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Figure 1: Different 3D objects symmetrized with our algorithm. The transparent shapes indicate the original models. The example in the
center shows a fully automatic correspondence computation that can be formulated as a symmetrization of the two poses of a scanned human.

Abstract

We present a symmetrization algorithm for geometric objects. Our
algorithm enhances approximate symmetries of a model while min-
imally altering its shape. Symmetrizing deformations are formu-
lated as an optimization process that couples the spatial domain
with a transformation configuration space, where symmetries can
be expressed more naturally and compactly as parametrized point-
pair mappings. We derive closed-form solution for the optimal sym-
metry transformations, given a set of corresponding sample pairs.
The resulting optimal displacement vectors are used to drive a con-
strained deformation model that pulls the shape towards symmetry.
We show how our algorithm successfully symmetrizes both the ge-
ometry and the discretization of complex 2D and 3D shapes and
discuss various applications of such symmetrizing deformations.
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1 Introduction

Symmetry is a central concept in many natural and man-made ob-
jects and plays a crucial role in visual perception, design, engineer-
ing, and art. Symmetries are often approximate or partial, due to
variations in growth processes, imperfections in manufacturing or
acquisition procedures, or shortcomings in manual design applica-
tions. Several recent efforts in shape analysis have focused on de-
tecting symmetries in two- and three-dimensional shapes [Podolak
et al. 2006], [Martinet et al. 2006], [Mitra et al. 2006]. Numer-
ous applications have successfully utilized this type of informa-
tion, e.g., for model reduction [Mitra et al. 2006], scan comple-
tion [Thrun and Wegbreit 2005], segmentation [Simari et al. 2006],
shape matching, and viewpoint selection [Podolak et al. 2006].

We propose a novel algorithm for symmetrization that strives to
enhance symmetries in a given model, while minimally altering its
shape. The challenge in symmetrization lies in the fact that sim-
ply copying parts of the model and applying the desired symme-
try transform does not lead to satisfactory results in general. For
example, the global symmetries of the shapes shown in Figure 1
cannot be realized with such a naı̈ve approach. The key insight
of our method is that coupling the spatial domain with a symme-
try transformation space, where symmetries can be expressed more
naturally, leads to a simple objective function that encodes the de-
sired symmetry-enhancing deformations. The resulting optimiza-
tion minimally deforms the shape while maximizing its symmetry
score using existing shape deformation tools (e.g. [Igarashi et al.
2005] or [Botsch et al. 2006]).

Symmetrization has numerous applications. In shape design, im-
perfect input data often does not exhibit the symmetries intended
by the designer or those present in some ideal model. Examples
include shapes modeled using sketch-based interfaces or data stem-
ming from 3D model acquisition. Manually correcting symmetry
deficits in the data is time-consuming, cumbersome, and virtually
impossible for large-scale models. This problem is even more chal-



lenging for articulated or deformable models, where the full shape
symmetry is only apparent in certain poses. Similarly, reverse en-
gineering applications can benefit from a symmetrized model to re-
cover the semantic structure of a given shape. Machine recognition
of parts can be improved by first applying symmetrization to repet-
itive elements in an acquired shape. This process can also lead to
reduced noise and better compression performance. Certain classes
of non-rigid shapes, e.g. articulated models, can be symmetrized
to improve the performance of shape matching algorithms, which
can be beneficial for pose-independent model retrieval. More gen-
erally, a symmetrized object exhibits a structure that is easier for us
to perceive, to classify, and to understand.

Contributions. Our contributions are two-fold: Given an ex-
plicit pairing of points, we derive closed-form solutions for the op-
timal reflective and/or rigid transformation and the corresponding
minimal displacements to exactly achieve this symmetry. Based
on this theoretical framework we introduce a practical algorithm
for symmetrization. Our method alternates between symmetry de-
tection and shape deformation, using an optimization that couples
the spatial domain with the symmetry transform space to succes-
sively enhance symmetries in a given model. This process is fully
automatic and requires no user interaction beyond specifying a few
parameters for symmetry detection and shape deformation. We also
show how our symmetrization algorithm can be used for other ap-
plications such as correspondence computations and shape filtering.

Previous Work. Related research has mostly been done in
the area of symmetry detection for geometric objects. Early pa-
pers focused on detecting exact symmetries in 2D and 3D pla-
nar point sets [Atallah 1985], [Wolter et al. 1985], which limits
their applicability for more complex geometries. A method for ap-
proximate symmetry detection has been proposed by Zabrodsky et
al. [1995], [Zabrodsky and Weinshall 1997]. They define a sym-
metry measure for a single given transformation as the distance
of a shape to the closest symmetric shape. Martinet et al. [2006]
find global symmetries of 3D objects by analyzing the extrema
and spherical harmonic coefficients of generalized moments. There
has also been increasing interest in more general symmetry trans-
forms, see [Podolak et al. 2006] and references therein. Here the
goal is to define a continuous measure for all possible transforma-
tions of a certain symmetry class. This enables various applications
including shape matching, alignment, segmentation or viewpoint
selection. Other techniques that analyze distributions in transfor-
mation space include the RANdom Sample Consensus (RANSAC)
method [Fischler and Bolles 1981], as well as geometric hashing
techniques [Wolfson and Rigoutsos 1997] that have recently been
applied successfully for partial shape matching [Gal and Cohen-Or
2006]. The medial axis transform captures local reflective symme-
tries with respect to a point [Blum 1967], which can be accumulated
to extract more global symmetries. The rather involved computa-
tions and the inherent instability of the medial axis have prevented
a wide-spread use so far. However, recently proposed stable ver-
sions of the medial axis (see [Attali et al. 2004] for an overview)
can potentially alleviate these problems. Symmetry has also been
exploited to define shape descriptors [Kazhdan et al. 2002] that
represent global reflective and rotational symmetries with respect
to a shape’s center of mass. This approach has been applied suc-
cessfully for alignment, classification and shape matching [Kazh-
dan et al. 2004]. More recent work uses symmetry detection for
segmentation [Simari et al. 2006], or scan completion [Thrun and
Wegbreit 2005]. Various symmetrizations are known in classical
geometry, e.g. symmetrization of convex sets [Grunbaum 1963],
or Steiner symmetrization that maps a subset of Euclidean space
to a set of spheres, while preserving volume and convexity [Had-
wiger 1957]. Symmetrization methods are also used in function
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Figure 2: Symmetrization in 2D. The original shape is sampled,
and compatible sample pairs are mapped into the space of reflec-
tive transformations shown on the right as density plots. Corre-
spondences are found by checking the spatial consistency of points
within clusters, yielding the marked regions on the model (and the
red points shown in the zooms). After contracting clusters in trans-
formation space, the shape is locally symmetric as shown by the
zoomed overlaid reflected geometry. Merging the clusters and fur-
ther incremental contraction finally yields the globally symmetrized
model shown with corresponding transform plot at the bottom.

theory [Faber 1920] and tensor algebra [Schouten 1951]. However,
to the best of our knowledge, no method for symmetrization of gen-
eral geometric shapes has been proposed before.

2 Overview

We briefly review the symmetry detection method introduced
in [Mitra et al. 2006] that forms the basis of our symmetrization
algorithm. Partial symmetry relations of a shape S can be defined
as the invariance of subparts S1,S2 ⊆ S under a certain transfor-
mation T such that T (S1) = S2. Transformations typically include
reflections, translations, rotations, or scaling. Such a symmetry
transformation induces a point-wise correspondence between S1
and S2, i.e., every point p ∈ S1 is paired with a symmetric point
T (p) ∈ S2. To find an unknown symmetry transformation T , we
estimate this correspondence by sampling the model and pairing
compatible samples on S. Compatible here means that the local
geometry at the two sample points can be matched with a transfor-
mation of the specific symmetry class in consideration.

Figure 2 illustrates our approach for reflective symmetries in 2D.
The boundary curve of the gecko is sampled with 577 points, which
results in 4780 matching point pairs. Each pair defines a unique re-
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Figure 3: Optimal displacements dp and dq for a point pair (p,q)
when changing the transformation from T to T ′.

flection line, parametrized by an angle θ and the distance d to the
origin, that can be seen as evidence for this specific (local) sym-
metry relation. By accumulating such evidence in transformation
space, more extensive symmetries can be found using spatial clus-
tering methods1. Since a cluster does not necessarily correspond
to a connected region in the spatial domain, the algorithm extracts
the symmetric patches using incremental region growing. This pro-
cess effectively computes the correspondence between the symmet-
ric patches by discarding points in transformation space, and cor-
responding point pairs in the spatial domain, that do not belong to
spatially connected parts (see [Mitra et al. 2006] for details). For
the gecko model this yields two clusters that correspond to the red
and blue regions shown in the figure.

Our goal is symmetrization, i.e., finding a deformation that en-
hances approximate symmetries present in a given shape. The de-
viation from perfect symmetry can be observed as variance of the
clusters in transformation space, as shown in the zoom of the red
cluster. Our algorithm deforms the shape in such a way that the
extracted clusters are contracted, while altering the shape as lit-
tle as possible. As shown in Figure 2, contracting clusters nicely
symmetrizes the shape locally, but fails to recognize more complex
global transformations, such as the reflective symmetry along the
curved spine of the gecko. The algorithm thus proceeds by merging
different clusters in transformation space, yielding a global defor-
mation that unbends the spine. This symmetrization process is for-
mulated as an optimization that is based on optimal displacement
vectors for which we derive closed-form solutions in Section 3.
More details of the algorithm will be discussed in Section 4.

3 Optimal Displacements

The goal of symmetrization is to find the minimal deformation that
achieves perfect symmetry. For this purpose we define a coupling
between transformation space and the spatial domain that specifies
how pairs of points are displaced when their corresponding local
symmetry mappings are modified.

Suppose we are given two points p and q defining a unique re-
flective transformation T that maps p to q = T (p) (see Figure 3). T
is represented by the line through (p + q)/2 with normal direction
p−q and can be expressed as a point T = (θ ,d) in a 2D transfor-
mation space, where θ is the angle with some fixed reference line
and d denotes the distance to the origin. If we now want to move the
transformation T to T ′ = (θ ′,d′), the points p and q need to be dis-
placed by some vectors dp and dq such that T ′(p + dp) = q + dq.
To minimize the effect of this local change of transformation on
the shape of the model, we are interested in the displacements with
smallest magnitude, i.e. the ones that minimize ‖dp‖2 + ‖dq‖2.
Simple geometric considerations show that these optimal displace-
ments are given as

dp =
T ′−1(q)−p

2
and dq =

T ′(p)−q
2

, (1)

1A similar pairing strategy has been used in [Podolak et al. 2006] to
efficiently compute a planar reflective symmetry transform.
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Figure 4: Optimal reflection plane and displacements for a set of
corresponding point pairs. Correspondences are indicated by color,
e.g., the transformation of the yellow sample pair is indicated by
the yellow dot in transformation space. Gray dots on the right show
the original positions.

effectively moving each point halfway to its perfectly symmetric
counterpart, thus evenly splitting the displacements. This relation
also holds for other mappings such as rigid transformations. Dis-
placing a point T to T ′ in transformation space thus induces these
minimal displacements of the corresponding sample points in the
spatial domain.

Given the single pair displacements, we derive closed-form solu-
tions for the optimal symmetrizing transformation of a given set of
corresponding point pairs. For illustration we will again consider
a 2D example with reflective symmetry shown in Figure 4. As-
sume we are given a set of point pairs {(p1,q1), . . . ,(pm,qm)} on
the boundary of a shape. The goal is to find the optimal reflective
symmetry transform T and corresponding displacements that make
the point set symmetric with respect to T . Optimal here means that
the transformation T minimizes the symmetry cost

E =
m

∑
i=1

(‖dpi‖2 +‖dqi‖2) = 2
m

∑
i=1

‖dpi‖2.

We show in the appendix that this problem can be reduced to a
3×3 eigenvalue problem, where the eigenvector with smallest cor-
responding eigenvalue equals the normal of the symmetry plane.
Given the optimal transformation T , the minimal displacements are
then computed using Equation 1. Similarly, we derive a closed-
form relation for rigid transformations (see appendix), which com-
putes the parameters of the transformation using singular value de-
composition. Note that this optimal transformation (Eopt = 69.4)
differs from the centroid of the pair transformations (Ecen = 142.6),
see Figure 4.

4 Optimization

The optimal displacements derived in the previous section form the
basis of our symmetrization algorithm. Note that in general we
cannot simply apply these displacements directly to symmetrize the
shape. This fails for two reasons: The initial random sampling of
the model does not respect symmetries, and the correspondences
estimated during the symmetry detection stage are potentially inac-
curate and incomplete. Sample points on the surface might not be
paired and will thus not be displaced, leading to incorrect results. In
this section we propose solutions to both problems. We first discuss
a procedure to locally optimize the sample points on the surface, be-
fore we describe an optimization method that continuously deforms
the shape to maximize its symmetries.

4.1 Optimizing Sample Positions

The example of Figure 2 illustrates that the extracted symmetry
clusters exhibit variance in the distribution of a cluster’s points in
transformation space. Two different factors contribute to this vari-
ance: Firstly, geometric deviations from perfect symmetry lead to
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Figure 5: Optimizing sampling positions. Colored dots on the left
show the original positions of matching pairs, white dots indicate
the displaced positions and colored squares show the samples after
re-projection. The corresponding transformations are shown in the
center. The samples on the right show the result after five iterations.

variations in the transformations defined by each sample pair. Sec-
ondly, even if the geometry is perfectly symmetric, the samples gen-
erated on the model typically do not respect this symmetry exactly,
leading to additional variance.

Deformations of the shape should only be triggered by geomet-
ric deviations from symmetry, not by non-symmetric sample place-
ment. Therefore, we first perturb sample points on the surface of
the model to optimize the sampling positions with respect to a clus-
ter’s symmetry transform. Every sample p ∈ S will be shifted in the
direction of its optimal displacement dp. Since this will typically
move samples off the surface, we project them back onto the sur-
face and re-compute the optimal transformation and displacements
vectors. We additionally restrict the sample movement to a sphere
with radius equal to the local sample spacing to avoid excessive
drifting. This procedure is iterated until the variance of the cluster
is no longer reduced. Effectively, samples glide along the surface
to positions where the symmetry score is maximized. This reduces
the variance of a cluster without modifying the geometry and thus
leads to smaller subsequent deformations. Figure 5 shows an ex-
ample. For this perfectly symmetric shape all transformations are
contracted to a single point, i.e., on the right all samples are sym-
metric with respect to the same reflection line, shown in yellow.

4.2 Symmetrizing Deformation

The deformation required for symmetrization can be formulated as
an optimization where the displacement vectors are considered as
directions of locally steepest descent pulling the shape towards the
desired symmetry. Since each point pair is considered indepen-
dently, we need a coupling between neighboring points on the sur-
face of the model to obtain a coherent surface deformation. This
regularization can be achieved using existing shape deformation
methods that can incorporate the symmetrizing displacements as
either positional constraints or forces acting on the shape. An im-
portant requirement for our application is detail-preserving defor-
mation. In particular, shape features should be rotated correctly to
avoid unnatural shearing effects that could destroy symmetries. In
addition, we need a quantitative measure of the magnitude of the
deformation, e.g., in form of a deformation energy, which allows
the algorithm to favor symmetrizing deformations that involve the
least change of shape.

We found two methods to be particularly suitable for our pur-
poses. For 2D models we use the as-rigid-as-possible shape ma-
nipulation method of [Igarashi et al. 2005] shown in Figure 6. In
this illustrative example we deform the shape by moving only two
points in transformation space to their centroid. The correspond-
ing surface samples are displaced according to Equation 1 and used
as constraints for the 2D deformation method. The interior mesh-
ing required by this approach is computed similar to [Alliez et al.
2005]. For 3D shapes we use the non-linear PriMo deformation
model of [Botsch et al. 2006] that is based on a simplified thin-

shell model and has shown to provide intuitive detail preservation.
However, other shape deformation methods can also be applied,
e.g. [Pauly et al. 2005], as long as they satisfy the above require-
ments.

Contracting clusters. The symmetry detection algorithm
of [Mitra et al. 2006] provides us with sample pairs {(pi,qi)} on the
initial model S corresponding to points {Ti} of a cluster in transfor-
mation space. We first optimize sample positions on S as described
in Section 4.1. Then we compute the optimal transformation (Sec-
tion 3) and apply the resulting displacements pi → pi +∆tdpi (anal-
ogously for qi), where ∆t is the time step of the optimization (we
chose ∆t = 0.1 for all our examples). These new sample locations
are used as positional constraints when evaluating the deformation
model to obtain a deformed shape S′. Sample positions are then
re-positioned on S′, new optimal displacement vectors are com-
puted, and the procedure is iterated. Since deforming the shape
can also affect the point pair matching, we frequently re-apply the
symmetry detection stage to update correspondences. For all our
examples we found it sufficient to re-compute the pairing every 5
time steps, which avoids unnecessary computational overhead by
exploiting the temporal coherence of the pair correspondences.

Merging clusters. Our symmetrization requires reliable corre-
spondences that are extracted from sufficiently pronounced clusters
in transformation space. When contracting such a cluster as de-
scribed above, the regularization of the deformation model causes
adjacent points that are not part of the cluster to move with the con-
strained samples to minimize the deformation energy. This shifts
the transformations of these sample pairs towards the cluster. Fig-
ure 7 shows this behavior for the gecko model (see also Figure 2).
If the separation of clusters is more distinct, however, the automatic
contraction can fail to recognize certain global symmetries. An ex-
ample can be seen in Figure 8 where the two distinct clusters cor-
respond to the approximative reflective symmetries of the bunny’s
head and body. Contracting each cluster individually will not pro-
duce a deformation strong enough to rotate the head into the glob-
ally symmetric position. Therefore, we merge neighboring clusters
after contraction by defining additional displacements that attract
clusters to each other. Two clusters at T and T ′ are merged by mov-
ing all cluster points to their common centroid (see also Figure 6).

Our algorithm proceeds as follows: Clusters are first sorted by
height and the most pronounced cluster is selected for symmetriza-
tion. We apply the symmetrizing deformations until the deforma-
tion energy indicates that the deviations from the original shape
have exceeded a certain threshold. The process is then repeated
with the next biggest cluster until all clusters of a suitable size have
been symmetrized. Finally, we greedily merge clusters based on
their distance in transformation space.

Control. Apart from these threshold parameters we provide two
additional means to control the optimization: In the deformation
model we treat the displaced positions as soft constraints, i.e., the
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Figure 6: As-rigid-as-possible shape deformation with interior
meshing. Moving two points in transformation space to their cen-
troid induces the deformation shown on the right.
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Figure 7: Symmetrizing deformation. The transform plots illustrate
the paths taken by all pairs of the final contracted cluster. Not all
of these points are initially part of a cluster, but get continuously
attracted to the cluster due to the regularization of the deformation.

symmetrizing displacements are not met exactly in general. This al-
lows the user to control the deformation by modifying the stiffness
of the shape’s material. Soft materials will allow for better sym-
metrization at the cost of potentially greater deviation from the rest
shape, while stiffer materials more strongly resist the symmetrizing
deformations to retain the original shape. Since both deformation
models applied in our system allow spatially varying stiffness, this
gives the user flexible control over the behavior of the shape. In ad-
dition to the stiffness parameter, a simple interface allows the user
to control the symmetrization by interactively selecting clusters for
contraction or merging. This can be useful when a certain semantic
meaning is associated with a symmetry that is not recognized by
the system automatically.

5 Results and Discussion

Figures 8 to 12 illustrate our symmetrization algorithm on a vari-
ety of different shapes. In all examples we consider the symmetry
group of reflections, rotations, and translations, i.e. a 6D trans-
formation space. While all computations are performed in the full
6D space, the visualizations show 2D projections computed using
multi-dimensional scaling [Cox and Cox 1994]. The circular struc-
tures noticeable in some of the density plots are artifacts of this
projection. All shapes have been symmetrized fully automatically

symmetrized

original

Figure 8: Symmetrizing the Stanford bunny. Two clusters corre-
sponding to reflective symmetries of the head and body of the model
are merged to obtain a globally symmetric shape. The transform
plots on the left are projected from 6D to 2D for visualization.

front feet back feet

original symmetrized

Figure 9: Symmetrization of a sculpted model. Large-scale defor-
mations achieve a global reflective symmetry by straightening the
spine, while many small-scale deformations symmetrize the model
locally, e.g., the horns, tongue, or toes.

original symmetrized

Figure 10: An architectural design study. The zooms in the top row
show how the meshing of the extracted symmetric element evolves
during the optimization. This element appears six times in different
location and orientation, as illustrated in the bottom row.
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Figure 11: Perfectly symmetric meshes can be obtained using symmetrizing deformations, symmetric sampling, and symmetry-aware mesh-
ing. The number below each model indicate the corresponding vertex count.

using a fixed global stiffness in the PriMo deformation model.
Symmetrization of the Stanford bunny is shown in Figure 8. The

head is rotated by merging the two dominant clusters. Prior con-
traction of these cluster leads to more subtle changes noticeable in
the fur, the ears and the hind legs.

Figure 9 shows the symmetrization of a scanned hand-sculpted
statue with many approximate symmetries. Our algorithm success-
fully symmetrizes the feet, head and tail of the dragon using cluster
contraction and achieves a global reflective symmetry using cluster
merging. The two main clusters in the final transform plot corre-
spond to the global reflective symmetry across the spine and the
partial translational symmetry that matches the front and back feet.

The design study of Figure 10 contains many repetitive, partially
symmetric elements. This example illustrates how the symmetry-
aware sampling of Section 4.1 can be used to also symmetrize the
discretization of the model, which is important in certain areas
such as CAD or architectural design. Similarly, Figure 11 shows
remeshed versions of the bunny, dragon, and face models. Af-
ter symmetrization of the geometry and placement of symmetric
samples, the mesh connectivity of these samples is inferred from
the connectivity of the original model. Different resolution levels
can be obtained by adapting iterative simplification methods based
on edge contraction, e.g., [Garland and Heckbert 1997], such that

symmetrized original asymmetrized

Figure 12: Symmetrization and its inverse operation. The original
face scan has been symmetrized using cluster contraction. Moving
points in the opposite direction yields interesting feature-enhancing
effects. The transform plots show transformations of consistent cor-
responding pairs of the dominant cluster.

edges coupled by a symmetry relation are always contracted to-
gether. These perfectly symmetric meshes can be beneficial for
compression and efficient rendering, as the inherent redundancy
is explicitly represented in the mesh. Similarly, physical simula-
tions can better preserve the symmetries of the underlying dynam-
ics, since these symmetries are matched by the discretization.

Figure 12 shows the inverse of a symmetrizing deformation, i.e.,
asymmetries are amplified by moving points along the negative di-
rection of optimal displacement. This creates a certain enhance-
ment effect that can bring out distinctive characteristics of a face.
Notice also how this process amplifies high-frequency noise, which
is reduced in the symmetrized version.

Figure 13 shows an example where we apply our algorithm to
compute point-wise correspondences between two different poses
of a scanned human. Sample pairs are restricted to always con-
tain one sample from each model, i.e. each point in transforma-
tion space describes a local mapping from one shape to the other.
Significant clusters thus define approximately rigid subparts of the
shape that can then be contracted and merged to warp the two mod-
els towards each other. Regions that have already been matched
are not considered in subsequent symmetry detection stages, which
allows successively smaller clusters to be recognized by the algo-
rithm. Note that these computations are fully automatic, in particu-
lar, no markers, manual pre-alignment or other user interaction are
necessary.

Model # Triangles Detection Contraction Merging
Bunny 70,550 8.43 7.38 10.63
Dragon 64,378 36.03 22.57 34.66
Human 24,998 7.64 1.91 105.95
Face 34,889 4.48 3.58 -
Design 3,380 4.12* 2.56 -

*includes time for remeshing

The above table shows the accumulated total time in seconds for
symmetry detection, cluster contraction and merging, measured on
an Intel dual-core 2.4GHz with 2GB RAM.

The symmetrized shapes shown in the figures exhibit symme-
tries that cannot be found using existing symmetry detection algo-
rithms. For example, prior methods, e.g., [Podolak et al. 2006],
[Mitra et al. 2006], will not detect the global reflective symmetry
of the model in Figure 9 due to the smooth bend in the spine of
the dragon. Contracting and merging clusters effectively fuses dif-
ferent local symmetries into more global ones, thus extending the
types of symmetries that can be detected in a given shape. How-
ever, similar to the above algorithms, our method currently cannot
handle continuous symmetries, e.g., the rotational symmetries that
define surfaces of revolution.



Figure 13: Different stages of a fully automatic correspondence computation. The two poses are deformed towards each other by successively
contracting and merging the most prominent clusters. The right foot shown in the zoom cannot be matched due to insufficient pair matching.

Limitations. Figures 8 and 13 show two cases where our method
fails to process the entire model correctly. The front feet of the
bunny and the right foot of the male character did not get sym-
metrized properly. The reason in both cases is insufficient local
matching. The curvature-based pairing does not find corresponding
points in these regions due to significant differences in local geome-
try. Small-scale features are sometimes ignored for similar reasons,
e.g., the eye brows in Figure 12. A possible solution are multi-
scale descriptors for point pair matching as proposed for example
in [Pauly et al. 2003] or [Funkhouser and Shilane 2006]. This can
potentially improve the robustness of the point pairing step during
symmetry detection. In its current form the correspondence com-
putation illustrated in Figure 13 is only applicable for shapes that
contain substantial rigid components. As such it can be used for
registration of articulated bodies, but is not suitable for computing
correspondence for general models, e.g. in order to perform com-
plex morphing operations. A general limitation of our approach is
that the deformation model does not respect the semantics of the
shape. In particular, for certain shapes it might not be appropriate
to merge cluster that are close in transformation space, because they
do not belong to the same semantic symmetry. Such cases need to
be disambiguated by the user. However, no such user intervention
was required for any of the examples shown in the paper.

6 Conclusion

We have shown how geometric objects can be symmetrized us-
ing a coupled optimization that successively deforms a shape to-
wards a symmetric configuration. Our algorithm is robust and ef-
ficient, requires minimal user intervention, and can handle both lo-
cal and global symmetries. It will be interesting to further explore
symmetrizing deformations that take into account a more complete
physical model of the object being symmetrized, as currently our
symmetrization is purely driven by geometric error. An interesting
alternative would be to use a perceptual error measure. Maximum
symmetrization with minimum perceptual change could lead to im-
proved compression performance for symmetry-based compression
algorithms like fractal compression. While in this paper we concen-
trate on enhancing symmetries in a given model, other operations
in transformation space are conceivable, as illustrated in Figure 12.
Such filters can possibly result in useful operations in the spatial do-
main that might be difficult to achieve otherwise. Imposing on one
object the symmetries of another is an interesting possibility. We
also want to explore the use of symmetrization for symmetry-aware
segmentation, shape matching, and database retrieval.

A Optimal Transformations

Reflection. We derive an expression for the optimal reflection
T that makes a set of point pairs (p1,q1), . . . ,(pm,qm) symmetric
with respect to T such that qi = T (pi) ∀i. Optimal here means that
the displacements are minimal, i.e.,

ET = ∑
i
(‖dpi‖2 +‖dqi‖2) = 2∑

i
‖dpi‖2 = ∑

i
||(T (qi)−pi)||2/2

is minimized. If we represent the reflection plane T by its normal n
and distance d from origin, then for any point p, T (p) = p+2(d−
nT p)n. Thus we have

ET = ∑
i
‖(qi +2(d−nT qi)n−pi)‖2/2.

We can now solve for the normal n and d that minimizes ET , sub-
ject to the constraint nT n = 1. In analogy to standard least squares
fitting, it follows that ET is minimized by the smallest eigenvector
n∗ of the matrix (A− bbT /2m), where A = ∑i(piqT

i + qipT
i ) and

b = ∑i(pi + qi). The corresponding distance of the plane from the
origin is given by d∗ = n∗T b/2m.

Rigid Transform. Similarly, we derive an optimal rigid trans-
formation for a given set of point pairs (p1,q1), . . . ,(pm,qm). Let
Cp = [e1

p e2
p e3

p] be the local coordinate frame of p consisting of
the surface normal, and the two principal curvature directions, re-
spectively. We want to make the point pairs symmetric with respect
to some rigid transform composed of a rotation R followed by a
translation t, i.e. qi = Rpi + t and RCpi = Cqi ∀i. The cost of the
corresponding minimal displacement of points, and alignment of
the coordinate frames is proportional to

E(R,t) = ∑
i

(
||Rpi + t−qi||2 +λ ||RCpi −Cqi ||2F

)
,

where λ is a positive constant weighting the two error components,
and ||.||F denotes matrix Frobenius norm [Hofer et al. 2004]. Our
goal is to find the optimal rigid transform (R∗, t∗) which mini-
mizes E(R,t). Setting ∂E(R,t)/∂ t = 0, we get Rp̄ + t = q̄, where
p̄ = ∑i pi/m and q̄ = ∑i qi/m. Using p̃i = pi − p̄ and q̃i = qi − q̄,
we have,

E(R,t) = ∑
i

(
||Rp̃i− q̃i||2 +λ ||RCpi −Cqi ||2F

)



= ∑
i
||Rp̃i− q̃i||2 +∑

i

3

∑
j=1

||
√

λ (Re j
pi − e j

qi)||
2

=
4m

∑
k=1

||Ruk −vk||2,

where we use suitable uk and vk to simplify notation. This re-
duces the problem to finding the rotation that best aligns a set of
point pairs for which a closed form solution exists [Eggert et al.
1997]. Using this result, we can minimize E(R,t) as follows: Let
H = ∑

4m
k=1 ukvT

k and H = UΛV T its singular value decomposition.
The optimal rotation is then given by R∗ = VUT and the corre-
sponding optimal translation vector is t∗ = q̄−R∗p̄.
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