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Closed-Form Solution of Absolute Orientation
Using Orthonormal Matrices.

B.K.P. Horn, H.M. Hilden & S. Negahdaripour

Abstract: Finding the relationship between two coordinate systems us-
ing pairs of measurements of the coordinates of a number of points in
both systems is a classic photogrammetric task. It finds applications in
stereophotogrammetry and in robotics. We present here a closed-form
solution to the least-squares problem for three or more points. Cur-
rently, various empirical, graphical and numerical iterative methods are
in use. Derivation of a closed-form solution can be simplified by using
unit quaternions to represent rotation, as was shown in an earlier paper1.
Since orthonormal matrices are more widely used to represent rotation,
we now present a solution using 3×3 matrices. Our method requires the
computation of the square-root of a symmetric matrix. We compare the
new result with an alternate method where orthonormality is not directly
enforced. In this other method a best fit linear transformation is found
and then the nearest orthonormal matrix chosen for the rotation.

We note that the best translational offset is the difference between
the centroid of the coordinates in one system and the rotated and scaled
centroid of the coordinates in the other system. The best scale is equal
to the ratio of the root-mean-square deviations of the coordinates in the
two systems from their respective centroids. These exact results are to
be preferred to approximate methods based on measurements of a few
selected points.
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1. Origin of the Problem.

Suppose that we are given the coordinates of a number of points as mea-
sured in two different Cartesian coordinate systems (see Fig. 1). The
photogrammetric problem of recovering the transformation between the
two systems from these measurements is referred to as that of absolute
orientation2,3,4. It occurs in several contexts, foremost in relating a stereo
model developed from pairs of aerial photographs to a geodetic coordi-
nate system. It also is of importance in robotics, where measurements in
a camera coordinate system must be related to coordinates in a system
attached to a mechanical manipulator. Here one speaks of the determi-
nation of the “hand-eye” transform5.

1.A Previous Work.

The problem of absolute orientation is usually treated in an empirical,
graphic or numerical, iterative fashion2,3,4. Thompson6 gives a solution
to this problem when exactly three points are measured. His method, as
well as the simpler one of Schut7, depends on selective neglect of the extra
constraints available when all coordinates of three points are known, as
dicussed later. Schut uses unit quaternions and arrives at a set of linear
equations. A simpler solution, that does not require the solution of a
system of linear equations, was presented in a precursor of this paper1.
These three methods all suffer from the defect that they cannot handle
more than three points. Perhaps more importantly, they do not even use
all of the information available from the three points.

Oswal and Balasubramanian8 developed a least-squares method that
can handle more than three points, but their method does not enforce the
orthonormality of the rotation matrix. Instead, they simply find the best-
fit linear transform. An iterative method is then used to “square up” the
result—bringing it closer to being orthonormal. Their method for doing
this is iterative (and without mathematical justification). In addition, the
result obtained is not the solution of the original least-squares problem.

We study their approach in section 4 using a closed-form solution
for the nearest orthonormal matrix derived in section 3.F. This is appar-
ently not entirely novel, since an equivalent problem has been treated in
the psychological literature15−21 (as recently pointed out to us by Takeo
Kanade). The existing methods, however, cannot deal with a singular ma-
trix. We extend ourmethod to deal with the case where the rank deficiency
of the matrix is one. This is an important extension, since the matrix will
be singular when either of the sets of measurements are coplanar, as will
always happen when there are only three measurements.
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The main result presented here, however, is the closed-form solution
to the least-squares problem of absolute orientation. Our new result can
be applied in the special case when one or the other of the sets ofmeasure-
ments happens to be coplanar. This is important, because sometimes only
three points are available, and three points are, of course, always copla-
nar. The solution we present differs from the schemes discussed at the
beginning of this section in that it does not selectively neglect information
provided by the measurements—it uses all of it.

We should point out that a version of this problem has been solved
by Farrel & Stuelpnagel9 (as C.J. Standish pointed out to us after reading
a draft of our paper). Their solution only applies, however, when neither
of the sets of measurements is coplanar. We also learned recently that
S. Arun, T. Huang and S.D. Blostein independently developed a solution
to an equivalent problem10. They use singular value decomposition of an
arbitrary matrix instead of the eigenvalue-eigenvector decomposition of
a symmetric matrix inherent in our approach.

1.B Minimum Number of Points.

The transformation between two Cartesian coordinate systems can be
thought of as the result of a rigid-body motion and can thus be decom-
posed into a rotation and a translation. In stereophotogrammetry, in ad-
dition, the scale may not be known. There are obviously three degrees
of freedom to translation. Rotation has another three (direction of the
axis about which the rotation takes place plus the angle of rotation about
this axis). Scaling adds one more degree of freedom. Three points known
in both coordinate systems provide nine constraints (three coordinates
each), more than enough to allow determination of the seven unknowns,
as shown, for example, in reference 1. By discarding two of the con-
straints, seven equations in seven unknowns can be developed that allow
one to recover the parameters.

1.C Least Sum of Squares of Errors.

In practice, measurements are not exact, and so greater accuracy in deter-
mining the transformation parameters will be sought after by using more
than three points. We no longer expect to be able to find a transformation
that maps the measured coordinates of points in one system exactly into
the measured coordinates of these points in the other. Instead, we min-
imize the sum of the squares of the residual errors. Finding the best set
of transformation parameters is not easy. In practice, various empirical,
graphical and numerical procedures are in use2,3,4. These are all itera-
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tive in nature. That is, given an approximate solution, such a method is
applied repeatedly until the remaining error becomes negligible.

At times information is available that permits one to obtain so good
an initial guess of the transformation parameters, that a single step of the
iteration brings one close enough to the true solution of the least-squares
problem for all practical purposes; but this is rare.

1.D Closed-Form Solution.

In this paper we present a closed-form solution to the least-squares prob-
lem of absolute orientation, one that does not require iteration. One ad-
vantage of a closed-form solution is that it provides us in one step with
the best possible tranformation, given the measurements of the points in
the two coordinate systems. Another advantage is that one need not find
a good initial guess, as one does when an iterative method is used.

A solution of this problem was presented previously that uses unit
quaternions to represent rotations1. The solution for the desired quater-
nion was shown to be the eigenvector of a symmetric 4×4 matrix associ-
ated with the largest positive eigenvalue. The elements of this matrix are
simple combinations of sums of products of coordinates of the points.
To find the eigenvalues, a quartic equation has to be solved whose coeffi-
cients are sums of products of elements of the matrix. It was shown that
this quartic is particularly simple, since one of its coefficients is zero. It
simplifies even more when only three points are used.

1.E Orthonormal Matrices.

While unit quaternions constitute an elegant representation for rotation,
most of us are more familiar with the use of proper orthonormal matrices
for this purpose. Working directly with matrices is difficult, because of
the need to deal with six nonlinear constraints that ensure that the matrix
is orthonormal. We nevertheless are able to derive a solution for the rota-
tion matrix using direct manipulation of 3×3 matrices. This closed-form
solution requires the computation of the positive semi-definite square-
root of a positive semi-definite matrix. We show in section 3.C how such
a square-root can be found, once the eigenvalues and eigenvectors of the
matrix are available. Finding the eigenvalues requires the solution of a
cubic equation.

Themethod discussed here finds the same solution as does themethod
presented earlier that uses unit quaternions to represent rotation, since it
minimizes the same error sum1. We present the newmethod only because
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the use of orthonormal matrices is so widespread. We actually consider
the solution using unit quaternions to be more elegant.

1.F Symmetry of the Solution.

Let us call the two coordinate systems “left” and “right.” A desirable prop-
erty of a solution method is that when applied to the problem of finding
the best transformation from the left to the right system, it gives the ex-
act inverse of the best transformation from the left to the right system. It
was shown in reference 1 that the scale factor has to be treated in a par-
ticular way to guarantee that this happens. The method we develop here
for directly computing the rotation matrix gives two apparently different
results when applied to the problem of finding the best transformation
from left to right and the problem of finding the best transformation from
right to left. We show that these two results are in fact different forms of
the same solution and that our method does indeed have the sought after
symmetry property.

1.G The Nearest Orthonormal Matrix.

Since the constraint of orthonormality leads to difficulties, some in the
past have chosen to find a 3 × 3 matrix that fits the data best in a least-
squares sense without constraint on its elements8. The result will typi-
cally not be orthonormal. If the data is fairly accurate, the matrix may
be almost orthonormal. In this case, we might wish to find the “nearest”
orthonormal matrix. That is, we wish to minimize the sum of the squares
of differences between the elements of the matrix obtained from the mea-
surements and an ideal orthonormal matrix. Iterative methods exist for
finding the nearest orthonormal matrix.

A closed-form solution, shown in section 3.F, again involves square-
roots of 3 × 3 symmetric matrices. The answer obtained this way is dif-
ferent, however, from the solution that minimizes the sum of the squares
of the residual errors. In particular, it does not have the highly desirable
symmetry property discussed above, and it requires the accumulation of
a larger number of sums of products of coordinates of measured points.

2. Solution Methods

As we shall see, the translation and the scale factor are easy to determine
once the rotation is known. The difficult part of the problem is finding
the rotation. Given three noncollinear points, we can easily construct a
useful triad in each of the left and the right coordinate systems1 (see
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Fig. 2). Take the line from the first to the second point to be the direction
of the new x-axis. Place the new y-axis at right angles to the new x-axis
in the plane formed by the three points. The new z-axis is then made
orthogonal to the x- and y-axis with orientation chosen to satisfy the
right-hand rule. This construction is carried out in both left and right
systems. The rotation that takes one of these constructed triads into
the other is also the rotation that relates the two underlying Cartesian
coordinate systems. This rotation is easy to find, as is shown in reference
1.

This ad hoc method constitutes a “closed-form” solution for finding
the rotation given three points. Note that it uses the information from the
three points selectively. Indeed, if we renumber the points, we obtain a
different rotationmatrix (unless the data happens to be perfect). Also note
that the method cannot be extended to deal with more than three points.
Even with just three points we should really attack this problem by means
of a least-squares method, since there are more constraints than unknown
parameters. The least-squares solution for translation and scale will be
given in subsections 2.B and 2.C. The optimum rotation will be found in
section 4.

2.A Finding the Translation.

Let there by n points. The measured coordinates in the left and right
coordinate system will be denoted by

{rl,i} and {rr ,i}
respectively, where i ranges from 1 to n. We are looking for a transfor-
mation of the form

rr = s R(rl)+ r0
from the left to the right coordinate system. Here s is a scale factor, r0
is the translational offset, and R(rl) denotes the rotated version of the
vector rl. We do not, for the moment, use any particular notation for
rotation. We use only the fact that rotation is a linear operation and that
it preserves lengths so that

‖R(rl)‖2 = ‖rl‖2 ,
where ‖r‖2 = r · r is the square of the length of the vector r.

Unless the data are perfect, we will not be able to find a scale factor,
a translation, and a rotation such that the transformation equation above
is satisfied for each point. Instead there will be a residual error,

ei = rr ,i − s R(rl,i)− r0.
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We will minimize the sum of the squares of these errors,

n∑
i=1
‖ei‖2 .

(It was shown in reference 1 that the measurements can be weighted with-
out changing the basic solution method.)

We consider the variation of the total error first with translation, then
with scale, and finally with respect to rotation.

2.B Centroids of the Sets of Measurements.

It turns out to be useful to refer all measurements to the centroids defined
by

rl = 1
n

n∑
i=1
rl,i and rr = 1

n

n∑
i=1
rr ,i.

Let us denote the new coordinates by

r′l,i = rl,i − rl and r′r ,i = rr ,i − rr .
Note that

n∑
i=1
r′l,i = 0 and

n∑
i=1
r′r ,i = 0.

Now the error term can be rewritten in the form

ei = r′r ,i − s R(r′l,i)− r′0,
where

r′0 = r0 − rr + s R(rl).
The sum of the squares of the errors becomes

n∑
i=1

∥∥∥r′r ,i − s R(r′l,i)− r′0∥∥∥2 ,
or

n∑
i=1

∥∥∥r′r ,i − s R(r′l,i)∥∥∥2 − 2 r′0 ·
n∑
i=1

(
r′r ,i − s R(r′l,i)

)
+n∥∥r′0∥∥2 .

Now the sum in the middle of this expression is zero, since the sum of
the vectors {r′l,i} and the sum of the vectors {r′r ,i} are zero, as mentioned
above. As a result, we are left with the first and the third terms. The first
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does not depend on r′0, and the last cannot be negative. The total error is
obviously minimized with r′0 = 0, or

r0 = rr − s R(rl).

That is, the translation is just the difference of the right centroid and
the scaled and rotated left centroid. We return to this equation to find
the translational offset once we have found the scale and rotation. This
method, based on all available information, is to be preferred to one that
uses only measurements of one or a few selected points to estimate the
translation.

At this point we note that the error term can be simplified to read

ei = r′r ,i − s R(r′l,i),

since r′0 = 0, and so the total error to be minimized is just

n∑
i=1

∥∥∥r′r ,i − s R(r′l,i)∥∥∥2 .

2.C Symmetry in Scale.

It is shown in reference 1 that the above formulation of the error term
leads to an asymmetry in the determination of the optimal scale factor.
That is, the “optimal” transformation from the left to the right coordinate
system is then not the exact inverse of the “optimal” transformation from
the right to the left coordinate system. The latter corresponds to use of
the error term

ei = r′l,i − (1/s)RT (r′r ,i),
or

ei = −
(
(1/s)(r′r ,i)− R(r′l,i)

)
,

and leads to a total error to be minimized of

n∑
i=1

∥∥∥(1/s)(r′r ,i)− R(r′l,i)∥∥∥2 .
If the errors in both sets of measurements are similar, it is more reason-
able to use a symmetrical expression for the error term:

ei = 1√
s
r′r ,i −

√
s R(r′l,i).
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Then the total error becomes

1
s

n∑
i=1

∥∥∥r′r ,i∥∥∥2 − 2
n∑
i=1
r′r ,i ·

(
R(r′l,i)

)+ s n∑
i=1

∥∥∥r′l,i∥∥∥2 ,
or

1
s
Sr − 2D + sSl,

where

Sl =
n∑
i=1

∥∥∥r′l,i∥∥∥2 , D =
n∑
i=1
r′r ,i ·

(
R(r′l,i)

)
, and Sr =

n∑
i=1

∥∥∥r′r ,i∥∥∥2 .
Completing the square in s, we obtain(√

s
√
Sl − 1√

s

√
Sr
)2
+ 2(

√
SlSr −D).

This is minimized with respect to scale s when the first term is zero or
s = √Sr/Sl, that is,

s =
√√√√ n∑
i=1

∥∥∥r′r ,i∥∥∥2
/ n∑

i=1

∥∥∥r′l,i∥∥∥2 .
One advantage of this symmetrical result is that it allows one to determine
the scale without the need to know the rotation. Importantly, however,
the determination of the rotation is not affected by the choice of the value
of the scale factor. In each case the remaining error is minimized when D
is as large as possible. That is, we have to choose the rotation that makes

n∑
i=1
r′r ,i ·

(
R(r′l,i)

)
as large as possible.

3. Dealing with Rotation.

There are many ways to represent rotation, including the following: Euler
angles, Gibbs vector, Cayley-Klein parameters, Pauli spin matrices, axis
and angle, orthonormal matrices, and Hamilton’s quaternions11,12. Of
these representations, orthonormal matrices have been used most often
in photogrammetry, graphics and robotics. While unit quaternions have
many advantages when used to represent rotation, few are familiar with
their properties. That is why we present here a closed-form solution using
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orthonormal matrices that is similar to the closed-form solution obtained
earlier using unit quaternions1.

The new method, which we present next, depends on eigenvalue-
eigenvector decomposition of a 3 × 3 matrix and so requires solution of
a cubic equation. Well-known methods such as Ferrari’s solution can be
used12,13,14. When one or the other sets of measurements (left or right)
is coplanar, the method simplifies, in that only a quadratic needs to be
solved. It turns out, however, that much of the complexity of this ap-
proach stems from the need to deal with this and other special cases.

3.A Best Fit Orthonormal Matrix.

We have to find a matrix R that maximizes

n∑
i=1
r′r ,i ·

(
R(r′l,i)

) = n∑
i=1
(r′r ,i)

TR r′l,i.

Now
aTR b = Trace(RTabT ),

so we can rewrite the above expression in the form

Trace

RT n∑
i=1
r′r ,i (r

′
l,i)

T

 = Trace(RTM),

where

M =
n∑
i=1
r′r ,i (r

′
l,i)

T ,

that is,

M =
 Sxx Sxy Sxz
Syx Syy Syz
Szx Szy Szz

 ,
with

Sxx =
n∑
i=1

xr,i xl,i, Sxy =
n∑
i=1

xr,i yl,i, . . .

and so on*.
To find the rotation that minimizes the residual error, we have to find

the orthonormal matrix R that maximizes

Trace(RTM).

*We denote the elements of the matrix Sxx , Sxy . . ., rather than Mxx , Mxy . . .,
in order to be consistent with reference 1.
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3.B Product of Orthonormal and Symmetric Matrix.

It follows from Theorem 1 (p. 169) in [22] that a square matrix M can be
decomposed into the product of an orthonormal matrix U and a positive
semi-definite matrix S. The matrix S is always uniquely determined. The
matrix U is uniquely determined when M is nonsingular. (We show in
section 3.D that U can also be determined up to a two-way ambiguity
whenM is singular, but has rank deficiency one). WhenM is nonsingular,
we can actually write directly

M = US,
where

S = (MTM)1/2

is the positive-definite square-root of the symmetric matrix MTM , while

U = M(MTM)−1/2

an orthonormal matrix. It is easy to verify that M = US, ST = S and
UTU = I.

3.C Positive-Definite Square-Root of Positive-Definite Matrix.

The matrixMTM can be written in terms of the set of its eigenvalues {λi}
and the corresponding orthogonal set of unit eigenvectors {ûi} as follows:

MTM = λ1û1ûT1 + λ2û2ûT2 + λ3û3ûT3 .
(This can be seen by checking that the expression on the right hand side
has eigenvalues {λi} and eigenvectors {ûi}).

Now MTM is positive definite, so the eigenvalues will be positive.
Consequently the square-roots of the eigenvalues will be real and we can
construct the symmetric matrix

S =
√
λ1û1ûT1 +

√
λ2û2ûT2 +

√
λ3û3ûT3 .

It is easy to show that

S2 = λ1û1ûT1 + λ2û2ûT2 + λ3û3ûT3 = MTM,

using the fact that the eigenvectors are orthogonal. Also, for any nonzero
vector x,

xTSx = λ1(û1 · x)2 + λ2(û2 · x)2 + λ3(û3 · x)2 > 0.

We see that S is positive definite, since λ1 > 0, λ2 > 0, and λ3 > 0. This
construction of S = (MTM)1/2 applies even when some of the eigenvalues
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are zero; the result then is positive semi-definite (rather than positive
definite).

3.D The Orthonormal Matrix in the Decomposition.

If all the eigenvalues are positive, then

S−1 = (MTM)−1/2 = 1√
λ1
û1û

T
1 +

1√
λ2
û2û

T
2 +

1√
λ3
û3û

T
3 ,

as can be verified by multiplying by S. This expansion can be used to
calculate the orthonormal matrix

U = MS−1 = M(MTM)−1/2.

The sign of det(U) is the same as the sign of det(M), because

det(U) = det(MS−1) = det(M)det(S−1)

and det(S−1) is positive as all of its eigenvalues are positive. So U repre-
sents a rotation when det(M) > 0 and a reflection when det(M) < 0. (We
expect to always obtain a rotation in our case. Only if the data is severely
corrupted may a reflection provide a better fit).

When M only has rank two, the above method for constructing the
orthonormal matrix breaks down. Instead we use

U = M
(
1
λ1
û1û

T
1 +

1
λ2
û2û

T
2

)
± û3v̂T3 ,

or

U = MS+ ± û3v̂T3 ,
where S+ is the pseudo-inverse of S, that is,

S+ = 1√
λ1
û1û

T
1 +

1√
λ2
û2û

T
2 ,

and uu3 and uv3 are the third left and right singular vectors respectively
(i.e. the third columns of U0 and V0, where U0 and V0 are the left and right
factors in the singular value decomposition MS+ = U0Σ0VT0 — this fix is
due to Carlo Tomasi). The sign of the last term in the expression for U
above is chosen to make the determinant of U positive. It is easy to show
that the matrix constructed in this fashion is orthonormal and provides
the desired decomposition M = US.
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3.E Maximizing the Trace.

We have to maximize

Trace(RTM) = Trace(RTUS),

where M = US is the decomposition of M discussed above. From the
expression for S in section 3.C, we see that

Trace(RTUS)

=
√
λ1 Trace(RTU û1ûT1 )+

√
λ2 Trace(RTU û2ûT2 )+

√
λ3 Trace(RTU û3ûT3 ).

For any matrices X and Y , such that XY and YX are square, Trace(XY) =
Trace(YX). Therefore

Trace(RTU ûiûTi ) = Trace(ûTi R
TU ûi) = Trace(Rûi ·U ûi) = (Rûi ·U ûi).

Since ûi is a unit vector, and both U and R are orthonormal transforma-
tions, we have (Rûi · U ûi) ≤ 1, with equality if and only if Rûi = U ûi. It
follows that

Trace(RTUS) ≤
√
λ1 +

√
λ2 +

√
λ3 = Trace(S).

and the maximum value of Trace(RTUS) is attained when RTU = I, or
R = U . Thus the sought after orthonormal matrix is the one that occurs
in the decomposition ofM into the product of an orthonormal matrix and
a symmetric one. If M is not singular, then

R = M(MTM)−1/2.

If M only has rank two, however, we have to resort to the second method
discussed in the previous section to find R.

3.F Nearest Orthonormal Matrix.

Owe can now show that the nearest orthonormal matrix R to a given non-
singular matrix M is the matrix U that occurs in the decomposition of M
into the product of an orthonormal matrix and a positive-definite matrix.
That is,

U = M(MTM)−1/2

We wish to find the matrix R that minimizes

3∑
i=1

3∑
j=1

(mi,j − ri,j)2 = Trace
(
(M − R)T (M − R)),
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subject to the condition RTR = I. That is, minimize

Trace(MTM)− 2Trace(RTM)+ Trace(RTR).

Now RTR = I, so we conclude that the first and third terms do not depend
on R. The problem then is to maximize

Trace(RTM)

We conclude immediately, using the result of the previous section, that
the nearest orthonormal matrix to the matrixM is the orthonormal matrix
that occurs in the decomposition ofM into the product of an orthonormal
and a symmetric matrix.

Thus the orthonormal matrix that maximizes the residual error in our
original least-squares problem is the orthonormal matrix nearest to the
matrix

M =
n∑
i=1
r′r ,i (r

′
l,i)

T .

Wenote here that this orthonormalmatrix can be found once an eigenvalue-
eigenvector decomposition of the symmetric 3× 3 matrix MTM has been
obtained.

3.G Rank of the Matrix M .

It is clear that the rank of MTM is the same as the rank of M , since the
two matrices have exactly the same eigenvectors with zero eigenvalue.
The first method for finding the desired orthonormal matrix applies only
when M , and hence MTM , is nonsingular.

If, on the other hand,
Mnl = 0,

for any nonzero vector nl, then the matrixM , and henceMTM , is singular.
This happenswhen all of the leftmeasurements lie in the same plane. That
is, when

r′l,i · nl = 0,

for i = 1, 2, . . ., n, where nl is a normal to the plane, since

Mnl =
 n∑
i=1
r′r ,i (r

′
l,i)

T

nl = n∑
i=1
r′r ,i (r

′
l,i · nl) = 0.

Similarly, if all of the right measurements lie in the same plane

r′r ,i · nr = 0,
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where nr is a normal to the plane and so MTnr = 0. Now det(MT) =
det(M), so this implies that M is singular also. As a result, we cannot use
the simple expression,

U = M(MTM)−1/2,

to find the orthonormal matrix when either of the two sets of measure-
ments (left or right) are coplanar. This happens, for example, when there
are only three points.

If one or both sets of measurements are coplanar, we have to use the
second method for constructing U , given in section 3.D. This method re-
quires that the matrix M have rank two (which will be the case unless the
measurements happen to be collinear—in which case the absolute orien-
tation problem does not have a unique solution). Note that the second
method requires the solution of a quadratic equation to find the eigen-
values, whereas a cubic must be solved in the general case. One might,
by the way, anticipate possible numerical problems when the matrix M is
ill-conditioned, that is, when one of the eigenvalues is nearly zero. This
will happen when one of the sets of measurements lies almost in a plane.

3.H Symmetry in the Transformation.

If, instead of finding the best transformation from the left to the right
coordinate system, we decided instead to find the best transformation
from the right to the left, we would have to maximize

n∑
i=1
(r′l,i)

TR r′r ,i,

by choosing an orthonormal matrix R. We can immediately write down
the solution

R = MT(MMT)−1/2,

sinceM becomesMT whenwe interchange left and right. We would expect

RT to be equal to R, but, much to our surprise,

RT = (MMT)−1/2M.

This appears to be different from

R = M(MTM)−1/2.

but in fact they are equal. This is so because(
M−1(MMT)1/2M

)2 = M−1(MMT)M = MTM.
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Taking inverses and square roots we obtain

M−1(MMT)−1/2M = (MTM)−1/2,

and, premultiplying by M , we find

RT = (MMT)−1/2M = M(MTM)−1/2 = R.

3.I Finding the Eigenvalues and Eigenvectors.

We need to find the roots of the cubic in λ obtained by expanding

det(MTM − λI) = 0,

where MTM is
S2xx + S2yx + S2zx SxxSxy + SyxSxy + SzxSzy SxxSxz + SyxSyz + SzxSzz

SxySxx + SyySyx + SzySzx S2xy + S2yy + S2zy SxySxz + SyySyz + SzySzz
SxzSxx + SyzSyx + SzzSzx SxzSxy + SyzSyy + SzzSzy S2xz + S2yz + S2zz

 .
Having found the three solutions of the cubic, λi for i = 1, 2, and 3 (all
real, and in fact positive), we then solve the homogeneous equations

(MTM − λiI) ûi = 0

to find the three orthogonal eigenvectors ûi for i = 1, 2, and 3.

3.J Coefficients of the Cubic.

Suppose that we write the matrix MTM in the form

MTM =
a d f
d b e
f e c

 ,
where a = (S2xx + S2yy + S2zz) and so on. Then

det(MTM − λI) = 0

can be expanded as

−λ3 + d2λ2 + d1λ+ d0 = 0,
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where
d2 = a+ b + c,
d1 = (e2 − bc)+ (f 2 − ac)+ (d2 − ab),
d0 = abc + 2def − (ae2 + bf 2 + cd2).

We may note at this point that

d2 = Trace(MTM)

so

d2 = (S2xx + S2xy + S2xz)+ (S2yx + S2yy + S2yz)+ (S2zx + S2zy + S2zz),

while

d0 = det(MTM) = (det(M))2
or

d0 =
(
(SxxSyySzz + SxySyzSzx + SyxSxzSzy)

− (SxxSyzSzy + SyySzxSxz + SzzSxySyx)
)2.

4. Ignoring the Orthonormality.

Since it is so difficult to enforce the six nonlinear constraints that ensure
that the matrix R is orthonormal, it is tempting to just find the best-
fit linear transformation from left to right coordinate system. This is a
straightforward least-squares problem. One can then try to find the “near-
est” orthonormal matrix to the one obtained in this fashion. We show
that this approach actually involves more work and does not produce the
solution to the original least-squares problem. In fact, the result is asym-
metric, in that the best-fit linear transform from left to right is not the
inverse of the best-fit linear transform from right to left. Furthermore, at
least four points need to be measured, whereas the method that enforces
orthonormality requires only three. We discuss this approach next.

4.A Best Linear Transformation.

Here we have to find the matrix X that minimizes

n∑
i=1

∥∥∥r′r ,i −X r′l,i∥∥∥2 ,
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or
n∑
i=1

(∥∥∥r′r ,i∥∥∥2 − 2 r′r ,i · (X r′l,i)+
∥∥∥Xr′l,i∥∥∥2) .

Since X is not necessarily orthonormal, we cannot simply replace∥∥∥X r′l,i∥∥∥2 by
∥∥∥r′l,i∥∥∥2 .

Note that ‖x‖2 = x · x and that x ·y = Trace(xyT ). The sum above can be
rewritten in the form

n∑
i=1

Trace
(
r′r ,i(r

′
r ,i)

T − 2 r′r ,i(r
′
l,i)

TXT +X r′l,i(r′l,i)TXT
)

= Trace
(
XAlXT − 2MXT +Ar

)
,

where

Al =
n∑
i=1
r′l,i(r

′
l,i)

T and Ar =
n∑
i=1
r′r ,i(r

′
r ,i)

T

are symmetric 3 × 3 matrices obtained from the left and right sets of
measurements respectively.

We can find the minimum essentially by completing the square. First
of all, we use the fact that Trace(MXT) = Trace(XTM) to rewrite the above
in the form

Trace
(
XAlXT −MXT −XMT +MA−1l MT

)
+ Trace

(
Ar −MA−1l MT

)
.

The second term does not depend on X while the first can be written as
the trace of a product:

Trace
(
(XAl −M)(X −MA−1l )T

)
.

Now it is easy to see that Al is positive semi-definite. In fact, the matrix Al
is positive definite, provided that at least four measurments are available
that are not collinear. This means that Al has a positive-definite square-
root and that this square-root has an inverse. As a result, we can then
rewrite the above in the form

Trace
(
(XA1/2

l −MA−1/2l )(XA1/2
l −MA−1/2l )T

)
=
∥∥∥XA1/2

l −MA−1/2l

∥∥∥2 .
This is zero when

XA1/2
l = MA−1/2l ,
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or
X = MA−1l .

4.B Asymmetry in Simple Linear Solution.

It is easy to find X by multiplying M by the inverse of Al. Note, however,
that we are using more information here than before. The method that
does enforce orthonormality requires only the matrix M . Also note that
Al depends on the left measurements alone. This suggests an asymmetry.
Indeed, if we minimize instead

n∑
i=1

∥∥∥r′l,i −X r′r ,i∥∥∥2 ,
we obtain

X = MTA−1r .

In general, X is not equal to X−1, as one might expect.
Neither X nor X need by orthonormal. The nearest orthonormal ma-

trix to X was shown in sections 3.F to be equal to

R = X(XTX)−1/2 = (XXT)−1/2X,

while the one nearest to X is

R = X(XTX)−1/2 = (X XT)−1/2X.

Typically RT �= R.

4.C Relationship of Simple Linear Solution to Exact Solution.

We saw earlier that the solution of the original least-squares problem is
the orthonormal matrix closest to M . The simple best-fit linear solution
instead leads to the matrix MA−1l . The closest orthonormal matrix to
MA−1l will in general not be equal to that closest toM . To see this, suppose
that

M = US and MA−1l = U ′S′

are the decompositions of M and MA−1l into orthonormal and positive-
definite matrices. Then

US = U ′(S′Al).
For the solutions to be identical (that is U = U ′) , we would need to have

S = S′Al,
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but the product of two symmetric matrices is, in general, not symmetric;
so in general U ′ �= U .

4.D Disadvantages of the Simple Linear Method.

The simple linear method does not lead to an orthonormal matrix. The
closest orthonormal matrix can be found, but that is just as much work as
that required for the exact solution of the original least-squares problem.
In addition, the simple linear method requires that twice as much data be
accumulated (Al or Ar in addition toM). Furthermore, the linear transfor-
mation has more degrees of freedom (nine independent matrix elements)
than an orthonormal matrix, so more constraint is required. Indeed, for
Al or Ar to be nonsingular, at least four points must be measured. This
is a result of the fact that the vectors are taken relative to the centroid,
and so three measurements do not provide three independent vectors.
More seriously, this method does not produce the solution to the original
least-squares problem.

5. Conclusion.

We presented here a closed-form solution of the least-squares problem
of absolute orientation using orthonormal matrices to represent rotation.
The method provides the best rigid-body transformation between two co-
ordinate systems givenmeasurements of the coordinates of a set of points
that are not collinear. A closed-form solution using unit quaternions to
represent rotation was given earlier1. In this paper we have derived an al-
ternate method that uses manipulation of matrices and their eigenvalues-
eigenvector decomposition. The description of this method may perhaps
appear to be rather lengthy. This is the result of the need to deal with
various special cases, such as that of coplanar sets of measurements.

We have shown that the best scale is the ratio of the root-mean-square
deviations of the measurements from their respective centroids. The best
translation is the difference between the centroid of one set of measure-
ments and the scaled and rotated centroid of the other measurements.
These exact results are to be preferred to ones based on measurements
of one or two points only.

We contrast the exact solution of the absolute orientation problem
to various approaches advocated in the past. The exact solution turns
out to be easier to compute than one of these alternatives. The solution
presented here may seem relatively complex. The ready availability of
program packages for solving algebraic equations and finding eigenvalues
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and eigenvectors of symmetric matrices makes implementation straight-
forward, however. Methods for finding the eigenvectors efficiently were
discusse in reference 1. It should also be noted that we are only dealing
with 3× 3 matrices.
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Appendix: The Nearest Orthonormal Matrix.

In this Appendix we derive a method for finding the nearest orthonor-
mal matrix R to a given matrix X*. We show that the desired matrix is
the orthonormal matrix R that maximizes Trace(RTX). This in turn is
the orthonormal matrix U that appears in the decomposition X = US of
the matrix X into a product of an orthonormal matrix and a symmetric
matrix. It is fairly straightforward to find U when X is nonsingular. It
turns out, however, that there is a unique decomposition even when one
of the eigenvalues of X is zero. We need this extension, because we want
to be able to deal with the case when one of the sets of measurements is
coplanar.

Lemma 1: If R is an orthonormal matrix, then for any vector x,

(Rx) · x ≤ x · x,
with equality holding only when Rx = x.
Proof: First of all,

(Rx) · (Rx) = (Rx)T (Rx) = xTRTRx = xTx = x · x,
since RTR = I. Now

(Rx− x) · (Rx− x) = (Rx) · (Rx)− 2(Rx) · x+ x · x
= 2

(
x · x− (Rx) · x),

but, since (Rx− x) · (Rx− x) ≥ 0 we must have

x · x ≥ (Rx · x).
Equality holds only when (Rx− x) · (Rx− x) = 0, that is, when Rx = x.
Lemma 2: Any positive semi-definite n×nmatrix S can be written in the
form

S =
n∑
i=1
uiu

T
i ,

in terms of an orthogonal set of vectors {ui}.
Proof: Let the eigenvalues of S be {λi} and a corresponding orthogonal
set of unit eigenvectors {ûi}. Then we can write S in the form

n∑
i=1

λiûiûTi ,

*In this appendix we deal with n×nmatrices, although in the body of this paper
we only need 3× 3 matrices.
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since the sum has exactly the same eigenvalues and eigenvectors as S.
Now the eigenvalues of a positive semi-definite matrix are not negative,
so have real square-roots. Thus we can write

S =
n∑
i=1
uiu

T
i ,

where
ui =

√
λi ûi.

Corollary 1: The identity matrix I can be written in terms of any orthog-
onal set of unit vectors as

I =
n∑
i=1
ûiû

T
i .

Lemma 3: If S is a positive semi-definite matrix, then for any orthonormal
matrix R,

Trace(RS) ≤ Trace(S),

with equality holding only when RS = S.
Proof: Using Lemma 2, we can write S in the form

S =
n∑
i=1
uiu

T
i .

Now Trace(abT ) = a · b, so

Trace(S) =
n∑
i=1
ui · ui,

while

Trace(RS) =
n∑
i=1
(Rui) · ui,

which by Lemma 1, is less than or equal to Trace(S). Equality holds only
when Rui = ui, for i = 1, 2, . . ., n, that is, when RS = S, since Sui = ui.

Corollary 2: If S is a positive-definite matrix, then for any orthonormal
matrix R

Trace(RS) ≤ Trace(S),

with equality holding only when R = I.
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Lemma 4: If S is a real symmetric n × n matrix of rank (n − 1), R is an
orthonormal rotation matrix and RS = S, then R = I.
Proof: Let the eigenvalues of S be {λi} and let {ûi} be a corresponding
orthogonal set of unit eigenvectors. Without loss of generality, let us as-
sume that λn = 0. Now ûn is orthogonal to the other (n−1) eigenvectors,
or

ûi · ûn = 0 for i �= n.
There is a unique (up to sign) unit vector orthogonal to (n − 1) vectors,
so ûn can be found (up to sign) from the other eigenvectors. Now

Sûi = λiûi,
from the definition of eigenvalues and eigenvectors. As a result

RSûi = λiR ûi.
From RS = S we can then conclude that

R ûi = ûi for i �= n,
or

ûi = RT ûi for i �= n,
since RTR = I. Now ûi · ûn = 0 for i �= n, so

(RT ûi) · ûn = 0 for i �= n,
or, since RTR = I,

(R ûn) · ûi = 0 for i �= n.
As a consequence R ûn is perpendicular to the (n − 1) vectors {ûi} for
i �= n, so R ûn has to be equal to +ûn or −ûn.

Now for any matrix U ,

det(R U) = det(R)det(U) = det(U),

since R is a rotation matrix (that is, det(R) = +1). Now let

U = [û1, û2, . . . , ûn]
be the matrix obtained by adjoining the eigenvectors of S. The first (n−1)
columns of RU are just the same as the columns of U , so the last has to
be +ûn (not −ûn). That is,

R ûn = ûn.
Now construct the matrix

S + ûnûTn.
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It is nonsingular, since the first (n−1) eigenvalues are the same as those
of S, and since λn = 1. Now

R(S + ûnûTn) = RS + R ûnûTn = (S + ûnûTn),
and so R = I.

Corollary 3: If S is a positive semi-definite n×n matrix, of rank at least
(n− 1), and R an orthonormal rotation matrix, then

Trace(RS) ≤ Trace(S),

with equality holding only when R = I.
Lemma 5: The matrix

T =
n∑
i=1

√
λiûiûTi

is the positive semi-definite square-root of the positive semi-definite ma-
trix

S =
n∑
i=1

λiûiûTi

where {λi} are the eigenvalues and {ûi} a corresponding set of orthogonal
unit eigenvectors of S.

Proof: We have

T 2 =
 n∑
i=1

√
λiûiûTi

 n∑
j=1

√
λjûjûTj

 = n∑
i=1

n∑
j=1

√
λiλj (ûi · ûj) ûiûTj ,

so

T 2 =
n∑
k=1

λk ûkûTk = S,

since ûi · ûj = 0 when i �= j. Furthermore,

xTTx =
n∑
i=1

λi(ûi · x)2 ≥ 0,

since λi ≥ 0 for i = 1, 2, . . ., n and so T is positive semi-definite.

Note: There are 2n square-roots of S, because one can choose the n
signs of the square-roots of the λi’s independently. But only one of these
square-roots of S is positive semi-definite.
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Note: It is possible to show that the positive semi-definite square-root is
unique, even when there are repeated eigenvalues.

Corollary 4: If S is positive definite, there exists a positive-definite square-
root of S.

Corollary 5: The matrix

T−1 =
n∑
i=1

1√
λi
ûiû

T
i

is the inverse of the positive-definite square-root of the positive-definite
matrix

S =
n∑
i=1

λiûiûTi .

Corollary 6: If S is a positive semi-definite matrix, then the pseudo-
inverse of the positive semi-definite square-root of S is

T+ =
∑
i∈P

1√
λi
ûiû

T
i ,

where P is the set of the integers for which λi > 0.

Note: The pseudo-inverse of a matrix T can be defined by the limit

T+ = lim
δ→0

(T + δI)−1.

Lemma 6: For any matrix X,

XTX and XXT

are positive semi-definite matrices.

Proof: First of all
(XTX)T = XT(XT )T = XTX,

so XTX is symmetric. For any vector x,

xT (XTX)x = (xTXT )(Xx) = (Xx)T (Xx) = (Xx) · (Xx) ≥ 0.

We conclude that XTX is positive semi-definite. Similar arguments apply
to XXT .

Corollary 7: For any nonsingular square matrix X,

XTX and XXT
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are positive-definite matrices.

Lemma 7: The eigenvectors of XTX with the zero eigenvalue are the same
as the eigenvectors of X with zero eigenvalue. The eigenvectors of XXT

with zero eigenvalue are the same as the eigenvectors of XT with zero
eigenvalue.

Proof: Let ûn be an eigenvector of X with zero eigenvalue. That is,

X ûn = 0.
Then certainly

XTX ûn = 0.
Conversely, if XTX ûn = 0 then

ûTn XTX ûn = 0

or

(Xûn)T (Xûn) = (Xûn) · (Xûn) = ‖Xûn‖2 = 0,

which implies that X ûn = 0. Similar arguments hold when X is replaced
by XT and XTX by XXT .

Lemma 8: Every nonsingular matrix X can by written in the form

X = US
where

U = X(XTX)−1/2,

is an orthonormal matrix, while

S = (XTX)1/2

is a positive-definite matrix.

Proof: Since X is not singular, Corollary 7 tells us that XTX is positive-
definite. We use Corollary 4 to give us the positive-definite square-root
(XTX)1/2. The inverse can be constructed using Corollary 5. As a result
S and U can be found, given X. Their product is clearly just

US = X(XTX)−1/2(XTX)1/2 = X.
We still need to check that U is orthonormal. Now

UT = (XTX)−1/2XT ,
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so
UTU = (XTX)−1/2(XTX)(XTX)−1/2

= (XTX)−1/2(XTX)1/2(XTX)1/2(XTX)−1/2 = I.

Note: It can be shown that the decomposition is unique.

Corollary 8: Every nonsingular matrix X can be written in the form

X = S U,
where

U = (XXT)−1/2X

is an orthonormal matrix, while

S = (XXT)1/2

is a positive-definite matrix.

Note: The orthonormal matrix U appearing in the decomposition X = US
is the same as the orthonormal matrix S appearing in the decomposition
X = S U .
Corollary 9: The orthonormal matrix U in the decomposition of a nonsin-
gular matrix X into the product of an orthonormal matrix and a positive-
definite matrix is a rotation or a reflection according to whether det(X) >
0 or det(X) < 0.

Lemma 9: If X is nonsingular then

X(XTX)−1/2 = (XXT)−1/2X.

Proof: Let
U = X(XTX)−1/2.

Then
U(XTX)1/2 = X,

and, since we showed in Lemma 8 that U is orthonormal,

(XTX)1/2 = UTX.

Squaring, we see that
XTX = (UTX)(UTX),

and so
X(XTX) = X(UTX)(UTX).
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Since X is nonsingular, it has an inverse. Post-multiplying by this
inverse, we obtain

XXT = (XUT )(XUT).

We can find the positive-definite square-root of XXT and write

(XXT)1/2 = XUT ,

or

(XXT)1/2U = X,
so

U = (XXT)−1/2X.

Note: When X is singular, it defines an invertible transformation on the
subspace that is the range of X. We can find a decomposition of this
transformation into the product of an orthonormal and a symmetric part.
The orthonormal part can be extended to the whole space by taking the
direct sum of the orthonormal transformation in the subspace and any
orthonormal transformation in its orthogonal complement.

In general, this extension will not be unique, so there will not be a
unique decomposition of X into a product of an orthonormal part and a
symmetric part. When the rank of X is (n− 1), however, the orthogonal
complement has dimension one and so only two “orthogonal transforma-
tions” are possible in the orthogonal complement. As a result there are
only two ways of decomposing X into the desired way. One gives us a
rotation, the other a reflection.

Lemma 10: If the n× n matrix X has rank (n− 1) we can write it in the
form

X = US
where

U = X
n−1∑
i=1

1√
λi
ûiû

T
i

± ûnûTn
is an orthonormal matrix and

S = (XTX)1/2

is a positive semi-definite matrix. Here we have arranged the eigenvalues
{λi} and the corresponding unit eigenvectors {ûi} in such a way that ûn
is the eigenvector corresponding to the eigenvalue λn = 0.



32

Proof: From Lemma 5 we have

S =
n∑
i=1

√
λiûiûTi =

n−1∑
i=1

√
λiûiûTi ,

since λn = 0, so

US = X
n−1∑
i=1

1√
λi
ûiû

T
i

n−1∑
j=1

√
λjûjûTj

± (ûnûTn)
n−1∑
i=1

√
λiûiûTi

 .
Now ûi · ûj = 0 for i �= j, so

US = X
n−1∑
i=1
ûiû

T
i

 .
Now from Lemma 7 we conclude that X ûn = 0, so

US = X
n−1∑
i=1
ûiû

T
i + ûnûTn

 = X n∑
i=1
ûiû

T
i = XI = X,

using Corollary 1.
We still need to show that U is orthonormal. Now

UT =
n−1∑
i=1

1√
λi
ûiû

T
i

XT ± ûnûTn,

so

UTU =
n−1∑
i=1

1√
λi
ûiû

T
i

XTX

n−1∑
j=1

1√
λj
ûjû

T
j

+ (ûnûTn)(ûnûTn),
where some terms dropped out, because ûi · ûj = 0 for i �= j. Now

XTX =
n∑
k=1

λkûkûTk ,

so

UTU =
n−1∑
i=1
ûiû

T
i + ûnûTn =

n∑
i=1
ûiû

T
i = I

using Corollary 1.

Note: We had to add ±ûnûTn to the product of X and the pseudo-inverse
of the positive semi-definite square-root of XTX to create an orthonormal
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matrix. Without this term the result would have been singular, since X is
singular.

Note: We can choose to make U a rotation or a reflection by choosing the
sign of the term ûnûTn. Thus, in this case there is a unique decomposition
into the product of an orthonormal rotation matrix and a positive semi-
definite matrix.

Note: To obtain a rotation matrix, we chose the sign to be the same as the
sign of

n−1∏
i=1

λi,

where the λi are the eigenvalues of the matrix X.

Theorem 1: If X is a nonsingular matrix, then the orthonormal matrix R
that maximizes

Trace(RTX)

is the matrix U that occurs in the decomposition of X into the product of
an orthonormal matrix and a positive-definite matrix. That is

U = X(XTX)−1/2 = (XXT)−1/2X.

Proof: Let X = US be the decomposition of X given in Lemma 8. We wish
to maximize

Trace(RTX) = Trace
(
RT(US)

) = Trace
(
(RTU)S

)
.

Now using Lemma 3, we see that

Trace
(
(RTU)S

) ≤ Trace(S),

with equality holding only when RTU = I by Corollary 2. That is, R = U .

Corollary 10: If the n×nmatrix X has rank (n−1), then the orthonormal
matrix that maximizes

Trace(RTX)

is the matrix U in the decomposition of Lemma 10. That is,

U = X
n−1∑
i=1

1√
λi
ûiû

T
i

± ûnûTn
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Theorem 2: The nearest orthonormal matrix R to a given nonsingular
matrix X is the matrix U that occurs in the decomposition of X into the
product of an orthonormal matrix and a positive-definite matrix. That is,

U = X(XTX)−1/2 = (XXT)−1/2X.

Proof: We wish to find the matrix R that minimizes

n∑
i=1

n∑
j=1

(xi,j − ri,j)2 = Trace
(
(X − R)T (X − R)),

subject to the condition RTR = I. That is, minimize

Trace(XTX)− 2Trace(RTX)+ Trace(RTR).

Now RTR = I, so we conclude that the first and third terms do not depend
on R. The problem then is to maximize

Trace(RTX)

The result follows from Theorem 1.

Corollary 11: If the n × n matrix X has at least rank (n − 1), then the
nearest orthonormal matrix is the matrix U given in the decomposition
X = US. Here U is given by Lemma 8 when X is nonsingular and by
Lemma 10 if X is singular.
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Figure Captions

Figure 1: The coordinates of a number of points is measured in two co-
ordinate systems. The transformation between the two systems is to be
found using these measurements.
Figure 2: Three points can be used to define a triad. Such a triad can
be constructed using the left measurements. A second triad is then con-
structed from the right measurments. The required coordinate transfor-
mation can be estimated by finding the transformation that maps one
triad into the other. This method does not use the information about
each of the three points equally.


