Outline

Registration (Zippered Polygon Meshes)
Outer surface defines enclosing volume (Zippered Polygon Meshes)
Inside volume defines outer surface (Levoy, Reed,Stamos)

Zippered Polygon Meshes

Optical Triangulation

Sources of error:

1) grazing angle,
2) object boundaries.

Optical Triangulation

Points->Mesh

Sensing Direction Self Occlusion

Discard long edges.
Threshold distance.
Assign confidence value to every vertex.

Sensor Imaging Characteristics

Image has structure:

Zippered Polygon Meshes

ICP Registration (Besl \& McKay PAMI 92)

Repeat with a finer mesh

Meshes are close wrt each other.
Order dependent
$\mathrm{E}=\sum_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}\left|\mathrm{A}-\mathrm{R}\left(\mathrm{B}_{\mathrm{i}}-\mathrm{B}_{\mathrm{C}}\right)-\mathrm{T}\right|^{2}$ \uparrow
Confidence

Horn

$$
E=\sum_{i} w_{i}|A-R(B-B)-T|^{2}
$$

Zippered Polygon Meshes

Removing Redundant Triangles

Until both meshes remain unchanged

T triangle on mesh boundary of A

Result

Boundary Merge->Two meshes become one.

Mesh A

3D case similar

Remove thin triangles

Consensus Geometry

Refine geometry of final mesh.
Use information from all previous meshes.
Correct each vertex of final mesh.

Triangle of merged mesh

Result

Summary

Mesh Registration and Integration.
Takes into account range uncertainty.
Consensus geometry.
Does not guarantee hole filling.
Order dependent algorithm (undesirable).
Does not provide framework for planning.
Fails in areas of high curvature.
A big number of scans needed.

