2 Computing Corresponding Pairs

Once the rotation matrix B2B
−1
1 is known, solving for the

translation between the scans is reduced to finding a pair of
corresponding points. More precisely, we wish to find two
locations in each scan of a single real world point. The trans-
lation between scans t is then:

t = x2 − B2B
−1
1 x1, (8)

where x1 and x2 are two data points that correspond to the
same real world point.

There are several ways to compute x1 and x2. The prob-
ability that the laser will measure the exact same point in
two different scans of the same scene is vanishingly small.
Therefore choosing a pair of points and simply calculating
the translation vector between them is bound to introduce
some error. It is preferable to rely on higher level knowl-
edge about the scene. To this end we propose two different

methods for computing translations between different views.
The methods are appropriate in different circumstances. The
window width sequence method is best when the areas of
overlap between the views are large and the resolution is
high. The corner vector method is not as reliable as the win-
dow sequence but it requires less resolution and overlap.

6.2.1 Window Width Sequences

Registering two scans by a pair of architectural features
should result in an alignment of all of the overlapping fea-
tures. We compute the rotation matrix based on two sets of
these features, the window groups from Sect. 4.4. If the map-
ping between feature groups is correct it should ensure that
all the adjacent feature groups are also aligned. It is easy
to check this by relying on their width. Expanding from the
pair of feature groups we have aligned, we should find sim-
ilar feature groups in all the remaining sets of adjacent fea-
tures until the edge of the overlap.

6.2.2 Corner Vector

If the scan does not contain significant or high resolu-
tion overlap it may be difficult to distinguish this pattern
of matching features because there might be only one set
of features that we can align. In these circumstances we
rely again on the macro data about major planes found in
Sect. 4.1. Now we can use the ground plane estimate to com-
pute the vertical coordinate of the translation vector.

For corresponding aggregated window column groups we
try to match the first columns from each set of columns. This
locks in two of the coordinates of the translation vector. To
find the vertical translation we resort to our major plane de-
tection from Sect. 4.1. The cross product of the facade and
ground normals gives the direction of the line of intersection
between the two planes (assuming they are not parallel):

id = ng × nf . (9)

Now this directional vector must be translated to align
with the intersection of the major planes. For this translation
vector we combine the z-coordinate of the ground plane and
x and y coordinates of a point on the facade plane in the
current scan line. Essentially dropping a line from the facade
plane until it hits the ground.

6.3 Evaluation of Registration

Since the number of feature groups is relatively small it is
not impractical to compute many possible transformations
and then evaluate them all and select the best to register
the scans. So, many transformations are generated and one
will be selected as the best. We eliminate spurious transfor-
mations in a number of ways. First we ensure that the fea-
ture groups to be aligned have similar periods as detected in
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Fig. 27 The left image shows
two views registered by our
algorithm. The right images
shows the registration after ICP
is performed. Notice how the
quality of the registration has
been degraded by ICP. The
lamppost, mailbox and trash can
all exhibit significant error,
which was not present in the
real time registration on the left

Sect. 4.3. Furthermore we only compute transformations be-
tween window groups of similar widths. Then we evaluate
the quality of the transformation by checking the distance
between aligned columns once a transformation has been
applied to one of them.

To further evaluate our registration algorithm we per-
formed ICP on our results. Surprisingly, there was a notable
degradation in the quality of the registration. After close
analysis we concluded that the ICP algorithm tried to align
regions like parked cars that did not actually correspond to
the same real world structures. This experience illustrated
another strength of our algorithm. Not only do we compute
registration in realtime far faster than ICP, we base our reg-
istration on facade features which are lasting elements of the
scene. ICP treats all close points equally, so scans performed
on different days are susceptible to error when a new set of
cars are parked on the street, for example. The average error
returned by the ICP algorithm was 0.65 meters. ICP mea-
sures an error 0.914 meters before registration but much of
this error comes from false correspondences and does not
actually indicate a flaw in the registration. The scan before
and after ICP is applied is shown in Fig. 27, clearly the reg-
istration before ICP is more accurate.

The transformation matrix output by our algorithm was
compared against the transformation matrix computed from
an interactive registration program where a user selects sev-
eral corresponding points in the two scans. The interactive
program then uses a least squares technique to find the trans-
formation matrix between the scans. In our tests the per en-
try difference between the rotation matrices from our auto-
matic approach and the interactive program never exceeded
0.0084 and averaged 0.0037. Alternative methods for com-
paring rotation matrices are presented in Huynh (2009). The
translation vectors differed by an average of 0.12 meters.

7 Conclusion and Future Work

We have shown an online algorithm for detecting regular
features and we have exploited this regularity to compress

and register urban range scans. The meso-level information
of the regular architectural fenestration provides tremendous
insight into the scan. It will no doubt be shown to be applica-
ble to a host of other applications in urban scene processing.

7.1 Smarter Scanners

One field ripe for research is integrating online algorithms of
the kind described here into the hardware of the laser scan-
ner. By processing the scan as it is acquired the offline com-
putational resources are freed to pursue higher level recog-
nition tasks.

Compression in particular could be helpful in an onboard
application. A robot navigating a complex scene may sim-
ply not have the resources to store an entire point cloud of
an urban scene. Integrating compression into the act of pro-
cessing circumvents this need.

7.2 Parallel Range Scanning

Another area of future work will employ the registration al-
gorithm presented here to allow simultaneous realtime reg-
istering of scans from multiple scanners. This application
could prove critical in range finding sensor networks. If reg-
istration can occur as the scans are recorded each sensor
could leverage all the global information acquired as it be-
comes available. In this way each sensor could enjoy the
speed and robustness that parallelism affords without sacri-
ficing the global knowledge of a serial scan.
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