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Geometry and Texture Recovery of Scenes of

Large Scale: Integration of Range and Intensity

Sensing.

Ioannis Stamos

This thesis is a systematic approach to the problem of photo-realistic 3{D model

acquisition from the combination of range and image sensing. A comprehensive

and unique system has been developed in the context of this thesis. This system

provides 3-D models of urban scenes with associated 2-D image textures. Our input

is a sequence of unregistered range scans of the scene and a sequence of unregistered

2-D photographs of the same scene. Our output is a true texture-mapped geometric

CAD model of the scene.
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Chapter 1

Introduction

The recovery and representation of the 3{D geometric and photometric informa-

tion of the real world is one of the most challenging and well studied problems in

Computer Vision and Robotics research. However, the complexity of the real world

objects make it one of the most diÆcult problems to attack. The visual appear-

ance of real scenes is very hard to interpret due to the interaction of the complex

object geometry, the unknown object reectance properties and the varying scene

lighting conditions. This complexity and diÆculty is what makes this problem

extremely interesting from a research point of view. It also makes this problem

almost intractable for a completely automated method in the general case. The

importance of this problem, though, is not only its challenge as a research topic.

There is a clear need for highly realistic geometric models of the world for appli-

cations related to Virtual Reality, Tele-presence, Digital Cinematography, Digital

Archaeology, Journalism, and Urban Planning.

Recently, there has been a large interest in reconstructing models of out-

doors urban environment including an international workshop held in Japan [Ins,
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1999]. The areas of interest include geometric and photorealistic reconstruction

of individual buildings or large urban areas using a variety of acquisition methods

and interpretation techniques, such as ground-base laser sensing, air-borne laser

sensing, ground and air-borne image sensing. The ultimate goal is the reconstruc-

tion of detailed models of urban sites (digital cities). Urban Planning is one major

application: 1) how does a new building a�ect the esthetics of local areas of the

city? 2) how does the shadow of a new building e�ect nearby areas? Other applica-

tions include micro-land forecasting (prediction of the way a city evolves when new

urban regulations are applied), digital city archiving (recording of a city's evolu-

tion in time), disaster prevention, visual e�ects (for entertainment purposes), and

journalism. The creation of digital cities drives other areas of research as well: visu-

alization of very large data sets, creation of model data-bases for GIS (Geographical

Information Systems) and combination of reconstructed areas with existing digital

maps.

Currently, complex photorealistic 3-D models have been constructed for the

needs of the entertainment industry by human artists in a pain-staking, extremely

slow and error-prone process. Computer games, for example, require high degree

of geometric accuracy (in order to allow interaction with the user) and high degree

of photorealism (in order to appear visually appealing). That amount of detail in

the modeling phase requires a large amount of human interaction.

Recent developments in range-sensing have made possible the acquisition of

accurate 3-D scans of outdoor scenes. This technology, if wisely utilized, can be

used for automating the modeling phase, since range sensors have already proven

their e�ectiveness in controlled laboratory environments (for instance [Curless and
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Levoy, 1996, Reed and Allen, 2000]). Taking these methods out of the controlled

laboratory environment and using them at large geometrically complex outdoor

scenes poses many diÆcult challenges. In this thesis, we address these problems to

create a novel and unique solution.

1.1 Problem Statement

This thesis deals with the problem of photo-realistic reconstruction of complex 3-D

scenes from a set of 3-D range scans and a set of 2-D camera images. The main

focus is the development of algorithms and tools for the recovery of geometric and

photometric information from urban scenes of large scale. We are dealing with

all phases of geometrically correct, photo-realistic 3{D model construction in a

systematic way. Our goal is to automate the model building process and place the

human out of the modeling loop.

The problem we attack can be described as follows:

Given a set of dense 3-D range scans of a complex real scene from di�erent view-

points and a set of 2-D photographs of the scene, a) create the 3-D solid model

which describes the geometry of the scene, b) recover the positions of the 2-D cam-

eras with respect to the extracted geometric model and c) photorealistically render

it by texture-mapping the associated photographs on the model. No a-priori in-

formation is used for the relative positions between the range scans and between

the 2-D photographs. The only a-priori information that is used is an association

of a set of photographs with a particular dense scan. We also assume that our

environment is dominated by structures with strong parallelism and orthogonality

constraints (e.g. urban scenes).
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1.2 Method

The integrated system we developed for the production of photo-realistic geometric

models of large and complex scenes is described in �gure 1.1. We start with a set

of range and brightness images which cover the measured site. The range images

are �rst segmented, and 3-D features of interest are extracted. After all range

images are expressed in the same coordinate system a volumetric solid geometric

model which expresses the geometry of the scene is computed. Finally, the relative

positions of the brightness cameras with respect to the 3-D model are automatically

recovered and the photographs are mapped on the geometric model in order to

provide a photorealistic view of the scene.

1.3 Comparison with other methods

There are numerous approaches for the photo-realistic reconstruction of a general

3{D scene. The goal of all methods is the realistic rendering of the captured scene.

There are two major approaches in this direction: purely geometric and image-

based rendering methods. In the �rst category, a complete geometric model of the

scene is acquired. Renderings from novel viewpoints can be computed by mapping

real photographs of the scene on the geometric model (texture-mapping).

Image-based rendering methods on the other hand attempt to produce pho-

torealistic renderings by by-passing the hard geometric modeling step. In image-

based rendering methods a set of photographs of the scene generate a light �eld

that is being interpolated in order to generate novel renderings from di�erent view-

points. The inherent drawbacks of those methods are a) the inability to cover
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3D FEATURE EXTRACTION

  

2−D Images I1, ..., Im

Final Solid CAD Model

2D FEATURE EXTRACTION

Range Images R1, ... , Rn

SOLID MODELING

Final Photorealistic Solid Model

TEXTURE MAPPING

REGISTRATION
RANGE−RANGE

REGISTRATION
RANGE−IMAGE

MATCHMATCH

         SEGMENTATION

Segmented Range Images S1, ... ,Sn

3−D Feature Sets L1, ..., Ln2−D Feature Sets f1, ... fm

   INPUT

+ +

Figure 1.1: System for building geometric and photometric correct solid models.

every possible novel viewpoint, b) the fact that a large number of images is needed

for undistorted renderings and c) the inability to model novel illumination condi-

tions. In order to overcome these limitations image-based rendering methods use a

simpli�ed geometric model of the scene.

Below we classify geometry-based systems whose goal is the photorealistic

recovery of scenes according to the amount of geometry information that is being

recovered (a detailed overview of related work is presented in chapter 2).
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Sparse and Irregular Geometry/Brightness Camera Classical computer vi-

sion methods based on stereo or structure from motion provide results which

cover parts of the scene (those parts where stereo measurements are reliable)

in an irregular manner. Major limitations incluse the fragility with respect

to occlusion and lighting variations.

Simpli�ed Geometry/Brightness Camera Human interaction results in sim-

pli�ed geometric representations intended to be utilized by image-based ren-

dering techniques (i.e. [Debevec et al., 1996]). Also, simpli�ed geometry is

recovered when a-priori constraints are implied in the reconstruction process

(i.e. [Teller, 2000]).

Dense and Regular Geometry/Range Sensor Dense and regular geometric

descriptions are only possible when the acquisition involves the utilization

of range sensing technology. Major representatives of comprehensive systems

which combine range and image sensing in large environments include the fol-

lowing [VIT, 2000, Yu, 2000, Sequiera et al., 1999, Zhao and Shibasaki, 1999].

Systems which provide excellent results in the construction of solid models of

small objects are presented in [Curless and Levoy, 1996, Reed and Allen, 2000,

Bernardini et al., 1999].

This thesis is placed in the last category Dense and Regular Geometry. It

shares the system-oriented approach of [VIT, 2000, Sequiera et al., 1999, Zhao

and Shibasaki, 1999], the use of a-priori constraints wrt scene structure (but in

a much more limited sense) of [Teller, 2000] and the construction of solid 3-D

models of [Curless and Levoy, 1996, Reed and Allen, 2000]. The contribution
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of this thesis is not only the development of a new system which combines the

aforementioned properties, but also the development of algorithms in the areas of

range segmentation and range to image registration, the extension of a solid modeler

to handle large scale scenes and the provision of a framework for incorporation of

range sensor planning.

1.4 Contribution

We see the contributions of this thesis in the following areas:

1. Creation of a comprehensive system for the automatic generation of geomet-

rically correct and photometrically accurate 3-D models.

2. Development of eÆcient algorithms for the segmentation and feature extrac-

tion from 3-D range scans [chapter 3].

3. Solid modeling in large-scale environments [chapter 4].

4. Development of algorithms for automated registration between range and

image data-sets [chapter 5].

5. Providing an initial framework for incorporation of sensor planning utilities

and development of an interactive tool for sensor planning [chapter 6].
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Chapter 2

Related Work

The reconstruction of geometric 3{D models of the world is one of the most impor-

tant goals of Computer Vision research. Those 3{D models, enhanced with pho-

tometric observations provide representations that are highly desirable by graph-

ics applications. In this chapter, we will cover related work in the areas needed

to build a complete photorealistic-model creation system. In particular, we will

present work in the areas of range segmentation and feature extraction, range to

range and range to image registration (automated pose estimation). Finally, we

will describe unique and representative systems whose goals are similar to ours and

conclude with methods to visualize registered range and image data-sets.

2.1 Range Segmentation and Feature Extraction

In this section we present an overview of related work in the area of range segmen-

tation and feature extraction. The input is a range scan of a real 3-D scene, that is

the input is a cloud of 3-D points which cover the scene from a particular viewpoint.
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The output of the segmentation is a set of disjoint surfaces which approximate the

measured 3-D cloud.

The work of [Besl and Jain, 1988] is an important general range-image seg-

mentation algorithm1 which works in two steps. In the �rst step a coarse segmen-

tation is achieved by assigning one of eight possible local surface types to every

range-point according to the sign of the corresponding local Gaussian curvatures.

This coarse segmentation provides connected regions of coarsely classi�ed points.

The interiors of the coarsely segmented regions are used for the initial �t of one

of four bivariate surfaces (planar, biquadratic, bicubic or biquartic) providing seed

regions (with associated seed surfaces). In the second step the seed regions (and

their associated bivariate surfaces) grow by including neighboring points whenever

the �t to the associated surface is preserved. The complications of this algorithm

involve the big number of thresholds that need to be speci�ed and the instability

that can be caused due to the incorporation of Gaussian curvatures (which involve

second degree derivatives). The lack of precision on the estimation of Gaussian

curvatures is analyzed in [Trucco and Fisher, 1995], where it is suggested that

Gaussian curvatures should not be used for planar segmentation routines. Seg-

mentation of non-regular but sparse and noisy data-sets is presented in [Guy and

Medioni, 1997]. [Boyer et al., 1994] presents a segmentation algorithm similar to

[Besl and Jain, 1988]. Another work related to segmentation but in a di�erent

domain (classi�cation of a set of linear segments extracted from stereo into groups

of planar regions) is described in [Zhang and Faugeras, 1994].

In [Ho�man and Jain, 1987] a segmentation algorithm, based on clustering

1This algorithm can be applied to intensity images as well.
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the 6-dimensional space of range points with their associated normals, is presented.

After the initial clustering surfaces of similar orientation are merged into larger

groups. In the approach followed by [Jiang and Bunke, 1994] the range-scan lines

are divided into linear segments and the segmentation proceeds the grouping of

those segments into planes. [Koch, 1996] on the other hand provides a simplistic

solution to planar segmentation by histogramming the surface normals and ex-

tracting clusters of similarly oriented 3-D points. A comparison of a number of

di�erent range-segmentation algorithms can be found in [Hoover et al., 1996]. The

above list is not exhaustive since range segmentation was (and still is) a very ac-

tive area in Computer Vision Research. Complementary approaches can be found

in [LaValle and Hutchinson, 1995, Leonardis et al., 1995, Newman et al., 1993,

Sabata et al., 1993, Taylor et al., 1989].

Finally [Yu, 2000] developed a range segmentation algorithm which is based

on the normalized cut framework for image segmentation [Shi and Malik, 1997]. Yu

segments a set of overlapping range scans by utilizing the average position, normal

and laser intensity of connected clusters of range points (the algorithm operates

on connected clusters of range points and not on the range points themselves for

eÆciency reasons). The algorithm results in scene over-segmentation which needs

to be corrected manually (by merging connected regions).

The segmented surfaces extracted by algorithms like the one described pre-

viously transform the 3{D point cloud into a set of 2{D surfaces which cover the

cloud. Those surfaces can also be used for the identi�cation of 1{D curves at their

boundaries or at their intersection with neighboring surfaces. However, the previ-

ously described segmentation algorithms do not proceed in that direction. Related
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work in 3-D edge detection can be found in [Zhang, 1993, Jiang and Bunke, 1999,

Monga et al., 1991, Parvin and Medioni, 1988].

2.2 Pose Estimation (3{D and 2{D)

Pose estimation and camera calibration are two of the most important problems

in Computer Vision and Robotics. Pose estimation or External camera cali-

bration is the problem of estimating the location (position and orientation) of an

internally calibrated camera with respect to a 3{D model. Camera calibration is

the problem of estimating the internal camera calibration parameters of a camera

and its position with respect to a 3{D model. The internal camera parameters

include the principal point, the e�ective focal length and the distortion coeÆcients.

The solution to both problems requires the knowledge of a set of corresponding

3{D and 2{D features, that is 3{D features (3{D points or 3{D lines) and their 2{D

projections (2{D points or 2{D lines) on the image plane (those features are usu-

ally called landmarks in the literature). A minimum number of points (or lines) is

needed for the existence of a robust solution. In both problems two-dimensional line

features are advantageous because they can be reliably extracted and are prominent

in man made scenes.

When point landmarks are being used for estimating pose then three point

correspondences generate four possible solutions, four coplanar correspondences

generate a unique solution, while four points in general position result in two

possible solutions. Six or more points always produce a unique solution (for more

details see [Horaud et al., 1989]). There are many approaches for the solution

of pose estimation problem from point correspondences [Fischler and Bolles, 1981,
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Liu et al., 1990, Dhome et al., 1989, Oberkampf et al., 1996, DeMenthon and Davis,

1995, Quan and Lan, 1999]. In the case of line landmarks three lines in general

position are enough [Liu et al., 1990, Kumar and Hanson, 1994, Horaud et al., 1997,

Christy and Horaud, 1999]. However, due to noisy measurements the minimum

number of correspondences is not enough for a robust solution. Also, the accuracy

of the solution depends heavily on the spatial con�guration of the landmarks.

In Liu's [Liu et al., 1990] work, a minimum number of eight line or six point

correspondences are needed in order to linearly solve for camera rotation. A non-

linear solution is possible if at least three line or two point correspondences are

given. The translation can be solved with a linear method (assuming a known

rotation) if three line or two point correspondences are known. Non-linear methods

are considered more robust with respect to image noise. However those methods

fail in the case of gross errors in the correspondence between image features (least-

squares approaches fail in the case of outliers). That problem is attacked by Kumar

and Hanson [Kumar and Hanson, 1994], where a method for pose estimation in the

presence of outliers and a sensitivity analysis is presented.

Finally, Fischler and Bolles [Fischler and Bolles, 1981] provide a robust so-

lution in the presence of gross correspondence errors between 3-D points and 2-D

image points. In this case three pairs of corresponding 3-D and 2-D features are

randomly selected and the pose of the camera is computed. If most of the other

pairs of corresponding 3-D and 2-D features are in agreement with the computed

pose a least-squares algorithm provides the �nal pose estimate. Otherwise a new

set of three corresponding 3-D and 2-D features is selected and a new estimate is

computed.
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Those problems are of fundamental importance in computer vision and robotics

research since their solution is required or coupled with stereo matching, structure

from motion, robot localization, object tracking and object recognition algorithms.

2.3 Automated pose estimation algorithms

This section presents related work in the �eld of automated pose estimation. The

problem can be de�ned as follows: given a 3-D model of a scene and a brightness

image (taken by a 2-D camera) of the same scene compute the relative position of

the camera with respect to the 3-D model. The solution to this problem involves the

extraction of features of interest from the 3-D and 2-D data sets and the automated

matching between a set of 3-D and 2-D features.

There are two classes of methods for geometric feature matching [Cass, 1997]:

a) Correspondence space methods, where a search for consistent feature correspon-

dences is performed in the feature space and b) Transformation space methods

where the search is performed in the transformation space in order to geometrically

align the model with the image.

One major representative of the correspondence space methods is The Align-

mentmethod which is based on the following four basic steps (a hypothesis-veri�cation

scheme):

1. Select a hypothesized set of model and matching image features.

2. Use the matched features to compute a transformation that brings the model

into the image coordinate system and then project the model into the image.
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3. Decide what region in the image to search about each projected model feature

to �nd candidate image features and,

4. Use the candidate image features to accept or reject the hypothesis.

In the early work of [Huttenlocher and Ullman, 1990] an automated pose-

estimation in the context of the Alignment is presented. A brute-force matching

algorithm which checks all possible matches between 3-D and 2-D point features

is based on an aÆne approximation of the perspective projection (which makes

the transform computation a linear algorithm). A minimum of three model and

image point correspondences is needed. The major drawback is the large number of

hypotheses that need to be tested. In the alignment framework [Alter and Grimson,

1997] present results in the veri�cation step (step 4 of the Alignment method). In

[Gandhi and Camps, 1994] a robust solution to the problem of the selection of the

next point to match after an initial correspondence has been achieved is presented

and analyzed under the assumption of noisy measurements.

In [Cass, 1997] a novel formulation of the problem is presented. This formu-

lation leads to a method which uses both the correspondence and transformation

space concepts. The presented algorithm (which involves the computation of geo-

metric arrangements) is polynomial-time on the number of extracted features and

an aÆne approximation to the perspective projection is used. The work of [Wells,

1997] transforms the pose estimation problem to a well de�ned optimization prob-

lem following an align, re�ne and verify framework. [Jacobs, 1997] attacks the

model recognition problem by analytically characterizing all 2-D images (set of 2-D

points) that a group of 3-D features may produce under all possible poses under an

aÆne transformation model. In [Hausler and Ritter, 1999] all possible triplets (they
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provide four possible solutions for the desired transformation) or quadruples (they

provide a unique solution) of matched 3-D and 2-D features are used in order to

update a six-dimensional Hough table. The hough table encodes a quantization of

the pose space and a peak in that space corresponds to the computed �nal pose. Fi-

nally [Jurie, 1999] present an approach which re�nes an initial coarse pose estimate

(which de�nes a box in pose space) by minimizing a quadratic objective function

which encodes the conditional probability of a match between features under the

assumption of a particular pose.

Automated pose estimation is not part of most systems which acquire com-

plex environments via means of range sensing. Most systems which recreate photo-

realistic models of the environment by a combination of range and image sensing

[VIT, 2000, Pulli et al., 1998, Zhao and Shibasaki, 1999, Sequiera et al., 1999] solve

the range to image registration problem by �xing the relative position and orien-

tation of the camera with respect to the range sensor (that is the two sensors are

rigidly attached on the same platform). The camera calibration is done o�-line

by sensing scenes of known geometry. Recently Yizhou Yu [Yu, 2000] developed

an automatic method for the image to range registration problem, where a static

arrangement of a range and camera system is not assumed. His solution involves

the placement of arti�cial 3{D markers (spheres of known size and reectance) in

the scene which are detected in the range and image acquisition phase. That leads

to the undesirable feature of acquiring an arti�cially altered scene model. Also, in

[McAllister et al., 1999] an optimization of the rotational parameters of the image

to range transformation is provided (in the described system the range and image

sensor share the same center of projection by manually replacing part of the range
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sensor with an internally calibrated digital camera). Finally in [Neugebauer and

Klein, 1999] an automatic image to range registration method is provided after an

initial solution to the problem is achieved through interactive selection of matching

3-D and 2-D points.

2.4 Range-range registration (3{D / 3{D)

Registering two range images when two sets of corresponding 3{D points have been

identi�ed can be done using a quaternion-based non-linear optimization method

as described in [Horn, 1987]. The automation of the process of establishing point

correspondences was presented �rst in [Besl and Mckay, 1992]. This is the widely

used Iterative Closest Point algorithm, where the rigid transformation between two

views is iteratively re�ned, while larger sets of corresponding points between views

can be extracted after each re�nement step. This algorithm has been extended

to work for the alignment of general meshes (in the original algorithm of Besl and

McKay one of the meshes must be a proper subset of the other) in [Turk and Levoy,

1994]. Here the alignment is part of a larger system where partial meshes, describing

distinct views of an object, are being merged into one non-redundant mesh. Both

methods require the meshes to be spatially close with respect to each other in order

for an initial set of closest point correspondence to be established. A di�erent

approach is followed in [Johnson and Hebert, 1997], where the latter constraint of

spatial closeness between meshes is removed. Here the initial list of corresponding

points is extracted by using a pose-invariant representation for the range images.

Each oriented-point in the range image is represented by a 2{D image, called spin-

image. The spin-image of an oriented point encodes the spatial relationship of all
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range-image points with respect to the particular oriented point. An initial list

of correspondences is extracted by matching individual spin-images between range

images. This list is later re�ned by means of the Iterative Closest Point algorithm.

The spin-images algorithm is part of a larger project [ARTISAN, 2000] for semi-

automatic reconstruction of industrial environments from range images. Earlier

approaches in registration by matching pose-invariant 3-D representations include

the following: [Bergevin et al., 1995, Chua and Jarvis, 1996, Gu�eziec and Ayache,

1994, Ikeuchi et al., 1996].

Integration of both range and intensity information in the 3-D registration

process is described in [Weik, 1997, Johnson and Kang, 1997, Magee et al., 1985,

Koch, 1993]. In Weik's approach [Weik, 1997] the intensity information is used for

the selection of the set of corresponding points. Lucchese [Lucchese et al., 1997]

proposes a method based on 3{D Fourier transform for the registration of 3{D solids

(the method does not rely on speci�c 3{D features but on the frequency information

contained in the 3{D shape). In this case the intensity information is used only for

the disambiguation of the shape-based registration results (results are presented for

synthetic data-sets only).

2.5 Complete Systems

The topic of this section is the description of a number of representative systems

whose goal is the photorealistic reconstruction of real scenes by the utilization of

2-D imagery or combination of range and 2-D imagery.
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2.5.1 A-priori 3-D constraints: simpli�ed geometry

In Shum's [Shum et al., 1998] and Becker's [Becker and Bove, 1995, Becker, 1997]

work, the user selects image lines which are grouped according to their 3{D scene

relationships (parallel or orthogonal with respect to each other). This grouping is

done by the user. A rough polyhedral model of the scene is created and the pose of

each camera is computed with respect to this model. Becker puts the emphasis in

internal camera calibration (focal length, principal point and distortion parameters)

using image vanishing points (computed from image lines selected by the user). The

most successful approach in this direction is the Fa�cade system [Debevec et al.,

1996]. A parameterized description of the scene provided by the user is optimized

wrt to camera positions and line correspondences (which are again provided by the

user).

Human interaction leads to lack of scalability wrt the number of processed

images of the scene and to the computation of simpli�ed geometric descriptions of

the scene. In the case of Fa�cade the CAD primitives are simple polyhedral solids

whereas in the case of Becker the scene is assumed to be polyhedral. That means

that if one wants to describe all the details of a complex building the amount of a{

priori human information would be enormous. However those models are acceptable

for rendering purposes because texture-mapping hides the lack of captured details.

We are using Fa�cade's idea of model to image line correspondence for esti-

mating camera pose and Becker's idea of exploitation of parallel and orthogonality

constraints for camera self{calibration. In our case though the model building phase

is automatic using 3{D range measurements. Thus we aim to minimize the amount

of user interaction.
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2.5.2 Using both range and image information

The VIT group [VIT, 2000, Beraldin et al., 1997, El-Hakim et al., 1997] has built

a mobile platform which carries a range and several camera sensors and acquire

geometric and photometric information of indoor and outdoor scenes. This method

is the closest to our method since it combines range with image sensing.

The relative position of the range sensor and the nine cameras is always �xed

and known from a calibration procedure which is performed o�{line. The informa-

tion provided by all sensors is used in order to automatically register successive

viewpoints by means of a global optimization procedure. The range information is

used for the building of the solid model, whereas texture information is provided

by an additional high resolution camera which lies on the mobile platform.

The problems of this approach are:

1. The need for accurate and stable internal calibration of the sensors. The

sensors do not self-calibrate or adjust while measurements are taken. This is

a limitation since o�{line calibration is required regularly.

2. The need of user interaction for the registration of the high resolution camera

with the range sensor (�nding corresponding points).

Another system which wisely combines range (multi-view stereo) with image

sensing is the one used in the Piet�a Project [Bernardini and Rushmeier, 2000]. The

system recovered in great geometric and photometric detail the 3-D model of the

Florentine Piet�a statue of Michelangelo. The used sensor provided register range

and image data and a photometric stereo technique was used for the recovery of

the albedo maps of the object's surfaces. Hundreds of scans were registered and
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the �nal non-redundant mesh was computed [Bernardini et al., 1999].

In [Zhao and Shibasaki, 1999] a set-up which involves a laser scanner and a

camera sensor at a �xed position wrt scanner is used in order to provide panoramic

textured range images. The problem of range registration between a large sequence

of range images is solved based on the assumption that neighboring range images are

horizontally aligned (that is the viewing direction is parallel to the ground plane).

In [Sequiera et al., 1999] another approach to the problem is being presented.

2.5.3 Using only image information

Over-constraining the problem

Teller's approach [Teller, 2000] addresses the limitations of the methods described in

section 2.5.1, that is lack of scalability wrt the number of input images used and sim-

plicity of the acquired model. Teller's group acquires and processes a large amount

of pose{annotated2 high-resolution spherical imagery of the scene. The transfor-

mation (rotation and translation) between nearby mosaics is computed through

the match of vanishing points (rotation) [Antone and Teller, 2000b] and through

a Hough transform and expectation maximization technique (translation) [Antone

and Teller, 2000a]. The extracted geometry consists of vertical facades with asso-

ciated textures which are the result of correlation of a number of di�erent images

[Coorg and Teller, 1999]. A relief estimation in order to increase the complexity

of the vertical facades along with a consensus estimation for the texture facades

is presented in [Taillandier, 2000]. The whole project is very promising and it is

attacking the problem of model generation of a large urban scene in a brute-force

2GPS measurements provide a coarse pose estimate for every spherical mosaic.
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yet unique manner. The major problem so-far is the simple acquired geometry

(vertical facades). The relief estimation provides hope, however methods based on

images alone are not able to capture highly detailed architectural environments.

From Images to Graphical Models: Irregular Geometry

Zisserman's group in Oxford [Fitzgibbon and Zisserman, 1998] works towards the

fully automatic construction of Graphical Models of scenes when the input is a

sequence of closely spaced 2{D images (video sequence). Their system couples the

matching of 2{D point features in triples of consecutive images with the compu-

tation of the fundamental matrices between pairs of images and trifocal tensors

between triples of images (projective reconstruction). The estimation of the funda-

mental matrices is based on the RANSAC robust estimator of Fischler and Bolles

[Fischler and Bolles, 1981] which was discussed previously (section 2.2) in this doc-

ument. The projective reconstruction and camera pose estimation is upgraded to

an Euclidean one by means of auto-calibration techniques [Pollefeys et al., 1998].

Finally, the registration between successive coordinate frames of image triples is

based on the Iterative Closest Points (ICP) algorithm [Besl and Mckay, 1992]. The

result of the above procedure is a set of 3{D points which irregularly sample the real

3{D geometry of the scene. The RANSAC estimator is used again for the �tting of

planar faces on the 3{D points and a VRML Graphical model is constructed.

This work shows how far purely image{based methods have gone but also

points out the following inherent limitations:

1. Sparse depth estimates which depend on the texture and geometric structure

of the scene.
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2. The resulting CAD model is a crude approximation in the areas which do not

support 3{D measurements.

In more recent work of the same group, a{priori knowledge regarding the

scene is utilized in the 3-D extraction phase [Baillard and Zisserman, 2000, Montiel

and Zisserman, 2001].

2.6 Rendering registered range and intensity data

Registered range and intensity information is what is expected in most cases in

image{based rendering graphic systems. Chen and Williams [Chen and Williams,

1993] is the �rst paper to discuss eÆcient rendering of registered range and image

data. Others [McMillan and Bishop, 1995, Rademacher and Bishop, 1998, Shade

et al., 1998] attack the problem of eÆcient rendering of scenes of large scale when

the input is a set of registered range and intensity images.

Coorg in his PhD thesis [Coorg, 1998] (relevant technical report [Coorg and

Teller, 1998]) provides an initial solution to the problem of combining textures from

di�erent viewpoints in outdoor environments. His approach attacks the problem

of texture occlusion from objects which are not modeled in the 3{D model (such

as trees, vegetation or occluding buildings). The solution is based on a median-

extraction technique under the assumption that the \correct" texture is visible from

most images.

Pulli in [Pulli et al., 1997] and Debevec in [Debevec et al., 1996, Debevec et

al., 1998] provide eÆcient solutions for view{dependent texturing, without handling

the problem of texture occlusion. That means that parts of the scene which do not
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correspond to the modeled object but appear on the input images are erroneously

texture-mapped on the model. Both methods blend information provided by im-

ages registered with the 3-D model of the scene in the rendering phase. During

rendering at each virtual viewpoint the images of the closest original viewpoints

are selected. Those images are texture{mapped on the 3-D model and are rendered

from the virtual viewpoint. The blending is done by means of weighted averaging of

the original images as they are texture{mapped on the 3{D model. The weights ex-

press the orientational deviation of the selected images from the virtual viewpoints.

Pulli on the other hand, uses a directional weight as well as sampling quality and

feathering weights.

Finally Becker in his PhD thesis [Becker, 1997] describes a method to stat-

ically texture{map a 3{D model. In this case the color assigned to the polygonal

surface elements of the 3{D model does not depend on the position of the virtual

camera (unlike [Debevec et al., 1998, Pulli et al., 1997]). Becker blends color in-

formation provided by di�erent original views of the scene taking into account the

di�erent spatial resolutions of the real images.

All methods have to handle the problem of visible{surface determination in

order to texture map original images only on visible polygons. In Pulli's approach

this is done in image space using graphics hardware whereas Debevec proposes a

hybrid approach where both image space (graphics hardware) and object space

(occlusions between 3{D polygons) methods are used.
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Chapter 3

Range Imaging, Segmentation &

3{D Feature Detection

3.1 Introduction

We begin our discussion of our system by describing range imaging. The individual

range-images which the range-sensor provides are the result of dense sampling of

visible surfaces in large urban scenes. Typically we get 1K by 1K range samples

(that means 1 million range samples) with a spatial resolution of a few centimeters.

The sampling of the scene is regular. Thus, smoothly varying parts of the scene

(e.g. planar or cylindrical surfaces) are sampled with the same rate as non-smooth

surfaces (e.g. parts of the scene with orientation discontinuities). If we are able

to identify those smoothly varying parts then we can represent them with a fewer

number of parameters.

In this chapter, we present some important characteristics of range-sensing

technology. Then we formulate the range segmentation and 3{D line detection
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problems. We discuss the algorithms we have developed [Stamos and Allen, 2000a,

Stamos and Allen, 2000b]. Finally, we conclude with a presentation of our results.

Figure 3.1 presents the range-segmentation and 3{D feature extraction modules as

part of the whole system.

2D FEATURE EXTRACTION

Final Solid CAD Model

MATCH

SOLID MODELING

Final Photorealistic Solid Model

TEXTURE MAPPING

REGISTRATION
RANGE−RANGE

REGISTRATION
RANGE−IMAGE

MATCH

2−D Feature Sets f1, ... fm 3−D Feature Sets L1, ..., Ln

Segmented Range Images S1, ... ,Sn

2−D Images I1, ..., Im Range Images R1, ... , Rn

  

         SEGMENTATION

3D FEATURE EXTRACTION

   INPUT

+ +

Figure 3.1: Range segmentation and 3{D feature extraction as part of our system.
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3.2 Range-Sensing Technology

Laser-range sensing provides a dense and regular sampling of the 3{D scene. It

overcomes the major limitations of passive techniques by not relying on the visual

appearance of 3{D objects on 2{D images. Instead it samples directly the 3{D

surfaces by emitting regular patterns of energy beams into the scene and measuring

the returned response. The laser is actually \touching" the 3{D surfaces with a

controlled source of energy.

Laser-range sensing systems measure the distance between the range-sensor

and the 3{D scene along a 3{D ray by emitting a laser-beam towards the scene.

Then the range-sensor measures spatial or time properties of the reected beam

and calculates the depth of the 3{D point in the beam direction. The beam can be

rotated by a set of two mirrors and cover the volume of a 3{D prism between the

sensor and the 3{D scene. Extensive reviews of early range-sensing technology can

be found in [Besl, 1988, Poussart and Laurendeau, 1989].

Laser-range sensing techniques are divided into two major categories based

on the way they interpret the reected laser beam:

Triangulation Sensors Sensors in this category measure the one-dimensional dis-

parity between the emitted laser beam and the reected beam on a laser-

sensitive CCD array. The basic principle is again triangulation.

Time-of-Flight Sensors Sensors in this category measure the time that the laser-

beam takes to reach the object surface and then to return back to the sensor.

Since, the velocity of the laser beam is known (it is the speed of light) the

distance between the sensor and the object surface is calculated. The laser-
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range sensor [Cyrax Technologies, 2000] we used belongs to the latter category

(time-of-ight).

Range image representation

We mathematically represent a range image with a set fr(i; j); i = 1 : : : N; j =

1 : : :Mg of 3-D points r(i; j). The indices i; j de�ne the position and orientation

of the laser-beam which produces the 3-D point r(i; j). The arrangement of the

laser-beams which sample the scene is shown in �gure 3.2a. All rays which belong

to the same column or the same row are coplanar. The angle � between successive

column-planes is constant and the angle between successive row-planes � is also

constant. It is possible that r(i; j) = 1 either due to the fact there is not any

opaque object along the laser-beam direction (i; j)1 or due to the sensor's inability

to measure a point in this direction.

Thus the laser-beams are indexed on a 2{D rectangular grid. On this grid it is

possible to de�ne connectivity relationships. Figure 3.2b displays a 8-neighborhood

around a grid point. The notion of connectivity in the 2{D grid can be transformed

to connectivity in the domain of 3{D points. In the rest of the chapter, when we

talk about connected regions we refer to connected regions on the 2{D grid. Those

connected regions have corresponding regions in the domain of 3{D points.

1That means that there is no object up to a maximum distance Mdist from the sensor. This
distance is a property of the laser sensing technology. In our case Mdist = 100 meters.
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Figure 3.2: a) Top. Arrangement of laser-beams for a range sensor with a single
center of projection. The laser-beams are indexed on a 2-D rectangular grid. b)
Bottom. 8-neighborhood around the 2-D grid point (I; J). The grid connectivity
is transformed to connectivity in the domain of 3{D points.

3.3 Segmentation

We follow the formulation introduced by [Besl and Jain, 1988]. Our goal is to

segment the range image fr(i; j); i = 1 : : : N; j = 1 : : :Mg into a set of clusters

fCnull; C1; : : : ; Cng. Each cluster Ci; i � 1 is de�ned over a connected domain

fr(i; j)g of 3{D points and it corresponds to a smoothly varying surface Si of the

object. Also no two clusters overlap, that is Ci

T
Cj = ;;8i; j : i 6= j. Finally the

number of points that support each cluster is larger than a user de�ned threshold
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Tsize. The special symbol Cnull corresponds to the cluster of 3{D points which

cannot be classi�ed to any surface. Every 3{D point belongs to one and only one

cluster.

Each cluster Ci; i � 1 is represented by a set of parameters P(Si) which

de�ne the surface Si of in�nite extent where the points of the cluster lie, and by

the sequence of those range points fr(i; j)g � Ci which de�ne the outer and inner

boundaries of the cluster (see �gure 3.3). A range-point belongs to the boundary

of the cluster if at least one of its 8-neighbors in the 2{D grid (�gure 3.2) is not

a member of the cluster. The outer boundary O(Si) is the one that encloses all

range-points of the cluster, whereas the inner boundaries Ik(Si) are holes inside the

cluster. So, a cluster is represented as follows:

Ci = (P(Si)jO(Si);I0(Si); : : :IK(Si)):

Our �nal goal is to extract 3{D curves of �nite extent at the intersections of

adjacent surfaces Si. That is our goal is to generate a list of curves

L = fL(Si0; Sj0);L(Si1; Sj1); : : : ;L(SiW ; SjW )g

The symbol L(SiK; SjK) corresponds to the curve of �nite extent which is the

intersection of the surfaces SiK and SjK. Those surfaces have de�ned boundaries

according to the formulation described above.

3.4 Algorithm

The outline of our segmentation algorithm is the following (�gure 3.4):

Point Classi�cation A local plane is being �t in the k�k neighborhood of every

3{D point. If the �t is acceptable the point is classi�ed as locally planar
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Figure 3.3: Cluster boundaries de�ned as sequence of points on the rectangular
grid over which the range image is de�ned.

otherwise is classi�ed as non{planar. Finally if the number of sensed points

in the k� k neighborhood is not enough to produce a reliable �t the point is

classi�ed as isolated.

Cluster Initialization Create one cluster for every locally planar point.

Cluster Merging Merge clusters from the initial cluster list.

Surface Fit Fit a plane to the points of each cluster.

Boundary Extraction Extract the boundaries of each cluster.

The following sections describe every module of the algorithm.
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Figure 3.4: Range segmentation algorithm.

3.4.1 Point Classi�cation and Cluster Initialization

In the Point Classi�cation phase a plane is �t to the points vi which lie on

the k � k neighborhood of every point P . The normal np of the computed plane

corresponds to the smallest eigenvector of the 3 by 3 matrix A = �N
i=1((vi �m)T �

(vi �m)) wherem is the centroid of the set of vertices vi. The smallest eigenvalue

of the matrix A expresses the deviation of the points vi from the �tted plane, that

is it is a measure of the quality of the �t. If the deviation is below a user speci�ed

threshold Pthresh the center of the neighborhood is classi�ed as locally planar point.

The result of the above step is a list of initial clusters IC = fIC1; IC2; : : : ; ICng.

Every cluster ICi contains one locally planar point. We also have the cluster Cnull

which contains all non{planar and isolated points. The points of this cluster are

not considered in the later steps of the algorithm and they can not be parts of any

segmented surface.
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3.4.2 Cluster Merging

The next step is to merge clusters of the initial list IC in order to produce a

�nal list C which contains a minimum number of clusters of maximum size. Each

cluster in the �nal list is de�ned as a set of 3{D points which are connected and

which lie on the same surface. Formally, the points of every �nal cluster represent

segmented surfaces that can be approximated by small local patches of similar

position and orientation at the point-level. That is, the local planes of every pair

of neighboring points are very close with respect to each other (see �gure 3.5). In

order to generate clusters which have the above attribute we need to de�ne a metric

of planar similarity of two neighboring 3{D points.
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Figure 3.5: Neighborhood of points inside a cluster. The local planes �t around
each point are very close wrt each other.

We introduce a metric of co{normality and co{planarity of two planar patches.

This metric is very important because it drives the merging of neighboring clusters.

Two adjacent locally planar points are considered to lie on the same planar surface

if their corresponding local planar patches have similar orientation and are close in

3D space. Figure 3.6 displays two local planar patches which have been �t around

the points P1 and P2 (Point Classi�cation). The normal of the patches are n1 and

n2 respectively. The points P 0

i are the projections of the points Pi on the patches.

The two planar patches are considered to be part of the same planar surface if the

following two conditions are met:
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Co{normality measure The �rst condition claims that the patches should have

identical orientation (within a tolerance region), that is the angle � = cos�1(n1�

n2) is smaller than a threshold �thresh.

Co{planarity measure The second condition is that the patches lie on the same

in�nite plane. The distance between the two patches is de�ned as d =

max(jr12 �n1j; jr12 �n2j); where r12 is the vector connecting the projections of

P1 and P2 on their corresponding local planes (see �gure 3.6). This distance

should be smaller than a threshold dthresh

Thus, we de�ned the predicateCoP lanar(P1; P2j�thresh; dthresh) which decides whether

two points P1 and P2 could be part of the same planar surface within a tolerance

de�ned by the thresholds �thresh and dthresh.

n

n

1

2

r12

P
P P
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Figure 3.6: Coplanarity measure. Two planar patches �t around points P1 and P2

at a distance jr12j:

Sequential labeling

The previously de�ned metric of co-planarity and co-normality of two adjacent pla-

nar patches is what drives the cluster merging procedure. The cluster-merging is a

sequential-labeling algorithm applied to a di�erent domain. The original sequential-

labeling algorithm [Ballard and Brown, 1982] is used to segment a binary image
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into 8-connected segments of non-background pixels. We are doing something that

is very similar. We are segmenting the range-image into 8-connected segments of

3{D points such that neighboring 3{D points have similar local planarity proper-

ties. Instead of having to decide whether two neighboring points have the same

color, we have to decide whether two neighboring points are likely to be part of the

same planar surface according to the metric introduced previously.

The cluster-merging algorithm works as follows. We visit all locally planar

points in a raster-scan manner, starting from the upper-left corner of the range-

image's grid (�gure 3.2). Imagine that the algorithm is visiting point P (�gure 3.7).

Then we are considering P 's three neighborsA1; A2 and A3 (those four points belong

to the clusters A;B;C and D respectively). If CoP lanar(P;Ajj�thresh; dthresh) is

TRUE, then the clusters where the two points P and Aj belong are merged.

In the implementation of the above algorithm, we do not need to merge

each time the predicate is TRUE. Instead we can keep an equivalence table which

holds equivalences between clusters. A second step is needed in order to resolve all

equivalences and generate the �nal list C of clusters.

This algorithm has complexity O(N) where N is the total number of range

points (in our experiments N = 106).

3.4.3 Surface �tting

The next natural step is to �t a surface over the points of every cluster. A{priori

knowledge of the types of surfaces that exist in the scene can be utilized in order

to �t surfaces of the appropriate type. The most common surfaces encountered in

urban scenes are planes. By �tting a plane over the points of each cluster a list
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Figure 3.7: Sequential visit of initial clusters.

of planar surface is produced: P = fP(S1); : : : ;P(Sn)g. Each planar surface is

represented with four parameters.

3.4.4 Boundary extraction

The �nal step of the segmentation process is the extraction of the boundary points

of every cluster. A range-point belongs to the boundary of the cluster if at least

one of its 8-neighbors is not a member of the cluster. The connectivity is de�ned

over the two-dimensional grid which is displayed in �gure 3.2. The outer boundary

O(Si) of the surface Si is the one that encloses all range-points of the cluster,

whereas the inner boundaries Ik(Si) are holes inside the cluster (see �gure 3.3).

Each boundary is thus a sequence of 2{D grid points:

B = f(i0; j0); (i1; j1); : : : ; (im; jm)g

Those grid points are ordered in the counter-clockwise direction. The actual 3{D
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boundary is just:

B3D = fr(i0; j0); r(i1; j1); : : : ; r(im; jm)g

where r(i; j) is the 3{D position which corresponds to the grid point (i; j).

We are also computing the 3{D axis-aligned bounding box BOUND3D of

the set B3D (�gure 3.8). The bounding box is used for a fast and rough estimation

of the extention of the 3{D boundary in space and is being used in the algorithms

for 3{D line extraction (section 3.5). So each boundary of a cluster is represented

by the three sets: B, B3D and BOUND3D.
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Figure 3.8: Axis-aligned bounding boxes of two planar 3{D surfaces.

3.4.5 Range segmentation summary

We presented the algorithm we developed for segmenting the range data-set into

smoothly varying surfaces. In the �rst stage (point classi�cation, section 3.4.1)

we reject all points which can not be part of a local plane. In the second stage

(cluster merging, section 3.4.2) large clusters of connected points are generated.
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In the later stages, a planar surface is �t to the points (section 3.4.3) of each cluster

and the boundary of this surface is extracted (section 3.4.4).

The algorithm is completely automatic. The user, though, has to provide

three thresholds.

� The threshold Pthresh is used to decide whether a 3-D point can be part of a

smoothly varying surface (point classi�cation phase, section 3.4.1). Points,

whose local planes produce �tting errors2 above this threshold, are consider to

lie on a local discontinuity. Thus, they are rejected from further consideration.

� The thresholds �thresh and dthresh are used to decide whether two planar

patches have similar orientation and position in space (cluster merging

phase, section 3.4.2). Local patches whose angular distance is greater than

�thresh or whose positional distance is greater than dthresh are not considered

to be parts of the same smoothly varying surface. Thus, by changing those

thresholds we are able to achieve di�erent segmentation results. No research

was done in the direction of automatic threshold selection though (future

work).

In the next section we present the 3{D feature extraction which is based on

the segmented 3{D surfaces.

3.5 3{D feature extraction

At a second level of abstraction the 3{D range data-set is represented as a set of

3{D curves. Those curves are the result of intersection of neighboring bounded

2Minimum least squares errors.
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3{D surfaces which have been extracted by the range segmentation module. In

the context of this thesis we implemented the extraction of 3{D lines as a result

of planar surface intersections. Those 3{D features are used for the registration

between 3{D data-sets and between 3{D data-sets and 2{D images.

The extraction of 3{D lines involves three steps (�gure 3.9):

1. Intersection of neighboring 3{D planes to produce 3{D lines of in�nite extent

(�gure 3.10a).

2. Veri�cation of the in�nite 3{D lines. This step involves the computation of

the distance between the bounded surfaces and the produced 3{D line (�gure

3.10b).

3. Generation of 3{D linear segments out of the in�nite 3{D lines. This is done

by keeping the parts of the in�nite 3{D lines which are veri�ed by the range

data-set (�gure 3.10c).

Thus the 3{D line extraction algorithm works as follows:

For every pair (Si; Sj) of neighboring 3{D surfaces generate the in�nite 3{D lines

L(Si; Sj) as the intersection of those surfaces. Then verify the existence of that

line by computing its distance from the two surfaces Si and Sj. Finally, extract

the veri�ed 3{D linear segment LS(Si; Sj) out of the in�nite 3{D line. Each step

is described in more detail in the following paragraphs.

3.5.1 Intersection of neighboring 3{D planes

The intersection of planes which are far with respect to each other produces �cti-

tious lines which are not part of the range data set. Those �ctitious lines can be



39

Set of infinite 3−D
        lines

Verification

infinite 3−D lines
Set of verified

Set of verified
OUTPUT:

Segment Generation

Extracted 3−D planesINPUT:

Intersection of neighboring
planes

3−D linear segments

Figure 3.9: 3-D line extraction algorithm.

discarded at the second step of the algorithm. In order though to increase the time

eÆciency of the algorithm we use a measure of rough closeness between two planar

surfaces.

Two bounded planar surfaces S1 and S2 are roughly close with respect

to each other when their 3{D dimensional bounding boxes BOUND3D(S1) and

BOUND3D(S2) (section 3.4.4) have a distance which is less than a user supplied

threshold dbound. So, we can de�ne the following predicate:

RoughlyClose(S1; S2jdbound) = TRUE ,

Distance(BOUND3D(S1);BOUND3D(S1)) < dbound:

The distance computation between two axis-aligned bounding boxes is very fast.

That means that this distance measure can be used in order to discard surfaces

which are very far to each other in a fast manner. Intersections of 3{D planes is
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performed only between planes S1 and S2 which make the RoughlyClose predicate

TRUE.

3.5.2 Veri�cation of the in�nite 3{D lines

The previous step generates a set of 3{D lines which may be the result of the

intersection of non-neighboring planes since the predicate used is an approximation

of the actual distance between two surfaces. In order to �lter out the �ctitious lines

out of this set we introduce a second level of 3{D line veri�cation. That is, we

compute the distances D1 and D2 (�gure 3.10b) of each 3{D line from the polygons

which produced it. Then, we disregard all lines whose distance from both producing

polygons is larger than a user-supplied threshold dpoly (D1 > dpoly ^D2 > dpoly).

The distance between a �nite 3{D line and a polygon 3 is the minimum

distance of this line from every edge of the polygon (that is true when the line

does not pierce the polygon). In order to compute the distance between two line

segments we use a fast algorithm described in [Lumelsky, 1985]. So, we de�ne a

measure of the distance between a line L and a polygon Si when both the line and

the polygon belong to the same plane:

LinePolygonDistance(L;Si) = Di:

3.5.3 Generation of 3{D linear segments

Finally we need to keep the parts of the in�nite 3{D lines which are veri�ed from

the data set (that is we extract linear segments out of the in�nite 3{D lines). We
3Both the line and the polygon lie on the same plane.
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compute the distance between every point of the surfaces Si and Sj and the line

L(Si; Sj). We then create a list of the points whose distance from the line L is

less than dpoly (see previous paragraph). Those points (points which are close with

respect to the limit dpoly to the line) are projected on the line. The linear segment

which is bounded by those points is the �nal result (see �gure 3.10c).

3.5.4 3{D feature extraction summary

We presented an algorithm for extracting 3{D lines of �nite extent from a segmented

range data-set. The 3{D lines are the result of intersection of neighboring 3{D

surfaces. The 3{D surfaces are very robustly extracted because they are supported

by a large number of 3{D points. That transforms to robustly extracted 3{D lines.

The accuracy of our 3{D lines is veri�ed by our range to range and range to image

registration experiments. The accurate registration between range and range data

and between range and image data can not be possible with inaccurately localized

3{D lines.

3.6 Segmentation Results

The segmentation algorithms have been tested on range scans of urban structures.

We have chosen four buildings. Two of them, the Casa Italiana and Teacher's

College Building are part of the Columbia University Campus in New York City

and are typical urban structures. These are buildings with planar fa�cades and regu-

lar patterns of windows and doors. We also scanned the front of the Guggenheim
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Museum in New York City4, a one of a kind building with conical fa�cades. Our

�nal scanned building is the Flat-Iron Building, a trademark of New York's early

century architecture.

The range and segmented scans of three views of Casa Italiana are shown

in �gures 3.11, 3.12 and 3.13. One view of Teachers College is shown in �gure

3.14. Three views of Guggenheim Museum are shown in �gures 3.16, 3.17 and

3.18. Finally, two views of the Flat-Iron Building are shown in �gures 3.19 and

3.20. The range data-sets are presented on the top of each �gure and the segmented

results on the bottom. Each segmented surface is displayed with di�erent color.

The points which failed the initial classi�cation step (section 3.4.1) are displayed

with red color.

The segmentation algorithm correctly extracts planar regions. In the case

of Casa Italiana, all major walls have been extracted as well as small bricks and

window borders. The same is true in the case of Teachers College, where we are able

to extract parts of the roof and window shades. The �rst view of Flat-Iron building

has been segmented into two major planar regions and a large number of window

borders have been identi�ed. In the second view one major wall has been extracted.

Finally, in the case of Guggenheim Museum the segmentation algorithm is able to

extract conical fa�cades. Thus, the algorithm can extract slowly varying smooth

surfaces and not exclusively planes. This is because in the cluster merging phase

we are using a local region-growing decision which does not force the extracted

regions to lie on a plane.

Figure 3.15 displays the results of the line extraction algorithm for the �rst

4Designed by Frank Lloyd Wright, one of the most famous architects of the 20th century.
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views of the Casa Italiana and Teachers College. It is clear that major linear

features (borders of large walls) as well as borders of windows have been extracted

correctly.

Table 3.1 displays the parameters used for the presented segmentation re-

sults. This table contains the size k � k of the neighborhood used to �t the ini-

tial local planes (section 3.4.1) and the planarity threshold Pthresh used to reject

points where local planes cannot reliably �t (section 3.4.1). It also contains the

co-planarity and co-normality thresholds dthresh (in meters) and �thresh (in degrees)

used to grow the initial regions of locally planar points (section 3.4.2).

Table 3.2 presents the parameters used for 3{D line detection. Those are

the distances dbound and dpoly (in meters) used to verify the line segments which are

produced from the intersection of the segmented surfaces (sections 3.5.2 and 3.5.3).

Finally, table 3.3 contains the sizes of each data-set.

Segmentation Parameters

Building k � k Pthresh �thresh dthresh

Casa Italiana Scans 1 and 2 7 � 7 0.08 0.04o 0.1 m
Scan 3 7 � 7 0.08 0.03o 0.08 m

Teachers College 7 � 7 0.08 0.04o 0.1 m
Guggenheim Museum Scan 1 7 � 7 0.01 0.8o 0.05 m

Scans 2 and 3 7 � 7 0.008 0.4o 0.01 m
Flat-Iron Building Scan 1 5 � 5 0.08 0.1o 0.01 m

Scan 2 7 � 7 0.08 0.075o 0.02 m

Table 3.1: Parameters used for range segmentation
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3-D line extraction parameters

Building dbound dpoly

Casa Italiana 0.5 m 0.3 m
Teachers College 0.4 m 0.2 m

Guggenheim Museum N/A N/A
Flat-Iron Building Scan 1 0.5 m 0.2 m

Scan 2 0.4 m 1.0 m

Table 3.2: Parameters used for 3{D line detection

Data-set sizes

Building N �M points

Casa Italiana Scan 1 963 by 940
Scan 2 589 by 727
Scan 3 926 by 937

Teachers College 992 by 998
Guggenheim Museum Scan 1 957 by 907

Scan 2 612 by 604
Scan 3 502 by 502

Flat-Iron Building Scan 1 773 by 881
Scan 2 962 by 969

Table 3.3: Data set sizes

3.7 Threshold sensitivity

In this section we qualitatively describe the e�ect of the �ve user-speci�ed thresh-

olds on the segmentation and 3-D line extraction routines (Pthresh, �thresh, dthresh,

dbound and dpoly).

In the segmentation phase, the threshold Pthresh is used for the identi�cation

of non-planar points, that is points which lie on surface discontinuities. In our

experiments Pthresh is ranging from 0:008 to 0:08. The smaller the threshold Pthresh

the larger the number of points which are classi�ed as lying on surface discontinu-

ities. A small Pthresh results to one large cluster of un-segmented points and to a

large number of small clusters of segmented points. On the other hand a large value
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for Pthresh will result to a small number of surface discontinuities with the possible

drawback of over-segmentation, depending on the selection of the thresholds �thresh

and dthresh. This is because cluster-merging ends if

1. A surface discontinuity has been reached5, or

2. The co-planarity or co-normality metrics are smaller than the values of �thresh

and dthresh.

The output of the segmentation algorithm is sensitive on the thresholds

�thresh (from 0:03o to 0:8o in our experiments) and dthresh (from 0:01 m to 0:1 m

in our experiments). Large values for both thresholds will result in a small number

of large clusters (under-segmentation) whereas small values for both threshold will

result in a large number of small clusters (over-segmentation). In the extreme cases,

if in�nite values for the thresholds are used the algorithm will classify the locally

planar points into maximumconnected components, whereas if zero values are used

no cluster merging will be performed.

In the 3-D line extraction phase, the threshold dbound is used for a crude

approximation of spatial closeness between segmented surfaces (from 0:4 to 0:5 m

in our experiments). A small value for dbound may lead in discarding a number

of valid lines, whereas a large value will not hurt the correctness, but only the

eÆciency of the algorithm. The value of threshold dpoly (from 0:2 to 1:0 m in our

experiments) is more important. A very small value will lead to the detection of a

small number of lines (even to the detection of no lines at all), whereas a large value

can result to the detection of large number of �ctitious lines6 due to the intersection

5Only locally planar points can be part of a segmented cluster.
6Fictitious lines however do not a�ect the matching procedures of chapter 5.
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of non-neighboring planes.

3.8 Conclusions

We developed a general range-segmentation and 3{D feature detection algorithm.

This algorithm is applicable to scenes which are densely scanned. We proved the

applicability of these algorithms in scenes of urban structures. In our results we

showed that we can extract large planar surfaces, small bricks and window borders

as well as conical sections. The segmentation algorithms are automatic. The user,

though, has to specify thresholds which tune the segmentation for particular data-

sets.

The segmentation algorithms are very eÆcient. The surface extraction algo-

rithm has a complexity of O(N) where N is the total number of range points. The

feature extraction algorithm has a complexity of O(M2) where M is the number of

extracted 3{D planes.

The extracted surfaces are used for eÆcient 3{D modeling (chapter 4) and the

extracted 3{D features for range to range and range to image registration (chapter

5).
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Figure 3.10: a) In�nite 3{D line as intersection of neighboring planes, b) distance
of bounded surfaces from line and c) veri�ed 3{D linear segment.
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Figure 3.11: Casa Italiana. Range and segmented scans (�rst view). 976 � 933
points.
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Figure 3.12: Casa Italiana. Range and segmented scans (second view). 589 �
727 points.
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Figure 3.13: Casa Italiana. Range and segmented scans (third view). 926 � 937
points.
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Figure 3.14: Teachers College. Range and segmented scans (�rst view). 992 �
998 points.
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Figure 3.15: 3-D lines. Teachers College and Casa Italiana (�rst view).
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Figure 3.16: Guggenheim Museum. Range and segmented scans (�rst view).
957 � 907 points.
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Figure 3.17: Guggenheim Museum. Range and segmented scans (second view).
612 � 604 points.
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Figure 3.18: Guggenheim Museum. Range and segmented scan (third view).
502 � 502 points.
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Figure 3.19: Flat-Iron Building. Range and segmented scan (�rst view). 773 �
881 points.
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Figure 3.20: Flat-Iron Building. Range and segmented scans (second view). 962
� 969 points.
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Chapter 4

Solid Modeling

4.1 Introduction

This chapter deals with the construction of solid CAD models of large urban struc-

tures from range measurements. In order to capture the complete geometric infor-

mation of a large outdoor scene, the scene needs to be sensed from a number of

di�erent viewing directions. That produces a set of complex and overlapping 3-

D point clouds. Our goal is the utilization of all point clouds and the creation

of a volumetric representation which captures the visible surface of the scene.

Such representations, enhanced with photometric observations, provide eÆcient,

geometrically correct and photometrically accurate visualizations from all possible

viewpoints which surround the scene. Volumetric representations also provide an

intuitive framework for representing and �lling holes created from self-occlusion or

from limitations of the range sensing technology1.

A typical solid modeling system involves the phases of

1Range sensors fail to measure the distance of transparent objects, such as windows.
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1. Individual range image acquisition from di�erent viewpoints.

2. Registration of all images into a common frame of reference.

3. Transformation of each range image into an intermediate surface-based or

volumetric-based representation.

4. Merging of all range images into a common representation.

In general, 3-D modeling systems are based either on mesh-based or volu-

metric approaches. In the mesh-based approaches, each range image is transformed

into a mesh of triangular faces and all range images are being merged by the aver-

aging of surface elements on the mesh level. The �nal result is a triangular mesh

which approximates the outer surface of the sensed object ([Turk and Levoy, 1994]

is a representative approach). Volumetric approaches, on the other hand, combine

individual range images into a 3-D volume. The underlying representation is the

3-D volume which approximates the actual volume the sensed object occupies (see

[Curless and Levoy, 1996, Reed and Allen, 1999] for representative approaches).

Volumetric approaches are considered superior to mesh-based methods, since they

can model and �ll holes in the �nal models. Holes can destroy the photorealistic

appearance of the scene and thus are highly undesirable.

Large urban scenes drive existing solid modeling systems to their limits since

high resolution and dense range scanning is needed to capture small architectural

detail in buildings, resulting in data-sets of high complexity. The ability to simplify

the acquired data set before the integration to the �nal model is equivalent to an

adaptive sampling of the scene. Areas of high geometrical complexity are densely

sampled, whereas areas of smoothly varying surfaces (e.g. planes) are represented
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by a fewer number of samples.

Most volumetric solid-modeling methods use the full input-data set without

performing any signi�cant simpli�cation to it. An example is the work of Curless

and Levoy [Curless and Levoy, 1996]) which does not provide any framework for

simpli�cation while the range data is being integrated into the model.

We have developed a volumetric solid-modeling system with the enhanced

ability for data simpli�cation in the intermediate modeling steps. This data simpli-

�cation and segmentation of each individual range image before merging translates

to simpli�ed intermediate volumetric representations. Merging those intermediate

representations is the hardest part of modeling. Thus, the decreased complexity of

the individual volumes results in increased eÆciency in the solid modeling phase.

This is exactly the kind of eÆciency that is highly desirable in the context of mod-

eling large outdoor scenes. The method scales well with the increased sampling

density of measured 3-D scenes and is thus appropriate for handling the complexity

of scenes of large scale.

Our modeler is an extension to the solid modeler developed by Michael K.

Reed [Reed and Allen, 1999, Reed et al., 1997]. The key extensions are described

in the sections below.

4.2 Original system

The innovative principle of Reed's approach is the representation of each individual

range image with a solid volume. Each cloud of range points is being transformed to

a triangular surface mesh, and that mesh to a solid volume. The volumes elegantly

capture the sensed and \yet to be explored" parts of the scene. The diÆcult problem
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of merging individual registered range images transforms to the computation of

boolean CAD intersections between the partial solid volumes which represent each

individual view of the scene.

The original model acquisition system constructs a solid CAD model incre-

mentally using one range image at a time. For each range image a solid CAD model

is being constructed. This model consists of sensed and extruded (along the sensing

direction) surfaces. Sensed surfaces are the boundary between the inside and the

outside (towards the sensor) regions of the sensed object, whereas extruded sur-

faces are the boundary between empty sensed 3-D space and un-sensed 3-D space.

Extruded surfaces are used in order to plan for new sensor locations: what lies

\behind" them has not been explored yet. The modeling concept is described in

�gure 4.1. A triangular surface mesh 4.1b is constructed from the raw range image

of the sensed object 4.1a. That mesh is swept towards the sense direction and the

resulting solid model is shown in 4.1c. Figure 4.2 explains what is happening in

more detail. A part of the reconstructed triangular mesh of an object is shown in

4.2a. Each triangular mesh element is extruded towards the sense direction creat-

ing a triangular prism (4.2b). The �nal swept volume if the result of the boolean

uni�cation of the individual triangular prisms (4.2c).

The �nal solid model which captures the volume of the sensed scene is the

result of the boolean intersection among the partial solid models which describe

each individual view of the scene. Thus, the �nal solid representation of the scene is

computed incrementally by the intersection of individual solid models which capture

the scene. The characterizations of the surfaces (sensed or extruded) propagate from

the individual models to the merged model. Therefore this method has the ability
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Figure 4.1: Solid Modeling concept introduced by Michael K. Reed (images printed
after permission of the author). a)(left) Solid block being sensed, b) Mesh generated
by the measured 3-D points, c) Partial solid model construction.

Figure 4.2: Solid Modeling concept introduced by Michael K. Reed. Sweeping tri-
angular mesh elements. a)(left) Triangular mesh surface, b) One triangular element
swept towards sensing direction, c) All triangular elements swept.

to capture surfaces of arbitrary shape, to incrementally include range images in the

�nal representation and to include the range images in an order-independent way.

4.3 Extending the System for Large Outdoor

Structures

In order to extend the system to outdoor environments we need to provide a method

of registering individual range scans since we can't rely on devices of high positional

accuracy. However, position estimates provided by the GPS system can be a very

good initial guess. Also since urban scenes provide very reliable 3{D linear features,

we decided to use those linear features for range registration algorithm. Another

issue which we need to consider is the fact that parts of the model may be missing
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due to transparent objects in the scene (such as windows). Those parts need to

be interpolated from neighboring samples. Finally, the simpli�cation of the dense

mesh surfaces becomes important for eÆcient 3D modeling, eÆcient rendering of

the scene and eÆcient application of the planning modules.

4.3.1 Range Data Registration

To create a complete description of a scene we need to acquire and register mul-

tiple range images. The registration (computation of the rotation matrix R and

translation vector T) between the coordinate systems of the nth (Cn) and �rst (C1)

range image is possible via a matched set of 3{D features between the images. We

have decided to use the in�nite 3{D lines which are extracted using the algorithm

described in chapter 3 as our features of interest. A manual match between a

small number of those features provides enough constraints that can lead in the

computation of the rotation R and translation T.

In detail the algorithm works as follows. The in�nite 3-D lines that are

automatically extracted from the dataset2 can be represented by the pairs of the

form (n;p), where n is the unit vector which corresponds to the direction of the

line and p is a 3-D position which represents a point on the line. Note that this

representation is not unique. There are two valid line directions n and �n and

an in�nite number of points p that lie on the line. We choose p to be one of the

extracted endpoints of the line.

A solution for the rotation and translation is possible when at least two line

matches are given. The rotation matrix R can be computed according to the closed

2Our modules extract 3-D lines of �nite extent. However, the extracted positions of the
endpoints are not used for registration purposes because of the uncertainty in their determination.
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form solution described in [Faugeras, 1996], page 523.

Lets assume that the lines

(ni;pi); i = 1 : : : N

extracted automatically from one view do match up with the automatically ex-

tracted lines

(ni
0;pi

0); i = 1 : : : N

of the second view.

The rotation component of the transformation between the two view can be

computed using the orientations ni and ni0 of the matched 3-D lines. This is done

via the minimization of the error function

Err(N) =
NX

i=1

jjni
0 �Rnijj

2

where R is the unknown rotational matrix. The minimization of the above func-

tion has a closed-form solution when the rotation is expressed as a quaternion. The

minimum number of correspondences for the computation of the rotation is two

(N = 2). More lines can though be used in order to increase the robustness of the

method. Note that in the above formulation we assume that we have a correspon-

dence between the directed vectors ni and ni0. Otherwise the minimization would

be formulated as

Err(N) =
NX

i=1

jj�0ini
0 � �iRnijj

2

where �i; �i = �1. The latter formulation results in 4 possible solutions for the

rotation matrix. However, knowledge of the matching directions reduces the number

of solutions to one.
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Solving for the translation vector T between the two views is an easy task

as long the rotational matrix has been computed. Let us select two arbitrary

points on the ith line < ni;pi > of the �rst view. Those points can be expressed

as ai1 = pi + t1ni and ai2 = pi + t2 ni where tj; j = 1; 2 are two arbitrary real

constants. Those two points have corresponding points which lie on the ith line

< ni
0;pi

0 > of the second view. If we call those points ai
0

1 and ai
0

2 we can similarly

express them as ai
0

1 = p0

i + t0
1
n0

i and ai
0

2 = p0

i + t0
2
n0

i, where t
0

j; j = 1; 2 are two real

constants which depend on the arbitrary selection of tj; j = 1; 2. That means that

the correspondence between the ith lines of the �rst and second view provide us

the following constraints:

ai
0

1 = Rai1 +T (4.1)

ai
0

2 = Rai2 +T (4.2)

or

p0

i + t0
1
n0

i = R(pi + t1ni) +T (4.3)

p0

i + t0
2
n0

i = R(pi + t1ni) +T (4.4)

When the rotation matrix R is known the above system of 6 equations is linear in

the 7 unknowns (3 for the translation vector T and 4 for the real constants tj and

t0j; j = 1; 2). With two line matches the number of equations becomes 12 (= 2� 6)

and the number of unknowns 11 (= 2�4+3). That means that a minimum of two

matched in�nite 3-D lines provide enough constraints for the computation of the

translation (when the rotation is known) through the solution of an over-constrained

system of linear equations.
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Figure 4.3: Registration of a) 3 range scans of the Casa Italiana, b) 2 range scans of
the Guggenheim Museum and c) 2 range scans of the Flat Iron Building. d) Close
view of registration of Flat Iron Building.

Results of the registration algorithm on three data sets are presented in �gure

4.3.

4.3.2 Hole �lling via linear interpolation

Another issue which we need to consider is the fact that parts of the model may

be missing due to transparent objects in the scene (such as windows). Those parts
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Figure 4.4: Linear interpolation of points along vertical or horizontal scan line.

need to be interpolated from neighboring samples. The �rst step is the computation

of the average angle between vertical scanning planes (�) and between horizontal

scanning planes (�). Then the knowledge of those angles allows us to interpolate

in the vertical or horizontal scanning direction as shown in �gure 4.4.

4.3.3 Extrusion of polygonal features

Our main contribution to 3-D modeling is the incorporation of segmentation as

the necessary stage of early 3-D modeling. The generation and uni�cation of every

individual triangular prism in order to create the �nal solid model (see �gure 4.2)

can be avoided with the use of polygonal prisms in the areas where planar surfaces

have been extracted. Instead of creating one triangular prism for each individual

mesh element we can create prisms for the large planar polygonal areas extracted

by the segmentation process. Parts of the scene which can not be segmented into

planar regions are treated as triangular prisms swept towards the sensing direction.

The basic idea is illustrated in �gures 4.5 and 4.6. In �gure 4.5 an example
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of a planar face (which is the result of the segmentation process) is shown. The

face is de�ned by its outer and two inner boundaries. That face is being de�ned

by its one outer and two inner boundaries (the inner boundaries represent holes).

The polygonal planar face is surrounded by a number of triangular mesh elements,

which represent parts of the scene where a segmentation was not possible. Figure

4.6 demonstrates the result of sweeping the outer polygonal, hole and triangular

elements in the sensing direction. In the top row a presentation of the sweeping

when no holes exist is shown. Polygonal and triangular prisms are uni�ed in order

to create a partial solid model. The extent of the sweep operation is based on de-

termining and adequate far plane distance that will envelope the building's extent

(for the Italian house experiment we swept each volume back by 120 meters). A

complication arises in the presence of hole elements. This complication is demon-

strated on the bottom row of �gure 4.6. Holes inside large polygonal elements must

be handled di�erently; the prisms created by sweeping the holes can be thought of

as negative prisms. That means that a hole de�nes a void space. This is naturally

implemented by the subtraction of the swept volume generated by the holes from

the �nal partial solid model.

4.4 Results

This section presents our results in generating the solid model of an urban struc-

ture on Columbia University's campus by implementing the methods described in

this chapter. The acquired range scans are segmented, registered and �nally trans-

formed to a non-redundant volumetric solid representation. The segmentation of

each range scan is done by means of the segmentation algorithm described in chap-
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Columns (j)

Inner Boundaries

Rows (i)

Outer boundary

Figure 4.5: Modeling with segmented regions. Segmented region with outer and
inner boundaries (see chapter 3). The boundaries of the region are shown on the
regular grid over which the range image is de�ned. The polygonal boundaries of
the planar regions are swept back in the direction of sensing. Parts of the scenes
which can not be segmented (shown here to encompass the segmented polygonal
face) are treated as triangular meshes which are swept back.
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ter 3. Manual match of pairs of automatically extracted 3-D lines is used in order to

align the scans on the same coordinate system (section 4.3.1). The results presented

here describe the outcome of the solid model creation phase analyzed in sections

4.2 and 4.3.

The original range scans of the building Casa Italiana (�gures 3.11, 3.12

and 3.13) are sub-sampled and then segmented into polygonal planar regions (table

4.1 contains the size of the sub-sampled meshes and table 4.2 the segmentation

thresholds being used).

The uni�cation of those two types of sweeps (sweeps produced by polygonal

and sweeps produced by triangular faces) provides the �nal solid sweep for the �rst

view of the building. The �nal solid sweeps for the three views of the building Casa

Italiana and their boolean intersection which result in a topologically correct and

geometrically accurate solid model of the scene are shown in �gure 4.7.

Tables 4.3 and 4.4 present the reduction on the number of polygons and on

the time the solid sweep algorithm takes to run. That reduction and increased eÆ-

ciency is the result of the involvement of the segmentation process in the modeling

phase. In table 4.3 the reduction in the number of triangular faces as a result of the

segmentation is shown for the three range scans. The second column presents the

number of triangular prisms that would be used for modeling if segmentation was

not used. The third and fourth column show the number of triangular and polygo-

nal prisms that are used for modeling after the segmentation of the range scans. On

the last column you can see the amount of reduction on the number of triangular

prisms due to the segmentation process. The reduction in the spatial complexity of

the sweeps is very big (in the order of 50%). That reduced complexity greatly sim-
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pli�es the task of boolean intersection. It also increases the time-eÆciency of the

solid modeling phase. In table 4.2 the results of this improvement are presented. In

the second column the time spent on segmentation is displayed. The third column is

the time spent on the creation of the large polygonal prisms, whereas the forth col-

umn presents the time spent on the creation of the sweeps of the triangular sweeps

(the algorithms did run on a Silicon Graphics Onyx2). What is eminent from this

table is that modeling almost half of each scan (table 4.3) with polygonal prisms can

be done orders of magnitude faster than the modeling of the unsegmented parts.

Mesh sizes

Viewpoint rows � columns

1 202 � 199
2 175 � 168
3 205 � 200

Table 4.1: Mesh sizes used for modeling.

Segmentation Parameters

Viewpoint k � k Pthresh �thresh dthresh

1 5 � 5 0.2 0.04o 0.08m
2 5 � 5 0.2 0.04o 0.08m
3 5 � 5 0.25 0.04o 0.08m

Table 4.2: Parameters used for range segmentation.

Solid Modeling for Casa Italiana

Viewpoint Triang. prisms (before) Triang. prisms (after) Polyg. prisms Reduction
1 79,596 41,864 32 52.6 %
2 58,116 24,480 19 42.1 %
3 81,192 41,245 34 50.8 %

Table 4.3: Results from modelers extension: reduction on number of triangular
prisms.
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Solid Modeling for Casa Italiana

Viewpoint Time (segmentation) Time (polyg. prisms) Time (triang. prisms)
1 13 secs 12 secs 152 mins 32 secs
2 16 secs 13 secs 77 mins 36 secs
3 11 secs 24 secs 184 mins 13 secs

Table 4.4: Results from modelers extension: time reduction.

4.5 Summary

Reed's system is based on the transformation of each input cloud of ordered range

points into a triangular mesh and then in sweeping that mesh in the sensing direc-

tion in order to create a partial solid model of the scene. Merging of individual regis-

tered range scans is then possible by well-de�ned boolean CAD intersections (which

are robustly implemented by commercially available CAD modelers) between the

partial solid volumes those scans have been transformed into. Experiments per-

formed using the original system provide excellent results for small objects scanned

in the controlled laboratory environment. Large urban scenes, though, drive the

system to its limits. The big number of samples per view increases the size of the

input meshes and thus the time and space complexity of boolean CAD intersec-

tions. Our solution to this problem includes intertwining the solid-modeling part

with the segmentation process.
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Figure 4.6: Extension of solid modeler. Top row: a)(left) Polygonal face (without
holes) and triangular mesh elements, b) One polygonal element swept toward the
sensing direction, c) All elements swept. The union of all prisms is the resulted
partial solid volume. Bottom row: same concept. Now, though, the polygonal face
has holes. a)(left) Polygonal face (with holes) and triangular mesh elements. b)
One polygonal element swept toward the sensing direction. The hole is swept as
well. c) All elements swept. The union of all prisms minus (boolean subtraction)
the hole prisms is the resulted partial solid volume.
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Figure 4.7: Modeling Casa Italiana. Three volumetric sweeps and �nal composite
solid model.
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Chapter 5

Range to Image Registration

In this chapter we deal with the problem of automatic pose estimation and calibra-

tion of a camera with respect to the acquired geometric model of an urban scene.

The knowledge of the camera position, orientation and calibration parameters allow

us to invert the image formation process and project the image of the camera back

to the geometric model of the scene. In this sense we have a complete photo-realistic

representation (dense geometry provided by the range sensor combined with a set

of acquired 2{D images), a representation that can be used for eÆcient rendering.

In the context of this thesis an automatic method for the registration of an image

(from the 2{D camera) with a geometric model (from the 3{D sensor) is provided.

This method is currently applicable only for urban scenes where regular patterns of

rectangles (windows, doors) exist and can be sensed by both the range and image

sensors.

As mentioned before, most systems which recreate photo-realistic models of

the environment by a combination of range and image sensing [VIT, 2000, Pulli

et al., 1998, Zhao and Shibasaki, 1999, Sequiera et al., 1999, McAllister et al.,
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1999] solve the range to image registration problem by �xing the relative position

and orientation of the camera with respect to the range sensor (that is the two

sensors are rigidly attached on the same platform). The camera calibration is done

o�-line by sensing scenes of known geometry. In this case, the image to range

registration problem is transformed to a range to range registration problem1. The

major drawbacks of this approach are the following:

Lack of 2{D sensing exibility Since a 2{D image is always attached to a range

image, the acquisition of a new 2{D image requires the acquisition of a range

image as well. But, range acquisition is much slower than image acquisition.

Also there are limitations on where a range sensor can be placed with respect

to the scene (stando� distance, maximum distance) which translate to con-

straints on the camera placement. As a result, the exibility that the camera

sensor provides (minimal constraints with respect to its position in the scene,

fast acquisition and compact size) is being lost.

Static arrangement of sensors The system can not dynamically adjust to the

requirements of each particular scene, since changes on the sensors relative

con�guration, or changes on the internal camera parameters (focal length for

instance) require an o�-line re-calibration before the scene acquisition.

Historical photographs The �xed methods do not have the ability of mapping

historical photographs of buildings on the acquired geometric models2.

In this thesis we provide a solution to the automated pose determination of
1The registration of the local coordinate frames of each range image with respect world is

enough to align the camera images as well.
2Changes on the otter appearance of the building over time may result to further complications

though.
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a camera with respect to a range sensor without placing arti�cial objects in the

scene and without a static arrangement of the range-camera system. This is done

by solving the problem of automaticallymatching 3{D and 2{D features from the

range and image data sets [Stamos and Allen, 2001].

5.1 Problem Formulation

Our goal is to provide an automated solution to the problem of registering 2{D

camera images with 3{D range scans. We assume that both the camera and range

sensors view the same part of the real scene, so that the 3{D and 2{D views have

signi�cant overlap (�gure 5.1).

Formally, our input consists of the pair (D(S); I(S)) of a scene's S range

scan D and an image I. The location of the camera which produces the image I is

unknown and must be automatically recovered. Thus the output is the pose Pi =

fRi;TijPpi; fig which describes (a) the transformation (rotation Ri and translation

Ti) from the range{sensor to each camera{sensor's coordinate system and (b) the

mapping (internal camera parameters: principal point Ppi and focal length fi)

from the 3{D camera frames of reference to the 2{D image frames of reference.

The pose estimation involves the following six stages.

1. Extraction of two feature sets F3D and F2D (3{D and 2{D linear segments

from the range and image data-sets).

2. Grouping of the 3{D and 2{D feature sets into clusters of parallel 3{D lines

L3D and converging 2{D lines 3 L2D (by exploiting global properties of the

3Those lines de�ne vanishing points on the image space.



78

feature sets) [section 5.2].

3. Computation of an initial pose estimate P0 = fR;0jPp; fg (rotation and

internal camera parameters) by utilizing the directions de�ned by the sets of

3{D and 2{D clusters L3D and L2D [section 5.3].

4. Grouping of the 3{D and 2{D line segments into higher level structures of

3{D and 2{D rectangles R3D and R2D (by exploiting local properties of the

feature sets). Extraction of 3{D and 2{D graphs G3D and G2D of rectangles

(by exploiting the repetitive pattern of scene and image rectangles) [section

5.4]4.

5. Automatic selection of a matched set of rectangular features Co and compu-

tation of a pose P o = A(CojP0) by running a pose estimator algorithm A on

a number of samples over the set of all possible matches C = P(R3D�R2D)5

(computation of a coarse pose estimate) [section 5.5].

6. Re�nement PR = R(P o; F3D; F2D) of the estimated pose P o by using all

available information computed so far (computation of a �ne pose estimate)

[section 5.6].

The matching between 3{D and 2{D linear features is driven by the implicit

assumption that matched 3{D and 2{D lines are the result of depth discontinuities

in the 3{D scene. The following sections describe all steps in more detail.

4Those graphs are not utilized in the matching phase though.
5
P(A) is the power set of a set A.
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Figure 5.1: The pose estimation problem. The 3{D model of the scene is represented
in the coordinate system of the range sensor. The image taken from the 2{D camera
needs to be registered with the 3{D model.

5.2 Clustering 2{D and 3{D lines

Matched 2{D and 3{D clusters of lines are used for recovering rotation and for

camera internal self-calibration. In the 2{D domain, the extraction of vanishing

points provides a natural clustering of lines into sets which correspond to parallel

3{D lines whereas in the 3{D domain, the clustering into sets of parallel 3{D lines

is direct. First we describe our vanishing point extraction algorithm and then

the classi�cation of 3{D lines. The end result is sets of 2{D lines 6 which meet

at vanishing points and sets of 3{D parallel lines which produce the extracted

vanishing points (�gure 5.6).

6The canny edge detector with hysteresis thresholding [Canny, 1986] is used for extraction of
2-D edges. Those edges are grouped into linear segments via orthogonal regression.
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Our belief is that vanishing points are a great source of information that

maybe used in the context of urban scenes. The rotation that can be computed

by matching scene directions with image vanishing points is a critical amount of

information which can simplify the task of automatically computing the translation.

5.2.1 Vanishing Point Extraction

The most characteristic property of perspective projection is the fact that a set of

parallel 3{D lines is mapped to a set of 2{D lines which intersect at a common

point on the image plane. This point of intersection can be a point at in�nity

when the corresponding 3{D direction is parallel to the image plane. In order to

handle all possible points of intersection (even points at in�nity) we need to adopt

the representation for 2{D points and 2{D lines described in appendix A. Then,

the intersection of two 2{D lines l12 and l012 is the point v which is mapped to

the antipodal points �N12 �N0

12 on the Gaussian sphere (�gure 5.2) and can be

represented by a pair (�; �).

There are many methods for the automatic computation of the major im-

age vanishing points (a few references are [Antone and Teller, 2000b, Caprile and

Torre, 1990, Wang and Tsai, 1990, Liebowitz and Zisserman, 1998]). Our approach

involves the computation of all pairwise intersections between the extracted image

lines and the creation of a 2{D histogram of intersections. The histogram is de-

�ned over the 2{D domain of the discretized surface of the Gaussian sphere. Then

a search for the peaks of the histogram is performed. Each peak corresponds to

directions towards which a large number of 2{D lines are converging.

Figures 5.3a{5.3c present the major points of our approach in more detail.
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The representation of lines converging to the same vanishing point v lie on the

same plane whose normal is M. The unit vector M is the representation of the

vanishing point v (�gure 5.3a). That means that by clustering the representations

of all 2{D lines into major planes the goal of extracting the major image vanishing

points is accomplished. The �rst step towards this goal is the consideration of all

line{pairs Pi which de�ne a local plane with normal Mi (�gure 5.3b). Normals of

line-pairs can be clustered into narrow areas as shown in �gure 5.3b. Gaussian

directions where a large concentration of such line{pairs is observed are the most

probable candidates for the major scene vanishing points. So, the next natural

step is to identify those places where intersections are being densely clustered. In

order to accomplish that, we record all pairwise intersections on the discretized

surface of the Gaussian sphere (�gure 5.3c). The major clusters of intersection in

the Gaussian sphere are then computed. The average direction of those clusters

correspond to the representationM of the estimated vanishing points. Also all lines

which are part of line-pairs contributing to each cluster are the ones that support

each individual vanishing point.

The end result is a set of major vanishing points VP = fV P1; : : : ; V Png,

where V Pi = (�i; �i)7. Each vanishing point is supported by a set of 2{D lines

and the desired clustering L2D = fL2D1
; : : : ; L2Dng has been accomplished. If

the number of major vanishing points Nvps is known a-priori (in urban environ-

ments this number is almost always three) then we can select the Nvps largest

clusters from the set L2D as our result. That is our �nal result is the set L2D =

fL2D1
; : : : ; L2DNvps

g of Nvps 2{D line clusters and their corresponding vanishing

7The latitude-longitude representation depends on the assumed center of projection ~COP. See
appendix A.
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points VP = fV P1; : : : ; V PNvpsg (�gure 5.4). Extracting the number Nvps is an

easy task (it is equivalent to identifying the major modes of the 1{D histogram of

directions of 2{D lines on the plane [Liebowitz and Zisserman, 1998] ).
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Figure 5.2: Representation of point of intersection. The point of intersection
v of the two lines l12 and l012 is represented by the pair �M = �N12xN

0

12 of
antipodal points on the Gaussian sphere, where �N12 and �N0

12 are the mappings
of the lines l12 and l012 on the sphere.

5.2.2 Clustering of 3{D lines

The clustering of the extracted 3{D lines into sets of parallel lines is an easier

task than the extraction of vanishing points. We are using a classic un-supervised

nearest neighbor clustering algorithm [Jain and Dubes, 1988].

Initially, each 3{D line li de�nes its own cluster Ci. Also a dissimilarity

matrix D(i; j) is initialized. The dissimilarity between 2 clusters Ci and Cj is

equal to the angle between the average directions of lines belonging to those two

clusters. After the initialization stage the algorithm �nds the two closest clusters

and merges them into one new cluster while it updates the dissimilarity matrix

D. The algorithm repetitively �nds and merges the two closest clusters until the
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Figure 5.3: a) (top) Vanishing point representation. The representation N
of all lines l which converge to the vanishing point v lie on a common plane whose
normal is the vector M. Vector's M intersection with the image plane is the
vanishing point v. b) Clustering points of intersection. Points of intersection
of pairs of lines which converge to the same vanishing point are clustered in narrow
areas (M1 and M2 are the 3{D vector representations of the intersection of pairs P1

and P2 whereas v1 and v2 are the actual image points of intersection). c) Major
clusters of intersections on the Gaussian sphere. The major dense clusters
of intersections are extracted by regularly sub-diving the surface of the sphere into
patches.
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Figure 5.4: Extracted major vanishing points and their supported 2{D lines.

minimum distance between clusters is larger than a user speci�ed maximum angle

�3Dclust.

Finally, the Nvps (section 5.2.1) larger clusters of 3{D lines provide the de-

sired grouping of 3{D lines into clusters of parallel lines L3D = fL3D1
; : : : ; L3DNvps

g

along with the average 3{D direction of each cluster U3D = fu3D1
; : : : ; u3DNvps

g.

5.3 Initial pose estimation

5.3.1 Solving for the rotation

The rotation computation is based on the fact that the relative orientation between

two 3{D coordinate systems O and O0 can be computed if two matching directions

between the two systems are known (see �gure 5.5). In this case there is a closed-

form solution for the rotation ([Faugeras, 1996], page 523) and we can write R =

R(n1;n0

1jn2;n
0

2), where ni and n0

i are corresponding orientations expressed in the

coordinate systems O and O0.

In scenes containing a plethora of 3{D lines (such as scenes of urban struc-
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Figure 5.5: Matching directions between two coordinate systems

tures) it is possible to extract major 3{D directions with respect to the coordinate-

systems of the range and image sensors. Those are the directions of clusters of

parallel 3{D lines in the scenes (expressed in the coordinate system of the range

sensor) and their corresponding vanishing point directions (expressed in the coor-

dinate system of the image sensor) as shown in �gure 5.6. We assume at this point

that we have computed the camera center of projection (see section 5.3.2).

In more detail, the direction of the 3{D lines which produce the vanishing

point vi (�gure 5.6) is the unit vector ni = (vi � COP )=jj(vi � COP )jj, expressed

in the coordinate system of the camera sensor (appendix A). This direction can

be matched with a scene direction n0

i which is expressed in the coordinate system

of the range sensor and which has been provided by the 3{D clustering module

(section 5.2.2). So, the rotation computation is reduced to the problem of �nding
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two pairs of matching 3{D directions and 2{D vanishing points

(n0

i;ni) �U3D �VP:

2n
n 1

n 1
2n
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Figure 5.6: Two vanishing points. The 2{D lines which correspond to parallel 3{D
lines of direction ni intersect at a common vanishing point Vi on the image plane.

5.3.2 Camera Calibration

The extracted vanishing points can be used for the internal calibration of the camera

sensor. We are using the technique which has been successfully used in urban

environments by [Becker, 1997] for the computation of the focal and principal point

of a 2-D camera by exploiting the following invariant property of parallelism:

� Parallel scene lines produce image lines which intersect at the same image

point (vanishing points).

� Let three groups gi of parallel scene lines of directions Li produce the three

vanishing points V Pi (�gure 5.7). Then those vanishing points and the center
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of projection of the camera form a proper tetrahedron if and only if the three

scene line directions Li are orthogonal wrt each other.

f
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l l
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Image Plane

Directions of 3 orthogonal
sets of parallel scene lines.

Center of Projection

Figure 5.7: Calibration by utilizing three vanishing points.

5.4 Extracting 3{D rectangles and 2{D quadran-

gles

Recapping the previous section, the extraction of the global properties of the 3{D

and 2{D data-sets (section 5.2) results in:

1. Clusters of 3{D lines L3D and directions of those clusters U3D (section 5.2.2).

2. Clusters of 2{D lines L2D and their corresponding vanishing points VP (sec-

tion 5.2.1).

Those global properties have been used for the calculation of the camera rotation

and for the internal camera calibration as has been shown in the section 5.3. How-

ever, global properties alone are not enough for the translation calculation between

the range and image sensor. Calculating the translation requires the exact matching
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Figure 5.8: Hierarchy of 3{D and 2{D features and its use in the pose estima-
tion algorithm. Matching of clusters of features provides an initial pose (rotation),
whereas matching of individual rectangular structures provides a coarse pose esti-
mate which is later re�ned.

of local 3{D and 2{D features (either points of lines). Since 3{D points are diÆcult

to localize in the 3{D data set and since we have already developed a method for

the reliable and accurate extraction of 3{D lines (section 3.5) we will match 2{D

with 3{D linear features. Further, in order to reduce the search-space of possible

matches we move up in the feature hierarchy presented in �gure 5.8 and group the

3{D and 2{D lines into graphs of rectangular and quadrangular structures. Those

rectangular and quadrangular structures will be used in order to determine which

lines to match8.

The geometry of the projection of a 3{D rectangle on a 2{D image quadrangle

is shown in �gure 5.9. 3{D rectangles which are formed by pairs of lines of directions

8The graphs can be potentially utilized in the matching process but they are not used in this
thesis.
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(Vver; Vhor) have corresponding 2{D quadrangles which are formed by pairs of 2{D

lines which converge to the vanishing points (vver; vhor). That means that in order

to extract corresponding 3{D rectangles and 2{D quadrangles we need to utilize

the extracted clusters of 3{D and 2{D lines.

For the following discussion we will call one of the two scene directions ver-

tical (Vver) and the other one horizontal (Vhor). We assume that the vertical

direction is oriented from the bottom to the top of the scene whereas the horizontal

from left to right. Analogously we call vver and vhor the vanishing points which

correspond to the directions Vver and Vhor.

We can formulate the 3{D and 2{D rectangle extraction problem as follows:

The input is two pairs of 3{D directions Vver; Vhor �U3D and 2{D vanishing points

vver; vhor �VP along with the 3{D L3D0
; L3D1

�L3D (section 5.2.2) and 2{D

L2D0
; L2D1

�L2D (section 5.2.1) clusters that support them. The output is a set of

3{D rectangles and 2{D quadrangles R3D and R2D and two corresponding graphs

G3D and G2D describing the spatial relationship among structures in R3D and R2D

respectively.

Following this notation a 3{D rectangle is a planar 3{D structure whose

sides can be tagged as ltop or lbottom if are parallel to the Vhor direction and as lleft

or lright if are parallel to the Vver direction (�gure 5.9). Also we can de�ne three

relationships between rectangles which lie on the same scene plane: right of, top of

and in or out of (�gure 5.11). Thus a 3{D rectangle can be viewed as the following

tuple:

[Recid; P laneid; size; (ltop; lleft; lbottom; lright); (ptop; pleft; pbottom; pright); (pout;pin)]
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where Recid is the rectangle's identi�cation number,

P laneid is the rectangle's plane identi�cation number,

size = (sver; shor) is the vertical and horizontal extent of the rectangle,

ldir is the 3{D line de�ning the dir side of the rectangle,

pdir is a pointer to the closest dir rectangle,

pout is a pointer to the smallest rectangle enclosing Recid and

pin is a set of pointers to all rectangles enclosed by Recid.

For the above notation we use the variable dir � ftop; left; bottom; rightg. The

pointers pdir; pout and pin can take the values Recid or nill when there is no rectangle

to point to.

The exact same representation can be used for the 2{D quadrangles 9. In

order to use the same notation and de�ne spatial relationships between 2{D quad-

rangles we need to transform them to 2{D rectangles. This can be done if we rotate

the two vanishing points vver and vhor (and similarly transform all 2{D lines which

they support them) such that they are parallel to the image plane (�gure 5.10).

The rectangle-extraction problem is a search of patterns of 3{D lines and

patterns of 2{D lines which have the structure shown in �gure 5.9. After such

patterns are detected the tuples de�ning each rectangle are being computed. The

pointers pdir describe the spatial relationship between rectangles and are thus de-

scribing the graphs G3D and G2D. Normally, our input consists of lines which do

not de�ne a complete four{sided rectangles. That is why we allow the representa-

tion and extraction of incomplete rectangles which are supported by less than four

sides (in those cases on ore more of the entries ldir are nill).

9The P laneid is not needed in this case since all 2{D structures lie on the image plane.
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Our algorithms can detect false rectangles that do not exist in the real scene

(since we extract rectangles supported by less than four sides). Our experiments

show, though, that such an overestimation does not a�ect the outcome of the

matching algorithm.

Following these guidelines the extraction of the 3{D and 2{D rectangles is

a straightforward process. The next section provides the outline of the rectangle

extraction algorithm.
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Figure 5.9: 3{D rectangle formed by lines parallel to the scene directions Vver and
Vhor and its corresponding 2{D quadrangle formed by 2{D lines which meet at the
image vanishing points vver and vhor.

Algorithm outline

Our rectangle extraction algorithm is almost identical for the 3{D and 2{D case.
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Figure 5.10: a)(Left) 2{D quadrangle under perspective projection, b) 2{D rectan-
gle after the perspective e�ect has been canceled.

The di�erences between the 2{D and 3{D cases are the following:

2{D case: We need to extract quadrangles instead of rectangles (see �gure 5.10a).

However, with vanishing points already computed it is possible to undo the

perspective e�ect and map quadrangles to rectangles (see �gure 5.10b).

3{D case: We need to check for coplanarity of the linear segments that form the

borders of the rectangle. Also, more information is available: the local planes

that generate the 3{D edge segments are known.

In the discussion to follow we will present a general algorithm that can be

applied in both 2{D and 3{D cases. The vertical and horizontal lines are directed

according to the Vver and Vhor directions. Thus each line can be represented as a

pair of points (Pstart; Pend). The major steps of the algorithm are the following:

1. Traverse all vertical lines (PVstart; PVend) and record its four closest horizontal

lines (PHstarti; PHendi) in order to satisfy (if possible) the spatial relationships

described in �gure 5.12. Technically, you need to update the pointers connect-

ing the endpoints of the vertical and its closest horizontal lines and reject all
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Figure 5.11: Spatial relationships between 3{D rectangles with sides parallel to the
directions Vhor and Vver. Rectangles lying on the same 3{D plane are related with
the Left, Up or In relationships.

horizontal lines whose endpoints distance from the endpoints of the vertical

line is more than a user supplied threshold maxd. The distance between a

vertical and a horizontal line is de�ned as the distance between their closest

endpoints.

2. Traverse the horizontal lines and check for patterns of four, three or two sided

rectangles by utilizing the spatial relationships extracted in the previous step.

3. Compute the size (section 5.4) of all extracted rectangles10.

4. Compute the graphs that describe the spatial relationships among rectangles

(section 5.4).

Concluding, we have formulated and solved the problem of extracting 3{D

10Note the size of incomplete rectangles may be inaccurate due to lack of enough information.
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and 2{D rectangles from pairs of 3{D directions (Vver ; Vhor) �U3D (section 5.2.2)

and their matching pairs of 2{D vanishing points (vvert; vhor) �VP (section 5.2.1).

The output of this module is pairs of sets of 3{D and 2{D rectangles (R3DI
; R2DI

).

In section 5.5 we will describe how we utilize the extracted sets of rectangles for

the computation of a coarse pose estimate.

V

V

Start End
Start

End

hor

ver

maxd

Figure 5.12: An oriented vertical line and its four closest horizontal lines. Pointers
(relationships) between the end-points of the vertical and horizontal line are shown.
The maximum distance between endpoints of vertical and horizontal lines is maxd.

5.5 Coarse Pose Estimation

So far, we have computed the rotation and internal camera calibration parameters

of the camera by utilizing major vanishing points and 3{D directions in the scene.

The last part of the pose computation module is the calculation of the camera
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translation with respect to the range sensor by matching local 3{D and 2{D features

between the range and image data sets. In section 5.3.1 3{D scene directions are

matched with 2{D image vanishing points in order to solve for the camera rotation.

Let N be the number of matched 3-D scene n0

i and 2-D image ni directions and

M = (
N

2
) be the pairs of 3-D (n0

i;n
0

j) directions which match with pairs of 2-D

(ni;nj) directions. In section 5.4 we described a method to compute 3{D and 2{D

rectangles (R3Dk
; R2Dk

) from clusters of 3{D and 2{D lines, and pairs of the form

((n0

i;n
0

j); (ni;nj)). In other words, 3-D range lines parallel to the two 3-D directions

(n0

i;n
0

j) produce a set of 3-D rectangles R3Dk
and 2-D image lines parallel to the

two 2-D directions (ni;nj) produce a set of 2-D quadrangles R2Dk
. Some of the 3-D

rectangles from R3Dk
may have potential matches on the 2-D quadrangles R2Dk

.

That means that the set R3Dk
� R2Dk

contains pairs of potentially matched 3-D

and 2-D structures. The following set

S = P(R3D1
�R2D1

) [ P(R3D2
�R2D2

) [ : : : [ P(R3DM
�R2DM

)11

is the space of every possible matching con�guration between 3{D and 2{D rectan-

gles.

Exploring every possible combination of matches is an intractable problem

since an exponentially large number of possibilities needs to be considered. In order

to solve the problem we follow the RANSAC framework introduced in [Fischler and

Bolles, 1981]. Instead of considering all possible matches we are randomly sampling

the search space S by selecting sets Cransac of nransac pairs of matched 3-D and 2-D

structures (nransac is the minimum number of matches that can produce a reliable

11P(A) is the powerset of a set A.
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pose-estimate).

RANSAC algorithm

1. Select at random a set Cransac of nransac pairs of 3-D and 2-D structures.

2. Compute the pose Prandom = A(CransacjP0), where P0 = fR;0jPp; fg is the

initial pose computed in section 5.3, and A is a pose-estimator described in

appendix B.

3. Project all rectangles of the set R3D = R3D1
[R3D2

[ : : :[R3DM
on the image

assuming pose Prandom.

4. Verify the existence of an acceptable match by comparing the projected 3{

D rectangles Prandom(R3D) with the set of extracted 2{D rectangles R2D =

R2D1
[R2D2

[ : : : [R2DM
and compute a matching score Qmatch.

5. Repeat the steps 1 { 4 NMax times.

6. Finally, select as correct the match which produced the maximum matching

score Qmatch.

Maximum number of steps

According to [Fischler and Bolles, 1981] if we want to ensure with probability Pr

that at least one of our random selections corresponds to a valid match then the

maximum number of steps is

Nmax = log(1 � Pr)= log(1� b)
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where b is the probability of randomly selecting a sample of nransac correctmatches.

If we assume that in our scene there are K pairs of 3{D and 2{D rectangles that

can be correctly matched then

b = (K=L)nransac

and

L = j(R3D1
�R2D1

)[ (R3D2
�R2D2

)[ : : :[ (R3DM
�R2DM

)j = n1m1+ : : :+nMmM

is the number of all possible pairs of 3{D and 2{D rectangles (where ni = jR3Di
j

and mi = jR2Di
j). Note that the lower the probability of correct matches b the

larger the number of required steps Nmax. Section 5.7 provides the exact number

of steps used in our experiments 12.

Veri�cation

In step 4 of the RANSAC algorithm the set of projected 3{D rectangles is being

compared to the set of extracted 2{D quadrangles. The better aligned are the sets

of 3{D and 2{D structures the larger the score Qmatch of the match. Our algorithm

sets Qmatch to equal the number of 3{D rectangles which map (when projected to

the image) to an extracted 2{D quadrangle.

What remains to be de�ned is how do we decide when two 2{D rectangles

are close with respect to each other. Consider the two 2{D rectangles whose sides

are oriented according to two directions we consider to be vertical and horizon-

tal (�gure 5.13) and let the sizes of the rectangles R and R0 be (Sver; Shor) and

12One issue is the fact that the parameter K is unknown to us. We can assume that K is a
large fraction of L (L is the number of all possibly matched rectangles). For our experiments we
set K = 1=3L.
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(S0

ver; S
0

hor) (the sizes are part of the rectangles representation, see section 5.4).

The two rectangles are close with respect to each other if and only if the distances

between their corresponding sides is less than a threshold which depends on the

size of both rectangles. This threshold is min(averSver; averS0

ver) for vertical edges

and min(bhorShor; bhorS0

hor) for horizontal edges, where aver; bhor � (0; 0:5]. The pa-

rameters aver; bhor are supplied by the user.
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Figure 5.13: De�ning the distance between two rectangles.

5.6 Final Pose Estimation

The coarse estimate computed in the previous section is very important because

it provides an initial solution which can be subsequently re�ned. The re�nement

involves the projection of all 3{D lines of the extracted clusters L3D on the 2{D

image assuming the coarse pose estimate P o and so a set of projected 3{D lines

P o(L3D) is formed. Each individual projected cluster is compared with the groups

of extracted 2{D lines L2D and new line matches among the 3{D and 2{D data sets

are veri�ed. A projected 3{D line matches the closest 2{D line on the image plane,
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if the distance from the closest line is smaller than a user-speci�ed threshold fthresh.

The distance between a projected 3{D and a detected 2{D line is de�ned as the

minimum Euclidean distance between their respective endpoints 13. The increased

number of line matches results in better pose estimation. The pose-estimation

algorithm used for the calculation of the �nal rotation and translation is described

in appendix B. It is our implementation of the method described [Kumar and

Hanson, 1994].

5.7 Results

In this section we present results for the automatic pose estimation between range

and image data for an urban building. The results of the 3-D line and rectangle

extraction from two range scans of Casa Italiana (�gures 3.11 and 3.12) are shown in

�gures 5.14a and 5.14b. For clarity di�erent rectangles are rendered with di�erent

color. Also there are three major clusters of parallel lines (encoded with the colors

red, green and blue).

In the 2-D domain, the three major vanishing points and clusters of 2{D

lines are shown in �gures 5.15a and 5.15b. The automatically computed principal

point of the cameras is also shown; it is the point of intersection of vanishing point

directions on the image.

The next set of �gures (5.15c,5.15d) display the results of extracting 2-D

quadrangles from the 2-D images. The extracted quadrangles from two di�erent

views are overlayed on the 2-D images. Notice that our algorithm may extract

13Note that the projected 3{D and detected 2{D lines are parallel on the image plane since the
rotation has already been computed.



100

\fake" quadrangles due to the fact that it is hard to extract all four borders of

them. That means that we rely on incomplete information and that we have to

introduce \fake" borders (that is lines which have not been extracted by our feature

detector) in order to compute complete four-sided quadrangles.

The 2-D quadrangle extraction algorithm is described in more detail in �g-

ures 5.17 (�rst view) and 5.18 (second view). Figure 5.17a represents two clusters

of 2-D lines which belong to two vanishing points (red: vertical, green: horizontal)

after recti�cation (see �gure 5.10). The same results is presented in �gure 5.17b,

but now a di�erent pair of vanishing points is used (red: vertical, green: horizon-

tal). The result of the 2-D quadrangle extraction in the recti�ed space is shown in

�gures 5.17c and 5.17d. It is possible to de�ne graph structures in that space. Also

the distance between a 2-D and a projected 3-D rectangle is de�ned in the recti�ed

space (�gure 5.13). Figure 5.18 presents the same set of results for the second view

of the building.

The outcome of the coarse pose estimation algorithm (RANSAC algorithm)

is presented next in �gures 5.15e and 5.15f. The extracted 2-D rectangles (red) are

shown overlaid with the projection (green) of those 3-D rectangles which produce

the maximum matching score Qmatch (Qmatch is 9 for the �rst view and 8 for the

second view). The �nal pose (section 5.6) is visually veri�ed in �gures 5.16a and

5.16b where the extracted 3-D lines shown in �gures 5.14a and 5.14b respectively

are projected on the 2-D images assuming the �nal pose. The extracted 2-D lines

are shown in red and the projected 3-D lines in green. As you can see the projected

3-D lines are very well aligned with the 2-D data-sets, which means that both the

registration and the feature extraction algorithms produce accurate results. The
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number of samples the RANSAC algorithm tried was 8457 (6.0 seconds on an

Onyx2) for the �rst view and 223831 (2 minutes and 29 seconds) for the second

view.

Finally, the images 5.16c and 5.16d present the texture-mapped 3-D models

using the computed calibration parameters and pose estimate on the two views of

the model. The texture map, also visually veri�es the accuracy of our method. The

�nal pose estimates are T = (3:71;�2:93; 12:29)T (in meters),

R = f175:65o; (0:017; 0:99; 0:01)T g (angle-axis representation) for the �rst view and

T = (1:35;�2:5; 10:10)T , R = f178:86o; (0:0; 0:99; 0:01)T g for the second.

5.8 Threshold sensitivity

There are three types of thresholds used in this chapter.

� A thresholdmaxd used in the rectangle extraction process (see section 5.4). In

the 3-D case the value of maxd was 0.5 m (for the �rst view of Casa Italiana)

and 0.9 m (for the second view). In the 2-D case maxd was 15 pixels for both

views. Small values for maxd result to under-estimation of the number of

extracted rectangles, whereas large values lead to the extraction of �ctitious

rectangles. Large values can be used since �ctitious rectangles are �ltered out

in the matching process.

� Thresholds used for matching (NMax, aver and bhor). The value of the max-

imum number of iterations of the RANSAC procedure NMax is important,

since an inadequate number of iterations would lead to a failure to compute

the correct match between 3-D and 2-D features. The value of NMax is con-
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servatively estimated by setting a small value to the probability of a correct

match14 (see section 5.5). The thresholds aver and bhor (see the last part of

section 5.5) are used for the veri�cation of overlap between a 2-D and 3-D

projected rectangle. The smaller the values of ahor and bver the larger the

similarity between rectangles needed for veri�cation. The algorithm is sen-

sitive in the selection of those thresholds. In our experiments we used the

maximum value of 0.5 units for both thresholds.

� A threshold fthresh used in the �nal pose estimation routine of section 5.6 (set

to the value of 50 pixels in our experiments). A large value for this threshold

results in the detection of false matches between 3{D and 2{D lines and the

�ne pose estimate is worse than the coarse pose estimate. A small value on

the other hand results in a few new matches and the coarse pose estimate

does not improve signi�cantly.

5.9 Summary

We have developed a method to accurately register a range with an image data

set in urban environments. We are exploiting the parallelism and orthogonality

constraints that naturally exist in such environments in order to match extracted

sets of rectangular structures. The use of a RANSAC technique for the computation

of an optimal match between the data-sets is feasible due to the reduction of the

search space from the set of 3{D and 2{D lines to the set of 3{D and 2{D rectangles.

The RANSAC technique on the other hand is the computational bottleneck since

14This probability is a-priori uknown to us though, and this small value is just a guess.
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Figure 5.14: a,b) Clusters of 3{D lines (color encodes di�erent directions) and
extracted 3{D rectangles (rectangles are rendered as solids of di�erent color for
clarity). Two di�erent views of the building.

a large number of potential matches need to be checked.
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Figure 5.15: Results. a,b) 2{D images and clusters of 2{D lines, where di�erent
colors correspond to di�erent vanishing points. c,d) Extracted 2{D quadrangles
(two views). e,f) Extracted 2{D quadrangles (shown in red) and Qmatch matched
3{D rectangles projected on images after coarse pose estimation (shown in green).
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Figure 5.16: Results. a,b) Projected 3{D lines on the images after �nal pose
estimation (shown in green). The extracted 2{D lines are shown in red. c,d)
Images texture-mapped on 3{D model assuming �nal pose.
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Figure 5.17: 2-D lines and 2-D graphs (�rst view). Top row: a) Recti�ed 2-D
lines corresponding to two vanishing points (red vertical, green horizontal towards
the left of the scene). b) Recti�ed 2-D lines corresponding to two vanishing points
(red vertical, green horizontal towards the right of the scene). Bottom row: c)
Recti�ed 2-D rectangles (with graph relations) corresponding to recti�ed lines of
(a). d) Recti�ed 2-D rectangles (with graph relations) corresponding to recti�ed
lines of (b).
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Figure 5.18: 2-D lines and 2-D graphs (second view). Top row: a) Recti�ed 2-
D lines corresponding to two vanishing points (red vertical, green horizontal towards
the left of the scene). b) Recti�ed 2-D lines corresponding to two vanishing points
(red vertical, green horizontal towards the right of the scene). Bottom row: c)
Recti�ed 2-D rectangles (with graph relations) corresponding to recti�ed lines of
(a). d) Recti�ed 2-D rectangles (with graph relations) corresponding to recti�ed
lines of (b).
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Chapter 6

Vision of the future

In this thesis, we address the need for highly realistic and accurate representations

of the 3-D world. We designed and developed a system to recover geometric and

photometric 3-D models by utilizing state-of-the-art range sensing technology and

by enhancing the recovered geometric representation with photometric observations

gathered by a conventional camera. The goal is the development of a comprehen-

sive system, which can explore scenes of large scale, with a minimum of human

intervention.

We feel that we have attacked one of the most diÆcult problems in computer

vision and robotics research in a unique and e�ective manner. Below we summarize

our contributions:

� Range segmentation and feature extraction algorithm (chapter 3). These

methods allow us to drastically simplify the dense range data-sets and to

extract high level features which can be used for registration purposes.

� Creation of geometrically correct solid models (chapter 4). Partial solid
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sweeps are created by extruding the segmented planar surfaces along the sens-

ing directions. The �nal model is the result of boolean intersection between

the partial solid volumes.

� Automated range to image registration algorithm (chapter 5). In order to

achieve this result we implemented various feature extraction algorithms (van-

ishing points, 3-D rectangles and 2-D quadrangles). The vanishing points are

used for the calibration of the camera sensor and for the computation of the

rotation between the camera and the range sensor. Finally, a method for the

automated matching between 3-D and 2-D features provides a solution for

the translation.

We believe that all these modules are of vital importance for a exible photo-

realistic 3-D model acquisition system. Segmentation algorithms simplify the dense

data-sets and provide stable features of interest which can be used for registration

purposes. The solid modeling provides geometrically correct 3-D models. The au-

tomated range to image registration can increase the exibility of the system by

decoupling the slow geometry recovery process from the image acquisition process;

the camera does not have to be pre-calibrated and rigidly attached to the range

sensor. Finally, sensor planning can be used for enhancing incomplete scene models

by carefully choosing the position of the sensor in order to cover previously unseen

parts (due to self-occlusions). The �rst steps in the direction of automatic sensor

planning for outdoor scenes are described in section 6.3 of this chapter. This thesis

presents the �rst photometrically enhanced solid CAD model of an urban structure

created from range and image measurements.
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6.1 Limitations

Due to the scope of the system, there are still a number of open technical issues

that need to be addressed:

Segmentation The segmentation routines �t planes to the extracted clusters of

points. Fitting of general smoothly varying surfaces is needed in non-planar

parts of the scene. Also a number of thresholds have to manually be set by

the user in order to customize the segmentation.

Range-Range Registration Our method is based on matching automatically ex-

tracted features between views. We did not automate the matching between

3-D features. We believe, however, that a RANSAC-type approach of match-

ing 3-D lines or 3-D rectangular features can provide the desired registration

results.

Solid Modeling The solid modeling part requires very accurate calibration be-

tween the range images. Also the whole object must be in the �eld of view

of the sensor at each scanning operation. This problem can be attacked if we

replace the boolean intersection of the solid sweeps with the uni�cation of the

complements of the sweeps.

Range-Image Registration Our algorithm operates in scenes which contain lin-

ear features with strong orthogonality constraints. We are not certain how

this algorithm is going to extend to general 3-D scenes. Also in the self-

calibration of the camera sensor the distortion is considered negligible.

Texture-mapping Currently we do not merge multiple images (textures) on the
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3-D model but we texture-map only one brightness image per view. There

are methods to attack the problem (i.e. view-dependent texturing [Debevec

et al., 1996] or statistical texture estimation [Coorg and Teller, 1999]). All ap-

proaches implement heuristics though and the research problem is still open.

6.2 Future Work

The complexity of the problem and the richness of the acquired 3-D and 2-D data-

sets open a number of future exploration paths along the lines of the system pre-

sented in this thesis.

� Range segmentation of non-planar regions and feature extraction of non-linear

curves can lead to automated range-to-image registration methods which are

applicable to more general scenes. The data reduction due to segmentation

can be also achieved with mesh simpli�cation techniques [Guskov et al., 2000].

Mesh simpli�cation can potentially be utilized for increasing the eÆciency of

solid modeling.

� A very important and hard problem that needs to be addressed in the context

of range to image fusion is the blending of brightness images captured from

overlapping viewpoints on the 3-D model. Is it possible to perform intelli-

gent blending, especially in the case of blending a sequence of images (video

streams) which cover the whole scene? The main question is which sets of

images to use when a viewer \sees" the scene from a particular viewpoint.

Choosing images which have been captured from locations close to the viewer

and also choosing images of higher resolution can lead to high quality render-
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ing which can reproduce specular reections that may exist in the captured

scene. A di�erent approach involves the extraction and use of the actual

surface albedo maps along the lines of [Bernardini et al., 2000].

� Range-sensing fails to measure transparent surfaces. Also very complicated

parts of 3-D scenes (i.e. vegetation) are very hard to model. These areas

can be represented only with images (i.e. image-based rendering approaches)

and an exciting research opportunity would be in the coexistence of texture-

mapped solid models with geometry-less scene representations.

� Another area, which is related to modeling and has not reached its true poten-

tial yet, is that of sensor planning. Sensor planning can reduce the amount of

sensing operations needed to capture a complete model. In order though to be

operational on outdoor scenes, a navigational module in a partial known world

is needed. This module is currently under development in our lab [Gueorguiev

et al., 2000] and it runs on a mobile robot where the laser range scanner is lo-

cated (see �gure 6.1). The integrated project (called AVENUE) [Allen et al.,

2001] contains all the necessary modules (mobile robot navigation, partial 3-D

and 2-D maps of the environment of Columbia Campus, sensor planning and

site modeling) which can enable a completely autonomous site exploration

system. The next section describes the interactive module implemented for

the purposes of sensor planning.
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Figure 6.1: Mobile robot used for navigating and exploring urban environments.

6.3 Interactive Sensor Planning

We want to end this thesis with a presentation of our interactive sensor planning

module, whose integration with our other algorithms will provide an autonomous

range acquisition system for outdoor scenes. In 3-D modeling tasks using range

scanning, there is a large cost associated with each sample data acquisition. This

includes long acquisition times and very large data sets. Traditionally, most systems

that do modeling rely on oversampling the scene, which can be expensive, time-

consuming and can still leave gaps where scene elements are missed. The Digital

Michelangelo project at Stanford [MICHELANGELO, 2000] is an example of this,
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where gigabytes of data scans were acquired, yet small gaps in the range images

persist due to the complexity of the scene.

A solution to this problem is to use sensor planning. In cluttered and com-

plex environments such as urban scenes, it can be very diÆcult to determine where

a camera should be placed to view multiple objects and regions of interest. It is

important to note that this camera placement problem has two intertwined com-

ponents. The �rst is a purely geometric planner that can reason about occlusion

and visibility in complex scenes. The second component is an understanding of the

optical constraints imposed by the particular sensor (i.e. camera or range sensor)

that will a�ect the view from a particular chosen viewpoint. These include depth-

of-�eld, resolution of the image, and �eld-of-view, which are controlled by aperture

settings, lens size and focal length. To properly plan a correct view, all of these

components must be considered.

As part of our goal to automate the model acquisition process, we have

prototyped a sensor planning system that can be used to acquire camera views of

buildings in cluttered urban environments. We believe this can serve as a �rst step

to creating a true sensor planning system for modeling tasks.

What we have built is an interactive graphical system where sensor planning

experiments are performed [Stamos and Allen, 1998]. This system allows us to

generate, load and manipulate di�erent types of scenes and interactively select the

target features that must be visible by the sensor. The results of the sensor planning

experiments are displayed as 3-D volumes of viewpoints that encode the constraints.

Virtual sensors placed in those volumes provide a means of synthesizing views in

real-time and evaluating viewpoints. In the future, we hope to link this system
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up with a mobile robot sensing system that can autonomously navigate to these

planned viewpoints [Allen et al., 2001].

6.3.1 Visibility Planning

The computation of the visibility volume involves the computation of the boundary

of the free space (the part of the 3-D space which is not occupied by objects)

and the boundary between the visibility volume and the occluding volume, which

is the complement of the visibility with respect to the free space. The locus of

occlusion{free viewpoints with respect to the 3-D solid model of the scene objects

U = fu1; u2; : : : ; umg and the set of target polygonal features T = ft1; t2; : : : ; tng is

the visibility volume V (U; T ). Each target feature ti is a 2-D connected part of the

scene's boundary B(U). The complement of the visibility volume with respect to

the free space F (U) (open set in space which is not occupied by any objects) is the

occluding volume O(U; T ), that is O(U; T ) = F (U) � V (U; T ). Both O(U; T ) and

V (U; T ) are open sets. Details can be found in [Tarabanis et al., 1996, Abrams et

al., 1999].

6.3.2 Field of View

A viewpoint which lies in the visibility volume has an unoccluded view of all tar-

get features in the sense that all lines of sight do not intersect any object in the

environment. This is a geometric constraint that has to be satis�ed. Visual sen-

sors however impose optical constraints having to do with the physics of the lens

(Gaussian lens law for thin lens), the �nite aperture, the �nite extent of the image

plane and the �nite spatial resolution of the resulting image formed on the image
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Figure 6.2: Field of view cone (shaded region) for viewing direction v and �eld of
view angle a. The targets are enclosed in the sphere of radius Rf .

plane, as well as lens distortions and aberrations.

We now consider the �eld of view constraint which is related to the �nite

size of the active sensor area on the image plane. The targets ti are imaged if their

projection lies entirely on the active sensor area on the image plane. This active

sensor area is a 2-D planar region of �nite extent. Thus the projection of the target

features in their entirety on the image plane depends not only on the viewpoint Pf ,

but also on the orientation of the camera, the e�ective focal length and the size

and shape of the active sensor area. Those parameters control the position and

orientation of the active sensor area in space.

For a speci�c �eld of view angle a and a speci�c viewing direction v we

compute the locus of viewpoints which satisfy the �eld of view constraint for the

set of targets T . If we approximate the set of targets with a sphere Sf of radius Rf

and of center rs containing them, then this locus is a circular cone Cfov(v; a; rs; Rf),

called the �eld of view cone (�gure 6.2). The cone axis is parallel to v and its angle

is a. Viewpoints can translate inside this volume (the orientation is �xed) while

the targets are imaged on the active sensor area. The locus of the apices of these

cones for all viewing directions is a sphere Slim whose center is rs and its radius is
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Rf= sin(a=2) (�gure 6.2).

6.3.3 Intersecting the Two Constraints

The locus of viewpoints which satisfy more that one constraint is calculated by

intersecting the locus of viewpoints which independently satisfy each individual

constraint. Integrating the loci calculated in the previous sections we have:

I(U; T;v; a) = V (U; T ) \ Cfov(v; a; T )

where I(U; T;v; a) is the integrated locus (candidate volume), when the viewing

direction is v and the �eld of view angle is a. Both the visibility volume and �eld

of view cone are represented as solid CAD models. The integrated locus is the

result of a boolean operation (intersection) between solids. Intuitively, this solid

is the result of the intersection of the visibility volume with a �eld of view cone.

Examples of these regions are given in section 6.3.5.

6.3.4 Interactive System Components

The user interacts with the scene through the graphics models, which can be inter-

actively manipulated. All actions are propagated to the CAD modeler where the

boolean operations between models are performed and where the sensor planning

algorithms are implemented.

The user selects the target features on the boundary of the scene model and

the part of the scene which is going to be the occluding object. First the visibility

volume (see section 6.3.1) is computed and displayed overlaid on the scene. After

that the user selects a camera orientation v and a �eld of view angle a and the
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corresponding �eld of view cone is computed (see section 6.3.2) and displayed.

Finally, the intersection of the previous volumes is computed and this is the �nal

result (candidate viewpoints).

The camera selection module allows a virtual camera to be placed and ori-

ented inside the set of candidate viewpoints. The camera's �eld of view angle is

interactively set by the user. The resulting image can be used to verify the correct-

ness of the method. Sensor Planning experiments can be performed in real{time

using this system.

6.3.5 Experimental Results

We have tested the system using a site model of Rosslyn, Virginia. Our initial

input was a textured-mapped VRML model of the city provided by GDE Systems

Inc (http://www.gdesystems.com - see Figure 6.3a). Using our model translator

we transformed it to a solid CAD model (�gure 6.3b) which consisted of 488 solid

blocks. We applied the sensor planning algorithms to a part of this model whose

boundary consisted of 566 planar faces.

In the �rst experiment (�gure 6.4a) one target (blue face) is placed inside the

urban area of interest. The visibility volume is computed and displayed (transparent

polyhedral volume). For a viewing direction of v1 = (0o; 22o; 0o) (Euler angles

with respect to the global Cartesian coordinate system) and �eld of view angle of

a1 = 44o, the �eld of view locus is the transparent cone on the left. The set of

candidate viewpoints I1(v1; a1) (intersection of visibility with �eld of view volume)

is the partial cone on the left. For a di�erent viewing direction v2 = (0o; 91o; 0o)

the set of candidate viewpoints I1(v2; a1) is the partial cone on the right.
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In the second experiment (�gure 6.4b) a second target is added so that two

targets (blue planar faces) need to be visible. The visibility volume, the �eld of view

cone for the direction v1 and the candidate volumes I2(v1; a1) (left) and I2(v3; a1)

(right) are displayed. The viewing orientation v3 is equal to (0o; 71o; 0o). The visi-

bility volume and the candidate volume I2(v1; a1) are subsets of the corresponding

ones in the �rst experiment.

If we place a virtual camera inside the volume I1(v2; a1), set the �eld view

angle to a1 and the orientation to v2, then the synthesized view is displayed on

�gure 6.5a. The target is clearly visible. Placing a virtual camera outside of the

visibility volume (point (509:92; 41:70; 366:80)) results in the synthesized view of

�gure 6.5b. Clearly the target is occluded by one object of the scene. The orienta-

tion of the camera is (0o; 84o; 0o) (for every viewpoint outside the visibility volume

there does not exist any camera orientation that would result in an unoccluded view

of the target). If we place a virtual camera on the boundary of the the candidate

volume I1(v2; a1) (point (375:59; 52:36; 348:47)), then in the resulting synthesized

view (�gure 6.5c) we see that the image of the target is tangent to the image of one

object of the scene. Again the camera orientation is v2 and the �eld of view angle

a1.

In �gure 6.5d we see a synthesized view when the camera is placed on the

conical boundary of the candidate volume I2(v3; a1). The camera's position is

(159:42; 30:24; 347:35). The transparent sphere is the sphere Sf (see section 6.3.2)

used to enclose the targets. We see that Sf is tangent to the bottom edge of the

image, because the viewpoint lies on the boundary of the �eld of view cone. Finally

the �gure 6.5e has generated by a camera placed on the polyhedral boundary of



120

the candidate volume I2(v3; a1) (position (254:78; 49:28; 350:45)).

We have implemented an interactive system where sensor planning experi-

ments can be performed in real-time for complex urban scenes [Stamos and Allen,

1998]. The system can compute visibility and �eld of view volumes as well as their

intersection. The resulting locus consists of viewpoints which are guaranteed to be

occlusion{free and places targets within the �eld of view. Object models and tar-

gets can be interactivelymanipulated and camera positions and parameters selected

to generate synthesized images of the targets that encode the viewing constraints.

Given site models of scenes, the system can be used to plan view positions for a

variety of tasks including surveillance, safety monitoring, and site design.



121

Figure 6.3: a) VRML Graphics model of Rosslyn, VA. b) Solid CAD model com-
puted from the graphics model.
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Figure 6.4: Two experiments. a) (top �gure) One target and b) (bottom �gure) two
targets are placed in the urban area. The targets are planar faces. The Visibility
Volumes (transparent polyhedral volumes), the Field of View Cones for the direction
v1 (transparent cones) and the Candidate Volumes (intersection of the visibility
volumes with the �eld of view cones) for the viewing direction v1 (left partial cones)
and for the directions v2 (right partial cone, top �gure) and v3 (right partial cone,
bottom �gure) are displayed. The Field of View Cones for the directions v2 (top)
and v3 (bottom) are not shown.
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Figure 6.5: Synthesized views. Single target (blue face): the camera is placed
a) (clockwise from upper-left) inside the candidate volume, b) out of the visibility
volume and c) on the boundary of the candidate volume. Two targets: the camera is
placed on d) the conical boundary and e) the polyhedral boundary of the candidate
volume.
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Appendix A

Camera Model and Line

Representation

This section describes the projection model that we assume for our camera sensor.

The 2{D camera follows the perspective projection model as shown in �gure A.1.

The e�ective focal length of the camera is f (expressed in pixel units) and the

principal point is Pp = (px; py). 3{D scene points Pi are projected on 2{D image

points pi, and 3{D scene linear segments L = (Pi;Pj) are projected on 2{D image

linear segments l = (pi;pj). The 3{D to 2{D projection of the line segment L to

the line segment l can be mathematically described as: l = P(L), where

P = P(R;Tjf;Pp):

That means that the projection mapping P depends on the relative position of the

range and image sensors (R;T) and on the internal calibration camera parameters

(f;Pp). We assume that our image has been corrected with respect to radial

distortion e�ects. We also assume that our range sensor provides accurate 3{D
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Figure A.1: Camera model

positions of sampled 3{D points with respect to its coordinate system (�gure A.1).

We represent 2{D points and 2{D lines as antipodal-points on the Gaussian

sphere (�gure A.2b). In this manner we can represent 2{D points at in�nity1. Let

~COP be the center of projection of our camera (�gure A.2a). A 2{D point pi can

be represented by the 3{D unit vectors �ni (note that there is a sign ambiguity).

That means that 2{D points map to pairs f(�; �); (�+ �;��)g of antipodal points

on the Gaussian sphere (�gure A.2b). We can use a similar representation for 2{D

lines: the line l12 connecting the points p1 and p2 can be uniquely represented

by the 3{D unit vectors �N12 = �(n1 � n2) which correspond to the normals of

the plane < p1;p2; ~COP >. There is a one-to-one correspondence between 2{D

points and antipodal-points on the Gaussian sphere. The same holds for 2{D lines.

1You can view those points as the of intersection of parallel 2{D lines on the image plane.
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Figure A.2: a) Representing 2{D points and lines as antipodal-points on the Gaus-
sian sphere. A point is represented by the pair of unit vectors �ni and a line by
the pair �n1 � n2. b) A point in the Gaussian sphere can be represented by the
direction (�; �) (latitude, longitude). A pair of antipodal points correspond to the
directions d1 = (�; �) and d2 = (� + �;��), where 0 � � � 2� and 0 � � � �=2.
The upper half of the Gaussian sphere is enough for the representation of all pairs
of antipodal points.

Thus a 2{D point and a 2{D in�nite line can be represented by pairs of the form

(�; �), where 0 � � � 2� and 0 � � � �=2. This representation is crucial in the

algorithms that are described in chapter 5. Note, that the point ~COP does not

need to be the exact center of projection. The mapping from points and lines to

directions on the Gaussian sphere holds for all ~COP 6= 0.
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Appendix B

Pose Estimation from Line

Matches

Pose estimation from a set of potentially matched 3-D and 2-D structures can be

translated to matching the linear borders of those structures. We adapted the

algorithm proposed by Kumar and Hanson [Kumar and Hanson, 1994] for the reg-

istration between range and 2{D images when a set of corresponding 3{D and 2{D

lines is given. The internal calibration parameters of the camera are assumed known

since they have been computed by the extracted vanishing points (section 5.3.2).

A full optimization with respect to both rotation and translation is performed for

the computation of the �nal pose (section 5.6). During the search for a coarse pose

estimate (section 5.5) the pose is optimized with respect to translation only (since

the rotation has been already computed). That involves the solution of a linear

system of equations.

Let Ni be the normal of the plane formed by the ith image line and the

center of projection of the camera (�gure B.1). This vector is expressed in the
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coordinate system of the camera. The sum of the squared perpendicular distance

of the endpoints e1i and e
2
i of the corresponding ith 3{D line from that plane is

di = (Ni � (R(e
1
i ) +T))2 + (Ni � (R(e

2
i ) +T))2; (B.1)

where the endpoints e1i and e
2
i are expressed in the coordinate system of the range

sensor. The error function we wish to minimize is

E1(R;T) = �N
i=1di: (B.2)

This function is minimized with respect to the rotation matrix R and the

translation vector T. This error function expresses the perpendicular distance of

the endpoints of a 3{D line from the plane formed by the perspective projection

of the corresponding 2{D line into 3{D space (�gure B.1). The exact location of

the endpoints of the 2{D image segment do not contribute to the error metric and

they can move freely along the image line without a�ecting the error metric. In

this case we have a matching between in�nite image lines and �nite 3{D segments.

The computation of the translation, when the rotation is already known,

involves the solution of a linear system of three equations in three unknowns. The

full optimization of the metric is explained in the following section.

B.1 Full Optimization

The minimization of that metric is similar to the iterative technique proposed by

Horn [Horn, 1990]. Let ei0 = Rei, where ei is a 3{D point expressed in the coor-

dinate system of the range sensor. Then an incremental in�nitesimal rotation d!

will transform ei
0 to

ei
00 = ei

0 + d! � ei
0: (B.3)
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Using this fact the application of an in�nitesimal incremental rotation d! and an

incremental translation dT would change the error metric to

E1(RR(d!);T+ dT): (B.4)

By taking the derivatives of this error with respect to d! and dT and setting the

results equal to 0 we reach a linear system of 6 equations with 6 unknowns (the

elements of d! and dT). The solution of this system (d!, dT) provides updates

for the rotation matrix R and the translation vector T. The rotation is represented

as a unit quartenion in order to convert non-in�nitesimal rotational estimates d!

to valid rotational representations. That procedure is run iteratively until the error

metric becomes smaller than a threshold or a maximum number of iterations is

reached.

The results are very accurate when there are no mismatches between 3{D

and 2{D lines. The extraction of reliable and accurate 3{D and 2{D features is

very important for the accuracy of the �nal registration.

The system of equations has a solution if at least 3 corresponding 3{D and

2{D lines are given. Those lines should not be coplanar and should not meet at

the same point in space. In the latter case there are in�nite number of solutions

for the translation.
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Figure B.1: Error metric in pose estimation


