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1 INTRODUCTION

The need for statistical surveillance has been noted in manydifferent areas (see, e.g., An-
derson et al., 2004; Basseville and Nikiforov, 1993; Doerschuk et al., 1986; Willsky et al.,
1980). This area can be studied mathematically by considering the problem of detecting a
change in a stochastic process through sequential observations. In this formalism, we seek
a stopping ruleτ that detects a change pointθ while at the same time controls the mean
time to false alarms. In other words, at each decision time point, t, we want to discrim-
inate between the two states of the process: the state,{t < θ}, and the state{t ≥ θ}.
More specifically, the stopping ruleτ minimizes the detection delay of the change under
the constraint on the mean time to false alarms.

A useful model for studying such problems is a Brownian motion whose drift changes
from one constant to another at the unknown change point. In particular, for the case of
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one-sided alternatives, in which the change in the drift is aknown constant, the traditional
Page’s CUSUM is known to be optimal for any fixed value of the mean time to false alarms
(see Beibel, 1996; Shiryaev, 1996).

The problem of detecting a change in the drift of a Brownian motion with two-sided
alternatives is considerably more difficult than that with one-sided alternatives. This paper
is a continuation of the work started in Hadjiliadis (2005),Hadjiliadis and Moustakides
(2006), and Hadjiliadis and Poor (2008). In Hadjiliadis andMoustakides (2006) it is
conjectured but not proven that within the class of 2-CUSUM harmonic mean rules, drift
equalizer rules are best and two strong asymptotic optimality results as the mean time to
false alarms tends to infinity are presented both in the symmetric and the non-symmetric
case. These asymptotic results enhance the 2-CUSUM asymptotic optimality results of
Tartakovsky (1994). In Hadjiliadis (2005), it is seen that within the class of modified
drift 2-CUSUM harmonic mean rules, the best rules are those for which the drift param-
eters of the modified drift 2-CUSUM harmonic mean rules,λ1 andλ2, are chosen so that
λ2 − λ1 = 2(µ2 − µ1), for anyvalue of the mean time to false alarms. (Here,µ1 and−µ2

are the possible drift parameters assumed after the change). In Hadjiliadis and Poor (2008)
it is proven that the optimal solution to the problem of quickest detection of two-sided al-
ternatives has to be an equalizer rule. In the same paper it isproven that the best amongst
the classical 2-CUSUM stopping rules is unique and is a harmonic mean rule in the case
of a symmetric change in the drift while it is a non-harmonic mean rule with threshold
parametersν1 > ν2 (ν1 < ν2) whenµ1 > µ2 (µ1 < µ2) for anyvalue of the mean time to
false alarms. All existing results are summarized in the following table

Table 1. Existing results regarding 2-CUSUM stopping rules

Classical Modified drift
Harmonic mean rules Best amongst all classical rulesBest for

in the symmetric case λ2 − λ1 = 2(µ2 − µ1)
Non-harmonic mean rulesBest amongst all classical rules

in the non-symmetric case

In this paper, we begin by deriving a closed-form formula forthe first moment of a
general 2-CUSUM stopping rule based on the Brownian motion model using renewal argu-
ments and Anderson (1960). This rule, although similar, is different from the ones treated
in Khan (2007) and Yashchin (1985), which are based on the drawdown and upward rally
processes also studied in Hadjiliadis and Vecer (2006). Thefact that the optimal stopping
rule is an equalizer rule (see Hadjiliadis and Poor, 2008) gives rise to the natural question of
comparing the best classical 2-CUSUM equalizer rule with the modified drift 2-CUSUM
harmonic mean equalizer rule. In this paper, we compare the detection delay of the for-
mer with the latter both in the symmetric and the non-symmetric case for a given fixed
level of the mean time to false alarms. In the symmetric case,it is seen that the modi-
fied drift 2-CUSUM harmonic mean rule displays a slightly better performance than the
classical 2-CUSUM harmonic mean equalizer rule, which manifests itself for small values
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of a two-sided change in the drift parameter and of the mean time to false alarms. In the
non-symmetric case the results involved are very interesting and to some extent surprising.
The first observation is that although for the modified drift parameter 2-CUSUM harmonic
mean equalizer rules the relationship that the modified drifts have to satisfy for equaliza-
tion is linear (see Hadjiliadis, 2005), the relationship that the threshold parametersν1 and
ν2 have to satisfy for equalization in the classical 2-CUSUM stopping rule is much more
involved. Moreover, it is seen that the classical 2-CUSUM equalizer rule outperforms the
modified drift parameter 2-CUSUM harmonic mean equalizer rule for effectively all values
of the mean time to false alarms. Interestingly, the performance of both types of rules as
the mean time to false alarms tends to infinity is identical. Further details will be presented
in the main body of the paper.

In Section 2, we mathematically formulate the problem of change-point detection with
two-sided alternatives in a Brownian motion model. In Section 3, we derive an explicit
formula for the first moment of a general 2-CUSUM stopping rule under all relevant mea-
sures. In Section 4, we present the comparisons of the modified drift 2-CUSUM harmonic
mean equalizer stopping rule to the classical 2-CUSUM harmonic mean rule in the sym-
metric case. In Section 5, we concentrate on the non-symmetric case. We first provide a
qualitative analysis of the relationship between the threshold parameters of the classical 2-
CUSUM equalizer rules and then proceed to compare its performance to the modified drift
2-CUSUM harmonic mean equalizer rules. Finally, in Section6, we conclude with some
closing remarks. Appendices A and B contain the Mathematicacode used to perform the
above comparisons.

2 MATHEMATICAL FORMULATION

We sequentially observe a process{ξt} with the following dynamics:

dξt =































dwt t ≤ θ

µ1dt + dwt

or
−µ2dt + dwt

t ≥ θ

whereθ, the time of change, is assumed to be deterministic but unknown;{wt} is a standard
Brownian motion process;µi, the possible drifts to which the process can change, are
assumed to be known, but the specific drift to which the process is changing is unknown.
Bothµ1 andµ2 are assumed to be positive.

The probability triplet consists of(C[0,∞],∪t>0Ft), whereFt = σ{ξs, 0 < s ≤ t} and
the families of probability measures{P i

θ}, θ ∈ [0,∞), whenever the change isµi, i = 1, 2,
andP∞ (the Wiener measure).

Our goal is to detect a change by means of a stopping ruleτ adapted to the filtrationFt.
As a performance measure for this stopping rule we propose anextended Lorden criterion
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(see Hadjiliadis and Moustakides, 2006)

JL(τ) = max{J1(τ), J2(τ)} (2.1)

whereJi(τ) = supθ essupEi
θ

[

(τ − θ)+|Fθ

]

, i = 1, 2. This gives rise to the following
min-max constrained optimization problem:

inf
τ

JL(τ)

subject toE∞ [τ ] ≥ γ, (2.2)

where the constraint specifies the minimum allowable mean time to false alarms. As dis-
cussed in Moustakides (1986), in seeking solutions to the above problem, we can restrict
our attention to stopping times that achieve the false alarmconstraint with equality; that is,
stopping rulesτ for which

E∞ [τ ] = γ. (2.3)

As argued in Hadjiliadis and Poor (2008) the optimal stopping rule for problem (2.2) has
to satisfy

J1(τ) = J2(τ). (2.4)

We now proceed to define the normalized CUSUM processes and their corresponding
one-sided CUSUM stopping rules.

Definition 2.1 Letν1 > 0 andν2 > 0. Define

1. u+
t =

log
dP1

0

dP∞
|Ft

µ1

1= ξt −
1
2
µ1t; m+

t = infs≤t u
+
s ; y+

t = u+
t − m+

t ; τ1(ν1) = inf{t >

0; y+
t ≥ ν1},

2. u−
t =

log
dP2

0

dP∞
|Ft

µ2

= −ξt −
1
2
µ2t; m−

t = infs≤t u
−
s ; y−

t = u−
t − m−

t ; τ2(ν2) = inf{t >

0; y−
t ≥ ν2}.

That is,τ1(ν1) andτ2(ν2) are the first times that the processesy+
t andy−

t reach their cor-
responding thresholdsν1 andν2 respectively. The classical 2-CUSUM stopping rules are
then of the formτ(ν1, ν2) = τ1(ν1) ∧ τ2(ν2).

We classify 2-CUSUM rules according to the classG = {τ(ν1, ν2); ν1 = ν2} of har-
monic mean rules and the classesCi = {τ(νi, νj) | νi > νj > 0, i 6= j} of non-harmonic
mean rules.

Remark 2.1 It is useful at this stage to contrast the stopping timeτ(ν1, ν2) to the one
used in Khan (2007). The one considered in Khan (2007) using our notation, is defined as
T = T1(h1) ∧ T2(h2), whereT1(h1) is the first time that the processY +

t = ξt − infs≤t ξs

reaches the thresholdh1 andT2(h2) is the first time that the processY −
t = sups≤t ξs − ξt

reaches the thresholdh2. It is therefore a different stopping rule. We will revisit this point
in Remark 3.1.

1Notice thatlog throughout the paper denotes the logarithm with basee.
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We now proceed to define the modified drift 2-CUSUM stopping rules as follows.

Definition 2.2 Letλ1 > 0, λ2 > 0, ν1 > 0 andν2 > 0. Define

1. u+
t (λ1) = ξt −

1
2
λ1t; m+

t (λ1) = infs≤t u
+
s (λ1); y+

t (λ1) = u+
t (λ1) − m+

t (λ1);
τ1(λ1, ν1) = inf{t > 0; y+

t (λ1) ≥ ν1},

2. u−
t (λ2) = −ξt −

1
2
λ2t; m−

t (λ2) = infs≤t u
−
s (λ2); y−

t (λ2) = u−
t (λ2) − m−

t (λ2);
τ2(λ2, ν2) = inf{t > 0; y−

t (λ2) ≥ ν2}.

That is,τ1(λ1, ν1) andτ2(λ2, ν2) are the first times that the processesy+
t (λ1) andy−

t (λ2)
reach their corresponding thresholdsν1 andν2 respectively. The modified drift 2-CUSUM
stopping rules are then of the formτ(λ1, λ2, ν1, ν2) = τ1(λ1, ν1) ∧ τ2(λ2, ν2).

In what follows we will focus on modified drift 2-CUSUM harmonic mean stopping
rules which belong to the classGM = {τ(λ1, λ2, ν1, ν2); ν1 = ν2}.

We also define the following quantities, the use of which willbecome apparent later.

Definition 2.3 For a > 0 andb > 0, we define

1. U+(a) = inf{t > 0; u+
t ≥ a},

2. U−(b) = inf{t > 0;−u−
t ≤ −b}, and

3. Π(a, b) = P (U+(a) < U−(b)) .

In the sequel we will repeatedly use the indicesi, j ∈ {1, 2} and the function

fν(y) =
eyν − yν − 1

y2
. (2.5)

According to Hadjiliadis and Moustakides (2006), Siegmund(1985), and Taylor (1975) we
have

E∞(τi(νi)) = 2fνi
(µi), i = 1, 2, (2.6)

Ei
0(τi(νi)) = 2fνi

(−µi), i = 1, 2, (2.7)

Ei
0(τj(νj)) = 2fνj

(µj + 2µi), i 6= j, i, j ∈ {1, 2}. (2.8)

Moreover, according to Hadjiliadis (2005) and Taylor (1975) we also have

E∞(τi(λi, ν)) = 2fν(λi), (2.9)

Ei
0(τi(λi, ν)) = 2fν(λi − 2µi), (2.10)

Ei
0(τj(λj, ν)) = 2fν(λj + 2µi). (2.11)

For any 2-CUSUM stopping ruleτ it is true thatJL(τ) = max{E1
0 [τ ] , E2

0 [τ ]} (see
Hadjiliadis and Moustakides, 2006; Hadjiliadis and Poor, 2008). Thus, equation (2.4) takes
the form

E1
0 [τ ] = E2

0 [τ ] . (2.12)
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3 THE FIRST MOMENT OF A GENERAL 2-CUSUM RULE

We begin with our main expression for the first moment of a general classical 2-CUSUM
stopping ruleτ(ν1, ν2). To simplify the expressions that follow we introduce

αj(r, ξ) = exp {−(r − 1)νj (r(µ1 + µ2) + µj − ξ)} (3.1)

βj(r, ξ) = exp {−rνj (r(µ1 + µ2) + µi − ξ)} (3.2)

Ai(ξ) =
∞
∑

r=1

[(

r [r(µ1 + µ2) + µi − ξ]
)(

αi(r, ξ) − αi(r + 1, ξ)
)]

(3.3)

Bi(ξ) =
∞
∑

r=1

[

(

r(µ1 + µ2) +
1

2
(µi − ξ)

)

βi(r, ξ)

]

(3.4)

Theorem 3.1 Let τ(ν1, ν2) = τ1(ν1) ∧ τ2(ν2) be any 2-CUSUM stopping rule and denote
τ(ν1, ν2) by τ . Moreover, letf be as in (2.5). Then, forνi ≥ νj , i 6= j, with ∆ = νi − νj ,
we have

Ei
0 [τ ] = 2fνj

(µj + 2µi)

[

1 −
fνj

(µj + 2µi)

fνj
(−µi) + fνj

(µj + 2µi)
e−2∆·Bi(0)

]

, (3.5)

E∞ [τ ] = 2fνj
(µj)

[

1 −
fνj

(µj)

fνj
(µj) + fνj

(µi)
e−2∆·Bi(2µi)

]

, for i = 2, (3.6)

E
j
0 [τ ] = 2fνj

(−µj)

[

1 −
fνj

(−µj)

fνj
(−µj) + fνj

(µi + 2µj)
e−∆·Aj(0)

]

, (3.7)

E∞ [τ ] = 2fνj
(µj)

[

1 −
fνj

(µj)

fνj
(µj) + fνj

(µi)
e−∆·Aj(2µj )

]

, for j = 2. (3.8)

We notice that for anyτ with ν1 = ν2, all of the above expressions reduce to the well-known
harmonic mean rule (see Siegmund, 1985). That is, forν1 = ν2, under any measure, we
obtain

E [τ ] =
E [τ1] E [τ2]

E [τ1] + E [τ2]
. (3.9)

Moreover, it can easily be seen from the expressions of Theorem 3.1 that the harmonic
mean rule holds as a lower bound to the first moment of a generalclassical 2-CUSUM
stopping rule (see e.g. Dragalin, 1997).

In order to prove Theorem 3.1 we will need to make use of two preliminary results that
are summarized in the following two lemmas.

Lemma 3.1 We have

sup
s≤t

(y+
s + y−

s ) = max{sup
s≤t

y+
s , sup

s≤t

y−
s }.

Proof. Observe thaty+
t + y−

t = −1
2
(µ1 + µ2)t − m+

t − m−
t . We notice that the process

y+
t + y−

t can only increase when eitheru+
t = m+

t or u−
t = m−

t , both of which cannot
happen at the same time, since that would imply thaty+

t + y−
t is 0. Therefore,y+

t + y−
t
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is a strictly decreasing function of time unless eithery+
t = 0 or y−

t = 0, at which instant

max{y+
t , y−

t } = sups∈[0,t]

{

max{y+
s , y−

s }
}

. 2

As a consequence of Lemma 3.1, we have that

ν2 ≥ ν1 ⇒ {τ2 < τ1} ⊆ {y+
τ2

= 0}, (3.10)

ν1 ≥ ν2 ⇒ {τ1 < τ2} ⊆ {y−
τ1

= 0}. (3.11)

Remark 3.1 We notice that in the case of Khan’s (2007) stopping ruleT = T1(h1)∧T2(h2)
(see Remark 2.1), equations (3.10) and (3.11) become respectively

h2 ≥ h1 ⇒ {T2 < T1} ≡ {Y +
T2

= 0}, (3.12)

h1 ≥ h2 ⇒ {T1 < T2} ≡ {Y −
T1

= 0}. (3.13)

Similarly to Khan’s (1981) Lemma 2 and Khan’s (1985) Lemma 1 in which (3.12) and
(3.13) are used, we have the following lemma which uses (3.10) and (3.11) instead.

Lemma 3.2 Let τ1 andτ2 be the one-sided CUSUM stopping branches ofτG ∈ G having
the same threshold parameterν. We then have

P (τ2 < τ1) =
E [τ1]

E [τ1] + E [τ2]
, P (τ1 < τ2) =

E [τ2]

E [τ1] + E [τ2]
.

Proof. For simplicity in this proof we will useτ to denoteτG . We haveτ = τ1 ∧ τ2. Hence,

τ1 = τ + (τ1 − τ)+, τ2 = τ + (τ2 − τ)+.

Conditioning on{τ = τ2}, and subsequently on its complement, and taking expectations
we have

E [τ1] = E [τ ] + E [τ1 − τ2 | τ2 < τ1] · P (τ2 < τ1), (3.14)

E [τ2] = E [τ ] + E [τ2 − τ1 | τ1 < τ2] · P (τ1 < τ2). (3.15)

Sinceτ1 andτ2 have the same thresholdsν, using (3.10) and (3.11), we obtain

{τ2 < τ1} ⊆ {y+
τ2

= 0}, {τ1 < τ2} ⊆ {y−
τ1

= 0}.

Therefore, (3.14) and (3.15) become

E [τ1] = E [τ ] + E [τ1] · P (τ2 < τ1), E [τ2] = E [τ ] + E [τ2] · P (τ1 < τ2),

from which, by eliminatingE [τ ], the result follows. 2
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Proof of Theorem 3.1.Let us suppose thatν1 > ν2. Then, using (3.11) and (3.15), we have
that

E [τ2(ν2)] = E [τ ] + E [τ2(ν2)] · P

(

τ1(ν1) < τ2(ν2)

)

.

Hence,

E [τ ] = E [τ2(ν2)] · P

(

τ2(ν2) < τ1(ν1)

)

. (3.16)

We now proceed to expressP

(

τ2(ν2) < τ1(ν1)

)

in terms ofΠ(a, b) as it appears in Defini-

tion 2.3. Notice that we can rewrite the probability of its complement, namelyP

(

τ1(ν1) <

τ2(ν2)

)

2, as

P

(

τ1(ν1) < τ2(ν2)

)

= P

(

τ1(ν1) < τ2(ν2) | τ1(ν2) < τ2(ν2)

)

P

(

τ1(ν2) < τ2(ν2)

)

.

(3.17)

Using Lemma 3.2, however, withν = ν2, we obtain

P

(

τ1(ν2) < τ2(ν2)

)

=
E [τ2(ν2)]

E [τ1(ν2)] + E [τ2(ν2)]
. (3.18)

To get an expression for

P

(

τ1(ν1) < τ2(ν2) | τ1(ν2) < τ2(ν2)

)

,

we first consider the dynamics ofy+
t andy−

t under all relevant measures. Using Definition
2.1, we can writey+

t = u+
t − m+

t andy−
t = u−

t − m−
t where the dynamics ofu+

t and−u−
t

are summarized in the following table:

Table 2. The dynamics ofu+
t and−u−

t under the different regimes

no change (P∞) change isµ1 (P 1
0 ) change is−µ2 (P 2

0 )
u+

t wt −
1
2
µ1t wt + 1

2
µ1t wt −

1
2
(µ1 + 2µ2)t

−u−
t wt + 1

2
µ2t wt + 1

2
(µ2 + 2µ1)t wt −

1
2
µ2t

2Notice thatP

(

τ1(ν1) = τ2(ν2)

)

= 0 under any measure and anyν1 > 0 andν2 > 0.
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Therefore, if we were to divide the interval[0, ν1 − ν2] into n equal length intervals,
then

P

(

τ1(ν1) < τ2(ν2) | τ1(ν2) < τ2(ν2)

)

= lim
n→∞

P (∩n
i=1Ei), (3.19)

whereEi is the event that
{

sup{t∈Ii} y−
t < ν2

}

conditioned upon the initial value ofy−
t at

the left endpoint of each intervalIi being equal to0 and{Ii} are the random intervals

Ii =

[

τ1

(

ν2 + (i − 1)
(ν1 − ν2)

n

)

, τ1

(

ν2 + i
(ν1 − ν2)

n

)]

.

Because of the strong Markov property of Brownian motion theevents{Ei} are indepen-
dent, equiprobable and they have the same probability as theevent

{

The processu+
t increases by at leastν1−ν2

n
units

before the process− u−
t falls byν2 (or more) units

}

. (3.20)

A depiction of the strong Markov property is given in Fig. 1, where the upper solid black
line represents the process−u−

t = ξt + 1
2
µ2t, the upper dashed line represents its running

supremum, (that is, the processsups≤t(ξs + 1
2
µ2s) = −m−

t ), the lower solid black line
represents the processu+

t = ξt−
1
2
µ1t and the lower dashed line its running infimum (that is,

the processm+
t = infs≤t(ξs −

1
2
µ1s)). We remark that the normalized CUSUM processy−

t

is the difference between the upper dashed and the black lines and the normalized CUSUM
processy+

t is the difference between the lower solid black and the lowerdashed lines (see
Definition 2.1). The strong Markov property is depicted by a shift of the axis to the time
point τ1(ν2), that is the first time point at which the processy+

t reachesν2 (the difference
between the lower solid black and the lower dashed lines isν2). Representation (3.19)
comes as a result of repeated such “shifts” of the axis (whichare valid by the strong Markov
property of Brownian motion) at each of the pointsτ1

(

ν2 + ν1−ν2

n

)

, τ1

(

ν2 + 2ν1−ν2

n

)

, . . . ,
τ1

(

ν2 + (n − 1)ν1−ν2

n

)

.
Therefore, in view of Definition 2.3 and (3.20), (3.19) becomes

P

(

τ1(ν1) < τ2(ν2) | τ1(ν2) < τ2(ν2)

)

= lim
n→∞

P (E1)
n = lim

n→∞
Π

(

ν1 − ν2

n
, ν2

)n

.

(3.21)

Using Theorem 4.1 of Anderson (1960), we obtain the following representations for

lim
n→∞

P (E1)
n,

under the following different measures:

1. underP 1
0

Π

(

ν1 − ν2

n
, ν2

)n

=

(

1 −
∞
∑

r=1

[

e−2[(r−1)2γ1δ1+r2γ2δ2−r(r−1)(γ1δ2+γ2δ1)]

−e−2[r2(γ1δ1+γ2δ2)−r(r+1)γ1δ2−r(r−1)γ2δ1]

])n

, (3.22)

whereγ1 = ν1−ν2

n
, γ2 = −ν2, δ1 = −1

2
µ1 andδ2 = −1

2
(µ2 + 2µ1).
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Figure 1. A demonstration of the strong Markov property of Brownian motion.

2. underP 2
0

Π

(

ν1 − ν2

n
, ν2

)n

=

(

∞
∑

r=1

[

e−2[r2γ1δ1+(r−1)2γ2δ2−r(r−1)(γ1δ2+γ2δ1)]

−e−2[r2(γ1δ1+γ2δ2)−r(r−1)γ1δ2−r(r+1)γ2δ1]

])n

, (3.23)

whereγ1 = ν1−ν2

n
, γ2 = −ν2, δ1 = 1

2
(µ1 + 2µ2) andδ2 = 1

2
µ2.

3. underP∞

Π
(

ν1−ν2

n
, ν2

)n
has the same representation as in (3.23), forδ1 = 1

2
µ1 andδ2 = −1

2
µ2.

Let

C(r) = exp
(

−2(r2γ2δ2 − r(r − 1)γ2δ1)
)

,

D(r) = exp
(

−2γ1[r
2δ1 − r(r − 1)δ2]

)

.

Factoring out the termC(r), the right-hand side of (3.22) becomes
(

1 −
∞
∑

r=1

C(r)

[

e−2γ1[(r−1)2δ1−r(r−1)δ2] − e−2γ1[r2δ1−r(r+1)δ2]

])n

. (3.24)
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Sinceγ1 = ν1−ν2

n
andγ2 = −ν2, we have that

e−2γ1[(r−1)2δ1−r(r−1)δ2] − e−2γ1[r2δ1−r(r+1)δ2]

=

(

1 −
2(ν1 − ν2)

n
[(r − 1)2δ1 − r(r − 1)δ2] + o

(

1

n

))

−

(

1 −
2(ν1 − ν2)

n
[r2δ1 − r(r + 1)δ2] + o

(

1

n

))

. (3.25)

Substituting (3.25) into (3.24), we obtain

lim
n→∞

(

1 +
2(ν1 − ν2)

n

[

∞
∑

r=1

(δ1 + 2r(δ2 − δ1)C(r)

])n

= exp

{

−2(ν1 − ν2)

[

∞
∑

r=1

(δ1 + 2r(δ2 − δ1)) C(r)

]}]

,

as claimed.
Similarly the right-hand side of (3.23) can be written as

(

∞
∑

r=1

D(r)

[

e−2[(r−1)2γ2δ2−r(r−1)γ2δ1] − e−2[r2γ2δ2−r(r+1)γ2δ1]

])n

. (3.26)

Observe that sinceγ1 = ν1−ν2

n
,

D(r) = e−2γ1[r2δ1−r(r−1)δ2] = exp

{

−
2(ν1 − ν2)

n
[r2δ1 − r(r − 1)δ2]

}

= 1 −
2(ν1 − ν2)

n
[r2δ1 − r(r − 1)δ2] + o

(

1

n

)

.

Moreover,

∞
∑

r=1

[

e−2[(r−1)2γ2δ2−r(r−1)γ2δ1] − e−2[r2γ2δ2−r(r+1)γ2δ1]

]

= 1, (3.27)

which is recognizable as quantityP1 in Theorem 4.1 of Anderson (1960) forγ1 = 0.
Indeed it is with probability 1 that a Brownian process, which starts at zero, will first hit the
boundaryδ1t, before hitting the linear boundaryγ2 + δ2t, since this occurs at timet = 0.

Thus,

lim
n→∞

Π

(

ν1 − ν2

n
, ν2

)n

= lim
n→∞

(

1−
2∆

n

[

∞
∑

r=1

[r2δ1−r(r−1)δ2][α2(r, 0)−α2(r+1, 0)]

])n

,

which reduces to

exp {−∆A2(0)}

as claimed.
All other cases follow similarly. 2
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4 THE SYMMETRIC CASE

In this section we treat the case thatµ1 = µ2 = µ. The best 2-CUSUM stopping rule has
to satisfy (2.12). Moreover, the best amongst the classical2-CUSUM stopping rules, in
the symmetric case, belongs to the classG of harmonic mean 2-CUSUM rules and is also
unique within its class (see Hadjiliadis and Poor, 2008). Furthermore, in Hadjiliadis (2005)
it is seen that (2.12) is satisfied for all modified drift 2-CUSUM stopping rules of classGM

for which

λ1 − λ2 = 2(µ1 − µ2). (4.1)

Notice that equation (4.1) implies thatλ1 should be equal toλ2 whenever there is a sym-
metric change, namelyµ1 = µ2. The optimality of the modified drift 2-CUSUM harmonic
mean rules within the class of all modified drift 2-CUSUM harmonic mean rulesGM (see
Hadjiliadis, 2005) for any value ofγ, suggests that one should compare the performance
of the classical 2-CUSUM harmonic mean rule with the performance of the modified drift
2-CUSUM harmonic mean rule for the same mean time to false alarmsγ. Since the latter
involves one more free parameter, namelyλ = λ1 = λ2, over which minimization ofJL(τ)
can take place, it is expected that it will have a strictly better performance than its classical
2-CUSUM counterpart. It is also expected, due to the asymptotic optimality of the classical
2-CUSUM harmonic mean rule asγ → ∞ (see Hadjiliadis and Moustakides, 2006), that
the free parameterλ which minimizesJL(τ) converges toµ = µ1 = µ2 asγ → ∞.

In particular, for the modified parameter 2-CUSUMτ(λ, ν), using (2.9), (2.10), (2.11)
and the harmonic mean rule (3.9), (2.2) becomes

minλ

{

2 fν(λ+2µ)fν (λ−2µ)
fν(λ+2µ)+fν (λ−2µ)

}

subject tofν(λ) = γ. (4.2)

From the above constraint it follows that asγ → ∞ we obtain

λν = log(γ)(1 + o(1)). (4.3)

By inspection of the delay function

E1
0 [τ(λ, ν)] = E2

0 [τ(λ, ν)] = 2
fν(λ + 2µ)fν(λ − 2µ)

fν(λ + 2µ) + fν(λ − 2µ)
, (4.4)

it is easily seen that the minimal detection delay asν increases, occurs forλ < 2µ (see
Theorem 2 of Hadjiliadis and Moustakides, 2006) and becomes

2
fν(λ + 2µ)fν(λ − 2µ)

fν(λ + 2µ) + fν(λ − 2µ)
=

2ν

2µ − λ
(1 + o(1)). (4.5)

Substituting (4.3) into (4.5), we obtain

fν(λ + 2µ)fν(λ − 2µ)

fν(λ + 2µ) + fν(λ − 2µ)
=

2 log γ

λ(2µ − λ)
(1 + o(1)), (4.6)

12



0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7

log !"

#

$%&'( $%) $%*'(

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6 7

log(!)

Relative

diff.
$%&'( $%) $%*'(

Figure 2. (Left) Convergence ofλ as a function oflog(γ). The solid curve corresponds toµ = 0.5,
the dotted curve toµ = 1, and the dashed curve toµ = 2.5. (Right) Relative diff., defined in (4.7),
as a function oflog(γ). Solid, dotted, and dashed curves same as in (Left).

which is minimized for the choiceλ = µ.
This asserts that the best asymptotically in the classGM is the same as the best in the

classG.
For the purpose of clarity let us denote byDDmodified the quantity of (4.4) and by

DDclassical the same quantity forλ = µ. In Fig. 2 (Right side), the relative difference
of these two quantities, namely

Relative diff. = 100 ×
DDclassical − DDmodified

DDclassical

, (4.7)

is plotted againstlog γ.

Remark 4.1 It is possible to solve forν in the equationfν(λ) = γ in terms of the Lambert
W function. In particular, letW be the second real branch of the Lambert W function (see
Corless et al., 1996), that is represented by the functionProductLog[-1,· ] in Mathematica
(see Appendix A). Then,

ν =
log
[

−W
(

−e−(λ2γ+1)
)]

λ
. (4.8)

Optimization for each value ofγ can then be carried out by substituting forν from (4.8)
into (4.4).

The results found above are represented in Fig. 2. The percentage decrease (Relative
diff. (4.7) ) in detection delay of the modified 2-CUSUM harmonic mean equalizer rule is
barely noticeable and occurs only for small values of changes in the drift parameterµ and
small values ofγ. We also observe that this percentage decrease in the relative difference
(4.7) is achieved for even smaller values ofγ asµ increases.

The results for the non-symmetric case are far more interesting and are summarized in
the following section.
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5 THE NON-SYMMETRIC CASE

In this section we consider the case of a non-symmetric change µ1 6= µ2. Without loss
of generality we assume thatµ1 > µ2. In Hadjiliadis and Poor (2008) it is seen that the
best classical 2-CUSUM stopping rule is unique and satisfiesν1 > ν2. We thus compare
the detection delayJL(·) of the unique classical 2-CUSUM stopping ruleτ(ν1, ν2) with
ν1 > ν2 that satisfies (2.12) to that of the modified drift 2-CUSUM harmonic mean rule with
λ2 a free parameter, over which the detection delayJL(·) is minimized. For the purpose
of clarity let us denote the detection delay of the former 2-CUSUM by DDclassical eq.and
the detection delay of the latter 2-CUSUM byDDmodified optimized. For the modified drift
2-CUSUM harmonic mean rule (4.1) implies thatλ1 = 2(µ1 − µ2) + λ2. Both rules are
chosen so as to satisfy the false alarm constraint with equality (2.3).

Fig. 3 demonstrates the relationship of the ratio of thresholds ν1

ν2

as a function oflog γ

for the best classical 2-CUSUM stopping rule. The exact relationship can be extracted from
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Figure 3. (Left) Case ofµ2 = 0.5: The ratio of thresholdsν1

ν2
of the best classical 2-CUSUM rule

as a function oflog(γ). The solid curve corresponds toµ1

µ2
= 1.5, the dotted curve toµ1

µ2
= 2, and

the dashed curve toµ1

µ2
= 5. (Middle) Case ofµ2 = 1. (Right) Case ofµ2 = 2.5.

Theorem 3.1. In particular,ν1 andν2 have to be chosen so that (2.12) holds. The first in-
teresting feature is that the ratioν1

ν2

increases asγ → ∞. Another interesting characteristic
that can be seen in Fig. 3, is that the ratioν1

ν2

for which equation (2.12) holds is always less
than the ratioµ1

µ2

.
For the modified drift 2-CUSUM harmonic mean equalizer rule,the optimal choice

of the free parameterλ2 converges toµ2 (see Hadjiliadis and Moustakides, 2006). The
modified drift 2-CUSUM harmonic mean equalizer rule is also asymptotically optimal as
γ → ∞ (see Hadjiliadis and Moustakides, 2006). Yet, in Fig. 4, it is seen that the modified
drift 2-CUSUM harmonic mean equalizer rule has inferior performance to the classical
2-CUSUM equalizer rule. In particular, Fig. 4, displays therelative difference between
the classical 2-CUSUM stopping rule that satisfies (2.12) tothe modified drift 2-CUSUM
harmonic mean rule with drift parametersλ1 andλ2 as suggested in the first paragraph; that
is

Relative diff. = 100 ×
DDmodified optimized− DDclassical eq.

DDmodified optimized
. (5.1)
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It is seen that even for moderate values ofγ and any value ofµ2 there is a clear percentage
decrease in detection delay, as defined in (5.1), of the classical 2-CUSUM equalizer rule
versus the modified drift 2-CUSUM harmonic mean equalizer rule. This relative difference
reaches the level of5% for log γ as high as4, µ2 = 0.5, and µ1

µ2

= 1.5 as seen in Fig. 4.
This relative difference, however, decreases to0 faster asµ1

µ2

increases.
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Figure 4. (Left) Case ofµ2 = 0.5: The relative difference between the modified 2-CUSUM
and the classical 2-CUSUM equalizer rules is displayed as a function of log(γ). The solid curve
corresponds toµ1

µ2
= 1.5, the dotted curve toµ1

µ2
= 2, and the dashed curve toµ1

µ2
= 5. (Middle)

Case ofµ2 = 1. (Right) Case ofµ2 = 2.5. (Note that the dashed curve is very close zero, and thus
hard to distinguish in the three graphs). Relative diff. is defined in (5.1).

In Fig. 4 it is also seen that the relative difference, definedin (5.1), tends to0 asγ → ∞.
This is to be expected as both stopping rules display the samedetection delayJL(·), namely
2 log(γ)

µ2

2

(1 + o(1)), asγ → ∞.

6 DISCUSSION & CONCLUDING REMARKS

In this paper, we derive an exact closed form formula of the expected value of a general
2-CUSUM stopping rule in the Brownian motion model. This enables us to compare the
performance of the modified drift 2-CUSUM harmonic mean equalizer rules, introduced
for the first time in Hadjiliadis and Moustakides (2006), to the classical 2-CUSUM equal-
izer rules. As expected, in the symmetric case, the modified drift 2-CUSUM harmonic
mean equalizer rules display a better performance than their classical 2-CUSUM counter-
parts (that is, a lesser detection delay for the same mean time to false alarms), since they
introduce one more parameter (i.e.λ) over which minimization of the detection delay takes
place. This gain however is not significant and is only seen inthe case thatµ is small
and for small values ofγ. The difference in their performance tends to0 asγ → ∞. On
the other hand, in the case of a non-symmetric change, it is seen that even for moderate
values ofγ the classical 2-CUSUM equalizer rule displays a better performance than its
modified drift 2-CUSUM harmonic mean equalizer rule counterpart. This suggests that in
the non-symmetric case it is more desirable to select a pair of thresholds for which (2.12)
holds than to modify the drift parameters. Of course, the difference in the two detection
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delays tends to0 asγ → ∞ signifying that for large values ofγ it makes no difference in
detection delay, which one of the two is selected.

The contribution of this paper, apart from the derivation ofan exact closed form formula
for the mean of a general 2-CUSUM stopping rules, is roughly summarized in the following
table:

Table 3. Comparison of 2-CUSUM equalizer stopping rules

Symmetric case Non-symmetric case
Modified drift better than classical Classical non-harmonic rules better than
harmonic mean rules for small valuesmodified drift harmonic mean rules for almost
of γ andµ all values ofγ and other parameters

Difference tends to0 asγ → ∞

Although, this paper concerns the case of a known two-sided post-change drift, we wish
to add a comment on the unknown drift parameter case. Consider the case in which the drift
assumed after the change is known to be two-sided and symmetric, namely+ or − µ for
someµ > 0 known to lie in a two-sided symmetric intervalI = [−M,−m] ∪ [m, M ],
for someM > m > 0. In Fig. 2, it is seen that there is a slight decrease in detection
delay resulting from using aλ > µ for small values ofγ, while asγ → ∞ equation (4.6)
implies that the detection delay is minimized forλ = µ. But since we only have an interval
of equally possible values forµ after the change, we can setµ = M+m

2
and follow the

minimization procedure of (4.2) in conjunction with Remark(4.1) to identify the optimal
choice ofλ. Similarly, consider the case in which the drift assumed after the changes
is unknown but known to be non-symmetric and to thus lie in a non-symmetric interval
I ′ = [−M2,−m2] ∪ [m1, M1] such thatm2+M2

2
> m1+M1

2
(m2+M2

2
< m1+M1

2
). It is then

reasonable to setµi = mi+Mi

2
for i = 1, 2 and using the results in Section 5, chooseν2 > ν1

(ν1 > ν2) so that (2.12) is satisfied. Finally, in the case that the interval of possible values
is non-symmetric but withm2+M2

2
= m1+M1

2
, the same treatment as the one suggested in

the symmetric case could be followed.

APPENDIX A: SYMMETRIC CASE PROGRAM

( * Mathematica program for the symmetric case * )

( * Input/output arrays * )
( * Array of mus * )
Nm = 5; Array[ma, Nm];
( * Fill some values for mu * )
( * ma[1]=...,ma[2]=...,... * )

( * Array of gammas * )
Ng=7; Array[g, Ng];
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( * Fill some values for gammas * )
( * g[1]=...,g[2]=...,... * )

( * 2D array of lambdas: lambda[i,j] is the lambda correspondin g to
mu ma[i] and gamma g[j] * )

Array[lamda, {Nm, Ng}];

( * 2D array: minDD[i,j] is minDD corresponding to mu ma[i]
and gamma g[j] * )

Array[minDD, {Nm, Ng}];

( * 2D array: DDleqm[i,j] is DDelqm corresponding to mu ma[i]
and gamma g[j] * )

Array[DDleqm, {Nm, Ng}];

( * 2D array: Comp[i,j] is Comp corresponding to mu ma[i]
and gamma g[j] * )

Array[Comp, {Nm, Ng}];

( * Function definitions * )
f[l_, x_] := 2 * (Exp[l * x] - l * x - 1)/(lˆ2) g[x1_, x2_] :=
x1 * x2/(x1 + x2)
( * n is the threshold for given lambda l_ and gamma gamma_ in term s
of the second real component of the LambertW function * )
n[l_, gamma_] := Log[-ProductLog[-1, -Exp[-((lˆ2) * gamma + 1)]]]/l
( * DD is the detection delay for given lambda l_, gamma gamma_,

and mu m_* )
DD[l_, m_, gamma_] :=

g[f[l + 2 * m, n[l, gamma]], f[l - 2 * m, n[l, gamma]]]

( * Loop for computing results * )

( * For each mu ma[i] and gamma g[j] * )
For[i = 1, i <= Nm, i++,

For[j = 1, j <= Ng, ++j,
( * Minimization of detection delay wrt lambda (modified drift

2-CUSUM) * )
R = FindMinimum[DD[l, ma[i], g[j]], {l, ma[i]}];
( * Minimum detection delay * )
minDD[i, j] = First[R];
( * Value of lambda that provides minimum * )
lamda[i, j] = First[l /. Rest[R]];
( * Detection delay for lambda=mu (classical 2-CUSUM) * )
DDleqm[i, j] = N[DD[ma[i], ma[i], g[j]]];
( * Comp[i,j] is -1 if modified is smaller than classical,
0 if equal, 1 otherwise * )
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If[ minDD[i, j] < DDleqm[i, j], Comp[i, j] = -1,
If[minDD[i, j] == DDleqm[i, j], Comp[i, j] = 0, 1]];

( * Print results on stdout * )
Print["m: ", ma[i], " g: ", g[j], " minDD: ", minDD[i, j],

" lamda: ", lamda[i, j], " DDleqm: ", DDleqm[i, j], " Comp: ",
Comp[i, j]];

]
];

( * Save results to Excel CSV file * )
tableSize = Nm * Ng + 1

( * Array used for output into Excel spreadsheet * )
Array[outTableF, {tableSize, 6}];
outTableF[1, 1] = "m"; outTableF[1, 2] = "g";
outTableF[1, 3] = "lambda"; outTableF[1, 4] = "minDD";
outTableF[1, 5] = "DD at l=m"; outTableF[1, 6] = "Comp";
localCounter = 0;
For[i = 1, i <= Nm, i++,

For[j = 1, j <= Ng, ++j,
localCounter++;
outTableF[localCounter + 1, 1] = ma[i];
outTableF[localCounter + 1, 2] = g[j];
outTableF[localCounter + 1, 3] = lamda[i, j];
outTableF[localCounter + 1, 4] = minDD[i, j];
outTableF[localCounter + 1, 5] = DDleqm[i, j];
outTableF[localCounter + 1, 6] = Comp[i, j];
]

]

( * Export results to CSV file (Excel) * )
Export["LambertW.csv", Array[outTableF, {tableSize, 6} ], "CSV"]

( * END of Mathematica program for the symmetric case * )

APPENDIX B: NON-SYMMETRIC CASE PROGRAM

( * Mathematica program for the non-symmetric case * )

( * Input/Output Array Initialization * )
( * --------------------------------- * )

( * Input array of mu2s * )
( * Nm2 Size of array + 1 * )
Nm2 = 5; Array[m2, Nm2 - 1];
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( * Fill array with some values... * )
( * m2[1]=..., m2[2]=..., ... * )

( * Input array of ratios mu1/mu2 * )
( * Nrat Size of array + 1 * )
Nrat = 7; Array[m12rat, Nrat - 1];
( * Fill array of ratios with some values... * )
( * m12rat[1]=..., m12rat[2]=..., ... * )

( * Array of mu1s: m1[i,j] is mu1 corresponding to mu2[i] and
ratio m12rat[j] * )

Array[m1, {Nrat - 1, Nm2 - 1}];

( * Calculate mu1s from mu2s and ratios * )
For[i = 1, i < Nrat, i++,

For[j = 1, j < Nm2, j++, m1[i, j] = m12rat[i] * m2[j]]]

( * Input array of nu2s * )
Nn2 = 15; Array[n2, Nn2 - 1];
( * Fill n2 with some values... * )
( * n2[1]=..., n2[2]=..., ... * )

( * Output 3D Arrays for storing results * )
( * Value at [i,j,k] corresponds to m12rat[i], m2[j], and n2[k] * )
Array[Carr, {Nrat - 1, Nm2 - 1, Nn2 - 1}];
Array[n1A, {Nrat - 1, Nm2 - 1, Nn2 - 1}];
Array[nM, {Nrat - 1, Nm2 - 1, Nn2 - 1}];
Array[nMO, {Nrat - 1, Nm2 - 1, Nn2 - 1}];
Array[l2A, {Nrat - 1, Nm2 - 1, Nn2 - 1}];
Array[MO, {Nrat - 1, Nm2 - 1, Nn2 - 1}];
Array[M, {Nrat - 1, Nm2 - 1, Nn2 - 1}];

( * Function definitions * )
( * ------------------ * )
f[n_, y_] := (Exp[y * n] - y * n - 1)/(y * y)
f2[n_, a_, b_] := 2 * (f[n, a] * f[n, b])/(f[n, a] + f[n, b])

( * Limiting value of P1 of Theorem 4.1 in Anderson 1960
for d1 positive * )

Ppos[d1_, d2_, n2_] :=
Exp[-2 * Sum[(r * r * d1 -

r * (r - 1) * d2) *
(Exp[-2 * (r * (r - 1) * n2* d1 - (r - 1) * (r - 1) * n2* d2)] -
Exp[-2 * (r * (r + 1) * n2* d1 - r * r * n2* d2)]),
{r, 1, Infinity}]]
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( * Limiting value of P1 of Theorem 4.1 in Anderson 1960
for d1 negative * )

Pneg[d1_, d2_, n2_] :=
Exp[2 * Sum[((r - 1) * (r - 1) * d1 - r * (r - 1) * d2 - r * r * d1 +

r * (r + 1) * d2) * Exp[-2 * (r * (r - 1) * n2* d1 - r * r * n2* d2)],
{r, 1, Infinity}]]

( * Functions to deal with tables of 15 columns * )
( * Name of table: theTable_, size of table: Size_ * )
( * Intitialize values of array theTable_ of Size_ elements

to -1 * )
InitTable[theTable_, Size_] :=

For[ ii = 2, ii <= Size, ii++,
For[jj = 1, jj <= 15, jj++, theTable[ii, jj] = -1]]

( * Print table to standard output * )
PrintTable[theTable_] :=

For[ii = 1, ii <= (Nrat - 1) * (Nn2 - 1) + 1, ii++,
For[jj = 1, jj <= 15, jj++, Print[theTable[ii, jj]]]]

( * Export table to Excel CSV file.
Name of file to be saved is Table<iter_>.csv * )

SaveTable[iter_, theTable_, Size_] :=
Export[ToString[StringForm["Table‘‘.csv", iter]],

Array[theTable, {Size, 15}], "CSV"]

Nsize = (Nrat - 1) * (Nn2 - 1) + 1;

( * Initialization of output table to store results * )
( * ----------------------------------------------- * )

Array[outTable2, {Nsize, 15}];
outTable2[1, 1] = "v1"; outTable2[1, 2] = "v2";
outTable2[1, 3] = "m1"; outTable2[1, 4] = "m2";
outTable2[1, 5] = "v1/v2"; outTable2[1, 6] = "m1/m2";
outTable2[1, 7] = "nM"; outTable2[1, 8] = "nMO";
outTable2[1, 9] = "l2";
outTable2[1, 10] = "g"; outTable2[1, 11] = "C";
outTable2[1, 12] = "M"; outTable2[1, 13] = "MO";
outTable2[1, 14] = "C>M ?"; outTable2[1, 15] = "C>MO ?";
InitTable[outTable2, Nsize];

( * Loop over input values, compute results, and save * )
( * ------------------------------------------------- * )
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localCounter = 0;
aCounter = 0;

( * For each mu2 mu2[j], mu1 m1[i,j], and nu2 n2[k] * )
For[j = 1, j < Nm2, j++,

For[i = 1, i < Nrat, ++i,
For[k = 1, k < Nn2, k++,

Print[ " m1 ", m1[i, j], " m2 ", m2[j], " n2 ",
n2[k], " ... "];

( * Value of probability of Eq. 3.28 under measure P_0ˆ2 * )
P2 = Ppos[0.5 * (m1[i, j] + 2 * m2[j]), 0.5 * m2[j], n2[k]];
Print[" P2 ", N[P2]];
( * Value of probability of Eq. 3.28 under measure P_0ˆ1 * )
P1 = Pneg[-0.5 * m1[i, j], -0.5 * (m2[j] + 2 * m1[i, j]), n2[k]];
Print[" P1 ", N[P1]];
( * Value of probability of Eq. 3.28 under measure P_infinity * )
P0 = Ppos[0.5 * m1[i, j], -0.5 * m2[j], n2[k]];
Print[" P0 ", N[P0]];
( * Threshold nu1 for the classical 2-CUSUM equalizer rule * )
R = FindRoot[

2* f[n2[k], -m2[
j]] * (1 - (f[n2[k], -m2[j]] * (P2ˆ(n1 - n2[k])))/(f[

n2[k], -m2[j]] + f[n2[k], 2 * m2[j] + m1[i, j]]))
==
2* f[n2[k],

2* m1[i, j] +
m2[j]] * (1 - (f[n2[k],

2* m1[i, j] + m2[j]] * (P1ˆ(n1 - n2[k])))/(f[n2[k],
2* m1[i, j] + m2[j]] + f[n2[k], -m1[i, j]])),

{n1, m1[i, j] * n2[k]/m2[j]}];
( * value of nu1 * )
v1 = n1 /. R;
( * Detection delay of classical 2-CUSUM equalizer rule * )
Carr[i, j, k] =

N[2 * f[n2[k], -m2[j]] * (1 - (f[n2[k], -m2[j]] *
(N[P2]ˆ(v1 - n2[k])))/
(f[n2[k], -m2[j]] + f[n2[k], 2 * m2[j] + m1[i, j]]))];

( * Store nu1 * )
n1A[i, j, k] = v1;
( * gamma* )
g[i, j, k] =

N[2 * f[n2[k],
m2[j]] * (1 - (f[n2[k], m2[j]] *

P0ˆ(v1 - n2[k])) /(f[n2[k], m1[i, j]] +
f[n2[k], m2[j]]))];

Ival = n2[k];
( * Threshold (nu) computation for the modified-drift
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2-CUSUM harmonic mean equalizer rule * )
R1 =

FindRoot[
g[i, j, k] ==

2* (f[n3, m2[j]] * f[n3, 2 * m1[i, j] - m2[j]])/(f[n3, m2[j]]
+ f[n3, 2 * m1[i, j] - m2[j]]), {n3, Ival}];

( * Value of nu * )
v = n3 /. R1;
( * Store nu * )
nM[i, j, k] = v;
( * Detection delay for the modified-drift 2-CUSUM

harmonic mean rule when lambda2 = mu2 * )
M[i, j, k] =

2* (f[v, -m2[j]] * f[v, 2 * m1[i, j] + m2[j]])/(f[v, -m2[j]] +
f[v, 2 * m1[i, j] + m2[j]]);

( * Minimization of the detection delay of the modified drift
2-CUSUM harmonic mean rule over lambda2 * )

R2 =
Minimize[{f2[n4, l2 - 2 * m2[j], 2 * m1[i, j] + l2],

g[i, j, k] == f2[n4, l2, 2 * (m1[i, j] - m2[j]) + l2]},
{l2, n4}];

( * Value of lambda2 * )
l2A[i, j, k] = l2 /. First[Rest[R2]];
nMO[i, j, k] = n4 /. First[Rest[R2]];
( * Detection delay of the modified-drift 2-CUSUM

harmonic mean rule for the optimal value of lambda2 * )
MO[i, j, k] = First[R2];
( * Counters * )
aCounter++;
localCounter++;
( * Print to output table * )
outTable2[localCounter + 1, 1] = n1A[i, j, k];
outTable2[localCounter + 1, 2] = n2[k];
outTable2[localCounter + 1, 3] = m1[i, j];
outTable2[localCounter + 1, 4] = m2[j];
outTable2[localCounter + 1, 5] = n1A[i, j, k]/n2[k];
outTable2[localCounter + 1, 6] = m1[i, j]/m2[j];
outTable2[localCounter + 1, 7] = nM[i, j, k];
outTable2[localCounter + 1, 8] = nMO[i, j, k];
outTable2[localCounter + 1, 9] = l2A[i, j, k];
outTable2[localCounter + 1, 10] = g[i, j, k];
outTable2[localCounter + 1, 11] = Carr[i, j, k];
outTable2[localCounter + 1, 12] = M[i, j, k];
outTable2[localCounter + 1, 13] = MO[i, j, k];
outTable2[localCounter + 1, 14] =

If[Carr[i, j, k] > M[i, j, k], "True", "False"];
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outTable2[localCounter + 1, 15] =
If[Carr[i, j, k] > MO[i, j, k], "True", "False"];

( * Save to Excel CVS file - Different file for each mu2 * )
If [ Mod[aCounter , ((Nrat - 1) * (Nn2 - 1))] == 0,

Print["Saving..."]; SaveTable[m2[j], outTable2, Nsize] ;
InitTable[outTable2, Nsize]; localCounter = 0];

( * Print to standard output * )
Print[" v1 ", n1A[i, j, k], " v2 ", n2[k], " m1 ", m1[i, j],

" m2 ", m2[j], " v1/v2 ", n1A[i, j, k]/n2[k], " m1/m2 ",
m1[i, j]/m2[j], " nM ", nM[i, j, k], " nMO ", nMO[i, j, k],
" l2 ", l2A[i, j, k], " g ", g[i, j, k], " C ", Carr[i, j, k],
" M ", M[i, j, k], " MO ", MO[i, j, k], " C>M ",
If[Carr[i, j, k] > M[i, j, k], "True", "False"], " C>MO ",
If[Carr[i, j, k] > MO[i, j, k], "True", "False"]]

]]];
( * END Mathematica program for the non-symmetric case * )
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