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expected value of a general classical 2-CUSUM stopping rule
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1 INTRODUCTION

The need for statistical surveillance has been noted in rddfgrent areas (see, e.g., An-
derson et al., 2004; Basseville and Nikiforov, 1993; Doeugcet al., 1986; Willsky et al.,
1980). This area can be studied mathematically by consigéhie problem of detecting a
change in a stochastic process through sequential obsgrsaln this formalism, we seek
a stopping ruler that detects a change poihtwhile at the same time controls the mean
time to false alarms. In other words, at each decision timetpg we want to discrim-
inate between the two states of the process: the state, 0}, and the statdt > 6}.
More specifically, the stopping ruke minimizes the detection delay of the change under
the constraint on the mean time to false alarms.

A useful model for studying such problems is a Brownian motidose drift changes
from one constant to another at the unknown change pointatticplar, for the case of
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one-sided alternatives, in which the change in the driftke@vn constant, the traditional
Page’s CUSUM is known to be optimal for any fixed value of themgéme to false alarms
(see Beibel, 1996; Shiryaev, 1996).

The problem of detecting a change in the drift of a Browniartiamowith two-sided
alternatives is considerably more difficult than that witteesided alternatives. This paper
is a continuation of the work started in Hadijiliadis (2008adjiliadis and Moustakides
(2006), and Hadjiliadis and Poor (2008). In Hadjiliadis avddustakides (2006) it is
conjectured but not proven that within the class of 2-CUSUivinonic mean rules, drift
equalizer rules are best and two strong asymptotic optiynasults as the mean time to
false alarms tends to infinity are presented both in the syinrend the non-symmetric
case. These asymptotic results enhance the 2-CUSUM astionppaimality results of
Tartakovsky (1994). In Hadjiliadis (2005), it is seen thadthm the class of modified
drift 2-CUSUM harmonic mean rules, the best rules are thos&hich the drift param-
eters of the modified drift 2-CUSUM harmonic mean rul®sand \,, are chosen so that
Ao — A1 = 2(ue — 1), for anyvalue of the mean time to false alarms. (Hereand — o
are the possible drift parameters assumed after the changeéadijiliadis and Poor (2008)
it is proven that the optimal solution to the problem of qaskdetection of two-sided al-
ternatives has to be an equalizer rule. In the same papepribv€n that the best amongst
the classical 2-CUSUM stopping rules is unique and is a haionmean rule in the case
of a symmetric change in the drift while it is a non-harmoniean rule with threshold
parameters;, > v, (11 < o) Whenpu, > s (u1 < ps) for anyvalue of the mean time to
false alarms. All existing results are summarized in thiowahg table

Table 1. Existing results regarding 2-CUSUM stopping rules

Classical Modified drift
Harmonic mean rules Best amongst all classical ruleBest for
in the symmetric case Ao — Ay = 2(p2 — p1)

Non-harmonic mean rulesBest amongst all classical rules
in the non-symmetric case

In this paper, we begin by deriving a closed-form formula ttog first moment of a
general 2-CUSUM stopping rule based on the Brownian motiodehusing renewal argu-
ments and Anderson (1960). This rule, although similarjffer@nt from the ones treated
in Khan (2007) and Yashchin (1985), which are based on theditran and upward rally
processes also studied in Hadjiliadis and Vecer (2006). fattethat the optimal stopping
rule is an equalizer rule (see Hadjiliadis and Poor, 2008 3jise to the natural question of
comparing the best classical 2-CUSUM equalizer rule withrtiodified drift 2-CUSUM
harmonic mean equalizer rule. In this paper, we compare etection delay of the for-
mer with the latter both in the symmetric and the non-symimetse for a given fixed
level of the mean time to false alarms. In the symmetric cads,seen that the modi-
fied drift 2-CUSUM harmonic mean rule displays a slightlytbeperformance than the
classical 2-CUSUM harmonic mean equalizer rule, which feats itself for small values

2



of a two-sided change in the drift parameter and of the memna to false alarms. In the
non-symmetric case the results involved are very intargstnd to some extent surprising.
The first observation is that although for the modified drétgmeter 2-CUSUM harmonic
mean equalizer rules the relationship that the modifiedsdni&ve to satisfy for equaliza-
tion is linear (see Hadjiliadis, 2005), the relationshipttthe threshold parametersand
vy have to satisfy for equalization in the classical 2-CUSUbbpsging rule is much more
involved. Moreover, it is seen that the classical 2-CUSUMadiger rule outperforms the
modified drift parameter 2-CUSUM harmonic mean equalizkr far effectively all values
of the mean time to false alarms. Interestingly, the peréoroe of both types of rules as
the mean time to false alarms tends to infinity is identicaltier details will be presented
in the main body of the paper.

In Section 2, we mathematically formulate the problem ofngjfeapoint detection with
two-sided alternatives in a Brownian motion model. In Sutts, we derive an explicit
formula for the first moment of a general 2-CUSUM stopping uhder all relevant mea-
sures. In Section 4, we present the comparisons of the madifitt 2-CUSUM harmonic
mean equalizer stopping rule to the classical 2-CUSUM harommean rule in the sym-
metric case. In Section 5, we concentrate on the non-synnuetse. We first provide a
gualitative analysis of the relationship between the thwkkparameters of the classical 2-
CUSUM equalizer rules and then proceed to compare its padoce to the modified drift
2-CUSUM harmonic mean equalizer rules. Finally, in Sec8pmwe conclude with some
closing remarks. Appendices A and B contain the Mathematicke used to perform the
above comparisons.

2 MATHEMATICAL FORMULATION

We sequentially observe a procdss} with the following dynamics:

( dwt t S 0
de, —
S pidt + dw,
or t>0
( —podt + dwy,

wheref, the time of change, is assumed to be deterministic but umknfw, } is a standard
Brownian motion processy;, the possible drifts to which the process can change, are
assumed to be known, but the specific drift to which the po&eshanging is unknown.
Both ;1; andy, are assumed to be positive.

The probability triplet consists @t”'[0, co], Us~oF:), WhereF; = 0{{,,0 < s <t} and
the families of probability measuré®;}, 6 € [0, o), whenever the changejis, i = 1, 2,
andP,, (the Wiener measure).

Our goal is to detect a change by means of a stoppingratiapted to the filtratiorf;.
As a performance measure for this stopping rule we proposxtamded Lorden criterion



(see Hadjiliadis and Moustakides, 2006)
Jr(7) = max{Ji(7), Jo(7)} (2.1)

where J;(t) = sup, essupkj [(r —0)"|F], i = 1,2. This gives rise to the following
min-max constrained optimization problem:

inf JL(T)
subject toE, 7] > 7, (2.2)

where the constraint specifies the minimum allowable meae tb false alarms. As dis-
cussed in Moustakides (1986), in seeking solutions to tlewelproblem, we can restrict
our attention to stopping times that achieve the false atamnstraint with equality; that is,
stopping rules for which

Ex[r] = 7. (2.3)

As argued in Hadjiliadis and Poor (2008) the optimal stogpure for problem (2.2) has
to satisfy

Ji(t) = Ja(7). (2.4)

We now proceed to define the normalized CUSUM processes andctirresponding
one-sided CUSUM stopping rules.

Definition 2.1 Lety; > 0 andwv, > 0. Define

ap}
log —dPgo |Feq

Low = m =& — sty mf = infuqul; yb = uf —mf; n(v) = inf{t >
03y > 11},
dp2
_ log 5% |F . L _ _. .
2. uy = d:%;ot ==& — %,uzt, m; = infeciug; y, =u, —my; To(ve) = inf{t >
059, > 12}

That is, 7 (v1) and 7y (1) are the first times that the procesggsandy, reach their cor-
responding thresholdg andw, respectively. The classical 2-CUSUM stopping rules are
then of the formr (11, v2) = 71 (1) A T2(12).

We classify 2-CUSUM rules according to the clags= {7(v1,1:2);11 = 1»} of har-
monic mean rules and the classks= {7(v;,v;) | v; > v; > 0, i # j} of non-harmonic
mean rules.

Remark 2.1 It is useful at this stage to contrast the stopping tinfe,, 1) to the one
used in Khan (2007). The one considered in Khan (2007) usingatation, is defined as
T = Ti(hy) A Ty(hs), whereT; (hy) is the first time that the proceds™ = ¢ — inf,; &,
reaches the threshold andT:(h,) is the first time that the proce$$ = sup,., & — &
reaches the threshold. It is therefore a different stopping rule. We will revidiii$ point
in Remark 3.1.

INotice thatlog throughout the paper denotes the logarithm with kase
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We now proceed to define the modified drift 2-CUSUM stoppirlgsas follows.
Definition 2.2 LetA; > 0, Ay > 0, 4 > 0 andvy, > 0. Define

Louf (M) = & — Mt mif (M) = infocouf(M); () = uf (A) — mf (\);
7i(A1, 1) = inf{t > 0; 5" (\1) > 11},

2. u; (A2) = =& — 3hat; my (N2) = infucuy (No); yr (A2) = uy (A2) — my (A2);
T2(A2, v2) = Inf{t > 0;y,; (A2) > 10}

That is, 71 (A1, v1) and (g, 1) are the first times that the procesggg ;) andy; (\2)
reach their corresponding thresholdsandv, respectively. The modified drift 2-CUSUM
stopping rules are then of the forni\,, Ao, v1, 1) = T (A1, 1) A Ta(Ag, 12).

In what follows we will focus on modified drift 2-CUSUM harmiznmean stopping
rules which belong to the clags; = {7(\1, A2, 11, 12); 11 = 142},

We also define the following quantities, the use of which mdtome apparent later.

Definition 2.3 For « > 0 andb > 0, we define
1. Ut (a) = inf{t > 0;u; > a},
2. U~ (b) = inf{t > 0; —u; < —b}, and
3. l(a,b) = P (Ut (a) < U ().
In the sequel we will repeatedly use the indi¢gs< {1, 2} and the function

eV —yv —1

fuly) = )2

According to Hadjiliadis and Moustakides (2006), Siegm(4285), and Taylor (1975) we
have

(2.5)

E8(7-2<VZ>> = 2fw<_:ui>7 L= 17 27 (27)
Eé(Tj(Vj)) = 2fl/j (:u] + 2”:)7 i 7& jv Za] € {172} (28)

Moreover, according to Hadjiliadis (2005) and Taylor (1p##& also have

Eo(ri(Ni,v) = 2f,(N), (2.9)
Ey(mi(xiv) = 2fu(A = 2pm), (2.10)
Eo(mi(Nj,v)) = 2f(Aj + 2p). (2.11)

For any 2-CUSUM stopping rule it is true thatJ, (1) = max{E} [7], E3 [7]} (see
Hadjiliadis and Moustakides, 2006; Hadjiliadis and Po60&). Thus, equation (2.4) takes
the form

Ej[r] = Ej[7]. (2.12)
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3 THE FIRST MOMENT OF A GENERAL 2-CUSUM RULE

We begin with our main expression for the first moment of a gargassical 2-CUSUM
stopping ruler (v, v5). To simplify the expressions that follow we introduce

a;j(r,§) = exp{—(r— 1Dy (r(p + p2) + p; — &)} (3.1)
Bi(r,§) = exp{—rv; (r(u + p2) +pi — &)} (3.2)

A© = S [(rron+ )+ - 0) (n O —ar+1.9)] 33

[e.e]

B = X [(rlm+ 1) + 500~ )09 3.4

Theorem 3.1 Let (v, 15) = 71(11) A 72(v2) be any 2-CUSUM stopping rule and denote
7(1,12) by 7. Moreover, letf be as in (2.5). Then, far, > v;, i # j, with A = v; — v,
we have

Bl = 28,0 1= i et =2 9
Bl = 2hm) 1~ o ey e
Bulr] = 2l |1~ - mf;j(f}ij G| e

We notice that for any with v, = 15, all of the above expressions reduce to the well-known
harmonic mean rule (see Siegmund, 1985). That isyfor 15, under any measure, we
obtain

En] E[n]

Elrl = Eln]+E[n)

(3.9)
Moreover, it can easily be seen from the expressions of Emed.1 that the harmonic
mean rule holds as a lower bound to the first moment of a geokssical 2-CUSUM
stopping rule (see e.g. Dragalin, 1997).

In order to prove Theorem 3.1 we will need to make use of twbmneary results that
are summarized in the following two lemmas.

Lemma 3.1 We have

sup(yS + vy, ) = max{supy,,supy; }.

s<t s<t s<t

Proof. Observe thay,” + y; = —3 (i1 + p2)t — m{ — m; . We notice that the process
y; + y; can only increase when eithef = m;" or u; = m;, both of which cannot
happen at the same time, since that would imply giat- y, is 0. Thereforey,” + 3,
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is a strictly decreasing function of time unless eithgr= 0 or y,, = 0, at which instant
max{y,", y; } = sup,epoy {maX{yj s }}~ O

As a consequence of Lemma 3.1, we have that

{y;, =0}, (3.10)
{y, =0} (3.11)

Remark 3.1 We notice that in the case of Khan’s (2007) stopping #ute T} (hy) AT5(hs)
(see Remark 2.1), equations (3.10) and (3.11) become tespgc

1/221/1:>{7'2<7'1}

-
1/121/2:>{T1<7'2} -

ho > hy = {T2 < Tl} = {ijz_ = 0}, (312)

Similarly to Khan’s (1981) Lemma 2 and Khan’s (1985) LemmanMihich (3.12) and
(3.13) are used, we have the following lemma which uses (&40 (3.11) instead.

Lemma 3.2 Let ; and » be the one-sided CUSUM stopping branches,0€ G having
the same threshold parameterWe then have

__Bln]
FE [7’1] + FE [7'2]

E 7]

P(T2<7'1>: m

,P(T1<T2):

Proof. For simplicity in this proof we will use to denoterg. We haver = 1, A 7». Hence,
n=1+mn-7" n=r+m-7".

Conditioning on{T = 7>}, and subsequently on its complement, and taking expeotatio
we have

E[Tl] = E[T]+E[Tl—7'2|7'2<7'1]'P(7'2<7’1), (314)

Elrn] = Er]+En—7n|n<ml Pln<mn). (3.15)
Sincer; andr, have the same thresholdsusing (3.10) and (3.11), we obtain
{r<n} C{yl, =0}, {n <mn}C{y, =0}
Therefore, (3.14) and (3.15) become
En]=FElrl+ E[n] - P(rn<n), Eln]=FE[r]+ E[n] - P(n <),

from which, by eliminatingt [7], the result follows. O



Proof of Theorem 3.1Let us suppose that > v». Then, using (3.11) and (3.15), we have
that

Elrn(n)] = E|r]+ E () - P(Tl(Vl) < T2(V2)).
Hence,

Elr] = Eln(n) - P(Tg(l/g) < Tl(ul)). (3.16)

We now proceed to expre%(@(ug) < 71(1/1)) interms oflI(a, b) as it appears in Defini-

tion 2.3. Notice that we can rewrite the probability of its:ggement, namely’ (rl(ul) <

72(1/2)) 2, as

P<ﬁ(u1) < 72(u2)) = P(Tl(l/l) < () | Ti(1) < TQ(VQ))P(Tl(VQ) < TQ(VQ)).
(3.17)

Using Lemma 3.2, however, with= v,, we obtain

E ()]
T1(v)] + B [r2(12)]

p<ﬁ(y2)<72(y2)) = I (3.18)

To get an expression for
P<T1(V1) < T2<V2) ‘ 7'1(1/2) < TQ(VQ)),

we first consider the dynamics gf andy, under all relevant measures. Using Definition
2.1, we can write);” = u;” — m; andy; = u; — m; where the dynamics of" and—u;
are summarized in the following table:

Table 2. The dynamics ofi;” and—wu; under the different regimes

no change®,.) | change isi; (B)) | change is—u, (P?)
U:_ Wy — %,ult Wy + %,ult Wy — %(Ml + 2,&2)t
—u; | w4 gpot wi + 3 (2 + 2u1)t | we — ot

2Notice thatP (7—1(1/1) = 7-2(u2)> = 0 under any measure and amy> 0 andvy > 0.



Therefore, if we were to divide the intervil, v, — 1] into n equal length intervals,
then

n—oo

P(Tl(Vl) < T2<V2) ‘ 7'1(1/2) < 7—2<V2)) = lim P(ﬁ?zlEz>, (319)

whereE; is the event tha{supy,;,, y; < v»} conditioned upon the initial value gf " at
the left endpoint of each interva] being equal té) and{/;} are the random intervals

e o (o - 0O o =]

Because of the strong Markov property of Brownian motiondbhents{ £;} are indepen-
dent, equiprobable and they have the same probability as/tre

{ The process,; increases by at least="2 units }

before the process- u, falls by v, (or more) units (3.20)

A depiction of the strong Markov property is given in Fig. Ihave the upper solid black
line represents the process,, = & + %Mgt, the upper dashed line represents its running
supremum, (that is, the processp, (&, + 3u25) = —m; ), the lower solid black line
represents the process = ft—%ult and the lower dashed line its running infimum (that is,
the processn,” = inf,; (&, — %,uls)). We remark that the normalized CUSUM procgss
is the difference between the upper dashed and the blackdme:the normalized CUSUM
processy;” is the difference between the lower solid black and the lafeshed lines (see
Definition 2.1). The strong Markov property is depicted byhtsof the axis to the time
point (1), that is the first time point at which the procegsreaches/, (the difference
between the lower solid black and the lower dashed lines)is Representation (3.19)
comes as a result of repeated such “shifts” of the axis (wdnielvalid by the strong Markov
property of Brownian motion) at each of the poim{iug + ”1;”2), T (VQ + 2%), e
7 (v 4 (n —1)1=22),

Therefore, in view of Definition 2.3 and (3.20), (3.19) be@sm

P(Tl(l/l) < () | (1) < TZ(VQ)) = lim P (E)" = lim II (”1 . ”2,u2)n
(3.21)
Using Theorem 4.1 of Anderson (1960), we obtain the foll@yiepresentations for
Jim P(Ey)"

under the following different measures:
1. underF;

il (”1 — 1/2) — (1 = [6—2[(7”—1)27151+7”27252—7”(7“—1)(7152+7251)]
n

r=1

_6—2[7‘2(“/151+’Y252)—7‘(7"+1)’7152 —7"(7‘—1)“/251}] > : (3.22)

Whel’evl = n-r Yo = —Va, (51 = —%,ul and52 = _%</le2 + 2,&1)

n
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Figure 1. A demonstration of the strong Markov property of Browniantiow.

2. underP?

IT (Vl — Vz,yz) = (Z [€—2[7‘2’7151+(T—1)2“/252—7"(7‘—1)(’7152+“/251)}
n

r=1

_6—2[73(7151+7252)—r(r—1)7152—r(r+1)7251]] ) 7 (323)

wherey, = X222 yp = —1p, 0 = %(M + 2p2) @anddy = 5z

3. underP,
IT (=22, 15)" has the same representation as in (3.23)3fer 11 andd, = —1 .

Let

C(r) = exp(=2(r’y202 — r(r — 1)y201))
D(r) = exp (=2m[r*6 —r(r —1)8]) .

Factoring out the termd'(r), the right-hand side of (3.22) becomes

(1—20

—271[(7” 1)261—r(r—1)62] —271[7“251—7”(7“"‘1)52}]) . (324)
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Sincey; = “—*2 and~y, = —1,, we have that

—271[(r—=1)281—r(r—1)é2] . 6—271 [r281 —r(r+1)d2]

_ (1 _ @w C 126 — r(r — 1)) + 0 (%))
- (1 - @[ﬁal (e 1)8) + o < )) . (3.25)

Substituting (3.25) into (3.24), we obtain
as claimed.

Similarly the right-hand side of (3.23) can be written as

(ZD [ —2[(r—1)24202—r(r—1)v201] _ e—2[r27252—r(r+1)7251]]> ) (326)

Observe that since, = “-%2,

e

S|+

JLI& (1 + @ [i (01 +2r(02 — 01) C(r)

r=1

= exp {—2(1/1 — 1) [Z (01 4 27(d2 — 01)) C(r)

2 _
D(T) = 6—2“/1 [7‘251—7"(7‘—1)52] = exp {—7<V1 V2) [7‘251 — 7’(7‘ — 1)52]}

n

2 — 1

= 1- 7(1/1 v2) (1?6 —r(r —1)ds] + o <—) :
n n
Moreover,
Z [ 'y262 r(r—1)y201] 6—2[r2-yz§2—r(r+1)7251}] — 17 (327)

which is recognizable as quantify; in Theorem 4.1 of Anderson (1960) foff = 0.
Indeed it is with probability 1 that a Brownian process, Wistarts at zero, will first hit the
boundarys, t, before hitting the linear boundany + d»t, since this occurs at time= 0.

Thus,

. " 2A
lim T (”1 ”Z,VQ) — lim (1——
n—oo n n—oo n

which reduces to

> [r?61—r(r—1)da]az(r, 0)—az(r+1,0)]

r=1

exp{—AA5(0)}

as claimed.
All other cases follow similarly. O
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4 THE SYMMETRIC CASE

In this section we treat the case that= u, = ;. The best 2-CUSUM stopping rule has
to satisfy (2.12). Moreover, the best amongst the clas@¢aUSUM stopping rules, in
the symmetric case, belongs to the cl@ssf harmonic mean 2-CUSUM rules and is also
unique within its class (see Hadjiliadis and Poor, 2008)tharmore, in Hadjiliadis (2005)
itis seen that (2.12) is satisfied for all modified drift 2-QUM stopping rules of clas§,,

for which

At — A2 = 2(p1 — pi2). (4.1)

Notice that equation (4.1) implies that should be equal ta, whenever there is a sym-
metric change, namely; = u». The optimality of the modified drift 2-CUSUM harmonic
mean rules within the class of all modified drift 2-CUSUM hamit mean ruleg;,, (see
Hadjiliadis, 2005) for any value of, suggests that one should compare the performance
of the classical 2-CUSUM harmonic mean rule with the perfamoe of the modified drift
2-CUSUM harmonic mean rule for the same mean time to falsengla. Since the latter
involves one more free parameter, namel A\; = \,, over which minimization of/(7)
can take place, it is expected that it will have a strictlyéeperformance than its classical
2-CUSUM counterpart. Itis also expected, due to the asyngaiptimality of the classical
2-CUSUM harmonic mean rule as— oo (see Hadijiliadis and Moustakides, 2006), that
the free parameter which minimizesJ, (1) converges tqu = p; = pp asy — oo.

In particular, for the modified parameter 2-CUSUI\, v), using (2.9), (2.10), (2.11)
and the harmonic mean rule (3.9), (2.2) becomes

miny {22000 ]
subject tof,(\) = 7. 4.2)
From the above constraint it follows thatas— oo we obtain
Av = log(v)(1+ o(1)). (4.3)
By inspection of the delay function

fl/()\ + 2:”) + fu()‘ - 2:“)7

it is easily seen that the minimal detection delayascreases, occurs for < 2u (see
Theorem 2 of Hadjiliadis and Moustakides, 2006) and becomes

Ey [r(\v)] = Eg [T(A,v)] (4.4)

foQA+20)f(A=2p) 2
Substituting (4.3) into (4.5), we obtain

fo O +2p) + f,(A=2p)  A2u—A)
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- Relative
— =05 - - =l — u=2.5 € — =05 R — 25
diff. w w W

0.6 7

0.5
047
0.3 4

0.2 4

0.1

0 T T T T T T 1 0

log(y) log(y)

Figure 2. (Left) Convergence ok as a function ofog(y). The solid curve corresponds o= 0.5,
the dotted curve tg = 1, and the dashed curve to= 2.5. (Right) Relative diff., defined in (4.7),
as a function ofog(~). Solid, dotted, and dashed curves same as in (Left).

which is minimized for the choicg = .

This asserts that the best asymptotically in the cfagds the same as the best in the
classg.

For the purpose of clarity let us denote BYD,,.qi5.a the quantity of (4.4) and by
DDa.ssica the same quantity foh = p. In Fig. 2 (Right side), the relative difference
of these two quantities, namely

DDclassical - DDmodiﬁod

Relative diff. = 100 4.7
8 DDclassical ’ ( )

is plotted againsibg .

Remark 4.1 It is possible to solve for in the equatiory, (\) = ~ in terms of the Lambert

W function. In particular, let?V be the second real branch of the Lambert W function (see
Corless et al., 1996), that is represented by the fun®mauctLog[-1; ] in Mathematica
(see Appendix A). Then,

log [—W (—6_(’\27“))]
v = 5 . (4.8)
Optimization for each value of can then be carried out by substituting fofrom (4.8)

into (4.4).

The results found above are represented in Fig. 2. The pagerdecrease (Relative
diff. (4.7)) in detection delay of the modified 2-CUSUM hamimmean equalizer rule is
barely noticeable and occurs only for small values of chamgéhe drift parameten and
small values ofy. We also observe that this percentage decrease in theseattiffierence
(4.7) is achieved for even smaller valuesyadis ;. increases.

The results for the non-symmetric case are far more iniageahd are summarized in
the following section.
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5 THE NON-SYMMETRIC CASE

In this section we consider the case of a non-symmetric ghang# .. Without loss
of generality we assume that > u». In Hadjiliadis and Poor (2008) it is seen that the
best classical 2-CUSUM stopping rule is unique and satisfies v,. We thus compare
the detection delay/ (-) of the unique classical 2-CUSUM stopping rulé/;, v5) with
v > 1y that satisfies (2.12) to that of the modified drift 2-CUSUMrhanic mean rule with
Ao a free parameter, over which the detection delay) is minimized. For the purpose
of clarity let us denote the detection delay of the former@SUM by DDgjassical eq.@nd
the detection delay of the latter 2-CUSUM D modified optimized  FOr the modified drift
2-CUSUM harmonic mean rule (4.1) implies that = 2(u; — po) + Ao, Both rules are
chosen so as to satisfy the false alarm constraint with égal3).

Fig. 3 demonstrates the relationship of the ratio of thrh.dsh@ as a function otog v
for the best classical 2-CUSUM stopping rule. The exactlumhlp can be extracted from

w=0.5
— Wl2=15 - - plj2=2 — -plj2=s]

Vilvy

log(y) log(y) log(y)

Figure 3. (Left) Case ofus = 0.5: The ratio of threshold% of the best classical 2-CUSUM rule
as a function ofog(y). The solid curve corresponds fg = 1.5, the dotted curve t(/éﬁ = 2, and
the dashed curve tﬁ% = 5. (Middle) Case ofuy = 1. (Right) Case ofu, = 2.5.

Theorem 3.1. In particular; andw, have to be chosen so that (2.12) holds. The first in-
teresting feature is that the ralf%) increases as — oo. Another interesting characteristic
that can be seen in Fig. 3, is that the rafidor which equation (2.12) holds is always less
than the ratid;-;.

For the modified drift 2-CUSUM harmonic mean equalizer rakes optimal choice
of the free parametek, converges tq., (see Hadjiliadis and Moustakides, 2006). The
modified drift 2-CUSUM harmonic mean equalizer rule is alsgraptotically optimal as
~ — oo (see Hadijiliadis and Moustakides, 2006). Yet, in Fig. 4s geen that the modified
drift 2-CUSUM harmonic mean equalizer rule has inferiorfpenance to the classical
2-CUSUM equalizer rule. In particular, Fig. 4, displays tiedative difference between
the classical 2-CUSUM stopping rule that satisfies (2.12héomodified drift 2-CUSUM
harmonic mean rule with drift parametersand\, as suggested in the first paragraph; that
is

Relative diff. = 100 x

DDmodified optimized™ DDcIassicaI eq. (5 1)
DDmodified optimized

14



It is seen that even for moderate values @nd any value ofi, there is a clear percentage
decrease in detection delay, as defined in (5.1), of theickdszCUSUM equalizer rule
versus the modified drift 2-CUSUM harmonic mean equalizks.rtihis relative difference
reaches the level df% for log~ as high ast, u; = 0.5, and “1 = 1.5 as seen in Fig. 4.
This relative difference, however, decreases faster adL increases.

1y=0.5 p,lzl N ]J,z=2.5

Relative | /o1 5 - o= —-pihe=s Relative 1S - =2 — -l dift [—ulh2=15 - plhe=2 = ulho=s]
diff. diff. : .
61

log(r) “ logty) © * togty®

Figure 4. (Left) Case ofus = 0.5: The relative difference between the modified 2-CUSUM
and the classical 2-CUSUM equalizer rules is displayed asetibn oflog(). The solid curve
corresponds t(?j—; = 1.5, the dotted curve t% = 2, and the dashed curve (;@2 = 5. (Middle)
Case ofus = 1. (Right) Case ofus = 2.5. (Note that the dashed curve is very close zero, and thus
hard to distinguish in the three graphs). Relative diff.a@fimed in (5.1).

In Fig. 4 itis also seen that the relative difference, defing8.1), tends t® asy — oo.
This is to be expected as both stopping rules display the dateetion delay/,(-), namely
210g(”)(1 +0(1)), asy — oo.

6 DISCUSSION & CONCLUDING REMARKS

In this paper, we derive an exact closed form formula of theeeted value of a general
2-CUSUM stopping rule in the Brownian motion model. Thislglea us to compare the
performance of the modified drift 2-CUSUM harmonic mean éigaarules, introduced
for the first time in Hadjiliadis and Moustakides (2006), e tlassical 2-CUSUM equal-
izer rules. As expected, in the symmetric case, the modifidtd Z2CUSUM harmonic
mean equalizer rules display a better performance thandlaessical 2-CUSUM counter-
parts (that is, a lesser detection delay for the same meanttirfalse alarms), since they
introduce one more parameter (i)9.over which minimization of the detection delay takes
place. This gain however is not significant and is only seethéencase that is small
and for small values of. The difference in their performance tend9tasy — oo. On
the other hand, in the case of a hon-symmetric change, itis g&t even for moderate
values of~ the classical 2-CUSUM equalizer rule displays a betterquerénce than its
modified drift 2-CUSUM harmonic mean equalizer rule coupdet. This suggests that in
the non-symmetric case it is more desirable to select a p#resholds for which (2.12)
holds than to modify the drift parameters. Of course, théedéhce in the two detection
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delays tends t0 asy — oo signifying that for large values of it makes no difference in
detection delay, which one of the two is selected.

The contribution of this paper, apart from the derivatioanexact closed form formula
for the mean of a general 2-CUSUM stopping rules, is rouglgraarized in the following
table:

Table 3. Comparison of 2-CUSUM equalizer stopping rules

Symmetric case Non-symmetric case

Modified drift better than classical | Classical non-harmonic rules better than

harmonic mean rules for small valuesnodified drift harmonic mean rules for almast

of vy andu all values ofy and other parameters
Difference tends t0 asy — oo

Although, this paper concerns the case of a known two-sidstighange drift, we wish
to add a comment on the unknown drift parameter case. Carthiglease in which the drift
assumed after the change is known to be two-sided and sympremely+ or — p for
somey > 0 known to lie in a two-sided symmetric interval= [—M, —m] U [m, M],
for someM > m > 0. In Fig. 2, it is seen that there is a slight decrease in detect
delay resulting from using a > p for small values ofy, while asy — oo equation (4.6)
implies that the detection delay is minimized foe= .. But since we only have an interval
of equally possible values fqr after the change, we can set= M% and follow the
minimization procedure of (4.2) in conjunction with Remd#k1) to identify the optimal
choice of \. Similarly, consider the case in which the drift assumeedratthe changes
is unknown but known to be non-symmetric and to thus lie in a-sgmmetric interval
I' = [=Ms, —ms] U [my, M;] such thatrethe > mitdh (medMe o mitM) -t s then
reasonable to set = # fori = 1,2 and using the results in Section 5, choose- 1/,
(1 > 1) so that (2.12) is satisfied. Finally, in the case that theriratl of possible values
is non-symmetric but witf2t2z2 — M the same treatment as the one suggested in
the symmetric case could be followed.

APPENDIX A: SYMMETRIC CASE PROGRAM
(* Mathematica program for the symmetric case *)

(* Input/output arrays *)
(*Array of mus )

Nm = 5; Array[ma, Nm];

(*Fill some values for mu *)
(*ma[l]=...,ma[2]=...,... *)

(*Array of gammas *)
Ng=7; Array[g, NgJ;
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(*Fill some values for gammas *)
(*g[1]=....9[2]=...,... %)

(*2D array of lambdas: lambdali,j] is the lambda correspondin g to
mu mafi] and gamma g[j] *)
Array[lamda, {Nm, Ng};

(*2D array: minDDJi,j] is minDD corresponding to mu mali]
and gamma g[j] *)
Array[minDD, {Nm, Ng}];

(*2D array: DDlegmli,j] is DDelgm corresponding to mu mali]
and gamma g[j] *)
Array[DDlegm, {Nm, Ng}];

(*2D array: Compli,j] is Comp corresponding to mu mali]
and gamma g[j] *)
Array[Comp, {Nm, Ng}];

( * Function definitions *)
fl_, x]:=2 *(Exp[l *x] -1 *x - D/("2) g[x1_, x2_] :=
x1*x2/(x1 + x2)
(*n is the threshold for given lambda |_ and gamma gamma_ in term
of the second real component of the LambertW function *)
n[l_, gamma_] := Log[-ProductLog[-1, -Exp[-((I"2) *gamma + 1)]])/I
(*DD is the detection delay for given lambda | _, gamma gamma_,
and mu m»*)
DD[l_, m_, gamma_] :=
glffl + 2 *m, n[l, gamma]], f[l - 2 *m, n[l, gamma]]]

(*Loop for computing results *)

(*For each mu mali] and gamma g[j] *)
For[i = 1, i <= Nm, i++,
For[] = 1, j <= Ng, ++j,
(* Minimization of detection delay wrt lambda (modified drift

2-CUSUM) =*)
R = FindMinimum[DDIl, ma[i], g[jll, {l, malil}];
(* Minimum detection delay *)
minDDIi, j] = First[R];
(* Value of lambda that provides minimum *)
lamdal[i, j] = First[l /. Rest[R]];
(* Detection delay for lambda=mu (classical 2-CUSUM) *)

DDlegm([i, j] = N[DD[mali], malil, gfilll;
(* Compli,j] is -1 if modified is smaller than classical,
0 if equal, 1 otherwise *)
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Iff minDD[i, j] < DDlegmli, j], Compli, j] = -1,
IffminDD[i, j] == DDlegmli, j], Comp]i, j] = 0, 1]];
(= Print results on stdout *)

Print('m: “, mal[i], " g: ", g[j], " minDD: ", minDD[i, j],

" lamda: ", lamda]i, j], " DDlegm: ", DDlegm[i, j], " Comp: ",

Compl[i, j]l;
]
l;

(*Save results to Excel CSV file *)
tableSize = Nm * Ng + 1

(*Array used for output into Excel spreadsheet *)
Array[outTableF, {tableSize, 6}];
outTableF[1, 1] = "m"; outTableF[1, 2] = "g";
outTableF[1, 3] = "lambda"; outTableF[1, 4] = "minDD";
outTableF[1, 5] = "DD at I=m"; outTableF[1, 6] = "Comp";
localCounter = 0;
For[i = 1, i <= Nm, i++,

For[j = 1, ] <= Ng, ++j,

localCounter++;

outTableF[localCounter + 1, 1] = mali];
outTableF[localCounter + 1, 2] = 4g[j];
outTableF[localCounter + 1, 3] = lamdali, j];
outTableF[localCounter + 1, 4] = minDDJi, j;
outTableF[localCounter + 1, 5] = DDlegm(i, j;
outTableF[localCounter + 1, 6] = Compli, |l;
]

]

(*Export results to CSV file (Excel) *)

Export['LambertW.csv", Array[outTableF, {tableSize, 6}

(*END of Mathematica program for the symmetric case

APPENDIX B: NON-SYMMETRIC CASE PROGRAM

(* Mathematica program for the non-symmetric case *)
(* Input/Output Array Initialization *)
(* ....... — *)

(*Input array of mu2s *)
(*Nm2 Size of array + 1 *)
Nm2 = 5; Array[m2, Nm2 - 1];
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(+Fill array with some values... *)
(*m2[1]=..., m2[2]=..., ... *)

(*Input array of ratios mul/mu2 *)

(*Nrat Size of array + 1 *)

Nrat = 7; Array[ml12rat, Nrat - 1];

(+Fill array of ratios with some values... *)
(*m12rat[1]=..., m12rat[2]=..., ... *)

(*Array of muls: ml[ij] is mul corresponding to muZ2[i] and
ratio ml2ratfj] *)
Array[m1, {Nrat - 1, Nm2 - 1}];

(* Calculate muls from mu2s and ratios *)
For[i = 1, i < Nrat, i++,
For[j = 1, j < Nm2, j++, mil]i, j] = ml2rat[i] *m2[j]]]

(*Input array of nu2s *)
Nn2 = 15; Array[n2, Nn2 - 1];

(*Fill n2 with some values... *)
(*n2[1]=..., n2[2]=..., ... *)
(*Output 3D Arrays for storing results *)

(*Value at [i,j,k] corresponds to ml2rat[i], m2[j], and n2[K]
Array[Carr, {Nrat - 1, Nm2 - 1, Nn2 - 1}];

Array[nlA, {Nrat - 1, Nm2 - 1, Nn2 - 1}];

Array[nM, {Nrat - 1, Nm2 - 1, Nn2 - 1}];

Array[nMO, {Nrat - 1, Nm2 - 1, Nn2 - 1}];

Array[I2A, {Nrat - 1, Nm2 - 1, Nn2 - 1}];

Array[MO, {Nrat - 1, Nm2 - 1, Nn2 - 1}];

Array[M, {Nrat - 1, Nm2 - 1, Nn2 - 1}];

( * Function definitions *)

(* __________________ *)

fin_, y_1 = (Exply *n] -y *n - DIy =y)

f2In_, a, b] =2 *(fln, a] =*f[n, b))/(fln, a] + f[n, b))

(*Limiting value of Pl of Theorem 4.1 in Anderson 1960
for d1 positive *)

Ppos[dl , d2 , n2 ] =
Exp[-2 *Sum[(r *r+dl -
r=(r - 1) = d2)=

(Exp[-2 *(r »(r - 1) *n2xdl - (r - 1) *(r - 1) =*n2xd2)] -

Exp[-2 *(r *(r + 1) *n2+dl - r *r*n2+d2)]),
{r, 1, Infinity}]]
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(* Limiting value of P1 of Theorem 4.1 in Anderson 1960
for d1 negative  *)

Pneg[dl , d2_, n2 ] :=

Exp[2 *Sum[((r - 1) *(r - 1) =*dl - r *=(r - 1) *d2 - r *r*xdl +
r=(r + 1) *d2) *Exp[-2 *(r *(r - 1) =*n2+*dl - r *r*n2+d2)],
{r, 1, Infinity}]]

(* Functions to deal with tables of 15 columns *)
(*Name of table: theTable , size of table: Size_ *)
( * Intitialize values of array theTable_ of Size elements

to -1 *)
InitTable[theTable_, Size ] :=

For[ ii = 2, ii <= Size, ii++,

Forfjj = 1, jj <= 15, jj++, theTablelii, jj] = -1]]
(*Print table to standard output *)
PrintTable[theTable ] :=

For[ii = 1, ii <= (Nrat - 1) *(Nn2 - 1) + 1, ii++,

For[jj = 1, jj <= 15, jj++, Print[theTablelii, jj]ll]
(* Export table to Excel CSV file.

Name of file to be saved is Table<iter_>.csv *)
SaveTable[iter_, theTable , Size ] :=
Export[ToString[StringForm["Table".csv", iter]],

Array[theTable, {Size, 15}], "CSV"]

Nsize = (Nrat - 1) *(Nn2 - 1) + 1;

(* Initialization of output table to store results *)

(wereeeeeeeeee )

Array[outTable2, {Nsize, 15}];

outTable2[1, 1] = "v1"; outTable2[1, 2] = "v2";

outTable2[1, 3] = "ml"; outTable2[1, 4] = "m2";
outTable2[1, 5] = "vl/v2"; outTable2[1, 6] = "m1l/m2";
outTable2[1, 7] = "nM"; outTable2[1, 8] = "nMO",
outTable2[1, 9] = "I2";

outTable2[1, 10] = "g"; outTable2[1, 11] = "C";
outTable2[1, 12] = "M"; outTable2[1, 13] = "MO";
outTable2[1, 14] = "C>M ?"; outTable2[1, 15] = "C>MO ?";
InitTable[outTable2, Nsize];

(*Loop over input values, compute results, and save *)

R )
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localCounter = O;
aCounter = 0;

(*For each mu2 mu2[j], mul mi[i,jJ, and nu2 n2[k] *)
For[ = 1, ] < Nm2, j++,
For[i = 1, i < Nrat, ++i,

For[k = 1, k < Nn2, k++,
Printf " m1 ", ml[i, jJ, " m2 ", m2[j], " n2 ",
n2[k], " ... "];
(*Value of probability of Eq. 3.28 under measure P_0"2
P2 = Ppos[0.5 *(m1][i, j] + 2 *m2[j]), 0.5  *m2[j], n2[K]];
Print[" P2 ", N[P2]];
(*Value of probability of Eq. 3.28 under measure P_0"1

P1 = Pneg[-0.5 =*=ml][i, j], -0.5 *(m2[j)] + 2 *ml[i, j]), n2[K]];

Print[" P1 ", N[P1]];
(*Value of probability of Egq. 3.28 under measure P_infinity
PO = Ppos[0.5 *ml]i, j], -0.5 *m2[j], n2[Kk]];
Print[" PO ", N[PO]];
(* Threshold nul for the classical 2-CUSUM equalizer rule
R = FindRoot[

2 f[n2[k], -m2[

I *@ - (fn2[k], -m2[j]] *(P2°(n1 - n2[K])))/(f[
n2[k], -m2[j]] + fn2[k], 2 «m2[] + m1[i, jl)
;f[nZ[k],
2+mi[i, j] +

m2[j]] *(1 - (fn2[k],
2+=ml[i, j] + m2[j]] *(P1°(n1 - n2[K))/(f[n2[k],
2=m1lfi, j] + m2[j]] + f[n2[k], -m1fi, j]])),
{n1, mi1]i, j] * N2[K]/m2[j1};
(*value of nul =)

vl =nl/ R;
(* Detection delay of classical 2-CUSUM equalizer rule
Carr[i, j, k] =
N[2 * f[n2[K], -m2(j]] *(1 - (fin2[k], -m2(i]] *
(N[P2I"(v1 - n2[K])))/
(fin2[K], -m2[j]] + f[n2[k], 2 *m2[j] + mifi, i)

(*Store nul =)

n1A[, j, k] = vi,;

(*gamma)

ali, j, k] =

N[2 = f[n2[K],

m2[i]] =@ - (fn2[k], m2(j]] *

PO (vl - n2[K])) /(f[n2[k], m1[i, j]] +
fln2k], m2{1N)I;

Ilval = n2[K];

(* Threshold (nu) computation for the modified-drift
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2-CUSUM harmonic mean equalizer rule *)
R1 =
FindRoot[
ali, j, k] ==
2x(fIn3, m2[j]] *f[n3, 2 +ml[i, j] - m2[j])/(f[n3, M2[j]]
+ f[n3, 2 *=mil[i, j] - m2[j]]), {n3, Ival}];
(*Value of nu =)

v = n3 /. R1;
(*Store nu *)
nM[i, j, k] = v;

(* Detection delay for the modified-drift 2-CUSUM
harmonic mean rule when lambda2 = mu2 *)
MO, |, k] =
2* (flv, -m2[j]] *flv, 2 =ml[i, j] + m2[])/(flv, -m2[j]] +
flv, 2 =mil]i, j] + m2[j]]);

(* Minimization of the detection delay of the modified drift

2-CUSUM harmonic mean rule over lambda2 *)

R2 =

Minimize[{f2[n4, 12 - 2 *m2[j], 2 *=ml[i, j] + 12],
ali, j, Kl == f2[n4, 12, 2 *(m1[i, j] - m2[j]) + 12]},
{12, n4}];

(* Value of lambda2  *)

12A[i, j, K] = 12 /. First[Rest[R2]];

nMOIi, j, K] = n4 /. First[Rest[R2]];

(* Detection delay of the modified-drift 2-CUSUM
harmonic mean rule for the optimal value of lambda2

MO[i, j, K] = First[R2];

(*Counters *)

aCounter++,

localCounter++;

(*Print to output table *)
outTable2[localCounter + 1, 1] = nlA]i, j, k];
outTable2[localCounter + 1, 2] = n2[K];
outTable2[localCounter + 1, 3] = ml][i, j];
outTable2[localCounter + 1, 4] = m2[j];
outTable2[localCounter + 1, 5] = nlA]i, j, K]/n2[K];
outTable2[localCounter + 1, 6] = m1]i, jI/m2[j];
outTable2[localCounter + 1, 7] = nM][i, |, K];
outTable2[localCounter + 1, 8] = nMOi, j, k];
outTable2[localCounter + 1, 9] = 12A][i, ], K];
outTable2[localCounter + 1, 10] = dli, j, k];
outTable2[localCounter + 1, 11] = Carr]i, j, K];
outTable2[localCounter + 1, 12] = M][i, |, K];
outTable2[localCounter + 1, 13] = MO, j, k];
outTable2[localCounter + 1, 14] =

If[Carr[i, j, K] > M[i, j, K], "True", "False"];
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outTable2[localCounter + 1, 15] =

If[Carr[i, j, kK] > MO, j, k], "True", "False"];

(*Save to Excel CVS file - Different file for each mu2 *)
If [ Mod[aCounter , ((Nrat - 1) *(Nn2 - 1))] == 0,
Print["Saving..."]; SaveTable[m2[j], outTable2, Nsize]
InitTable[outTable2, Nsize]; localCounter = O];

(*Print to standard output *)

Print[" v1 ", n1A[, j, K], " v2 ", n2[k], " m1 ", ml][, j],
"m2 ", m2fl, " vin2 ", nlA[i, j, kI/n2[k], " m1l/m2 "
m1[i, jJ/m2[j], " nM ", nM[i, j, k], " nMO ", nMO]i, j, K],
"2 " 12AL, §, K, g ", gl J, kI, " C ", Carri, |, K],
"M " M, j, k], " MO ", MOJi, j, k], " C>M "

If[Carr[i, j, K] > M[i, j, K], "True", "False"], " C>MO ",
If[Carr[i, j, kK] > MO, j, k], "True", "False"]]
11I;

(*END Mathematica program for the non-symmetric case *)
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