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Chapter 1

A quick overview of
computing

1.1 Introduction

It has become clear to me over the years that, whenever students see the word
“computer”, they visualize this thing:

Figure 1.1: Computer ?

Well, more or less... Of course, the figure that will register in your mind
depends on the setting and on the current technology (which is very dynamic
by the way). For instance, I am sure that, to you, a computer would range from
being a laptop, to possibly an advanced PDA (Personal Digital Assistant) or a
smart phone (hence I will not ask you to turn off your cell phone in class).

Nevertheless, Figure 1 is definitely a standard interpretation of the word
computer. Next thing you know is that someone is sitting behind the keyboard,
looking very eagerly into the screen, and with the only moving parts of the
body being the eyes and fingers: That’s what a general audience would think
computer science is all about. This course will hopefully help us change that
image.
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The concept that we should focus on is computation. Let’s start with a
(rather unclear) definition:

com.pu.ta.tion: noun a: the act or action of computing, b: the use or
operation of a computer (Merriam-Webster Dictionary)

Although computation is carried out by a computer (meaning b), computa-
tion is also an abstract notion (meaning a). It is a process by itself that we find
everywhere in nature. To some extent is it independent form the underlying
physical machine (e.g. the computer). Computation is what makes the field of
computer science, a science. We will explore this notion further when we talk
about Algorithms.

For the time being, let me attempt to shake or blur Figure 1 in your mind.
I will do that by drawing a parallel between a biological process and a few
components of a “computer”. This will help interpret the biological process as
a computation. But more importantly, this computation, being biological in
nature, does not require the computer of Figure 1.

1.2 Who said the first computer was invented in
the 1940s?

An important question in biological sciences is what makes life? A simple answer
is Proteins and Nucleic Acids. Proteins are responsible for almost all body
functions. Nucleic acids encode information necessary to produce the proteins
and pass this “recipe” to subsequent generations (permanent storage). We have
two kinds of nucleic acids: ribonucleic acids RNAs and dioxy-ribonucleic acids
DNAs.

A DNA is a chain of simpler molecules, namely sugar molecules. Each sugar
molecule is attached to a base and this is what makes it different from the other
sugar molecules. We have 4 bases, A, G, C, and T, thus the DNA can be viewed
as a long sequence of 4 letters.

The DNA is actually a double stranded helix (discovered in 1953). The two
strands hold together because each base in one strand bonds with a comple-
mentary base in the other. A↔T and C↔G. This makes it more stable and
suitable as a storage device. The RNA is similar to the DNA but it is single
stranded (hence less stable), and every occurrence of a T is replaced by a U. U
also bonds with A.

The genome is a collection of long DNAs that are called chromosomes. A
gene is a stretch along a chromosome that encode the information for producing
a specific protein. Only certain stretches on the chromosomes are genes. If fact,
it was believed that 90% of the our DNA is junk (well, not anymore!).

How does a gene produce a protein? A process called transcription creates
an RNA by separating the DNA strands around the gene area (see figure be-
low). The RNA is then synthesized into a protein. This latter process is called
translation. The protein interacts with other proteins, with RNAs, and with
DNA to perform several important functions in the body. The following figure
illustrates the two processes of transcription and translation.
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transcription translation

DNA

protein

RNARNA

gene

another protein

Figure 1.2: Biology in one picture

Here’s a parallel of the biological process that is seen in computers. Much
like DNA, the hard disk of a computer permanently stores information for later
retrieval. The information is stored in some form; for instance, if it is a code, it
is usually in a textual format, following a certain syntax, like C++ or Java. The
code plays the role of an RNA. While an RNA is synthesized into a protein, the
code is compiled into an executable program that is loaded into memory. Now
the program is our protein. The program runs and performs some tasks while
interacting with other programs (e.g. networks), reading and writing data from
and to the hard disk, and possibly updating other codes.

retrieve code

storage device
e.g. Hard Disk

load in memory

text
e.g. C++ code

01001010100
00101010
00001010101
1111

program

another program

compile

Figure 1.3: Biological process in computer jargon

The following table summarizes this parallel between a biological computer

and the electronic computer that we know:

Biology Electronics
DNA (chemical) Hard disk (magnetic)
Transcription Data retrieval
RNA (chemical data) Code (textual data)
Translation Compilation
Protein Program
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Therefore, one can claim that the biological process is actually a computa-
tion. Moreover, this makes our body a computer!

1.3 So what is a computer then?

Well, a computer is a device (now electronic) that carries out a computation
(circular definition?). Without plunging deeply into linguistics, a computer is
simply a device that can store, retrieve, and process data. According to this
definition, your brain is a computer! Don’t be surprised because this is definitely
true (I will prove it to you shortly).

We have seen the idea of storage and retrieval when we discussed the parallel
between a biological computer and an electronic one. What about processing?
Well, in modern computers, processing is done mainly using a memory and a
Central Processing Unit (CPU). When the program obtained by the compiler
is executed, the following occurs:

• The program is loaded into memory by the Operating System (OS), which
is another program already running

• The operating system instructs the CPU to start reading instructions at
the given memory location where the program is loaded

• The CPU start fetching instructions and data into special registers

• The registers act like the short term memory of the CPU, they hold data
needed to perform the most recently fetched instructions

• An Arithmetic and Logic Unit (ALU) inside the CPU performs the oper-
ations

Here’s the big picture:

text
e.g. C++ code

01001010100
00101010
00001010101
1111

machine
language

compiler OS

memory

CPU

software hardware

compile time run time

Figure 1.4: The big picture, well not so big...

Since we often require a computer to accomplish a certain task, a compu-
tation is not just a number of random operations consisting of data storage,
retrieval, and processing. The most fundamental concept in computer science is
the Algorithm 1. Informally speaking, an algorithm is a well defined sequence of
computational steps that accomplish a certain task. The task can be visualized

1The word algorithm comes from the arabian mathematician Alkowarizmi 780 - 850 A.D.
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as a relation between an input and an output. Therefore, an algorithm is a well
defined sequence of computational steps that transforms some input into the
desired output. Here are some examples:

• sorting numbers: the input is a set of numbers, the output is the same set
of numbers in sorted order (from smallest to largest). The algorithm in
this case is a sorting algorithm.

• cooking: the input is a set of ingredients, the output is the dish. The
algorithm in this case is a recipe.

• addition: the input is two numbers, the output is one number which is
their sum. The algorithm in this case is an adder.

Therefore, before a computer can perform a task, an algorithm for perform-
ing that task must be discovered. In fact, designing algorithms is one of the most
important fields in computer science. The problem of finding algorithms goes
back to the 1930s when mathematicians like Kurt Gődel, Alan Turing, Alonzo
Church, and others were trying to answer the fundamental question whether
every task has an algorithm. Is is actually then that the stage was set for the
emergence of a new discipline known as computer science.

With the power of abstraction, once an algorithm for a particular task has
been found, and proven correct, then it can be used safely as a black box or
as a building block, without having to worry about how or why this algorithm
works (unless otherwise you are interested in such knowledge). Of course, issues
such as writing the code, finding an efficient implementation, or adapting to a
special machine will eventually arise.

To materialize the notion of algorithm, let’s look for a moment at the task of
adding two numbers. We all know how to add two numbers (hopefully). Let’s
try the following (thanks to Yale Patt for the idea):

Add 12 and 8:

12
+ 8

Add 129 and 17:

129
+ 17

Read in reverse to see the answers. .641=71+921, 02=8+21 :srewsnA

If everything works as I expect, you will actually perform two different al-
gorithms, one for each addition. For the first addition, you are likely to write
down the digit 2 followed by the digit 0. The answer is 20. For this addition,
you perform a simple lookup. The answer to 12+8 is somehow stored perma-
nently in your brain. When you see the pattern 12+8, you access that area in
your brain and retrieve the answer. For the second addition, you are likely to
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write down the digit 6 first, followed by the digit 4, followed by the digit 1. The
answer is 146. For this addition, you perform the standard addition procedure
that ripples a carry. Therefore, you add 9 and 7, which gives 16, you write down
the 6 and you carry 1, etc... You use your short term memory (or in this case
maybe the paper) to keep track of the carry. In either case, you are doing what
a computer would do.

You may be unaware of the representation of the addition algorithm in your
brain, but it is definitely encoded into your brain cells. Similarly, a computer
needs a way to represent algorithms in a form that is compatible with the
machine. A representation of an algorithm is often called a program. You may
have seen these programs, written in C++ or Java for instance, and printed on
a piece of paper, or displayed on the screen. The whole process of writing the
program and encoding it is called programming. Programs and the algorithms
they represent are called software. The machine itself is referred to as hardware.
Therefore, the software must be compatible with the hardware for it to work.
For instance, a PC and a MAC require different software.

1.4 The standard hello world in C++

Here’s a program in C++ that outputs “Hello World”:

#include <iostream>

using std::cout;

int main() {

cout<<’’Hello World\n’’;

}

12



Chapter 2

Basic elements of
programming

2.1 Introduction

We argued last time that a program is a representation of an algorithm. There-
fore, any powerful programming language must provide elements to represents
ideas and thoughts. These elements are:

• Expressions: represent simple entities, like integers, characters, strings,
etc...

• Combination: provides a way to build compound expressions from simpler
ones

• Abstraction: provides ways by which compound expressions can be named

For instance, the following program outputs the number 486.

#include <iostream>

using std::cout;

int main() {

cout<<486;

}

To output the character ’c’, we could have written the following instead:

cout<<’c’;

There are special characters that can be outputed using the escape character
backslash ’\’. Such special characters are called escape sequences:

escape sequence description
\n newline
\t horizontal tab
\r carriage return
\a alert (beep)
\\ backslash
\’ single quote
\” double quote

13



To output the string “Hello World” followed by a newline, we could have
written the following statement:

cout<<’’Hello World\n’’;

Basic expressions can be combined together to form more complex expres-
sions. By now you might have noticed that every statement in C++ must end
with a semicolon. A statement is a form of combining expressions together. For
instance “cout<<486” consists of the output stream, which is a built in entity,
the << operator, and the number 486. The semicolon provides a way to sep-
arate statements. Moreover, a bunch of statements can be combined together
using the open { and close }. Here are some examples of combining expressions
in statements using the arithmetic operators and numbers.

#include <iostream>

using std::cout;

int main() {

cout<<137+349<<’’\n’’;

cout<<1000-334<<’’\n’’;

cout<<5*99<<’’\n’’;

cout<<10/5<<’’\n’’;

cout<<2.7+10<<’’\n’’;

cout<<7%2<<’’\n’’;

}

The above example will produce the following:

486

666

495

2

12.7

1

The following table describes the different operators used above:

operator description
+ addition
− subtraction
∗ multiplication
/ division
% modulus

In principle there is no limit to how complicated an expression is, here’s an
example:

cout<<3*((2*4)+(3+5))+((10-7)+6);

This will evaluate to 51. An interesting question is the following: how is
the above expression evaluated? Each arithmetic operator must have a value
for both of its operands. Therefore, the innermost parentheses are evaluated
first. We say that parentheses have the highest precedence among the operators
because they enforce an order on the evaluation of the sub-expressions. Without
parentheses, the above expression would look like the following:
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cout<<3*2*4+3+5+10-7+6;

This will evaluate to 42. In general, the order of evaluation of an expression
depends on the precedence of the operators in that expressions. The following
table summarizes the precedence level of various operators:

operator order of evaluation
() Evaluated first. If parentheses are nested, the ex-

pression in the innermost pair is evaluated first. If
there are several pairs at the same level, they are
evaluated left to right.

∗ / % They are evaluated second. If there are several,
they are evaluated left to right.

+ − Evaluated last. If there are several, they are eval-
uated left to right.

Let’s us write a program to output the sum of the integers from 1 to 100,
i.e.

∑100
i=1 i.

#include <iostream>

using std::cout;

int main() {

cout<<1+2+3+4+5+6+7+8+9+10+

11+12+13+14+15+16+17+18+19+20+

21+22+23+24+25+26+27+28+29+30+

21+22+23+24+25+26+27+28+29+30+

31+32+33+34+35+36+37+38+39+40+

41+42+43+44+45+46+47+48+49+50+

51+52+53+54+55+56+57+58+59+60+

61+62+63+64+65+66+67+68+69+70+

71+72+73+74+75+76+77+78+79+80+

81+82+83+84+85+86+87+88+89+90+

91+92+93+94+95+96+97+98+99+100;

}

This program definitely works and outputs the correct answer. We can safely
claim that this program is a representation of a correct algorithm to compute
∑100

i=1 i. However, it suffers from two drawbacks:

• the length of the representation is proportional to the number 100

• if 100 is to be replaced by another number, the code need to be re-written

Let us investigate how we would perform this particular task using our brain.
Without being smart about it like Gauss 1, we keep a running sum and we
repeatedly add the next number to it. This means that we actually perform the
following operation (...+(((1+2)+3)+4)+...+100), which is identical to how the
above program evaluates the expression (left to right). The problem with the
above program, however, is the lack of abstraction. The process in our brain
uses two place holders x and y that evolve as follows:

1Gauss discovered that
∑

n

i=1
i = n(n + 1)/2 at the age of 10.
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x ← 0
y ← 1
repeat

x ← x + y
y ← y + 1

until y > 100

Figure 2.1: Mental process for
∑100

i=1 i

This process illustrates three important concepts:

• Naming: we assign names to things (x and y)

• Initialization: we initialize our brain with some state (x = 0 and y = 1)

• Repetition: we repeat the same process over and over

• Conditions: we test whether some condition occurs

Therefore, to capture such a process, a powerful programming language must
provide a way to name things and initialize them. Without names, we cannot
reuse ideas and concepts. Every time we have to express an idea, we have to
start from scratch, i.e. re-invent the wheel; very much like what we have to do
to re-write the above program to compute 1 + 2 + . . . + 200.

2.2 Variable declaration, type, and scope

C++ is an explicitly typed language. This means that every name and expres-
sion must have a type. So what is a type? A type gives information about the
kind of data a name or an expression represents. Types make code easier to
understand. In fact, programmers spend more time on understanding code than
on writing code. Consider the following:

int main() {

x=1/3;

}

What is x? Is it 0.33333? or simply 0? If x is an integer, then it is definitely
0. If x is a real number, then it is 0.33333. So which one is it? Types are added
cost for making the code clear. An explicitly typed language like C++ requires
every name to be declared with a type.

int main() {

int x=2; //an integer

float y=1/3; //a real number

}

We call this a variable declaration. In general it has the following form:

type name = expression

The name identifies a variable of the type type whose value is given by
expression.
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int main() {

float pi=3.14159;

int radius=10;

float circumference=2*pi*radius;

cout<<circumference<<’’\n’’;

}

Puzzle: find out what the output of this program is and explain it to yourself:

#include <iostream>

using std::cout;

int main() {

float x=1/3;

cout<<x;

}

A value in a variable declaration is optional, but it is always recommended
to initialize the variable; for instance, the following program outputs 134514228.

int main() {

int m;

cout<<m;

}

It is worth mentioning here the conceptual difference between initialization
and assignment, as shown below:

int main() { int main() {

int m=0; //initialization int m;

cout<<m; m=0; //assignment

} cout<<m;

}

Assignment is done using the assignment operator =. Initialization is done
in a number of ways, but the syntax for declaration shown above is the most
common (we will later see other ways). We can only assign variables that are
already declared. In contrast, initialization occurs simultaneously with decla-
ration. Therefore, we do not refer to the = symbol in a declaration as the
assignment operator. Although the above examples do not exhibit any sensible
difference between initialization and assignment (they both do the same thing),
we will later see examples where the choice of initialization or assignment makes
a difference.

Every name has an environment in which it is accessible. For instance, if
you re-examine the mental process for computing 1+2+ . . .+100, you will find
that x is a place holder for the sum computed so far. But x did not exist in
your head before you asked the question “what is 1+2+ . . .+100?”. Moreover,
x lives only in your head and not in someone else’s head. What is even more
important is that someone else’s x if it exists, is not the same x as yours.

We often refer to the “scope” of x. In C++, the scope of a name is the block
in which it was first declared, where the block is determined by the open/close
brace.
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{

block

}

Figure 2.2: A block

A name is not accessible outside its scope. This locality is very important
for abstraction as we will see later when we study functions. In the following
program, the second reference to y will cause an error.

int main() {

int x=2;

{

float y=1/3;

cout<<x<<’’\n’’;

cout<<y<<’’\n’’;

}

cout<<y<<’’\n’’; //not the scope of y

}

Note that two variables cannot be declared with the same name in the same
scope (why?).

2.3 Memory

When a variable is declared, a space is allocated in the computer’s main memory
for it. We say that the variable is created in memory. In fact, that’s what the
human mind does too (think about that mental process for computing 1 + 2 +
. . . + 100. This brings us to the following three questions:

• How much space does the variable occupy in memory (in bytes)?

• Where is it in memory?

• How long will it stay there?

The answer to the first question is that it depends on the type of the vari-
ables. Below is a list of most of the C++ fundamental types, grouped in two
categories: integral types, and floating types. Each unsigned type has the same
memory requirement as its corresponding type.

integral types floating types
bool (true/false) float
char double
unsigned char long double
short
unsigned short
int
unsigned int
long
unsigned long
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The size in bytes for each type may depend on the machine; however, they
are listed in a non-decreasing order. Usually, bool and char take 1 byte each. On
a 32 bit machine, an int takes 32 bits, i.e. 4 bytes. Therefore, we may represent
232 different values with an int. Half of the values represent positive integers
and half of the value represent negative integers. Therefore int ∈ [−231, 231−1].
On the other hand, unsinged int represents only positive integers. Since both
have the same memory requirements, unsigned int ∈ [0, 232 − 1].

Consider the following program:

#include <iostream>

using std::cout;

int main() {

int n=1000;

cout<<n*n*n*n;

}

Theoretically, the answer should be 1000000000000. However, we will see
-727379968. The reason for this is that 1000000000000 cannot fit in 32 bits
(even when using unsigned int). This is called an overflow error.

While integral types are exact (integer types), floating types are not. Con-
sider the following program:

#include <iostream>

using std::cout;

int main() {

float x=100/3.0;

cout<<x*3-99;

}

Theoretically, the answer should be 1. However, we will see 0.99996. That’s
because 1/3 cannot be represented accurately with a finite number of bits. This
is often called round off error.

To answer the second question, one could obtain the memory address of a
variable (the starting byte). Such address is also called a reference or a pointer
(because it points to where the variable resides in memory). A pointer is simply
an integer value. C++ provides a reference operator ’&’ for that purpose. For
example:

#include <iostream>

using std::cout;

int main() {

int x=2;

cout<<’’x is ‘‘<<x<<’’\n’’; //value of x

cout<<’’x is located at ‘‘<<&x<<’’\n’’; //memory address of x

}
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00000000

00000000

00000000

00000010

int x=2;

x

&x

Figure 2.3: Pointer to x

One might need to remember the memory address of a variable. Therefore,
pointers can be named and declared with the appropriate types. For example,

#include <iostream>

using std::cout;

int main() {

int x=2;

//declare a pointer named addr and

//initialize it to point to variable x

int * addr=&x;

cout<<addr;

}

Moreover, a variable can be accessed through its pointer using the C++
dereferencing operator ’*’. For example,

#include <iostream>

using std::cout;

int main() {

int x=2;

int * addr=&x;

cout<<addr; //output the value of the pointer, i.e. x’s address

cout<<*addr; //output the value of x itself

}
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00000000

00000000

00000000

00000010

10111111

int x=2;
int * addr=&x;

x ≡ *addr

11111111

10010000

11010100

addr ≡ &x

addr

&addr

Figure 2.4: Accessing x through its pointer

&x is the address of/pointer to x
*p is the variable stored in address/pointer p

x has type T ⇔ &x has type T *
p has type T * ⇔ *p has type T

To answer the third question, a variable lives in memory until the end of
the block, i.e. it lives only in its scope. For now, this simple answer will be
sufficient. Later on, and through the use of pointers, we will see how a variable
can continue to live outside the scope in which it was declared (although we
may loose the ability to access it).
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Chapter 3

Functions

3.1 Introduction

So far, we have seen elements that must appear in any powerful programming
language:

• numbers and arithmetic operations are primitive data and operations

• combinations provide means of combining operations

• declarations that associate names with values provide a limited means of
abstraction

A function is a more powerful abstraction technique by which a compound
operation can be given a name and then referred to as a unit. Let us consider
the idea of “squaring”. One might say “To obtain the square of something,
return it multiplied by itself”, which can be expressed mathematically as

square(x) = x ∗ x

We can express this idea in C++ as follows:

int square(int x) { return x * x;}
↑ ↑ ↑ ↑ ↑ ↑ ↑

To obtain the square of something, return it multiplied by itself.

This declares a function with the name square. The function square repre-
sents the operation of multiplying something by itself. The thing to multiply is
given a local name x. The scope of x is the body of the function defined by the
block between { and }.

3.2 Function definition

In general, a function definition has the following syntax:

type name (type1 param1, type2 param2, ... ) { body }

where
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• type: represents the type of the result returned by the function, aka the
return type, i.e. the type of the expression that appears after the return
keyword.

• name: the name given to the function and by which it can be called.

• parameters: a list of names with their types used within the body of the
function to refer to the corresponding arguments of the function.

• body: statements/operations that will eventually yield the value of the
function when each parameter is replaced by it corresponding argument.
The value is returned using the return keyword.

#include <iostream>

using std::cout;

int square(int x) {

return x*x;

}

int main() {

cout<<square(21); //21 is the argument corresponding to parameter x

}

The above program will output 441, i.e. the square of 21. The function
square is called on its argument 21. This means that the parameter of the
function corresponding to this argument, i.e. x, is assigned the value 21 in the
body of the function (the scope of x). Since the function returns x*x, it returns
21*21 which is 441. There are two important things to note:

• the number of parameters and the number of arguments must be the same
(1 in this case)

• the type of the parameter and the type of the argument must match (int
in this case)

Here are more examples of using the function square:

int main() {

cout<<square(2+5);

cout<<square(square(3));

}

The above will output:
49
81

Note that since the argument of the function square is the result of a another
call to square in the second statement, the return type of square and the type
of its parameter must be the same (int in this case).

Once a function is defined, it can be used as a building block to define other
functions. For example, let us define the function (C++ is case sensitive)

Pythagoras(x, y) = x2 + y2
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#include <iostream>

using std::cout;

int Pythagoras(int x, int y) {

return square(x)+square(y);

}

int main() {

cout<<Pythagoras(3,4);

//there must be 2 arguments to replace the 2 parameters

}

This will output 25, i.e the sum of squares of 3 and 4.

3.3 Function evaluation using substitution

How is a function evaluated in C++? The previous section illustrates some
examples of how we obtain the result of a function. In general, the following
procedure is performed repeatedly until no more evaluation is needed (this does
not work when we have assignment):

repeat
evaluate the arguments
substitute parameters by values of arguments in body of function

until done

For this reason, C++ is said to use the call-by-value strategy, i.e. the ar-
gument is evaluated first, then the parameter is assigned that value. In other
words, the parameter and the argument are two different variables in memory
(even if they have the same name). They have different scopes. Consider the
following function:

int f(int a) {

return Pythagoras(a+1,a*2);

}

A call to f(5) will be evaluated as follows:

• Evaluate: the argument evaluates to 5

• Substitute: a is assigned the value 5 in its scope, the function evaluates
to:

Pythagoras(5+1,5*2)

• Evaluate: The arguments evaluate to 6 and 10

• Substitute: x and y are assigned the values 6 and 10 respectively in their
scope, the function evaluates to:

square(6)+square(10)

• Evaluate: The arguments evaluate to 6 and 10
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• Substitute: x is assigned the value 6 in its scope, and another x is assigned
the value 10 in its scope, the function evaluates to:

6*6+10*10

• Evaluate: this evaluates to 136

3.4 Function as a black box

By now it should be apparent that every function acts like a module where
only the input/output relationship is important. Moreover, a module can be
used from within another module. For instance, in the above example, f uses
Pythagoras, and Pythagoras uses square. From the point of view of f, Pythago-
ras is a black box that transforms an input (in this case two integers) to an
output (in this case an integer). The internal operation of Pythagoras (repre-
sented by the body of the function) should not be of concern to f.

black box

function

input output

Figure 3.1: Function as a black box

Such a “black box” abstraction is desired. It would be really inconvenient
if calling a function from within another would interfere with the operation of
the function itself (although such behavior can be obtained if needed). That’s
why the names of the function parameters are local to the function itself, and
the scope of the parameters is the body of the function. The following two
definitions produce identical functions:

int square(int x) {return x*x;}

int square(int y) {return y*y;}

Therefore, the choice of names for the parameters should not matter. The
following function must remain the same regardless of which definition for square
is used.

int Pythagoras(int x, int y) {

return square(x) + square(y);

}

Otherwise, the behavior of this function will be confusing. If the first defi-
nition for square is used, then what is being computed when square(y) is called
from within Pythagoras? It is x*x or y*y? What if the second definition is
used? To avoid such confusion, and to enforce the black box concept, names
of parameters are only local to the function, and they only refer to the names
used inside the body of the function.
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Chapter 4

Testing and repetition

4.1 Introduction

The class of functions that we can define at this point is very limited because
we have no way to make tests and to perform different operations based on
the result of a test. Moreover, we did not cover how to define a process to be
repeated several times within a function (although this is possible using recursive
functions as we will see later). We cover these two issues here.

4.2 Testing

Without being able to perform a test, we cannot define a function to compute
the absolute value of a number x, denoted mathematically by |x|.

|x| =







x x > 0
0 x = 0

−x x < 0

C++ provides the if keyword for performing such case analysis. Generally,
one could write the following:

if (cond) {body}

where

• cond: is a boolean expression (i.e. of type bool)

• body: is the body of the if statement which is performed if cond evaluates
to true

Note that if the body contains a single statement, the open { and close }
can be omitted. The flow chart in Figure 1 describes the operation of an if
statement.
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cond

body

true

false

Figure 4.1: The if statement

4.2.1 Relational operators

One way to produce a boolean expression is by using the relational operators
<, >, <=, >=, ==, and ! =. The following table lists the relational operators
and describes their mathematical equivalence.

relational operator mathematical equivalence
< <
> >
<= ≤
>= ≥
== = (equality)
! = 6=

We can now define a function that takes a number and returns its absolute
value:

float abs(float x) {

if (x>0)

return x;

if (x<0)

return -x;

if (x==0)

return 0;

}

Each of the above three conditions produce a boolean expression (i.e. of
type bool). The value of the boolean expression depends on the value of x: If
x is positive, then x > 0 is true, x == 0 is false, and x < 0 is false. If x is zero,
then x > 0 is false, x == 0 is true, and x < 0 is false. If x is negative, then
x > 0 is false, x == 0 is false, and x < 0 is true. Note that equality is denoted
by the operator == (and not the assignment operator =). Testing for equality
is a major source of logical errors as a programmer tends to replace the double
== with the single =. Here’s a famous example about the world’s last C++
bug (we will see the while loop in the following section):
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while (true) {

int status = GetRadarInfo();

if (status = 1)

LaunchMissiles();

}

The value of an assignment is the value of the assigned variable after per-
forming the assignment. Therefore, status=1 evaluates to 1, which is considered
true when interpreted as boolean (any integer different than 0 is true). What
happens if == is replaced by = in the abs function above?

4.2.2 Logical operators

We saw in the previous section how to produce simple boolean expressions us-
ing the relational operators. Each relational operator performs a single test.
To combine multiple tests in one condition, C++ provides the logical operators
AND, OR, and NOT.

logical operator meaning
&& logical AND
|| logical OR
! logical NOT

The operands for logical operators must be of type bool. While both &&
and || are both binary operators (i.e. they require two operands each), ! is a
unary operator that reverses the boolean value of its operand. The following
tables summarize the operations of these three logical operators:

operand 1 operand 2 &&
false false false
false true false
true false false
true true true

operand 1 operand 2 ||
false false false
false true true
true false true
true true true

operand !
false true
true false

Example 1: Here’s a function that tests whether a number x is within a
given interval [a, b].

bool inRange(int x, int a, int b) {

if (x>=a && x<=b)

return true;

if (x<a || x>b)

return false;

}
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The function returns a boolean value depending on whether x ∈ [a, b] or
not. It is worth mentioning here that the first compound condition cannot be
replaced by (a <= x <= b). While this is mathematically correct, it does not
evaluate as one might expect in C++. The expression a <= x <= b is evaluated
left to right. Therefore, a <= x is evaluated first, and depending on whether
it evaluates to false or true, a <= x is replaced by 0 or 1 respectively, yielding
either the condition 0 <= b or the condition 1 <= b (which is not the pro-
grammers intention). It is also worth mentioning that C++ uses short circuit

evaluation: if x >= a evaluates to false, C++ does not continue evaluating the
expression x >= a && <= b because the result is already determined to be
false (see the operation of logical AND). This also holds if the expression x < a
evaluates to true in the second compound condition.

Note that the above function can be simplified as follows:

bool inRange(int x, int a, int b) {

return (x>=a && x<=b);

}

Example 2: Here’s a function that tests if two numbers x and y are close
enough, i.e. if the absolute value of their difference is not bigger than a certain
threshold.

bool close_enough(float x, float y) {

return !(abs(x-y)>=0.0001);

}

In most cases, the programmer can avoid using the NOT operator by ex-
pressing the condition with an appropriate relational operator. For instance,
the above expression can be replaced by (abs(x − y) < 0.0001). Theoreti-
cally speaking, ! can always be avoided because !expression is equivalent to
expression==false. However, the latter form is more error prone (e.g. acci-
dentally replacing == with =).

Note that the parentheses around the condition abs(x − y) >= 0.0001 are
needed because the logical operator ! has a higher precedence than the rela-
tional operator >=. In general, it is a good idea to have parentheses around
every condition to avoid errors due to precedence. The following tables updates
that of Chapter 2 and shows the operators in decreasing order of precedence.

operator evaluation
() left to right
! right to left !!a is !(!a)
∗ / % left to right
+ − left to right
< <= > >= left to right
== ! = left to right
&& left to right
|| left to right
= right to left a=b=c is a=(b=c)
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4.2.3 Another form of if and the dangling else problem

C++ provides another form of if given by the following syntax:

if (cond) {body1} else {body2}

This is explained by the following flow chart:

cond

body_1

true

false body_2

Figure 4.2: The if-else statement

If cond evaluates to true, then body1 is performed; otherwise, body2 is per-
formed. For instance, we can re-write the abs function as follows:

float abs(float x) {

if (x>=0)

return x;

else

return -x;

}

The use of if-else may lead to what is referred to as the dangling else problem.
Consider the following code:

if (lives>0)

if (score>1000)

addBonusLives();

else

gameOver();

Obviously, for a human being, the intention of the programmer is the fol-
lowing: if the player has some lives left, then check the score, and if it is greater
than 1000, add some bonus lives. If the player has no more lives, the game is
over. However, the above code is indistinguishable from the code below for the
C++ compiler (which causes a game over if the score is less than 1000).

if (lives>0)

if (score>1000)

addBonusLives();

else

gameOver();

31



Which one is it? Here’s the rule: C++ matches an else with the closest
unmatched if. Therefore, the above code is a programmer’s mistake. To enforce
to correct logic, we can use open { and close } as follows:

if (lives>0) {

if (score>1000)

addBonusLives();

}

else

gameOver();

Another way of enforcing the correct logic is to force every if to have a
corresponding else:

if (lives>0)

if (score>1000)

addBonusLives();

else ; //empty statement

else

gameOver();

4.3 Repetition

Let us revisit the process of adding numbers 1 through 100. We saw in Chapter
2 that this process can be described mentally as follows:

x ← 0
y ← 1
repeat

x ← x + y
y ← y + 1

until y > 100

Figure 4.3: Mental process for
∑100

i=1 i

Therefore, we argued that a programming language must provide means of
repetition.

4.3.1 The while loop

C++ provides the while keyword for making repetition.

while (cond) {body}

This is similar to if, except that the body of the while loop is performed
repeatedly as long as cond evaluates to true (as opposed to just once in if).
Here’s the flow chart for a while loop.
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cond

body

true

false

Figure 4.4: The while loop

We can now write our famous sum to 100 program in C++:

#include <iosteam>

using std::cout;

int main() {

int x=0;

int y=1;

while (y<101) {

x=x+y;

y=y+1;

}

cout<<x;

}

4.3.2 The for loop

C++ provides another way of expressing repetition using the for loop:

for (initialization; cond; update) {body}

where

• initialization: is an initialization statement to initialize variable(s) and is
performed first and only once. This can also be variable(s) declaration, in
which case the scope of the declared variable(s) is the body of the for loop.

• cond: is a boolean expression (i.e. of type bool)

• body: is the body of the for loop which is performed as long as cond

evaluates to true

• update: is an update statement that may change the value of cond and is
performed after every performance of body.

Figure 5 shows the flow chart of the for loop.
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cond

body

true

false

update

initialization

Figure 4.5: The for loop

Let’s re-write the above code using a for loop.

#include <iostream>

using std::cout;

int main() {

int x=0;

for(int y=1; y<101; y=y+1)

x=x+y; //body of for loop

//y is not accessible in this scope

cout<<x;

}

Here’s another way:

#include <iostream>

using std::cout;

int main() {

int x=0;

int y; //y is declared but not initialized (usually bad)

for(y=1; y<101; y=y+1)

x=x+y; //body of for loop

//y is accessible in this scope

cout<<x;

}
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And yet, here’s another way:

#include <iostream>

using std::cout;

int main() {

int x;

int y;

for(x=0,y=1; y<101; x=x+y,y=y+1)

; //body of for loop is empty

cout<<x;

}

4.3.3 The do while loop

Yet another way to express repetition is the do while loop:

do {body} while (cond)

where

• cond: is a boolean expression (i.e. of type bool)

• body: is the body of the do while loop which is performed once first, and
then as long as cond evaluates to true

Therefore, the body of the do while loop is performed at least once (before
the condition is evaluated). The do while loop has the following flow chart:

condtrue false

body

Figure 4.6: The do while loop

4.4 Exercise: computing the square root

Let’s say we would like to compute the square root y of a number x, i.e. y >= 0
and y2 = x. As we have seen in Chapter 1, to write a program for computing the
square root, we must know how to do it ourselves. Luckily, Newton’s method
tells us the following:
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If y is a guess for the square root of x, then

y + x/y

2

is a better guess.

Newton’s method suggests the following repetative process.

• start with a guess y for the square root of x

• repeatedly update the guess using the above formula

• stop when y2 and x are close enough

Example: Let’s compute the square root of 2, starting with 1 as a guess.

1 + 2/1

2
= 1.5

1.5 + 2/1.5

2
= 1.4167

1.4167 + 2/1.4167

2
= 1.4142

. . .

Here’s a function called sqrt that returns an estimate of the square root of
x, given an initial guess:

float sqrt(float x, float guess) {

while (!close_enough(guess*guess, x))

guess=(guess+x/guess)/2;

return guess;

}

There are some issues that need to be discussed here, namely the possibilities
that x < 0 or guess ≤ 0. If x < 0, then the square root of x does not exist and
the guess will never converge. Similarly, if we start with guess = 0, then the
next guess will be infinity and will never converge. If we start with a negative
guess, then we converge to a negative root (not the definition of square root).
All these issues can be solved by adding the following statements before the
while loop:

x=abs(x); //make x positive

guess=abs(guess); //make guess positive

guess=guess+0.0000001; //avoid guess being zero

36



Chapter 5

Handling multiple values

5.1 Introduction

Consider the problem of working with rational numbers of the form a/b where
both a and b are integers. For instance, we would like to add two rational
numbers and obtain the result in fractional form. If we want to define a function
for performing this addition, then the function must return two integers: the
numerator and the denominator of the result. Adding a/b and c/d requires
passing four integers as parameters to the function.; however, each function can
specify only one type for its return.

___?___ addRat(int a, int b, int c, int d) {

. . .

return ___?___;

}

How can we make such function return two integers? In general, how can we
define a function that returns multiple values? The immediate answer is that we
can’t! Instead, we make the function store the numerator and the denominator
of the result in two variables that are specified in advance. Let’s call these two
variables numer and denom. For this approach to work, two issues must be
considered:

• Both numer and denom must be declared in a scope that contains the
function definition; otherwise, numer and denom cannot be accessed from
within the function.

• There is no need for the function to return any value.

We can declare numer and denom in the global scope, i.e. not inside any
block. Such variables are called global variables. It is generally not a good idea
to have global variables because they can be accessed from anywhere in the
program and, therefore, it is hard to keep track of which parts of the program
are affecting their values. To specify that a function does not return any value,
we make it return the special type void 1.

1We could still make the function return something that we will ignore.
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Here’s an example:

#include <iostream>

using std::cout;

int numer;

int denom;

void addRat(int a, int b, int c, int d) {

//note: a/b + c/d = (ad + bc)/bd

numer=a*d+b*c;

denom=b*d;

}

int main() {

int a=2;

int b=3;

int c=4;

int d=5;

addRat(a,b,c,d);

cout<<numer<<’’/’’<<denom<<’’\n’’;

}

Besides the fact that global variables are not desired, there is a potential
problem with the above approach. Since the result is always stored in the
global variables numer and denom, we can only compute one number at a time.
Every call to the function addRat will change the values of numer and denom.
Therefore, one has to save those values in other variables before issuing another
call to the function addRat; otherwise, the last result will be overridden. A
better approach is described below.

5.2 Passing by reference using pointers

A better approach for the above problem is to “tell” the function where to store
the result. This can be achieved by providing the function with the memory
addresses of the variables that must hold the result. The function then stores
the result into the desired memory addresses. Therefore, we have to consider
the following:

• The only way to “tell” a function something is to pass the information in
a parameter. Therefore, since every parameter must have a type, we have
to figure out what types to use for the new parameters.

• We have to be able to “write” to a specific memory address.

void addRat(int a, int b, int c, int d, type1 addr1, type2 addr2) {

//write result to addr1 and addr2

}

Luckily, we should be able to deal with the above issues by reviewing material
from Chapter 2.
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Since the numerator and the denominator of the result are both integers,
their memory addresses will have the type int *, i.e. a pointer to an int.
Moreover, given a pointer, we can access its content using the dereferencing
operator *. Therefore, our addRat function will be the following:

void addRat(int a, int b, int c, int d,

int * numer, int * denom) {

//numer is a pointer to the numerator

//let’s dereference it to set its content

*numer=a*d+b*c;

//denom is a pointer to the denominator

//let’s dereference it to set its content

*denom=b*d;

}

Here’s an example on how to use the function:

int main() {

int a=2;

int b=3;

int c=4;

int d=5;

//declare variables to hold the result

int x;

int y;

//provide memory addresses of x and y

//using the referencing operator &

addRat(a,b,c,d,&x,&y);

cout<<x<<’’/’’<<y<<’’\n’’;

}

In the above example, x and y are said to be passed by reference using
pointers. Note that the usual pass by value technique does not correctly solve
the problem. For instance, consider the following:

#include <iostream>

using std::cout;

void addRat(int a, int b, int c, int d,

int numer, int denom) {

numer=a*d+b*c;

denom=b*d;

}
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int main() {

int a=2;

int b=3;

int c=4;

int d=5;

//declare variables to hold the result

int x;

int y;

addRat(a,b,c,d,x,y);

cout<<x<<’’/’’<<y<<’’\n’’;

}

The variables x and y will not change after calling the function addRat. This
is because the values of x and y are simply stored into the variables numer and
denom which are local to the function. The scope of numer and denom is the
body of the function and, therefore, any change to these variables is only visible
within the body of the function. This holds even if x and y are renamed numer
and denom respectively.

Note that passing a variable by reference using a pointer is the same as
passing its address by value. For instance, the parameters numer and denom
of type int * are also local to the function, except that they are pointers.
Therefore, chaning numer or denom inside addRat does not have any effect
outside the function. Here’s another example:

void f(int * ptr) {

*ptr=2;

ptr=10000;

}

int main() {

int x=1;

int * p=&x; //p points to x

f(p);

cout<<x<<’’\n’’; //x changed to 2

cout<<p<<’’\n’’; //p unchanged

}

When function f is called, ptr takes the value of p (by substitution). There-
fore, ptr local to f) and p are now two different pointers with the same value.
Modifying *ptr or *p will have the same effect on x (both point to the same
memory address). However, modifying ptr will only modify the value of ptr
itself, i.e. ptr will simply point to another address.

5.3 Arrays

Consider the following simple task: define a function that computes the average
of two integers. Of course, this should be trivial by now:
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float average(int a, int b) {

return (a+b)/2;

}

While this is not the point of the exercise, the above function contains an
error. Since a, b, and 2 are all integers, (a+b)/2 is interpreted as integer division
and, therefore, will produce an integer, i.e. truncated result (the integer is then
converted to the return type float). To solve this problem, we may re-write the
function as follows:

float average(int a, int b) {

return (a+b)/2.0;

}

Now let us define a function that computes the average of three integers:

float average(int a, int b, int c) {

return (a+b+c)/3.0;

}

While both functions have the same name, they can coexist in the same
scope. The compiler can distinguish between them because they have different
parameter lists. A call to average can be resolved without ambiguity by simply
counting the number of arguments supplied to the function. This is called
function overloading. In general, two functions in the same scope can have the
same name if they differ in their parameter lists:

• either by number of parameters

• or by types of parameters

• or both, of course

Note that the return type is not considered for function overloading.
Now let us define a function that computes the average of four integers:

float average(int a, int b, int c, int d) {

return (a+b+c+d)/4.0;

}

By now, it should be clear what we are getting into. Although the concept
of average is unique, it seems that we have to define a separate function for
every possible number of integers. That would be really dramatic!

We need a way to represent a collection of integers as one entity, and pass it
to the function. C++ provides a way to create such entities using arrays. An
array is declared as follows:

type name[size];

where

• type: is the type of each element in the array (arrays are homogeneous)

• name: is the name of the array

• size: is the size of the array
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For instance, one could declare an array of eight integers by writing:

int a[8];

The different elements (integers) of this array can be referred to as:

a[0], a[1], ..., a[7].

They are stored in consecutive locations in memory, each occupying a certain
number of bytes (e.g. 4 for int).

a[0]

a[1]

a[7]

Figure 5.1: Elements of array are stored consecutively

Since the array a must be passed as one parameter to the average function,
we must ask ourselves the following question: what is the type of a? We know
that a[i] has type int for i = 0 . . . 7. But what is the type of a itself? The
answer is: int *. This means that a is a pointer to int. So what is a really?

5.3.1 Arrays and pointers

An array a is actually a pointer to (memory address of) the first element of the
array a. Therefore,

T a[size];

creates a variable a of type T *. Moreover, a will be pointing to a[0]. Therefore,
a[0] is just a syntactic sugar for *a. Similarly, a is simply &a[0]. In general:

a[i] is equivalent to *(a+i)
a+i is equivalent to &a[i]

How come (a+i) points to the ith element of the array if each element occu-
pies a number of bytes? The reason for this is that C++ takes care of this kind
of pointer arithmetics. Since the type of the elements is known, incrementing
the pointer by 1 increments it by the appropriate number of bytes. However,
if we force C++ to interpret the pointer as an integer using casting, we will
observe a different behavior.

int main() {

int * a;

int * b=a+1;

cout<<b-a; //1

cout<<(int)b-(int)a; //4, int takes 4 bytes

}
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a[0]

a[1]

a[7]

a

a+1

a+7

Figure 5.2: Array as pointer

Now that we know the type of an array, we can pass it as a parameter to
the average function. Before we define our general purpose average function,
we have to mention one technical detail: In general, there is no way of telling
how large the array is from the array itself. After all, an array is just a pointer
to the first element. Therefore, we must also pass the size of the array when
calling the function. The size is known by the programmer at this point from
the declaration.

Given that the parameters of the average function are a and size denoting
the array and its size respectively, the average function has to simply add the
elements a[0], ..., a[size-1], and then divide the obtained sum by size. This can
be achieved by:

• starting with a sum of 0

• setting up a loop and keeping track of a count

• repeatedly adding a[count] to sum

• until count > size-1

• return sum divided by size

Therefore, we need two variables to be declared inside the function to main-
tain the sum and to keep track of the count.

float average(int * a, int size) {

int sum=0;

int count=0;

while (count<size) {

sum=sum+a[count];

count=count+1;

}

return (float)sum/size;

}
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Here’s a variation using a for loop:

float average(int * a, int size) {

int sum=0;

for(int count=0; count<size; count=count+1)

sum=sum+a[count];

return (float)sum/size;

}

Note the use of casting in the return statement to avoid the integer division.
Alternatively, sum could have been declared as float.

Another way of specifying an array as a parameter to the function is the
following form (which will be useful later when we consider multi-dimensional
arrays):

float average(int a[], int size) {

int sum=0;

for(int count=0; count<size; count=count+1)

sum=sum+a[count];

return (float)sum/size;

}

In any case, here’s how the average function can now be used:

int main() {

int a[8];

a[0]=2;

a[1]=8;

a[2]=7;

a[3]=1;

a[4]=3;

a[5]=5;

a[6]=6;

a[7]=4;

cout<<average(a,8);

}

An alternative way of initializing the array is the following:

int main() {

int a[8]={2,8,7,1,3,5,6,4};

cout<<average(a,8);

}

5.3.2 Dynamic memory allocation

Most compilers (e.g. not g++) do not accept the declaration of an array unless
the size of the array is known at compile time. This has to do with the ability
of the compiler to create the function in memory. Therefore, the following
program will not compile on many compilers:
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#include <iostream>

using std::cin;

int main() {

int n;

cin>>n;

int a[n];

. . .

}

Like cout which is the standard output stream (outputs to the screen), cin
is the standard input stream which reads information from the keyboard. The
operator >> is the one used in conjunction with input streams and the state-
ment cin>>n extract information from the stream (in this case the keyboard)
and stores it in variable n. Obviously, the intention of the programmer was to:

• get information from the user (keyboard)

• store that into variable n (a number)

• declare an array of integers of size n

However, since the value of n is not known at compile time (it depends on
what the user will input), the compiler will complain. This is the case even with
the following program:

int main() {

int n=8;

int a[n];

. . .

}

The compiler has no way of telling whether n will have the value 8 at the
point of declaring the array. Obviously it will, but the compiler has no such
intelligence. For instance, consider the following wicked scenario:

void f(int * x) {

*x=*x*2;

}

int main() {

int n=8;

f(&n);

int a[n];

. . .

}

Obviously the compiler has to develop some intelligence to figure out that
the value of variable n is doubling. To avoid this necessity, the compiler simply
complains. To make the compiler happy, we need to give it some assurance.
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int main() {

const int n=8;

int a[n];

. . .

}

The keyword const declares n as a constant variable. Variable n cannot
change. Any attempt to use the assignment operator on n will produce a com-
pilation error. Therefore, in this case the compiler knows what n is at compile
time and accepts the array declaration. Note that since a constant variable
cannot be assigned, declaring a constant variable without initialization is an
error.

int main() {

const int n; //error

. . .

}

The use of const is very tricky and elaborate in C++, but for now the above
will be enough for our purpose. Coming back to our problem, it seems that the
only way to declare our array appropriately is the following:

#include <iostream>

using std::cin;

int main() {

const int max_size=100;

int a[max_size];

int n;

cin>>n;

if (n>max_size) {

//do the hard work

}

//think of a as an array of size n

. . .

}

There are two problems associated with the above approach:

• What is a large enough value for max size?

• What if n is still larger than max size?

• What if n is too small (wasting memory)?

A better solution is for the programmer to allocate enough memory for the
array himself. This means that the compiler will not worry about the size of
the array at compile time, but the array will be created at run time in a special
part of the memory, called the free store. The downside is that in doing so, the
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compiler will not be able to free the allocated memory when the array goes out
of scope. It becomes the responsibility of the programmer to do so. Memory
allocated on the free store persists until it is explicitly freed. Failing to do so
will result in what is known as memory leak. While this may not be a severe
problem because memory is released when the program ends, a continuously
running program that repeatedly allocates but fails to free memory may cause
the system performance to deteriorate. C++ provides the two operators new
to allocate memory and delete to free memory.

#include <iostream>

using std::cin;

int main() {

int n;

cin>>n;

int * a=new int[n];

//a is now an array of n integers

. . .

//free the memory

delete[] a;

}

Since an array is a pointer to the first element, the statement

int * a=new int[n]

declares a pointer to int and assigns it to an address in memory where a space
for n integers is allocated.

It is also possible to dynamically allocate memory for one element:

int main() {

. . .

int * a=new int;

. . .

delete a;

}

We will see why this is useful later in the course when we talk about classes
and inheritance. In the meantime, remember to always delete[ ] what you new[ ]
and delete what you new, but never mix them.

One last word about dynamic memory allocation. It might seem that using
a compiler like g++, that does not require the size of the array to be known
at compile time, can avoid the use of dynamic memory allocation. However,
we will see later that sometimes the size of the array is not known (not even
through a variable name) to the programmer at the point of declaration.
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Chapter 6

Sorting numbers: putting it
all together

6.1 Introduction

In this chapter we will try to put everything we have learned so far in a useful
application: Sorting numbers. This application illustrates the concepts of ar-
rays, dynamic memory allocation, random number generator, loops, passing by
value, and passing by reference.

6.2 Declaring an array of unknown size and ini-
tializing it randomly

#include <iostream> //needed for cout and cin

#include <cstdlib> //needed for rand()

using std::cout;

using std::cin;

int main() {

cout<<’’enter the size of the array:’’;

int n;

cin>>n;

int * list=new int[n];

for (int i=0; i<n; i=i+1)

list[i]=rand()%100;

. . .

delete[] list;

}

An alternative is to make the initialization a function on its own as follows:
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void init(int * a, int n) {

for (int i=0; i<n; i=i+1)

a[i]=rand()%100;

}

#include <iostream> //needed for cout and cin

#include <cstdlib> //needed for rand()

using std::cout;

using std::cin;

int main() {

cout<<’’enter the size of the array:’’;

int n;

cin>>n;

int * list=new int[n];

init(list,n);

. . .

delete[] list;

}

One subtle point here is whether this change in the array will be visible
outside the function. We know that a is a local name for function init and,
therefore, must have the body of the function as its scope. Does a change
in a[i] affect list[i]? The answer is yes, because list is passed by reference
using a pointer (recall that an array is simply a pointer to its first element).
To further emphasize this, we restate it in bold: A C++ array is always
passed by reference. As we discussed before, a[i] is nothing but a syntactic
sugar for *(a+i), i.e. increment the pointer by i locations in memory and then
dereference it. Therefore, a[i]= . . . ; is equivalent to *(a+i)= . . . ;. As a
result, the content of the memory is altered inside the function and the effect is
visible to the outside. On the other hand, n is passed by value, so any attempt
to change n inside function init will not be visible to the outside.

6.3 Finding the index of the smallest number

Here’s a function that returns the index of the smallest number of an array
passed as a parameter.

int minimum(int * a, int n) {

int index=0;

for (int i=0; i<n; i=i+1)

if (a[i]<a[index])

index=i;

return index;

}

The index of the smallest element is set to zero initially. A loop is used to
check every element of the array. Every time a smaller element is discovered, the
index is updated. Finally, the index is returned. An alternative way of defining

50



the function minimum is to make it return the index of the smallest element of
a sub-array, given by its starting and ending positions.

int minimum(int * a, int start, int end) {

int index=start;

for (int i=start; i<=end; i=i+1)

if (a[i]<a[index])

index=i;

return index;

}

This version of the function may seem more general. Well, conceptually it is;
for instance, minimum(a, 0, n-1) emulates minimum(a, n). However, mini-
mum(a, i, j) can be achieved using minimum(a+i, j-i+1) (why?). Therefore,
both have the same power.

6.4 Swapping two elements

The following is a function that takes an array as a parameter, as well as two
integers i and j, and swaps a[i] and a[j]. Note that this works because a C++
array is always passed by reference (it is a pointer). Therefore, a change to the
array is always visible outside the function.

void swap(int * a, int i, int j) {

int temp=a[i];

a[i]=a[j];

a[j]=temp;

}

The function first saves the value of a[i] in a temporary local variable called
temp. Then assigns a[i] the value stored in a[j]. Finally, assigns a[j] the value
stored in temp (the original value in a[i]).

6.5 Sorting elements

We can now use what we have developed so far as building blocks to define a
function that sorts an array. Two variations discussed in class are shown below.
Both are based on the idea of repeatedly finding the smallest element, swapping
it with the first element, and ignoring the first element of the array.

1. find the smallest element in the array

2. swap it with the first element

3. repeat with the first element removed

51



Here’s an example:

2 8 7 1 3 5 6 4

1 8 7 2 3 5 6 4

1 2 7 8 3 5 6 4

1 2 3 8 7 5 6 4

1 2 3 4 7 5 6 8

Figure 6.1: Example of sorting the array {2,8,7,1,3,5,6,4}

void sort1(int * a, int n) {

for (int i=0; i<n; i=i+1)

//swap a[i] and a[minimum(a,i,n-1)]

swap(a, i, minimum(a, i, n-1));

}

void sort2(int * a, int n) {

for (int i=0; i<n; i=i+1)

swap(a+i, 0, minimum(a+i, n-i));

}

What may be surprising is that our function to sort an array turned out to
be really small. This is because we relied on building blocks that we developed
earlier. In general, it is always a good idea to break the problem into smaller
ones and identify abstract concepts that can be tackled separately. For instance,
sorting definitely requires some kind of swapping because the elements in the
array must change places. Moreover, finding the smallest elements is a useful
concept on its own. Sorting can be implemented in terms of these two concepts.
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Chapter 7

Abstraction with data: the
class

7.1 Introduction

Let us revisit the problem of working with rational numbers of the form a/b
where both a and b are integers. Previously, we handled this problem by explic-
itly keeping track of two integers for each rational number. Moreover, we had
to use passing by reference to compensate for the fact that a function cannot
return two things. For instance, a function to add two rational numbers would
have to be defined as follows:

void addRat(int a, int b, int c, int d,

int * numer_addr, int * denom_addr) {

//store numer and denom of a/b + c/d

//in the specified memory addresses

*numer_addr=a*d+b*c;

*denom_addr=b*d;

}

Let us now imagine a better way. It would be very nice if we could handle
rational numbers more conveniently as follows:

int main() {

Rat x=Rat(2,3);

cout<<’’x is:’’<<numer(x)/denom(x);

}

In the above imaginary piece of code, we assumed the following:

• Rat is a type (stands for rational number)

• Rat(n,d) magically constructs a rational number whose numerator is the
integer n and whose denominator is the integer d

• numer(x) returns the numerator of a rational number x

• denom(x) returns the denominator of a rational number x
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In our imaginary code, we declare a variable of type Rat whose name is
x, and initialize it with a value given by the result of Rat(2,3), which magi-

cally constructs the rational number 2/3. Then we output the value of x using
numer(x) and denom(x) which return the numerator and denominator of the
rational number x respectively.

What we have done so far is some wishful thinking. But if we assume that
this magic is given to us, then we can define the addRat function in a much
convenient way:

Rat addRat(Rat x, Rat y) {

Rat z=Rat(numer(x)*denom(y)+numer(y)*denom(x),

denom(x)*denom(y));

return z;

}

Or simply:

Rat addRat(Rat x, Rat y) {

return Rat(numer(x)*denom(y)+numer(y)*denom(x),

denom(x)*denom(y));

}

This is a function that takes two parameters of type Rat and returns a Rat.
The function uses Rat(n,d) to construct a rational number whose numerator
and denominator are given by the expressions

numer(x)*denom(y)+numer(y)*denom(x)

and

denom(x)*denom(y)

respectively. Therefore, it returns what is conceptually interpreted as the
sum of two rational numbers.

The addRat function can now be used as follows:

int main() {

Rat x=Rat(2,3);

Rat y=Rat(4,5);

Rat z=addRat(x,y);

cout<<’’z is:’’<<numer(z)<<’’/’’<<denom(z);

}

This represents another powerful technique for abstraction: the abstraction
with data. In deed what we were missing is the abstract notion of a rational
number. But it all relies on the magic given by Rat, Rat(n,d), numer(x) and
denom(x). Fortunately, C++ provides a way to do the magic with enough
infrastructure to create our own Abstract Data Types (ADTs). This is done
using what is known as a class.
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7.2 The class

The following represents the Rat class:

class Rat {

public:

int numer;

int denom;

Rat(int n, int d) { . . . }

};

In general

class Name { . . .};

creates a new type with the name Name. That’s why we often refer to a
C++ class rather than a C++ type, but we can use both terms interchangeably.
Let’s dissect the above code one line at a time:

• class is a keyword in C++ and is used to name a new type, e.g. Rat in
this case. This is followed by { to start the class definition

• public is also a keyword in C++ and signifies that what follows is public
and, therefore, accessible outside the class. We will see the importance of
this later on.

• int numer; and int denom; declare two variables of type int that will
hold the values for the numerator and denominator respectively. Both
numer and denom are called member data of the class. Note that numer
and denom are declared but not initialized (initializing them would give
an error, see below).

• Rat(int n, int d) { . . . } is the constructor for the class. Therefore,
the constructor is simply a function that returns nothing (not even void).
This is because it implicitly returns the thing that it constructs, which has
a predetermined type, in this case Rat. Note also that the name of this
function (the constructor) is the same as the name of the class. In deed, it
is because of this naming convention that a function is recognized as the
constructor for the class. The constructor must perform the appropriate
initialization for member data.

• }; ends the class definition. Note that ’;’ at the end is required.

Let us implement the constructor. To construct a rational number, we must
initialize its numerator and denominator to the desired values passed as argu-
ments to the constructor. Therefore, our constructor will be the following:

Rat(int n, int d) {

numer=n;

denom=d;

}

This completes our class definition:
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class Rat {

public:

int numer;

int denom;

Rat(int n, int d) {

numer=n;

denom=d;

}

};

7.3 Scope and dot notation

There is a subtle point about scope that is worth mentioning here: what is the
scope of the member data? Well, as usual, it is the block in which they are first
declared. This means the entire class. Therefore, accessing them from within the
constructor should not be surprising (and is needed for initialization). However,
because they were declared as public, we can also access them outside the class.
This is not an exception to the scoping rules if we have a good understanding of
what really happens when we declare a variable of the newly created type (or
class). So let’s investigate the following line of code:

Rat x=Rat(2,3);

This declares a variable of type Rat whose name is x 1. The variable x
is also initialized to the rational number 2/3 (that’s the result of calling the
constructor). Therefore, we think of x as having a numerator equal to 2 and
a denominator equal to 3. But we argued in previous chapters that when a
variable is declared, it is created in memory. So how is that rational number
with a numerator of 2 and a denominator of 3 is represented in memory? The
following figure illustrates the idea (although it is not completely accurate):

numer = 2

denom = 3

numer = 2

denom = 3

x

&x

class Rat {

public: 
int numer;
int denom;

Rat(int n, int d) {
numer=n;
denon=d;

}
};

int main() {
Rat x=Rat(2,3);

}

Figure 7.1: Object x is an instance of class Rat

The class provides a recipe for rational numbers. Every rational number
must contain two integers (called numer and denom), and that’s how it is rep-
resented in memory. Both numer and denom are part of the representation.

1We also say that x is an object of class Rat or an instance of class Rat.
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The constructor (called upon initialization of the object) performs the required
initialization for each member datum (numer and denom in this case).

In general, every member datum is part of the representation of the object.
Therefore, as long as the object is accessible, all member data are theoretically
accessible (they are in memory). Back to our example, both numer and denom
are accessible from within the scope of x, but only through x. In deed C++
provides a way to access the member through the object using the dot
notation. The following syntax

object.member

provides access to the member through the object. Therefore, x.numer refers to
the numerator of x, and x.denom refers to the denominator of x. C++ permits
this kind of access for a member datum only when the member datum is declared
public. Here’s an example:

int main() {

Rat x=Rat(2,3);

cout<<’’x is ‘‘<<x.numer<<’’/’’<<x.denom;

}

We are now very close to finishing our magic. We still have to implement
the functions numer(x) and denom(x). Now that we know how to access the
public member data, it is easy to define these two functions.

int numer(Rat x) {

return x.numer;

}

int denom(Rat x) {

return x.denom;

}

Here’s the complete work:

class Rat {

public:

int numer;

int denom;

Rat(int n, int d) {

numer=n;

denom=d;

}

};

int numer(Rat x) {

return x.numer;

}

int denom(Rat x) {

return x.denom;

}
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7.4 Restricting access

Assume that we would like (for one reason or another) our rational numbers
to be reduced to their lowest terms. For instance, 6/9 can be reduced to 2/3.
Obviously, we cannot rely on the user to maintain this property. Consider the
following code:

int main() {

Rat x=Rat(1,3); //x is 1/3

Rat y=addRat(x,x); //y must be 2/3

cout<<’’y is:’’<<numer(y)<<’’/’’<<denom(y);

}

The above program will output 6/9 (why?). One possible way to solve this
problem is by changing the constructor to always initialize the numerator and
denominator to their reduced forms. To do that, it is enough to divide both
numer and denom by their greatest common divisor. The greatest common
divisor can be obtained using Euclid’s algorithm (you can search for this online
if you have not heard of it).

Rat(int n, int d) {

int z=gcd(n,d); //assuming the gcd function exists

numer=n/z;

denom=d/z;

}

While this ensures that every rational number is in its reduced form upon
construction, it does not protect against direct access to the member data.
Consider the following code:

int main() {

Rat x=Rat(1,3);

x.numer=2; //now x is 2/3

x.denom=4; //now x is 2/4 (not reduced)

}

Note that the above is possible because numer and denom are declared public
in class Rat (i.e. each is a member datum that is accessible through the object
using the dot notation). To remedy this problem, one must prevent this type of
access by moving numer and denom from the public section:

class Rat {

int numer;

int denom;

public:

Rat(int n, int d) {

numer=n;

denom=d;

}

};
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Both numer and denom are now called private member data. As a result,
our numer(x) and denom(x) functions will now fail:

int numer(Rat x) {

return x.numer; //error, numer is not public in Rat

}

int denom(Rat x) {

return x.denom; //error, denom is not public in Rat

}

Since access has been restricted by making numer and denom private in class
Rat, the only way to access numer and denom is now from within the class. This
means our functions numer(x) and denom(x) must be moved inside the class.
They will become member functions. Before we actually perform this move,
we stop and ask ourselves the following question: what is really meant by data?
Is rational number a data? It seems that we are eventually reaching a point
where a rational number is not only composed of two integers, but also consists
of a bunch of functions!

We may think of data as defined by some collection of functions (including
constructors), together with specified conditions that these functions must fulfill
in order to be a valid representation. For instance, our rational numbers satisfy
the following condition: if x is constructed using Rat(n,d) then the result of the
division numer(x)/denom(x) is equal to n/d (note that this is true regardless
of which implementation of the constructor we use: reduced vs. non-reduced).
Therefore, implementation details are not important. What is important is the
interface with the outside world.
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Chapter 8

More on data abstraction

8.1 Introduction

In the previous chapter, we learned how to restrict access to data members
by making them private. If not declared under the keyword public, member
data (and functions) in a class are private by default, but we may also use the
keyword private as a reminder.

class Rat {

private:

int numer;

int denom;

public:

Rat(int n, int d) {

numer=n/gcd(n,d);

denom=d/gcd(n,d);

}

};

This approach ensures that the internal representation of a rational number
is protected. The only way of constructing a rational number is through the
constructor Rat(n,d), which guarantees that numer and denom are reduced
to their lowest terms. After that point, the programmer has no direct access to
numer and denom using the dot notation (because they are declared private
in the class). Unfortunately, this also means that the following two functions
will fail:

int number(Rat x) {

return x.numer; //error, numer is declared private

}

int denom(Rat x) {

return x.denom; //error, denom is declared private

}

The only way to access numer and denom is now from within the class.
This means the above two functions numer(x) and denom(x) must be moved
inside the class. They become member functions.
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8.2 Member functions

A class can contain functions other than a constructor. Unlike a constructor,
these functions may have a return type. The scope of a member function is the
entire class; therefore, a member function can be called from within another.
Moreover, if these functions are declared public, they may be accessed outside
the class but only through the object, using the dot notation (like member
data) 1. As we would expect, a member function has full access to all member
data. Here’s our first attempt to make numer(x) and denom(x) two member
functions:

class Rat {

private:

int numer;

int denom;

public:

Rat(int n, int d) {

numer=n/gcd(n,d);

denom=d/gcd(n,d);

}

int numer(Rat x) {

return x.numer;

}

int denom(Rat x) {

return x.denom;

}

};

8.2.1 Naming conflict

By doing so, we have introduced a naming conflict. It just happened that the
names of our two functions coincide with those given originally to the member
data. For instance, the name numer is now declared twice in the same scope:
once as an int and once as a function. Similarly for the name denom. This
will cause a compile time error. To fix this problem, we can simply rename our
functions.

class Rat {

private:

int numer;

int denom;

1This is not true for a constructor. Once the object is constructed, we cannot explicitly
invoke the constructor on it again using the dot notation.
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public:

Rat(int n, int d) {

numer=n/gcd(n,d);

denom=d/gcd(n,d);

}

int getNumer(Rat x) {

return x.numer;

}

int getDenom(Rat x) {

return x.denom;

}

};

8.2.2 Shadowing

In the event that we like to keep the original names of our functions (and this is
justifiable because they are public while the member data are private), then we
would rename the member data instead. For instance, we can replace numer
and denom with n and d respectively for every occurrence of these names.

class Rat {

private:

int n;

int d;

public:

Rat(int n, int d) {

n=n/gcd(n,d);

d=d/gcd(n,d);

}

int numer(Rat x) {

return x.n;

}

int denom(Rat x) {

return x.d;

}

};

By doing so, we have created another error. This time, however, it is a
logical error and, therefore, the compiler will not complain. The error is that
the local names given to the parameters of the constructor are also n and d.
The scope of these two parameters is the body of the constructor. As a result,
every occurrence of n and d in the body of the constructor refers to those
parameters. This prevents us from being able to refer to the member data
from within the constructor. Such behavior is known as shadowing. The local
names for the parameters shadow the names for the member data. In general
shadowing occurs when a variable in an inner scope is given the same name as
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a variable in an outer scope. Therefore, a name refers to the declaration found
in the inner most scope that contains such declaration.

{

T1 x;
{

T2 x;

}

}

Figure 8.1: Shadowing: in the inner scope, x refers to the second declaration

To solve the shadowing problem, we can simply rename the parameters (we
will see another way later).

class Rat {

private:

int n;

int d;

public:

Rat(int a, int b) {

n=a/gcd(a,b);

d=b/gcd(a,b);

}

int numer(Rat x) {

return x.n;

}

int denom(Rat x) {

return x.d;

}

};

Our class is now almost ready. However, since public member functions must
be accessed through the object using the dot notation, the syntax for using our
two newly added functions will look a bit weird. Here’s an example:

int main() {

Rat x=Rat(2,3);

cout<<x.numer(x)<<’’/’’<<x.denom(x)<<’’\n’’;

}

The variable x appears twice with each function call: once to access the
function itself using the dot notation, and once as an argument to the function.
Even more weird is the semantics of using these functions.
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int main() {

Rat x=Rat(2,3);

Rat y=Rat(4,5);

cout<<x.numer(y)<<’’/’’<<x.denom(y)<<’’\n’’;

}

In the example above, we access the function through object x using the dot
notation, but we use object y as an argument. Therefore, we will output the
numerator and denominator of y, although we are accessing the function through
x. To avoid such wired syntax and semantics, the argument to the function
should be implicit. In other words, the functions numer() and denom() should
not have any parameters. The parameter should be understood from the object
used in the dot notation.

class Rat {

private:

int n;

int d;

public:

Rat(int a, int b) {

n=a/gcd(a,b);

d=b/gcd(a,b);

}

int numer() { //parameter is implicit

return n;

}

int denom() { //parameter is implicit

return d;

}

};

int main() {

Rat x=Rat(2,3);

Rat y=Rat(4,5);

cout<<x.numer()<<’’/’’<<x.denom()<<’’\n’’;

cout<<y.numer()<<’’/’’<<y.denom()<<’’\n’’;

}

Without an implicit parameter, there is no way for numer() and denom()
to distinguish one call from another, unless every object has its own set of mem-
ber functions (like it has its own set of member data). However, that would be
inefficient and, therefore, it is not how it is done. Therefore, given that all
objects share the same set of member functions, x.numer() and y.numer()
retrieve the same function stored in memory. But this function behaves differ-
ently in the two calls. This is only possible if there is some information being
communicated to the function every time. Such information of course passed as
a parameter, the implicit one! The next section exposes this mechanism.
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8.3 Exposing the class, self reference

Every member function (including constructors) in a class has a hidden or im-

plicit parameter added by C++ at the end of the list of parameters explicitly
defined by the programmer. That parameter is known as the self reference pa-
rameter and it has the name this. Since this is a parameter, we must ask the
what type does this have? The answer is that this is a constant pointer of
the type defined by the class. Therefore, in our example, this is declared at the
end of the parameter list as follows:

( ... , Rat * const this)

A small section on the basic use of const is included at the end of this
chapter. For now, a constant pointer means that the pointer cannot be changed,
i.e. cannot be assigned another address.

C++ uses the self reference parameter this to identify the object on which
the dot notation was used to invoke the function (or the objet being constructed
in case of a constructor). Therefore, another way of visualizing the class is as
follows (what is really happening):

//the nice look //what is really happening

class Rat {

private:
int n;
int d;

public:
Rat(int a, int b) { Rat::Rat(int a, int b, Rat * const this) {

n=a/gcd(a,b); (*this).n=a/gcd(a,b);
d=b/gcd(a,b); (*this).d=a/gcd(a,b);

} }

int numer() { //parameter is implicit Rat::numer(Rat * const this) {
return n; return (*this).n;

} }

int denom() { //parameter is implicit Rat::numer(Rat * const this) {
return d; return (*this).d;

} }
};

int main() {
Rat x=Rat(2,3);
Rat y=Rat(4,5);
cout<<x.numer()<<’’/’’<<x.denom()<<’’\n’’; cout<<Rat::numer(&x)<<’’/’’<<Rat::denom(&x)<<’’\n’’;
cout<<y.numer()<<’’/’’<<y.denom()<<’’\n’’; cout<<Rat::numer(&y)<<’’/’’<<Rat::denom(&y)<<’’\n’’;

}

Although the this pointer is hidden, we can actually use it in the body of
the function as the rest of the parameters. For instance, this provides a way
to overcome the shadowing problem without having to rename parameters (or
member data):

class Rat {

private:

int n;

int d;
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public:

Rat(int n, int d) {

(*this).n=n/gcd(n,d);

(*this).d=d/gcd(n,d);

}

int numer() {

return n;

}

int denom() {

return d;

}

};

In this new version of the constructor, first the object is obtained by deref-
erencing the this pointer. Then the member data is accessed using the dot
notation. Therefore, while n in the body of the constructor refers to the pa-
rameter, (*this).n refers to the member datum n declared in the class.

C++ provides the operator − > to simplify the combined use of dereferenc-
ing and the dot notation.

A− >B ≡ (*A).B

class Rat {

private:

int n;

int d;

public:

Rat(int n, int d) {

this->n=n/gcd(n,d);

this->d=d/gcd(n,d);

}

int numer() {

return n;

}

int denom() {

return d;

}

};

8.4 Adding more constructors, default construc-
tor

Now we have enough infrastructure to handle rational numbers. But it would
be even nicer if we can represent integers as rational numbers too. This can be
easily achieved by constructing a rational number with a denominator of 1.
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int main() {

Rat x=Rat(2,1); //construct the rational number 2

}

Alternatively, a programmer is always looking for simplicity, and one may
like to do the following:

int main() {

Rat x=2; //WOW!

}

Luckily, C++ interprets this as:

int main() {

Rat x=Rat(2);

}

Therefore, C++ assumes the existence of a constructor that takes only one
parameter (an integer). Of course we don’t have one for our Rat class. There-
fore, we face a compile time error. One way to make the compiler happy is
by giving a default value for one of the parameters. In this case, when only
one argument is passed, the default value is assumed for the second one (this
technique applies in general to any function and not only in the context of a
class).

class Rat {

. . .

public:

Rat(int n, int d=1) {

this->n=n/gcd(n,d);

this->d=n/gcd(n,d);

}

. . .

};

int main() {

Rat x=Rat(2,1);

Rat x=Rat(2); //equivalent to Rat x=Rat(2,1);

Rat z=2; //equivalent to Rat z=Rat(2)

}

Another way is to actually provide another constructor for the class that
takes only one integer as a parameter. This is acceptable by the function over-
loading rules: two functions with the same name and in the same scope must
have different parameters (number of parameters and/or types of parameters).
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class Rat {

. . .

public:

Rat(int n, int d) {

this->n=n/gcd(n,d);

this->d=n/gcd(n,d);

}

Rat(int n) {

this->n=n;

d=1;

}

. . .

};

int main() {

Rat x=Rat(2,1); //calling the first constructor

Rat y=Rat(2); //calling the second constructor

Rat z=2; //equivalent to Rat z=Rat(2);

}

What if we combine both techniques. Well, in that case we create a combi-
nation that is not very useful. The following program fails to compile.

class Rat {

. . .

public:

Rat(int n, int d=1) {

this->n=n/gcd(n,d);

this->d=n/gcd(n,d);

}

Rat(int n) {

this->n=n;

d=1;

}

. . .

};

int main() {

Rat x=2; //is this calling Rat(2,1) i.e. first constructor

//or calling Rat(2) i.e. second constructor

Rat y=Rat(2); //same problem

}
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While both constructors are distinguishable according to the function over-
loading rules, the compiler cannot resolve which constructor must be called in
the example above. Therefore, the only way to construct a rational number in
this case is by calling the first constructor with two arguments explicitly all the
time!

Yet, another programmer may want to do the following:

int main() {

Rat x;

}

And as you might correctly suspect, C++ interprets this as follows:

int main() {

Rat x=Rat();

}

Therefore, C++ would be looking for a constructor with no parameters.
This is a special constructor and is known as the default constructor. We don’t
have a default constructor for our Rat class; therefore, the above program does
not compile. We can simply add one, but the question is what do we want a
default constructor to do? One possibility is to construct the rational number
zero by default.

class Rat {

. . .

public:

Rat(int n, int d) {

this->n=n/gcd(n,d);

this->d=n/gcd(n,d);

}

Rat(int n) {

this->n=n;

d=1;

}

Rat() {

n=0;

d=1;

}

. . .

};

It is always a good idea to have a default constructor. In some cases, it is
necessary to have a default constructor; for instance, when declaring an array
of rational numbers, the compiler looks for a default constructor to construct
every element:

Rat myarray[10]; //calls default constructor
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Therefore, it is possible to obtain a compile time error just because the
default constructor is missing. We will look at other cases later.

If a class has no constructors at all, then C++ adds a default constructor
to it that does nothing. Here’s an example:

class Rat {

private:

int n;

int d;

public:

int numer() {

return n;

}

int denom() {

return d;

}

};

This is equivalent to the following:

class Rat {

private:

int n;

int d;

public:

Rat() { }

int numer() {

return n;

}

int denom() {

return d;

}

};

8.5 Avoiding excessive construction

So far our Rat class allows us to construct rational numbers (in different ways)
and to extract the numerator and denominator of a rational number. Because
we have chosen to make the member data private, the class does not allow us to
modify the value of a rational number 2. In particular, the following code fails
to compile:

2Note that assigning a value for x.numer(), as in x.numer()=4; for instance, is not
allowed because x.numer() simply returns the value of a variable and not the variable itself to
be assigned. We say that x.numer() is not an l-value (something that can appear to the left
of an assignment).
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int main() {

Rat x=Rat(2,3);

. . .

//attempt to modify x

x.n=3;

x.d=4;

. . .

}

The only way we can modify a rational number is to assign it to another one
as in the following example:

int main() {

Rat x=Rat(2,3);

. . .

x=Rat(4,5);

. . .

}

However, this means that almost every time we have to modify a rational
number, we have to construct another one. The above code is equivalent to the
following.

int main() {

Rat x=Rat(2,3);

. . .

Rat temp=Rat(4,5);

x=temp;

. . .

}

While this may be acceptable in some cases, it is not acceptable if the object
to be constructed is very large (wasting memory). Moreover, with such a strat-
egy, we have to carefully examine the meaning of an assignment. What does
assignment of objects mean? For instance, consider the following program:

int main() {

Rat x=Rat(2,3);

Rat y;

y=x;

}

Clearly, if x and y were simply integers for instance (or any other basic type),
then the semantics of the assignment are intuitive: copy the value of x into y.
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&x

&y

copy

Figure 8.2: Assignment is a copy operation

This means copy the integer in location &x (the address of x) into location &y
(the address of y).

When x and y are objects of some defined class, then assignment is still a
copy operation, except that the copying is done on a member by member
basis. Therefore, in the above program, x.n is copied into y.n and x.d is copied
into y.d. This is generally the default operation of assignment.

&x

&y

copy

n

d

n

d

Figure 8.3: Assignment is a member-by-member copy operation

Therefore, if the object is large and only a small part of it needs to be
modified, assignment is not the right way. Before we suggest a way to modify
our rational number note that the following statement is NOT an assignment
(it is an initialization, see Section 2.2).

int main() {

Rat x=Rat(2,3);

Rat y=x; //this is not an assignment

}

The statement above represents an initialization, a way to construct y from x
and, therefore, is not an assignment (this is different from the previous example
where y was already constructed using the default constructor). A special con-
structor known as the copy constructor is involved in this initialization. Such
constructor is part of every class by default and it performs exactly the opera-
tion of an assignment. We will see later that the default behavior (member-by-
member copy) of both the assignment and the copy constructor can be changed.
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The copy constructor is also involved in constructing the parameters of a
function using the arguments, and in copying the result returned by the function.
Here’s an example:

Rat dummy(Rat x) {

return x;

}

int main() {

Rat x=Rat(2,3);

dummy(x);

}

When the function dummy is called, the local parameter x is constructed
from its argument using the copy constructor. Moreover, when the function
returns, and before the local parameter x goes out of scope, the return value is
copied using the copy constructor.

To allow the modification of a rational number without using assignment we
must provide a public function that performs the modification. Such function
can take for instance two parameters and set the numerator and denominator
accordingly (like the constructor). This is shown below:

class Rat {

private:

int n;

int d;

public:

Rat(int n, int d) {

set(n,d);

}

Rat(int n) {

set(n,1);

}

Rat() {

set(0,1);

}

int numer() {

return n;

}

int denom() {

return d;

}

void set(int n, int d) {

this->n=n/gcd(n,d);

this->d=d/gcd(n,d);

}

};
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int main() {

Rat x=Rat(2,3);

. . .

x.set(4,5);

. . .

}

Note that the constructors have been rewritten in terms of the new function.
This is possible since a member function of the class can be called from within
another member function.

8.6 Basic use of const

We have previously seen that the keyword const is used to declare a constant
variable. A simple use of const can be as follows:

int main() {

const int i=2;

. . .

}

However, the use of const is more versatile and can be tricky. Here are some
basic variations.

8.6.1 Constant object

To declare a constant object we use the following syntax:

int main() {

const T x=...;

. . .

}

This means that x cannot be assigned after it is declared. Any attempt to
assign x will cause a compile time error.

8.6.2 Constant pointer

To declare a constant pointer we use the following syntax:

int main() {

T * const p=...;

. . .

}

This means that p cannot be assigned after it is declared. Any attempt to
assign p, i.e. change the address to which is is pointing, will cause a compile
time error.
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8.6.3 Pointer to constant object

To declare a pointer to a constant object we use the following syntax:

int main() {

const T * p; //note: no need to initialize p, it’s not constant

. . .

}

This means that the object cannot change through pointer p. Any attempt
to change the object by dereferencing p will cause a compile time error.

int main() {

int x;

const int * p;

p=&x; //ok, p is assigned the address of x

x=2; //ok, x is not constant

*p=3; //error, attempt to change x through p

}

8.6.4 Constant pointer to constant object

To declare a constant pointer to a constant object we use the following syntax:

int main() {

const T * const p=...;

. . .

}

This means that the pointer is constant and it is a pointer to a constant
object (the previous two cases combined). Therefore, p must be initialized.

int main() {

int x;

int y;

const int z=1;

const int * const p=&x; //ok, p must be initialized because it is constant

x=2; //ok, x is not constant

*p=3; //error, attempt to change x through p

p=&y; //error, attempt to assign p another address

z=4; //error, z is constant;

}
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Chapter 9

Operator overloading

9.1 Introduction

Consider the problem of adding rational numbers and outputting the result. So
far, we can do this task using our Rat class our addRat function as follows:

class Rat {

. . .

};

Rat addRat(Rat x, Rat y) {

return Rat(x.numer()*y.denom()+y.numer()*x.denom(),

x.denom()*y.denom());

}

int main() {

Rat x=Rat(2,3);

Rat y=Rat(4,5);

Rat z;

z=addRat(x,y);

cout<<z.numer()<<’’/’’<<z.denom();

}

It would be more convenient if we could carry our abstraction one step
further and add rational numbers in the same way we add integers. Moreover,
to output a rational number we need to explicitly output its numerator, a “/”
symbol, and its denominator. It would be more convenient if we do not have to
worry about this formatting.

int main() {

Rat x=Rat(2,3);

Rat y=Rat(4,5);

Rat z;

z=x+y;

cout<<z;

}

While the code above looks more natural, unfortunately operator + does
not support our newly defined types. Similarly, operator << does not know
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how to send a rational number to an output stream. Luckily, C++ provides a
way to redefine these operators to deal with new types. This is called operator
overloading.

9.2 Operator overloading

Most C++ operators can be overloaded. There are about 70 operators 5 of
which are not overloadable. These are ::, ., sizeof, .*, and ?: (we did not see
all of them). To overload an operator, we simply define it as a function with the
appropriate number of parameters. For instance, the + operator takes either
one or two parameters. The function name must start with the word operator
followed by the operator itself:

Rat operator+(Rat x, Rat y) {

return Rat(x.numer()*y.denom()+y.numer()*x.denom(),

x.denom()*y.denom());

}

//unary +

Rat operator+(Rat x) {

return x;

}

Similarly, we can overload the other operators:

Rat operator-(Rat x, Rat y) {

return Rat(x.numer()*y.denom()-y.numer()*x.denom(),

x.denom()*y.denom());

}

//unary -

Rat operator-(Rat x) {

return Rat(-x.numer(),x.denom());

}

//can be unary but then it is meant to be

//the dereferencing operator by convention

Rat operator*(Rat x, Rat y) {

return Rat(x.numer()*y.numer(),x.denom()*y.denom());

}

//must take exactly two parameters

Rat operator/(Rat x, Rat y) {

return Rat(x.numer()*y.denom(),y.numer()*x.denom());

}
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int main() {

Rat x=Rat(2,3);

Rat y=Rat(4,5);

z=x+y; //equivalent to operator+(x,y);

z=x-y; //equivalent to operator-(x,y);

z=-y+x; //equivalent to operator+(operator-(y),x);

z=x+x*y; //equivalent to operator+(x,operator*(x,y));

z=x/y*x; //equivalent to operator*(operator/(x,y),x);

}

Note that the precedence of the operators is preserved when operators are
overloaded and cannot be changed. So far, what we have done offers us more
than what we would expect. For instance, all the following will work:

int main() {

Rat x=Rat(2,3);

Rat z;

z=x+x;

z=x+2;

z=2+x;

z=2+2; //this does not call the overloaded operator

//the result is converted from int to Rat

//before assignment (see below)

}

This is because because in operator+(Rat x, Rat y), both parameters x and
y can be constructed from ints using the second constructor in the Rat class.
So let us observe what is really happening with a code such as the following:

Rat operator+(Rat x, Rat y) {return Rat(...);}

int main() {

Rat x=Rat(2,3);

Rat z;

z=x+2;

}

1. x is constructed using the first constructor in class Rat 1.

2. z is constructed using the default constructor in class Rat

3. the local parameter x of operator+ is constructed using the default copy
constructor in class Rat (memberwise copy from x)

4. the local parameter y of operator+ is constructed using the second con-
structor in class Rat with 2 being the argument

5. a local Rat is constructed within the operator+ function to form the result.

1Actually a temporary is constructed then copied into x using the copy constructor of
the class. The C++ standard allows an implementation to omit creating a temporary which
is only used to initialize another object of the same type. This optimization in enabled by
default in g++ for instance and, therefore, this step is not done. Specifying the option -fno-
elide-constructors disables that optimization, and forces g++ to call the copy constructor in
all cases. Another way to avoid the extra construction in Rat x=Rat(2,3) is to replaced it
with Rat x(2,3).
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6. the copy constructor is used upon return to construct a temporary Rat
from the result, see footnote 1. 2.

7. the local parameter x and the local parameter y are destroyed

8. the temporary Rat in step 6 is used by the assignment operator to assign
z

9. the temporary Rat is destroyed

10. the local Rat is destroyed (placed in this order in case step 6 is not done)

11. x and z are destroyed

If we did not have the second constructor (or if the constructor was declared
explicit as we will see later on), then step 4 of the above process will fail.
Instead, C++ will be looking for a + operator defined as operator+(Rat, int).
Therefore, it is a simply type mismatch. To solve the problem, we can overload
the + operator many times, once for every possible combination of parameter
types:

Rat operator+(Rat x, Rat y) {

return Rat(x.numer()*y.denom()+y.numer()*x.denom(),

x.denom()*y.denom());

}

Rat operator+(Rat x, int y) {

return Rat(x.numer()+y*x.denom(),x.denom());

}

Rat operator+(int x, Rat y) {

return Rat(x*y.denom()+y.numer(),y.denom());

}

//this last one does not compile

Rat operator+(int x, int y) {

return Rat(x+y,1);

}

Unfortunately, the last option does not compile. The reason for this is that
C++ prevents from overloading the default behavior of operators for basic types.
If the last one were to succeed, then every addition of two integers will produce
a Rat instead of an integer (most likely an undesired behavior).

9.3 Rules for operator overloading

These are the rules for operator overloading:

• Every operator must take a certain number of parameters (different from
one operator to another)

2The C++ standard allows an implementation to omit creating a temporary which is only
used to initialize another object of the same type. This optimization in enabled by default
in g++ for instance and, therefore, this step is not done. Specifying the option -fno-elide-
constructors disables that optimization, and forces g++ to call the copy constructor in all
cases.
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• At least one parameter must be of non-pointer type and of non-basic type
(e.g. user defined class), unless the overloading is done inside the class
(see below)

• When overloaded within a class (we will see this shortly), one parameter
is implicit, i.e. the this pointer; therefore, the only restriction in this case
is the number of parameters (the number includes the implicit one)

9.4 The increment/decrement operators and in-
troduction to references

Consider the problem of overloading the increment operator ++. For instance,
we might want to write the following program:

int main() {

Rat x=Rat(2,3);

Rat y;

y=++x;

}

In the above program, y should be the rational number 5/3 (borrowing the
semantics from the ++ operator for integers and floating numbers). The pre
increment operator ++ increments a number by 1 and returns the result of the
increment. To achieve this behavior with rational numbers, we need to overload
the pre increment operator ++ to accept a parameter of class Rat. The ++
operator is a unary operator; therefore, we have to provide the appropriate
overloading with just one parameter:

Rat operator++(Rat x) {

return Rat(x.numer()+x.denom(),x.denom());

}

While the above returns the correct thing, which is a rational number equal
to 1 + x, it does not increment the argument itself. Therefore, the statement
y=++x assigns the correct value for y, but leaves x unchanged. At this point,
the dilemma is clear: How can we change x without passing it by reference using
a pointer?

Rat operator++(Rat * x) {

x->set(x->numer()+x->denom(),x->denom());

return x;

}

Obviously, such an attempts breaks the rules of operator overloading (the
compiler will complain about passing a pointer, see Section 3).

9.4.1 Why does C++ forbid pointers for operators?

The reason for introducing operator overloading into the language is to treat
user defined types in a similar way to basic types. Therefore, the key issue here
is form. One would like for instance to create a type for rational numbers where
arithmetic operators (and other operators) preserve their way of use. Allowing
pointers as arguments for operator overloading adds more flexibility but defeats
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that purpose. For example, such overloading for the pre increment operator
would have to be invoked using an expression like ++&x, which does not look
right.

For this reason, C++ provides a way to pass arguments by reference with-
out pointers. Such a scheme is simply called passing by reference. It’s a
way to provide pointer semantics with non-pointer syntax or form. A parameter
declared this way is called a reference.

9.4.2 References

At some level, one might think of a reference as an alternative name of some-
thing. Here’s a simple example that illustrates the idea:

int main() {

int i=1;

//pointer

int * p=&i; //p is a pointer to i

*p=2; //change i to 2 by dereferencing p

//reference

int& r=i; //r is a reference to i

r=2; //change i to 2 through its reference

//pointer semantics

//non-pointer form

}

Therefore, while * denotes a pointer, & denotes a reference. A reference can
be used in the same way as a pointer; howerver, it needs not be de-referenced
(using the de-referencing operator *). A reference represents another name for
the thing it is a reference to. Therefore, changing a reference means changing
that thing. As a result, a reference provides the semantics of a pointer while
keeping the syntax of a non-pointer.

Nevertheless, a reference is not a pure magic. It is actually implemented
using pointers. Here’s the equivalence:

//provided syntax //internal implementation

int main() {

int& r=i; int * const r=&i; //constant

//pointer

r=2; //changing pointer

//is not the intention *r=2;

}

Therefore, a reference is a constant pointer that is automatically dereferenced
every time it is used. Since a reference is a constant pointer in reality, it must
be initialized.
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References as types of function parameters

A reference can be the type of a function parameter. Here’s an example:

void f(int x, int& y) {

x=2;

y=2;

}

int main() {

int i=1;

int j=1;

f(i,j);

//i is still 1

//j is now 2

. . .

}

It should not be surprising that the value for j is changing in the above
program. After all, that’s what a reference must do: it provides pointer seman-
tics with non-pointer syntax. The above program can be better understood if
we replace the reference with its internal implementation (when an argument is
passed by reference, a pointer is passed instead).

void f(int x, int * const y) {

x=2;

*y=2;

}

int main() {

int i=1;

int j=1;

f(i,&j);

//i is still 1

//j is now 2

}

Here’s another example of a concept that we have seen before:

void swap(int& x, int& y) {

int temp=x;

x=y;

y=temp;

}

int main() {

int x=1;

int y=2;

swap(x,y);

//now x is 2 and y is 1

}
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And it’s equivalence:

void swap(int * const x, int * const y) {

int temp=*x;

*x=*y;

*y=temp;

}

int main() {

int x=1;

int y=2;

swap(&x,&y);

//now x is 2 and y is 1

}

References as function return types

A reference can also be the return type of a function. Here’s an example:

int& dummy(int& x) {

return x;

}

int main() {

int x=1;

dummy(x)=2; //in this case,

//equivalent to x=2

}

Normally, what a function returns cannot be assigned, because it is simply
a value (not an l-value). With a reference as the return type, the function
returns the actual thing. In the above example, x is being returned, which
is the parameter of the function, which is also a reference to the argument.
Therefore, what the function returns is the variable x itself which is declared in
the main() function. With a reference as the return type, one must always be
careful not to return a reference to something that is local to the function, and
will go out of scope as soon as the function returns. Here’s an example:

int& dummy(int x) {

return x;

}

Here the local variable x is being returned, which ceases to exist after the
function returns. We end up with a reference to something that does not exist!
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9.4.3 Overloading operators ++ and −− (almost) cor-
rectly

3 Now that we know how to achieve pointer semantics without pointers, let’s
overload the pre increment operator:

Rat operator++(Rat& x) {

x.set(x.numer()+x.denom(),x.denom());

return x;

}

What if we would like to overload the post increment operator ++? The
post increment operator is similar to the pre increment operator except that it
returns the value before the actual increment is performed. For instance, in the
following program, y is assigned the value 1 and then x becomes 2.

int main() {

int x=1;

int y=x++;

}

Therefore, we have two issues to consider. First, since both operators (pre
and post increment) are unary, we must find a way to distinguish them from
each other. Having resolved this issue, we must find a way to return the value
of the argument before increment.

To distinguish pre increment from post increment, C++ assumes that the
post increment operator takes an additional parameter of type int, which is
ignored. Therefore, we are looking at overloading the following operator:

Rat operator++(Rat& x, int) {

//int being ignored

. . .

}

To return the value of the argument before the increment, we can simply
use a temporary variable as follows:

Rat operator++(Rat& x, int) {

Rat temp=x; //copy constructor

++x; //call the pre increment operator

return temp; //copy constructor will copy the result

//before temp goes out of scope

}

Here’s a similar overloading for operator −−:

//pre decrement

Rat operator--(Rat& x) {

x.set(x.numer()-x.denom().x.denom());

return x;

}

3See further notes to understand why almost.
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//post decrement

Rat operator--(Rat& x, int) {

Rat temp=x;

--x;

return temp;

}

9.4.4 Overloading operator <<

4 The << operator takes two parameters. If we want the following program to
work:

int main() {

Rat x=Rat(2,3);

cout<<x;

}

then we must overload operator << with the first parameter being an output
stream (the type of cout) and the second parameter being a Rat.

#include <iostream>

using std::ostream;

___?___ operator<<(ostream s, Rat x) {

s<<x.numer()<<’’/’’<<x.denom()<<’’\n’’;

return ___?___;

}

The important question here is what should operator<< return? The answer
really depends on how the operator << is intended to be used. Generally, with
such an operator, chaining is desired. For instance, the following statement
should work.

cout<<x<<y<<z;

Therefore, since cout<<x<<y<<z; is equivalent to ((cout<<x)<<y)<<x;,
we conclude that calling the operator << must return an output stream, so that
the remaining part of the chain works. Here’s a first attempt:

ostream operator<<(ostream s, Rat x) {

s<<x.numer()<<’’/’’<<x.denom()<<’’\n’’;

return s;

}

Unfortunately, this specific way of overloading the << operator will cause
a compiler error due to a particular implementation of the ostream class. To
understand this point, let’s examine what happens with the following statement:

cout<<x;

4See further notes to learn a better way for overloading this operator.
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The function operator<< is called with two arguments: cout (an ostream
object) and x (a Rat object). Focusing on the first argument, the local parame-
ter s in operator<< is constructed using the copy constructor of class ostream.
Similarly, when s is returned, this copy constructor is involved again. However,
the copy constructor of class ostream is private (not really, it’s that of its base
class but we are not concerned about this at the moment). The key point is that
C++ forbids the call to the copy constructor of class ostream. The reason for
this is efficiency to avoid excessive copying of a large object such as an output
stream.

Consequently, we must refrain from copying such an object. The only way
is, therefore, to pass it (and return it) by reference. Here’s the final version.

ostream& operator<<(ostream& s, Rat x) {

s<<x.numer()<<’’/’’<<x.denom()<<’’\n’’;

return s;

}

The following would have worked also (why?) but is not desired (why?):

ostream * operator<<(ostream * s, Rat x) {

(*s)<<x.numer()<<’’/’’<<x.denom()<<’’\n’’;

return s;

}

We will discuss passing by reference for efficiency in the next chapter.

9.5 Making friends and moving operators inside
the class

Consider just for the sake of illustration that our Rat class is defined without
the public member functions numer() and denom(). Moreover, assume that
we would still like to provide the + operator. This is problematic because
operator+ (being defined outside the class) cannot access the numerator and
denominator of a rational number since they are decalred private. Nevertheless,
the only way we can now define operator+ is as follows (which will not compile):

Rat operator+(Rat x, Rat y) {

return Rat(x.n*y.d+x.d*y.n,x.n*y.d);

}

Since the designer of class Rat is likely also the person providing this operator
overloading, C++ provides an escape strategy for this situation. We can declare
operator+ as a friend of class Rat. In general, a friend function of a class can
access the private members (date or functions) of the class. Here’s how this
friendship can be achieved:

class Rat {

friend Rat operator+(Rat x, Rat y);

. . .

};
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Here’s another example to re-instate numer() and denom():

class Rat {

friend int numer(Rat x);

friend int denom(Rat x);

. . .

};

int numer(Rat x) {

return x.n; //ok, it’s a friend

}

int denom(Rat x) {

return x.d; //ok, it’s a friend

}

Rat operator+(Rat x, Rat y) {

return Rat(numer(x)*denom(y)+denom(x)*numer(y),denom(x)*denom(x));

}

Note that only the designer/implementer of a class can decide which func-
tions must be friends. Therefore, the technique of friend functions cannot jeop-
ardize the class.

An alternative to using friend functions is to move operator+ inside the class,
i.e. to make it a member function (recall that member functions have access to
private member data). But every member function has an implicit parameter
(the this constant pointer). Therefore, the implicit pointer provides the first
operand for the operator 5. Here’s an example:

class Rat {

int n;

int d;

public:

. . .

Rat operator+(Rat y) {

return Rat(n*y.d+d*y.n,d*y.d);

}

. . .

};

Note that the above function is internally implemented as follows:

Rat::operator+(Rat y, Rat * const this) {

return Rat(this->n*y.d+this->d*y.d,this->d*y.d);

}

5When an operator is defined as a member function, the restriction on the types of its
parameters is removed, since the constant this pointer is always one of the parameters and is
passed implicitly.

88



Now the operator can be used as before:

int main() {

Rat x=Rat(2,3);

Rat y=Rat(4,5);

Rat z;

z=x+y; //equivalent to z=x.operator+(y);

//(internally, z=Rat::operator+(y,&x);)

}

With this technique, however, we break some functionality that used to work
when the operator was defined outside the class. Consider the following:

int main() {

Rat x=Rat(2,3);

Rat z;

z=x+2; //ok, equivalent to z=x+Rat(2);

z=2+x; //error, 2.operator+(x) meaningless

}

Before, what made x+2 and 2+x work was the fact that C++ was implicitly
converting the 2 into a rational number using the appropriate constructor (the
one that takes one integer as parameter). Now, however, a function operator+
that takes two rational numbers as parameters does not exists. We only have a
member function operator+ in class Rat. This means that this function must
be called through a Rat object. The statement 2+x does not give C++ enough
information on which object to use (compiler is not intelligent enough to switch
the order of parameters, and of course it shouldn’t in general).

In this situation, to fix the inconsistent behavior of x+2 and 2+x, one
could only disable x+2 from working. This is done by declaring the constructor
Rat(int) as explicit, which tells C++ not to use it implicitly for conversion.

class Rat {

. . .

public:

. . .

explicit Rat(int n) {set(n,1);}

. . .

};

Based on the above scenario, it may be better to overload the + operator
outside class Rat. This raises the question: which operators should be over-
loaded as member functions? Well, here’s a rule of thumb:

• unary operators (the implicit this parameter becomes the operand)

• when the first operand is always the object itself

• when we have to (some operators must be member functions, e.g. the
assignment operator which we will study later, the [] operator, ...)
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class Rat {

int n;

int d;

public:

. . .

Rat operator++() {

n=n+d;

return *this;

}

Rat operator++(int) {

Rat temp=*this;

n=n+d;

return temp;

}

int operator[](int i) {

if (i==0)

return n;

else

return d;

};

Rat operator+(Rat x, Rat y) {

return Rat(x[0]*y[1]+x[1]*y[0],y[1]*y[1]);

}

ostream& operator<<(ostream&s, Rat x) {

s<<x[0]<<’’/’’<<x[1]<<’’\n’’;

return s;

}
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Chapter 10

Constness

10.1 Introduction

So far, we have seen the use of references in two contexts:

• to obtain pointer semantics while maintaining non-pointer syntax (e.g.
parameters for operator overloading)

• to avoid excessive copying (e.g. avoid calling the copy constructor for an
ostream object)

While the first use of references deals with form, the second deals with
efficiency. The problem is that both uses are indistinguishable and, therefore,
fail to convey the intention of the programmer. For instance, consider the
following function (the body of the function is intentionally unrevealed):

void secret(Rat& x) {

. . .

};

The user of such a function may write the following:

int main() {

Rat x=Rat(2,3);

secret(x);

}

The user knows that passing by reference provides pointer semantics (well,
assuming he/she took CSCI135). Therefore, to be on the safe side, the user may
assume that the secret function is going to modify the Rat argument (he/she
cannot rely on x remaining the same after calling the function). However,
the programmer might have just used a reference to avoid calling the copy
constructor of Rat, and had no intention of changing the argument.

10.2 Using const (again)

To convey that the argument is passed by reference for efficiency with no inten-
tion to modify, we can use the const keyword (as we have said before, the use
of const in C++ is versatile).
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void secret(const Rat& x) {

. . .

};

In fact, const is not just a way to convey intention, it is used by the compiler
as a guarantee: any attempt to modify x within the body of the function will
generate a compiler error.

Let’s see how we can benefit from this technique. For instance, we can
rewrite our operator+ function to pass the arguments by reference for efficiency
(copy constructor is not involved in constructing the parameters). Moreover,
since operator+ is not supposed to modify the operands, we can use const in
the declaration of the parameters.

//does not compile

Rat operator+(const Rat& x, const Rat& y) {

return Rat(x.numer()*y.denom()+x.denom()*y.numer(),

x.denom()*y.denom());

}

The compiler must guarantee that the body of the function operator+ does
not modify parameters x and y. Obviously not such attempt is identified. At
least for us. But how can the compiler really tell that, for instance, calling the
member functions x.numer() and x.denom() does not modify object x? To
make this issue clear, consider the following two functions:

void f(const Rat& x) {

x.set(2,3);

}

void g(const Rat& x) {

int n=x.numer();

}

In both functions, x is not supposed to change. However, both functions
call a member function of class Rat through x. Clearly, the two behaviors are
indistinguishable by the compiler. Yet, the compiler is required to develop some
sort of smartness to decide that function f(const Rat&) should not compile be-
cause x.set(int,int) modifies x, while function g(const Rat&) should compile
because x.numer() does not modify x. This kind of smartness is not possible
in general. Therefore, in both cases the compiler will complain.

Coming back to our revisited overloading of operator+ using constant refer-
ences, we now understand why the compiler will complain. To make the compiler
happy, the programmer must provide some kind of assurance that member func-
tion numer() does not modify its object (same for denom()). Such a function
is called constant member function.

10.3 Constant member functions

To declare a member function as constant (i.e. does not modify its object), we
simply add const at the end of the function prototype (no kidding!).
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class Rat {

int n;

int d;

public:

. . .

int numer()const {

return n;

}

int denom()const {

return d;

}

void set(int n, int d) {

this->n=n/gcd(n,d);

this->d=d/gcd(n,d);

}

. . .

};

Rat operator+(const Rat& x, const Rat& y) {

return Rat(x.numer()*y.denom()+x.denom()*y.numer(),

x.denom()*y.denom());

//ok, numer() and denom() are const

}

Declaring a member function as constant forbids any attempt to modify the
object inside the function. This is why it can be interpreted by the compiler
as an assurance for the constness of the object. In fact, this technique (of con-
stant member function) is not much different from that of declaring a function
parameter as constant.

class Rat{

int n;

int d;

public:

int numer()const {

//cannot modify the object here

//i.e. neither n nor d can change

return n;

}

};

void numer(const Rat& x) {

//cannot modify object x here

}
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What seems to be a complicated behavior is simply achieved by a simple
typing convention: when a member function is declared const, the type of its
implicit parameter (the this pointer) is changed from a “constant pointer to an
object” to a “constant pointer to a constant object”.

//what you see //what you get

class Rat {
int n;
int d;

public:

. . .

int numer()const { Rat::numer(const Rat * const this) {
return n; return this->n;

} }

int denom()const { Rat::denom(const Rat * const this) {
return d; return this->d;

} }

void set(int n, int d) { void set(int n, int d, Rat * const this) {
this->n=n/gcd(n,d); this->n=n/gcd(n,d);
this->d=d/gcd(n,d); this->d=d/gcd(n,d);

} }

. . .
};

//recall that a reference //is a constant pointer
//therefore, Rat& x //is simply Rat * const x

void f(const Rat& x) { void f(const Rat * const x) {
x.set(2,3); Rat::set(2,3,x); //error, type mismatch for x

} }

void g(const Rat& x) { void g(const Rat * const x) {
int n=x.numer(); int n=Rat::numer(x); //ok

} }

Here’s another example of how this typing convention works:

int main() {

const Rat x=Rat(2,3);

//x is a constant rational number

x.numer();

//equivalent to Rat::numer(&x)

//&x is pointer to const, and numer(const Rat * const)

//accepts pointer to const

//ok

x.set(4,5);

//equivalent to Rat::set(4,5,&x)

//&x is pointer to const, but set(int, int, Rat * const)

//accepts pointer to non-const

//error

}

If member function numer() were not declared as const, the second state-
ment of the above program would have failed to compile. Therefore, it is im-
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portant to declared every member function that does not modify the object as
const.

10.4 Moral of the story

We can summarize this whole discussion as follows:

• we may pass an argument by reference for efficiency (to avoid the copy con-
structor), in which case it is better to declare its corresponding parameter
as a constant reference

• if a parameter is declared as a constant reference, it cannot be changed
in the body of the function (this is a direct consequence of the fact that
a reference is internally a pointer and is automatically dereferenced, so a
constant reference is a pointer to const)

• a pointer to const argument cannot be passed for a pointer to non-const
parameter (the reverse is ok)

• every member function that does not modify the object must be declared
as const; this declares its implicit parameter as a constant reference

10.5 Redoing operator overloading

class Rat {

int n;

int d;

public:

. . .

int numer()const {

return n;

}

int denom()const {

return d;

}

int set(int n, int d) {

this->n=n/gcd(n,d);

this->n=d/gcd(n,d);

}

Rat operator++() {

n=n+d;

return *this;

}
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Rat operator++(int) {

Rat temp=*this;

n=n+d;

return temp;

}

int operator[](int i)const {

if (i==0)

return n;

else

return d;

};

Rat operator+(const Rat& x, const Rat& y) {

return Rat(x[0]*y[1]+x[1]*y[0],y[1]*y[1]);

}

ostream& operator<<(ostream& s, const Rat& x) {

s<<x[0]<<’’/’’<<x[1]<<’’\n’’;

return s;

}

10.6 Yet a better way

Since we would like our Rat objects to behave in a similar way to numbers, we
might want to restrict some functionality. For instance, operator+ returns a
Rat object. Objects are usually considered to be l-values; therefore, they can
be assigned. As a result, the following code is legal:

int main() {

Rat x=Rat(2,3);

Rat y=Rat(4,5);

Rat z=Rat(7,6);

x+y=z;

}

Probably no one would want to make an assignment to the sum of two
numbers, but it would be illegal if x, y, and z were of a built-in type. To be
consistent with built-in types, we can declare the return type of operator+ as
const and, therefore, forbid such an assignment to be made. We can do the
same for operator++ and operator−−.

class Rat {

int n;

int d;

public:

. . .
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int numer()const {

return n;

}

int denom()const {

return d;

}

int set(int n, int d) {

this->n=n/gcd(n,d);

this->n=d/gcd(n,d);

}

const Rat operator++() {

n=n+d;

return *this;

}

const Rat operator++(int) {

Rat temp=*this;

n=n+d;

return temp;

}

int operator[](int i)const {

if (i==0)

return n;

else

return d;

};

const Rat operator+(const Rat& x, const Rat& y) {

return Rat(x[0]*y[1]+x[1]*y[0],y[1]*y[1]);

}

ostream& operator<<(ostream& s, const Rat& x) {

s<<x[0]<<’’/’’<<x[1]<<’’\n’’;

return s;

}
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Chapter 11

C strings: some string
theory

11.1 Introduction

To declare a character, we simply need to specify the type char, for example:

int main() {

char c=’a’; //use single quotation for character

. . .

}

But what does it take to declare a string. So far we have been using strings
as expressions between double quotation marks like for instance “hello”. As we
will see shortly, these expressions represent constant strings, i.e. values to be
assigned to strings. But how do we declare a string as a variable that can be
assigned? The first thing we have to figure out is the type of such a variable.
In C, a string is simply an array of characters. This implies that a string has
the type char *, a pointer to the first character (element) of the string (array).

int main() {

char * s=’’hello’’;

cout<<s; //outputs the characters of ‘‘hello’’

}

There are two important issues with the above program:

• In general, there is no way to determine the size of an array simply from a
pointer to its first element. Therefore, how does cout know when to stop
outputting characters?

• According to the C++ standard, “hello” is a constant string, i.e. the type
of “hello” is const char *. Therefore, how come we can initialize a char
* variable with a string like “hello” (violation of constness rules)?

The answer to the first question is that every string expression “...” is
terminated by a special character known as the null character ’\0’. Therefore,
“hello” is actually “hello\0”. The null character is interpreted as the end of the
string. That’s why we call C strings null terminated strings.
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Figure 11.1: The null character

The answer to the second question is that C++ grants a special dispensation
for initializations like that because the practice is so common. Nevertheless, they
should be avoided. For instance, the following program generates a run-time
error:

int main() {

char * s=’’hello’’;

s[0]=’b’; //s is pointer to non-const, ok at compile time

//but it points to a const, error at run-time

}

Therefore, a better way to declare a string is the following:

int main() {

char s[]=’’hello’’;

s[0]=’b’;

}

which is equivalent to the following:

int main() {

char s[6]={’h’,’e’,’l’,’l’,’o’,’\0’};

s[0]=’b’; //ok at compile time and run-time

}

An array of six characters is declared, and each character of the array is
assigned the corresponding character of the string “hello”. Note that we could
have explicitly specified the number 6 between the brackets, but any smaller
number will cause a compiler error.

11.2 Assignment and pointer semantics

The C++ standard forbids assignment of arrays. Since strings are arrays of
characters, we cannot simply assign a string to another. Here’s an example:

int main() {

char s[]=’’hello’’;

char t[]=s; //error, invalid initializer

char r[6];

r=s; //error, C++ forbids assignment of arrays

}
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Therefore, the only way to assign strings is to treat them as pointers (re-
call that an array is a pointer to its first element). C++ does not forbid the
assignment of pointer of course; however, this means that assignment of strings
has pointer semantics: one pointer is assigned the value of another. Here’s an
example:

int main() {

char s[]=’’hello’’;

char * t=s; //ok

}

s t

h
e
l
l
o

\0

Figure 11.2: Strings (pointers) s and t share the same physical memory

As illustrated in Figure 2, any change in s changes t and vice versa. In
other terms, t[i] is now simply another name for s[i]. This is probably not
the desired effect wanted from an assignment. What we really want is to copy
each character (element) of string (array) s into the corresponding character
(element) of string (array) t. This can be done using a loop as follows:

int main() {

char s[6]=’’hello’’;

char t[6];

for (int i=0;i<6;i++)

t[i]=s[i]; //assignment of type char

}

Another way to accomplish the same result is to use the built in function
strcpy, which copies one string into another using essentially a similar loop
based algorithm.

char * strcpy(char * t, const char * s) {

//copies the string pointed by s into

//the array pointed by t including

//the terminating null character

. . .

return t;

}

int main() {

char s[6]=’’hello’’;

char t[6];

strcpy(t,s);

}
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11.3 Strings as parameters to functions

In the event of copying string s into string t, what if the length of s is unknown?
This can happen for instance if s is passed as an argument to a function:

void f(const char * s) {

char t[?];

strcpy(t,s);

. . .

}

One possibility is to make t large enough (of course there is always a question
of what is enough):

void f(const char * s) {

char t[100];

strcpy(t,s);

. . .

}

However, the code above is not totally safe. What if the length of s is 100 or
more? Then we would need at least 101 characters in t including the terminating
null character. Soon we realize that there is no escape from determining the
length l of string s. But if s is null terminated, we can do that easily and then
copy min(l + 1, 100) characters from s into t.

void f(const char * s) {

char t[100];

int length=0;

while(s[length]!=’\0’)

length++;

for(int i=0;i<min(100,length+1);i++)

t[i]=s[i];

t[99]=’\0’; //in case the null character is not copied

. . .

}

We can accomplish the same result using the built in functions strlen and
strncpy. strlen determines the length of a string and strncpy copies a number
of characters from one string into another. Both use essentially loop based
algorithms similar to above.

int strlen(const char * s) {

//returns number of characters until the

//terminating null character (not included)

. . .

}
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char * strncpy ( char * destination, const char * origin, int num) {

//copies the first num characters of source to destination

//no null-character is implicitly appended to the end of

//destination, so destination will only be null terminated

//if the length of the string in source is less than num

. . .

return t;

}

void f(const char * s) {

char t[100];

strncpy(t,s,min(100,strlen(s)+1);

t[99]=’\0’; //in case the null character is not copied

. . .

}

Since the length of a string s can be determined, one might want to replace
the above code with the following:

void f(const char * s) {

char t[strlen(s)+1];

strcpy(t,s);

. . .

}

While this approach is appealing, we have seen that many compilers will
complain because the length of string (array) t is not known at compile time.
Therefore, we can keep such an approach if we use dynamic memory allocation:

void f(const char * s) {

char * t=new char[strlen(s)+1];

strcpy(t,s);

. . .

delete[] t; //if needed

}

11.4 A person class

Consider the following class:

class Person {

char name[100];

public:

Person(const char * s) {

strncpy(name,s,min(100,strlen(s)+1));

name[99]=’\0’;

}
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void print()const {

cout<<name<<’’\n’’;

}

};

The class Person has one private member datum, the name, which is a string
of 100 characters. For the public interface, it has a constructor which takes a
string as parameter (note the const), and a function to print the name on the
screen. Therefore, this class can be used as follows:

int main() {

Person saad=Person(’’saad’’);

saad.print();

}

A better way to define the class Person is by overloading operator << to
output the name instead of the function print.

class Person {

friend ostream& operator<<(ostream& s, const Person& p);

char name[100];

public:

Person(const char * s) {

strncpy(name,s,min(100,strlen(s)+1));

name[99]=’\0’;

}

};

ostream& operator<<(ostream& s, const Person& p) {

s<<p.name; //friend can access private data

return s;

}

With this operator overloading added, the class Person can now be used as
follows:

int main() {

Person saad=Person(’’saad’’);

cout<<saad;

}

Regardless of the choice used for printing a Person object, let us conduct a
little “experiment”:

int main() {

Person saad=Person(’’saad’’);

Person clone1=saad;

Person clone2;

clone2=saad;

}
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Here’s a line by line description of the above “experiment”:

• Person saad=Person(”saad”);: declares a Person object called saad
using the class constructor with the string ”saad” as argument.

• Person clone1=saad;: declares a Person object called clone1 using the
default copy constructor of the class

• Person clone2;: declares a Person object called clone2 using the class
default constructor, and gives a compile time error because class Person
has no default constructor (we add one below)

• clone2=saad;: assigns saad to clone2 using the default assignment
operator

Here’s the added default constructor to class Person that will remove the
compile time error generated by the third line described above:

class Person {

friend ostream& operator<<(ostream& s, const Person& p);

char name[100];

public:

Person(const char * s) {

strncpy(name,s,min(100,strlen(s)+1));

name[99]=’\0’;

}

Person() {

strcpy(name,’’john’’);

}

};

ostream& operator<<(ostream& s, const Person& p) {

s<<p.name; //friend can access private data

return s;

}

The question that we have to ask now is the following: What do the default
copy constructor and the default assignment operator do? We know from before
that both perform a memberwise copy. Since class Person has only one member
datum, the name, the default copy constructor copies the name from object
saad to object clone1. Similarly, the default assignment operator copies the
name from object saad to object clone2.

But what does copying the name mean? In general, here’s the rule depending
on the type of the member datum:

• The member datum is a built in type, a pointer, or a reference: copying
is identical to a simple assignment operation

• The member datum is an instance of a class: copying is done using the
copy constructor of the class (default copy constructor if none is defined)

• The member datum is a static array (size known by compiler): copying is
done on each element in a manner appropriate to its type
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Since the member datum name is a static array, each element of name is
copied separately. But each element is a character (built in type); therefore,
copying the name is equivalent to a simple assignment on a character by char-
acter basis. As a result, we have the correct behavior that we expect from a
Person class.

But there is one small problem. One might argue that the 100 characters are
enough to fit any name. That is likely true; however, we can’t claim that this is
completely safe. Bill Gates once said “640K ought to be enough for anybody”.
Maybe a person with a more than 100 character name exists! To be completely
safe, we must declare name as a pointer and use dynamic memory allocation:

class Person {

friend ostream& operator<<(ostream& s, const Person& p);

char * name;

public:

Person(const char * s) {

name=new char[strlen(s)+1];

strcpy(name,s);

}

Person() {

name=new char[5];

strcpy(name,’’john’’);

}

};

ostream& operator<<(ostream& s, const Person& p) {

s<<p.name; //friend can access private data

return s;

}

int main() {

Person saad=Person(’’saad’’);

Person clone1=saad;

Person clone2;

clone2=saad;

}

With this modification, we now have three issues to consider:

• We must free the memory that we allocated for each Person object when
this object is no longer in use

• The member datum name is now declared as a pointer, so the default copy
constructor will now simply assign pointers (see Section 2 on assignment
and pointer semantics)

• Same point above holds for the default assignment operator

The following figure illustrates the problem introduced by dynamic memory
allocation as exhibited by the default copy constructor and the default assign-
ment operator:
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Figure 11.3: Clones are not really clones

We will see how to deal with the three issues mentioned above in the next
chapter.
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Chapter 12

Destructor, copy
constructor, and assignment
operator

12.1 A Person class

class Person {

friend ostream& operator<<(ostream& s, const Person& p);

char * name;

public:

Person(const char * s) {

name=new char[strlen(s)+1];

strcpy(name,s);

}

Person() {

name=new char[5];

strcpy(name,’’john’’);

}

};

ostream& operator<<(ostream& s, const Person& p) {

s<<p.name; //friend can access private data

return s;

}

We have seen last time that we must deal with three issues:

• We must free the memory that we allocated in the constructors for each
Person object when this object is no longer in use

• The member datum name is declared as a pointer; therefore, the default
copy constructor will now simply assign pointers when performing the
memberwise copy

• Same point above holds for the default assignment operator
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int main() {

Person saad=Person(’’saad’’);

Person clone1=saad; //default copy constructor

Person clone2;

clone2=saad; //default assignment operator

//memory is not freed

}

clone2clone1

saad

name name

s
a
a
d

\0
name

j
o
h
n

\0

a memory leak
(not accessible anymore)

Figure 12.1: Clones are not really clones

12.2 Declaring the destructor

When constructing a Person object, we dynamically allocate memory. There-
fore, an important question is the following: when should we de-allocate or free
that memory? The obvious answer is of course whenever that Person object is
no longer in use. But how do we actually determine that? When defining the
class, we have no control over times when objects are instantiated nor on how
long they live. Therefore, we need some help from the compiler.

C++ guarantees to call a special member function in the class right before
an object goes out of scope (that’s when that object can be guaranteed to be no
longer in use 1). This special member function is called the destructor. Every
class has a default destructor that does nothing; however, we can redefine the
destructor and use it to free the memory allocated by the constructor. The
destructor is identified by C++ according to the following:

• The destructor has the same name as the class name preceded by the ’˜’
symbol

• The destructor takes no parameters

• Like a constructor, the destructor returns nothing, not even void

From the second point above, we conclude that a destructor cannot be over-
loaded, i.e. we can have at most one destructor for a class (otherwise, the
multiple destructors will have identical list of parameters).

Let us now declare our destructor for the Person class:

1This is not true for objects that are dynamically allocated using the new operator.
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class Person {

friend ostream& operator<<(ostream& s, const Person& p);

char * name;

public:

. . .

~Person() {

delete[] name;

}

};

The following code:

int main() {

Person saad=Person(’’saad’’);

}

is equivalent to:

int main() {

Person saad=Person(’’saad’’);

saad.~Person(); //this is implicitly added by compiler

}

s
a
a
d

\0

name

Person saad=Person(“saad”); Person(const char * s) {
name=new char[strlen(s)+1];

. . .
}

saad.~Person();

deleted when saad 
goes out of scoe

(memory freed by compiler)

~Person() {
delete[] name;

}

Figure 12.2: One new[] and one delete[]

For dynamically allocated objects (declared using the new operator), the
destructor is not called until that object is explicitly freed (using the delete op-
erator). This is because a dynamically allocated object must live until explicitly
deleted.

For instance, the following code:

int main() {

Person * saad=new Person(’’saad’’);

}
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is equivalent to:

int main() {

Person * saad=new Person(’’saad’’);

}

But the following code:

int main() {

Person * saad=new Person(’’saad’’);

delete saad;

}

is equivalent to:

int main() {

Person * saad=new Person(’’saad’’);

saad->~Person();

delete saad; //by now there are two news and two deletes

}

s
a
a
d

\0

name

Person * saad= new Person(“saad”);

saad

Person::Person(const char * s) {
name=new char[strlen(s)+1];

. . .
}

saad->~Person();

delete

~Person() {
delete[] name;

}

delete saad;

Figure 12.3: Two news and two deletes

In case of arrays, the destructor is called on every element of the array.
The following code:

int main() {

Person people[10]; //default constructor

}

is equivalent to:

int main() {

Person people[10]; //default constructor

for (int i=0; i<10; i++)

people[i].~Person();

}

Similarly, the following code:
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int main() {

Person * people=new Person[10]; //default constructor

delete[] people;

}

is equivalent to:

int main() {

Person * people=new Person[10]; //default constructor

for (int i=0; i<10; i++)

people[i].~Person();

delete[] people;

}

While it is possible to explicitly call the destructor (as a public member
function), it is not recommended to do so. The reason is that C++ will call
the destructor again when the object is out of scope (or deleted in case of a
dynamically allocated object). This means that memory will be freed twice.
The behavior of such a code is undefined and may cause a run time error.
Therefore, it is a good idea to NULL the pointer after deletion. This
means to set the value of the pointer to 0. Deleting a NULL pointer causes no
harm (no action is done).

class Person {

friend ostream& operator<<(ostream& s, const Person& p);

char * name;

public:

. . .

~Person() {

delete[] name;

name=0;

}

};

Finally (and somewhat related to the issue above), there is a small problem
with the way we defined the destructor for class Person. Consider the following
program again:

int main() {

Person saad=Person(’’saad’’);

Person clone1=saad; //default copy constructor

Person clone2;

clone2=saad; //default assignment operator

}

which is equivalent to:
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int main() {

Person saad=Person(’’saad’’);

Person clone1=saad; //default copy constructor

Person clone2;

clone2=saad; //default assignment operator

saad.~Person();

clone1.~Person();

clone2.~Person()

}

Since saad, clone1, and clone2 share the same string (i.e. saad.name,
clone1.name, and clone2.name are all equal, see Figure 1), the memory for
the string ”saad” if freed three times (once per each destructor call). Nulling
the pointer in this case does not help because each object has its own pointer.
This problem will disappear once we redefine the copy constructor and overload
the assignment operator to produce real clones.

12.3 Declaring the copy constructor

One might argue that the default scenario of Figure 1 (except for the memory
leak produced by assignment) is acceptable and, therefore, there is no need to
declare the copy constructor. In deed, one might live with the fact that modify-
ing the name of a clone automatically modifies the name of the original object
(and vice-versa). However, with the newly declared destructor (see above), such
a behavior becomes dangerous. Consider for instance the following code:

void dummy(Person p) {

}

int main() {

Person saad=Person(’’saad’’);

dummy(saad);

cout<<saad;

}

This code looks very “innocent”. The body of the function dummy is empty
and, therefore, nothing is done (hence the name of the function). Consequently,
one might naively think that this code is simply equivalent to the following:

int main() {

Person saad=Person(’’saad’’);

cout<<saad;

}

Unfortunately, it’s not! Let’s examine what really happens: When dummy
is called with object saad as argument, the local parameter p of the function
is constructed from saad using the copy constructor (the default one in this
case). Now p and saad share the same string, i.e. p.name==saad.name.
The parameter p goes out of scope when function dummy returns; therefore,
p.˜Person() (the newly declared destructor) is called. This means p.name is
freed, which also means that saad.name is freed. As a result, when function
dummy returns, object saad has no name. The statement cout<<saad; is
likely to produce a run-time error because operator<< will be accessing a place
in memory (i.e. pointer saad.name) that is not properly allocated anymore.
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void dummy(Person p) {

//p is constructed using

//the default copy constructor

//p is destructed using

//the declared destructor

p.~Person();

}

int main() {

Person saad=Person(’’saad’’);

dummy(saad);

//saad lost its name

cout<<saad;

}

To avoid such anomalies, the copy constructor must be properly declared and
defined to allocate separate memory for the newly constructed object, and to
copy the string pointed to by name character by character to the newly allo-
cated memory. Since a copy constructor is a constructor after all, it must have
the name of the class and no return type. But how can a constructor be iden-
tified as the copy constructor. The only way is by its list of parameters. C++
recognizes a copy constructor as a constructor that takes a constant reference
to the class (why constant? and why reference?), i.e. in our case it must be
declared as:

Person(const Person&);

In general, for a class X, the copy constructor is: X(const X&). Let’s
declare a copy constructor for our Person class:

class Person {

friend ostream& operator<<(ostream& s, const Person& p);

char * name;

public:

. . .

Person(const Person& p) {

name=new char[strlen(p.name)+1];

strcpy(name,p.name);

}

. . .

};

Note that we can access p.name inside the constructor even if name is
declared as a private member: the unit of protection is the class and not the
object.
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12.4 Overloading the assignment operator

Referring to Figure 1, there are two problems to consider with the default as-
signment operator. First, after an assignment, objects share the sane physical
memory (memberwise copy, same as default copy constructor). Second, there
is a memory leak produced as a result of this default operation. Therefore, we
must overload the assignment operator and define it in a way to avoid the two
problems mentioned above.

The first thing to note when overloading the assignment operator is that
C++ requires that it must be a member function (hence enforcing the first
operand to be an instance of a user-defined class). The second thing to note
is that the assignment operator is a binary operator (it takes two operands).
Hence, besides the implicit this parameter (the first operand) as a consequence
of being a member function, it takes one additional parameter. Therefore, we
are looking at something like the following:

class Person {

friend ostream& operator<<(ostream& s, const Person& p);

char * name;

public:

. . .

---?--- operator=(---?---) {

. . .

}

. . .

};

Of course, the questions are now what type should the assignment operator
take and what type should it return? To answer these questions we must deter-
mine how the assignment operator should be used. For instance, the following
should work:

int main() {

Person saad=Person(’’saad’’);

Person clone; //default constructor

clone=saad; //equivent to clone.operator=(saad);

}

So we would like the parameter to be of type Person. Moreover, it would
be better if we pass the argument by reference for efficiency (to avoid calling
the copy constructor). We conclude that the type of the parameter should be
a reference to Person, i.e. Person&. However, the following code should also
work:
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int main() {

const Person saad=Person(’’saad’’);

Person clone; //default constructor

clone=saad; //equivalent to clone.operator=(saad);

//saad is const by clone is not

}

In other words, we must be able to pass a constant object as argument to
operator=. Since a const argument cannot be passed for a non-const param-
eter, a better way is to declare the parameter as a constant reference. This is a
good idea anyway because we have no intention to modify the argument in an
assignment (the reference is for efficiency only). So far, we figured that much:

class Person {

friend ostream& operator<<(ostream& s, const Person& p);

char * name;

public:

. . .

---?--- operator=(const Person& p) {

. . .

}

. . .

};

For the return type, one can simply choose void. In this case, however, the
following code will fail:

int main() {

Person x;

Person y;

Person z=...;

x=y=z; //equivalent to x=(y=z);

//equivalent to x.operator=(y.operator=(z));

}

If such chaining is to be accepted (it is for built-in types), then operator=
must return a Person object, e.g. y=z returns either y or z. But to avoid
calling the copy constructor, we can make the return type a reference as well;
for instance, operator= could return the object on which it is invoked (y in
the above example of y=z) by dereferencing the this pointer.

class Person {

friend ostream& operator<<(ostream& s, const Person& p);

char * name;
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public:

. . .

Person& operator=(const Person& p) {

. . .

return *this;

}

. . .

};

One might suggest to return the second operand instead as in the following:

Person& operator=(const Person& p) {

. . .

return p;

}

While conceptually both options are equivalent (because of the assignment),
the second option does not compile. The reason is that the return type is
Person& but p has type const Person&. Again, a const cannot be passed
for a non-const. This leads to the following question: should the return type be
const Person& instead? Well, not if the following code should work:

int main() {

Person x;

Person y;

Person z=...;

(x=y)=z;

}

If x=y returns a const Person&, then it cannot be assigned and the code
fails to compile. Since such code compiles if x, y, and z were built-in types
(although no one would actually write such code), it is a good idea to maintain
this behavior for user-defined classes. We conclude that

X& operator=(const X&)

is the preferred prototype for the assignment operator for class X.
Now let us implement the assignment operator:

Person& operator=(const Person& p) {

//free memory to avoid memory leak

delete[] name;

//allocate new memory

name=new char[strlen(p.name)+1];

//copy

strcpy(name,p.name);

//return for chaining to work

return *this;

}
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Finally, there is a small problem with the way we defined the assignment
operator for class Person. Consider the following program:

int main() {

Person saad=Person(’’saad’’);

saad=saad;

cout<<saad;

}

Obviously, once the memory for object saad is freed inside operator=,
the information is permanently lost! Therefore, we must first check for self-
assignment. Here’s the final version (and the correct one):

class Person {

friend ostream& operator<<(ostream& s, const Person& p);

char * name;

public:

. . .

Person& operator=(const Person& p) {

if (this==&p)

return *this;

delete[] name;

name=new char[strlen(p.name)+1];

strcpy(name,p.name);

return *this;

}

. . .

};

12.5 Points to remember

• Declare a destructor, a copy constructor, and an assignment operator
whenever your class allocates memory dynamically

• Destructor: ˜X()

• Copy constructor: X(const X&)

• Assignment operator (preferred): X& operator=(const X&)

• Always NULL pointers when you can (at initialization and after delete)

• Always check for self-assignment in operator=

• If your class allocates memory dynamically but you don’t want to declare
a copy constructor or an assignment operator (object may be too compli-
cated to copy or must be unique), then declare them as private (without
defining them), C++ won’t be looking for their definitions (why?):
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class X {

. . .

private:

X(const X&);

X& operator=(const X&);

. . .

};
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Chapter 13

Multidimensional arrays

13.1 A bit of a review

We have seen previously how to declare a one dimensional array; for example,
here’s an array of ten integers:

int main() {

int a[10];

. . .

}

We have also argued that an array is simply a pointer to its first element
and, as a consequence, the above array has type int *. Therefore, to pass an
array as an argument to a function, we simply have to specify the correct type:

void f(int * a, int n) {

//do something

}

The second parameter (the size) is needed because there is no way of deter-
mining the size of an array simply from a pointer to its first element. The above
function can be also defined as follows:

void f(int a[], int n) {

//do something

}

The syntax int a[] for a function parameter is the same as writing int * a.
While a bit misleading, the following syntax can also be used:

void f(int a[10]) {

//assume a has size 10

//do something

}

The reason why this is misleading is that the 10 between brackets is mean-
ingless. The compiler interprets the parameter int a[10] as int a[], i.e. it
does not enforce any type on the argument except it being a pointer to int.
Therefore, the following code compiles perfectly:
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void f(int a[10]) {

//assume a has size 10

//do something

}

int main() {

int a[5];

. . .

f(a); //ok

}

We will see later how such type enforcement can be achieved. For now, the
compiler treats an array as a pointer to its first element (does not care about
its size). Therefore, the size of the array is usually provided as an additional
argument when passing the array as an argument to a function (unless the size
is known to the programmer in advance). Having said that, we must also em-
phasize the fact that the compiler must know the type of the individual elements
of an array. This is particularly important when dealing with multidimensional
arrays.

13.2 Tic-Tac-Toe

Suppose we want to create a tic-tac-toe game. Therefore, we need to represent a
3×3 grid of symbols (possibilities include ’ ’, ’X’, and ’O’). Such a representation
can be achieved using an array as follows:

int main() {

char grid[9]; //9 characters

. . .

}

So far, what was nice about arrays (one dimensional arrays that is) is their
ability to capture our mental image, which is a linear sequence of things. While
nine characters are all we need to store the state of a tic-tac-toe game, such a
linear array is not quite the mental picture that we usually have for tic-tac-toe.

O

X

X

O

grid

O

X

X O

(a) (b)

Figure 13.1: (a) Computer representation versus (b) mental image
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As Figure 1 shows, we have to come up with some convention to transform
the position of characters in the linear order to a position on the grid, and vice-
versa. For instance, grid[6] is the bottom left corner. While such a convention
is definitely possible, it may not be intuitive. Moreover, it may require some
extra work; for instance, what does a row of X’s mean in the linear order?

The problem here is that the linear array does not provide an appropriate
mapping between the representation of a grid and the notion of a grid. It would
be nice if the representation allows us to say: “the first element of the last row”.
But such a statement is meaningful only because we are viewing the grid as a
two dimensional object. Fortunately, we can declare an array to capture this
dimensionality. We simply have to declare an array of three elements, with each
element being itself an array of three characters. Such a two dimensional array
can be declared as follows:

int main() {

int grid[3][3]; //grid is an array of 3 elements

//each element is an array of 3 characters

. . .

}

The first element of the last row is now simply grid[2][0]. This is because
grid[2] is the last element of the array declared above. Since each element
is itself an array, grid[2][0] is the first element of the last row. In general,
grid[i][j] refers to the jth element of the ith row (both rows and columns start
with zero). Note that we can switch the notion of row and column in our mind
without affecting the representation (and this is not simply because we have
three rows and three columns).

The two dimensional array provides now a better mapping between the rep-
resentation of a grid and the notion of a grid. In fact, the use of the term
mapping here is essential. The representation itself did not change tremen-
dously because memory inside the machine is still linear. We cannot make the
memory representation live up to our mental image. Consider the following
“fancy” tic-tac-toe mental representation.

O

X
O

X

Figure 13.2: A fancier mental image of tic-tac-toe

Obviously nothing can change about the memory representation to reflect
such “fanciness”. So how is the grid really represented in memory? The follow-
ing figure illustrates how.

123



O

X

X

O

grid ≡ grid[0]

grid+1 ≡ grid[1]

grid+2 ≡ grid[2]
X

grid[i] ≡ &grid[i][0]

grid[i]+1 ≡ &grid[i][1]

grid[i]+2 ≡ &grid[i][2]

one element (array) of grid

one element (char) 
of grid[i]

first dimension second dimension

Figure 13.3: Actual (linear) representation of a two dimensional array

As shown in Figure 3, the best way to interpret a two dimensional array is as
an array of arrays. Similarly, a three dimensional array is an array of arrays of
arrays, and so on. In Figure 3, grid+i and grid[i] are pictured to be equivalent
(but we learned that *(grid+i)≡ grid[i]). Here’s an explanation: grid[i] is
the ith element of grid. Therefore, grid[i] is an array, and hence a pointer. As
a result, grid[i] points to the same memory location as grid+i.

While grid+i and grid[i] are equivalent as pointer values, they are not
equivalent in types (recall *(grid+i)≡ grid[i]). The type of grid+i (the same
as the type of grid) is a pointer to an array of three characters; however, grid[i]
has the type pointer to a character, and it is the address of grid[i][0].

13.3 Multidimensional arrays as arguments

In Section 1, we revisited the fact that the compiler treats an array as a pointer
to its first element, irrespective of the size of the array. Therefore, when passing
an array as argument, the type for the corresponding parameter must be T *,
where T is the type of the individual elements of the array. The type T must
be fully known by the compiler in order to perform correct pointer arithmetics
as those shown in Figure 3, e.g. grid[1] is actually grid+1. For example, when
passing grid as an argument to a function, the corresponding parameter must
tell the compiler that every element of grid is an array of three characters. This
is essential for the increment operation mentioned above. Therefore, while the
size of the first dimension is irrelevant, the size of the second dimension becomes
very important. The problem we are facing now is a syntactic one: How do we
say “a pointer to an array of three characters”? In other words, how can we
specify that the type T is an array of three characters?

void f(T * a, int n) {

//do something

}

The most obvious way is to write:

void f(char[3] * a, int n) {

//do something

}

Unfortunately, such a syntax is not allowed. Another attempt is to write the
following:
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void f(char * a[3], int n) {

//do something

}

But this makes the parameter an array of pointers to characters, i.e. each
element of the array is a pointer to a character (this would be appropriate for
an array of strings). The fact that the array has a size of three is irrelevant.

It turns out that the correct way to specify the type is the following:

void f(char a[][3], int n) {

//a is an array

//the size of the first dimension is irrelevant

//the size of the second dimension is 3

//do something

}

Let’s use our tic-tac-toe grid as argument in a meaningful way:

void init(char a[][3], int n) {

for (int i=0; i<n; i++)

for (int j=0; j<3; j++)

a[i][j]=’ ’;

}

int main() {

char grid[3][3];

init(grid,3);

. . .

}

Another way is to give the type “array of three characters” a name and use
that name as a built in type. This can be achieved using the typedef keyword
(a meaningful example follows).

typedef char symbol; //symbol is simply another name for char

typedef symbol row[3]; //row is simply another name

//for ‘‘array of 3 symbols’’

const symbol X=’X’;

const symbol O=’O’;

const symbol EMPTY=’ ’;

void init(row * a, int n) { //or void f(row a[], int n) {

for (int i=0; i<n; i++)

for (int j=0; j<3; j++)

a[i][j]=EMPTY;

}

int main() {

row grid[3]; //array of 3 rows

init(grid,3);

. . .

}
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In general, all dimensions except the first must be specified when the array
is passed as argument. Here’s a example:

void f(int a[][3][4], int n) {

//do something;

}

int main() {

int cube[2][3][4];

. . .

f(cube,2);

}

13.4 Initializing multidimensional arrays

Multidimensional arrays can be initialized in the same way one dimensional
arrays are initialized. Here’s an example:

int main() {

int a[2][3][4]={{{1,2,3,4},{5,6,7,8},{9,10,11,12}},

{{13,14,15,16},{17,18,19,20},{21,22,23,24}}};

. . .

}

In the above, a is an array that contains two elements, each of the two is
itself an array that contains three elements, each of the three is itself an array
that contains four integers. Since the representation of a multidimensional array
in memory is actually linear, with elements stored in the same order listed above
(see Figure 4), the compiler does not generally require the explicit braces in the
initialization.

int main() {

int a[2][3][4]={1,2,3,4,5,6,7,8,9,10,11,12,

13,14,15,16,17,18,19,20,21,22,23,24};

. . .

}

13.5 Multidimensional arrays of unknown size

Similar to a one dimensional array, when the sizes of a multidimensional array
are not known, we allocate the array dynamically. Since a two dimensional
array is actually an array of arrays, for an m× n array of integers for instance,
we declare the array as a pointer to a pointer to int. Each element of the two
dimensional array is an array of integers and, therefore, has type int *. The
two dimensional array itself is a pointer to the first element and, therefore, has
type int **.
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2

3

a ≡ a[0]

a+1 ≡ a[1]

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

a[1] ≡ a[1][0] 13

14

15

16

17

18

19

20

21

22

23

24

a[1]+1 ≡ a[1][1]

a[1]+2 ≡ a[1][2] 21

22

23

24

a[1][2] ≡ &a[1][2][0]

a[1][2]+1 ≡ &a[1][2][1]

a[1][2]+2 ≡ &a[1][2][2]

a[1][2]+3 ≡ &a[1][2][3]

Figure 13.4: Memory representation of a[2][3][4]

The following code illustrates how to dynamically allocate an m × n array
of integers.

int main() {

int m,n; //to be determined

. . .

//allocate memory

int ** grid=new int *[m];

for (int i=0; i<m; i++)

grid[i]=new int[n];

. . .

//free memory

for (int i=0; i<m; i++)

delete[] grid[i];

delete[] grid;

}
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Essentially, we first allocate an array of m pointers. For this we need a
pointer (array) of type int **. Then, each one of the m pointers is dynamically
allocated as an array of n integers (of type int *). Note that the m arrays of
size n are not necessarily consecutive in memory as before. The following figure
illustrates the memory representation of the m × n array thus obtained.

int *

grid ≡ &grid[0]

grid+1 ≡ &grid[1]

grid+i ≡ &grid[i]

grid+m-1 ≡ &grid[m-1]

grid[i] ≡ &grid[i][0]

grid[i]+1 ≡ &grid[i][1]

intgrid[i]+j ≡ &grid[i][j]

grid[i]+n-1 ≡ &grid[i][n-1]

Figure 13.5: Dynamic allocation of an m × n array. Note that grid+i and
grid[i] are no more equivalent as pointer values, grid[i] points to a memory
location different from that of grid+i.
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Chapter 14

C++ vectors, strings, and
templates

14.1 The array decays into a pointer

So far, we have been treating an array as a pointer to its first element. As a
direct result of this convention, there is no difference between the two following
function declarations:

void f(int a[10]) {

. . .

}

void f(int a[5]) {

. . .

}

At the surface, it seems that the above two functions differ in their parameter
list (namely the type of the parameter). However, the fact that the array is
simply a pointer to its first element makes the size given between brackets
irrelevant (see previous chapter). The compiler treats both of these functions
as (thus a violation to the overloading rules):

void f(int a[]) {

. . .

}

When passed as argument, we say that the array decays into a pointer. The
pointer carries no information about the size of the array and, therefore, one
should pass the size as an extra argument as follows:

void f(int a[], int n) {

. . .

}
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But what if we want the compiler to fully enforce the type on the argument?
Say for instance that we want to define a function that takes as parameter an
array of integers of size 10, i.e. the whole thing as one entity, not just the
pointer. We will look at two ways for achieving this task: passing the array by
reference and wrapping the array inside an object.

14.2 Passing arrays by reference

Because arrays are pointers, one might argue that arrays are always passed by
reference. Well, yes and no: it is a pointer to the first element of the array
that is being passed. But passing something by reference is to pass a constant
pointer to it (even if itself is a pointer e.g. an array) while maintaining non-
pointer syntax. It may be confusing to think about, but arrays can be passed
by reference in that sense. Let’s not worry about what this actually means. For
our interest, the effect of passing an array by reference is to fully preserve the
information about the type of the array. Here’s an example of how to pass an
array of ten integers by reference:

void f(int (&a)[10]) {

. . .

}

int main() {

int a[10];

int b[5];

f(a); //ok, correct type

f(b); //error, wrong type

}

We can use the sizeof operator to observe the difference in the type of the
argument when the array is passed as usual or by reference:

void f(int (&a)[10]) {

//array does not decay into a pointer

cout<<sizeof(a); //we will see 40 (each int is 4 bytes)

. . .

}

void g(int a[]) {

//array decays into a pointer

cout<<sizeof(a); //we will see 4 (a pointer is 4 bytes)

. . .

}

int main() {

int a[10];

cout<<sizeof(a); //we will see 40 (each int is 4 bytes)

f(a);

g(a);

}
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14.3 A first look at templates

While we figured out a way to enforce the correct types on array arguments, we
lost some flexibility. We now need a function for every possible array size!

void f(int (&a)[1]) {

//process array of size 1

}

void f(int (&a)[2]) {

//process array of size 2

}

.

.

.

void f(int (&a)[100]) {

//process array of size 100

}

It is of course impossible to cover all possibilities. But what if we can
generate the appropriate function only when we need it? C++ provides such
ability using what is known as a template.

template <int n>

void f(int (&a)[n]) {

//process array of size n

}

The function defined above as a template represents an infinite number of
functions, one for each possible value of n. The compiler however does not
generate all of them (and it would be impossible to do so). When needed, the
compiler performs the appropriate specialization of the template, i.e. determines
a specific value for n (which we call the parameter of the template), and gener-
ates the corresponding function. As a result, we can now pass to the function
an array of integers of any length.

int main() {

int a[10];

int b[5];

f(a); //ok, specialize template with 10, equivalent to f<10>(a);

f(b); //ok, specialize template with 5, equivalent to f<5>(b);

}
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Using a template, we can go even one step further and make the function
independent of the type of elements of the array.

template<class T, int n>

void f(T (&a)[n]) {

//precess an array of Ts of size n

}

The above template has two parameters, a class T and an int n. The function
thus defined takes an array of size n, each element of which has type T. The
array is passed by reference as before.

int main() {

int a[10];

char b[5];

f(a); //ok, equivalent to f<int,10>(a);

f(b); //ok, equivalent to f<char,5>(b);

}

Note that for the compiler to specialize the template, all the parameters
of the template must be known at compile time. Moreover, when arrays
are declared dynamically, they are declared as pointers and, therefore, cannot
be passed as arguments to a function expecting a reference to an array.

int main() {

int n;

. . .

int * a=new int[n];

f<int,n>(a); //error, n is unknown at compile time

int * b=new int[10];

f<int,10>(b); //error, wrong type, b has type int *

}

A more general solution for handling arrays is to wrap the array inside an
object as explained in the following section.

14.4 Wrapping the array inside an object

A general solution for passing an array as argument while ensuring that:

• the array does not decay into a pointer

• no need to worry about passing the correct size as extra argument

• the technique works with dynamically allocated arrays

is to wrap the array inside an object and passing the object around while it
provides the appropriate public interface to access the array.
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Here’s an example of a wrapper for an array of integers:

class Array {

int * a; //the real array

int s; //the size of it

public:

Array() {

s=0;

a=0; //NULL pointer

}

Array(int n) {

s=n;

if (s==0)

a=0; //NULL pointer

else

a=new int[s];

}

Array(const Array& arr) {

s=arr.s;

if (s==0)

a=0; //NULL pointer

else {

a=new int[s];

for(int i=0; i<s; i++)

a[i]=arr.a[i];

}

}

Array& operator=(const Array& arr) {

if (this==&arr)

return *this;

delete[] a;

s=arr.s;

if (s==0)

a=0; //NULL pointer

else {

a=new int[s];

for(int i=0; i<s; i++)

a[i]=arr.a[i];

}

return *this;

}

~Array() {

delete[] a;

}
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int size()const {

return s;

}

int& operator[](int i) {

return a[i];

}

//for const objects

const int& operator[](int i)const {

return a[i];

}

};

The Array object can be used as follows (a small example):

void f(Array& a) {

int n=a.size();

//process an array of n integers

}

int main() {

Array a=Array(10); //array of 10 integers

//initialize

for(int i=0; i<10; i++)

a[i]=0;

. . .

f(a);

}

We can use a template to convert the above class to a general array object
of any type.

template<class T>

class Array {

T * a; //the real array

int s; //the size of it

public:

Array() {

s=0;

a=0; //NULL pointer

}
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Array(int n) {

s=n;

if (s==0)

a=0; //NULL pointer

else

a=new T[s];

}

Array(const Array& arr) {

s=arr.s;

if (s==0)

a=0; //NULL pointer

else {

a=new T[s];

for(int i=0; i<s; i++)

a[i]=arr.a[i];

}

}

Array& operator=(const Array& arr) {

if (this==&arr)

return *this;

delete[] a;

s=arr.s;

if (s==0)

a=0; //NULL pointer

else {

a=new T[s];

for(int i=0; i<s; i++)

a[i]=arr.a[i];

}

return *this;

}

~Array() {

delete[] a;

}

int size()const {

return s;

}

T& operator[](int i) {

return a[i];

}

//for const objects

const T& operator[](int i)const {

return a[i];

}

};
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template<class T>

void f(Array<T>& a) {

int n=a.size();

//process an array of Ts of size n

}

int main() {

Array<int> a=Array<int>(10); //array of 10 integers

Array<char> b=Array<char>(5); //array of 5 characters

. . .

f(a);

f(b);

}

C++ provides a vector class as part of the standard library, which is similar
to the class defined above except that it is more detailed.

14.5 C++ vectors

C++ provides the following class:

template<class T>

class vector {

. . .

public:

//constructors

vector(); //constructs an empty vector

vector(const vector& c); //copy constructor

vector(int num, const T& val=T()); //constructs a vector of num

//elements of type T each being

//a copy of val or the default

//for class T if val is not given

. . .

//operators

T& operator[](int i); //returns a reference to the ith element

const T& operator[](int i)const; //same but constant reference

//operators =, ==, !=, <, >, <=, >= are also overloaded

. . .
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//member functions

int size()const; //returns the number of items in the vector

bool empty()const; //returns true if the vector has no elements

void push_back(const T& val); //adds an element to the end of the vector

void pop_back(); //removes the last element of the vector

. . .

};

We will illustrate how to use the vector class through the tic-tac-toe example:

int main() {

vector<char> row=vector<char>(3,’ ’);

vector<vector<char> > tictactoe=vector<vector<char> >(3, row);

}

The above example creates a vector of three characters called row and ini-
tializes its characters to the space character. Therefore, it uses the third con-
structor of the class with T being char, num being 3, and val being ’ ’. Then
it creates a vector of three vectors of characters (two dimensional) and initial-
izes each vector to row. This also used the third constructor but with T being
vector<char>, num being 3, and val being row. Note the space between
the two ’>’ in vector<vector<char> >. This is needed because othewise the
compiler will think of >> as the shift operator (like the one used with an input
stream, e.g. cin).

Another variation is to declare tictactoe as an empty vector and add row
three times to it.

int main() {

vector<char> row=vector<char>(3,’ ’);

vector<vector<char> > tictactoe;

for (int i=o; i<3; i++)

tictactoe.push_back(row);

}

Because operator[] is overloaded for vectors, vectors can be used in the same
way as arrays. Here’s an example:

int main() {

//yet another variation

vector<vector<char> > tictactoe=vector<vector<char> >(3,vector<char>(3,’ ’);

. . .

for (int i=0; i<3; i++) {

for (int j=0; j<3; j++)

cout<<tictactoe[i][j]<<’’ ’’;

cout<<’’\n’’;

}

. . .

}
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14.6 Arrays vs. vectors

One of the legitimate questions now is when to use arrays and when to use vec-
tors. A vector has the added functionality to change its size (using push back()
and manage dynamic memory. Therefore, here’s a rule of thumb:

• If the size of the array is known at compile time, and does not change at
run time, use an array

• If the size of the array is not known at compile time, but does not change
at run time, use either an array or a vector

• If the size of the array changes at run time, use a vector

14.7 Sorting with a template

In this example, we reimplement sorting using templates to sort elements of any
type provided that operator < is properly overloaded for that type. We will also
use vectors instead of arrays. Note that for functions that change the vector, we
must pass the vector by reference; otherwise, passing the vector as a constant
reference is a good idea for efficiency.

#include <vector>

using std::vector;

template<class T>

int minimum (const vector<T>& a, int start, int end) {

int index=start;

for (int i=start; i<=end; i++)

if (a[i]<a[index]) //assumes type T overloads operator <

index=i;

return index;

}

template<class T>

void swap(vector<T>& a, int i, int j) {

T temp=a[i];

a[i]=a[j];

a[j]=temp;

}

template<class T>

void sort(vector<T>& a) {

int n=a.size();

for (int i=0;i<n;i++)

swap(a, i, minimum(a,i,n-1));

}
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int main() {

vector<int> a=vector<int>(10);

a[0]=1;

a[1]=2;

a[2]=5;

a[3]=4;

a[4]=3;

a[5]=8;

a[6]=7;

a[7]=6;

a[8]=10;

a[9]=9;

sort(a);

}

To illustrate the power of templates, we can sort rational numbers using the
same code, provided that the class Rat has overloaded operator <.

class Rat {

. . .

public:

bool operator<(const Rat& r) {

return (n*r.d<d*r.n);

}

. . .

};

int main() {

vector<Rat> a=vector<Rat>(3); //assumes Rat has a default constructor

a[0]=Rat(2,3);

a[1]=Rat(1,2);

a[2]=Rat(1,4);

sort(a); //voila!

}

14.8 Person revisited

Recall our Person class from previous chapters and suppose that we would like
to add a member function to return the person’s name:

class Person {

char * name;

public:

Person() {...}

Person(const char * s) {...}

Person(const Person& p) {...}

Person& operator=(const Person& p) {...}

~Person() {...};
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char * getName()const {

return name;

}

};

The newly added function returns a pointer to private data (the string).
This means that a code can now change the person’s name through that pointer
as shown below:

int main() {

Person saad=Person(’’saad’’);

char * s=saad.getName();

s[0]=...;

cout<<saad.getName(); //now changed

}

How can we avoid this problem of exposing private data while still being
able to obtain a person’s name? One may think of a number of solutions.

14.8.1 Make the private data constant

class Person {

const char * name;

. . .

};

In this case however, the characters of name cannot be assigned, not even
in the constructor. For instance, the following code will fail to compile.

class Person {

const char * name;

public:

Person() {

name=new char[5];

strcpy(name, ’’john’’); //error, name is pointer to const

}

. . .

};

14.8.2 Provide an external pointer

class Person {

char * name;

public:

. . .
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void getName(char * s)const {

strcpy(s, name);

}

};

int main() {

Person saad=Person(’’saad’’);

char s[5];

saad.getName(s);

cout<<s;

}

The getName() function is changed to accept one parameter of type char *
(a string). Then the person’s name is copied into that string. The problem with
this approach is that one needs to provide a large enough string and, therefore,
knowing the length of the person’s name becomes crucial. While this is possible
to determine by adding another member function for the Person class, it is
inconvenient and prone to error.

class Person {

char * name;

public:

. . .

int length()const {

return strlen(name);

}

void getName(char * s)const {

strcpy(s, name);

}

};

int main() {

Person saad=Person(’’saad’’);

char * s=new char[saad.length()+1]; //make sure to do this step

saad.getName(s);

cout<<s;

}

14.8.3 Return another name

class Person {

char * name;

public:

. . .

141



char * getName()const {

char * s=new char[strlen(name)+1];

strcpy(s, name);

return s;

}

};

The person’s name is copied into another char * variable which is dynam-
ically allocated and returned. Such approach however will make it impossible
to predict when this newly allocated variable should be freed. It becomes the
responsibility of the class user to free the memory.

int main() {

Person saad=Person(’’saad’’);

char * s=saad.getName();

cout<<s;

. . .

delete[] s; //weird, a delete for no obvious new

}

14.8.4 Return a constant

class Person {

char * name;

public:

. . .

const char * getName()const {

return name;

}

};

The getName() function returns the person’s name as a const char *.
Therefore, the user cannot attempt to change the characters through the ob-
tained pointer.

int main() {

Person saad=Person(’’saad’’);

char * s=saad.getName(); //error, must be const

const char * t=saad.getName(); //ok

t[0]=...; //error, t is pointer to const

}

This might seem to be the perfect solution for our problem. However, not if
someone knows how to “cast away” const:
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int main() {

Person saad=Person(’’saad’’);

char * s=(char *)saad.getName(); //ok, cast into non-const

s[0]=...;

cout<<saad.getName(); //now changed

}

14.8.5 Define a string class

All of the proposed solutions above have their drawbacks. It seems that the
best way is for a Person not to return its name at all. Why would anyone want
to retrieve the name? To print it? Then let Person provide a member function
to print its name. To compare it to another name? Then let Person provide a
member function to do it. That member function would takes another Person
as a parameter and compare the names. Whatever functionality we want, we
can make Person do it. However, soon Person will become a complicated class
for handling strings. But that’s the key to the solution: Provide such a class
and let the name member datum of Person be an object of that class (instead
of a char *). The string class would wrap the char * pointer in a similar way
to an array class.

class String {

friend ostream& operator<<(ostream&, const String&);

char * str; //the real string

int len; //the length of it

public:

String() {

len=0;

str=0; //NULL pointer

}

String(const char * str) {

len=strlen(t);

if (len==0)

str=0; //NULL pointer

else {

this->str=new char[len+1];

for(int i=0; i<len+1; i++)

this->str[i]=str[i];

}

}
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String(const String& s) {

len=s.len;

if (len==0)

str=0; //NULL pointer

else {

str=new char[len+1];

for(int i=0; i<len+1; i++)

str[i]=s.str[i];

}

}

String& operator=(const String& s) {

if (this==&s)

return *this;

delete[] str;

len=s.len;

if (len==0)

str=0; //NULL pointer

else {

str=new char[len+1];

for(int i=0; i<len+1; i++)

str[i]=s.str[i];

}

return *this;

}

~String() {

delete[] str;

}

int size()const {

return len;

}

char& operator[](int i) {

return str[i];

}

//for const objects

const char& operator[](int i)const {

return str[i];

}

};

ostream& operator<<(ostream& os, const String& str) {

os<<str.s;

return os;

}

C++ provides a string class as part of the standard library, which is similar
to the class defined above except that it is more detailed.
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14.9 C++ strings

C++ provides the following class:

class string {

. . .

public:

//constructors

string(); //constructs an empty string

string(const string& s); //copy constructor

string(int len, const char& c); //len copies of c

string(const char * str); //constructs a string from str

string(const char * str, int len); //from str up to len characters

string(const char * str, int index, int len); //same starting at index

. . .

//operators

char& operator[](int i); //returns a reference to the ith character

const char& operator[](int i)const; //same but constant reference

string& operator=(const string& s);

string& operator=(const char * str);

string& operator=(char c);

. . .

//member functions

int size()const; //returns the length of the string

bool empty()const; //returns true if the string is empty

string substr(int index, int num); //returns a substring with num

//characters starting at index

. . .

};

//concatenation operators

string operator+(const string& s1, const string& s2);

string operator+(const string& s, const char * str);

string operator+(const char * str, const string& s);

string operator+(const string& s, char c);

string operator+(char c, const string& s);

//relational operators (alphabetical comparison)

bool operator==(const string& s1, const string& s2);

bool operator!=(const string& s1, const string& s2);

bool operator<(const string& s1, const string& s2);

bool operator>(const string& s1, const string& s2);

bool operator<=(const string& s1, const string& s2);

bool operator>=(const string& s1, const string& s2);
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//stream operators

ostream& operator<<(ostream& os, const string& s);

istream& operator>>(istream& is, string& s);

As an example of using C++ strings, let us now rewrite our Person class.
For one thing, we do not have to manage the dynamic memory allocation of a
char * string. This will be handled internally by the C++ string class. This
means that we no longer need to declare a destructor, a copy constructor, and
an assignment operator.

class Person {

string name;

public:

Person() {

name=’’john’’;

}

Person(const string& s) {

name=s;

}

Person(const char * str) {

name=str;

}

string getName()const {

return name;

}

};

Note that getName() now returns a string object. This means the copy
constructor of class string is used to return name and, therefore, the user has
no control over this private member datum.

int main() {

Person saad=Person(’’saad’’);

string s=saad.getName();

s[0]=...; //changes s not saad.name;

cout<<saad.getName(); //unchanged

}

14.10 Initialization vs. assignment

Consider our new Person class:

class Person {

string name;

public:
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Person() {

name=’’john’’;

}

Person(const string& s) {

name=s;

}

Person(const char * str) {

name=str;

}

string getName()const {

return name;

}

};

This is the first time we have a user defined class in which one of the mem-
ber data is itself an object of a user defined class. This raises an issue about
construction: To construct a Person, one must construct a string. A Person
object cannot exist without a string object as part of it. So how is that done?
Here’s the rule: Before an object is constructed, each of its member
data objects is constructed using the default constructor of the cor-
responding class 1. For our particular example, name is contructed first using
the default constructor of class string, then the Person object is constructed
using whatever constructor was invoked. This means that name=... in the
above three constructors is actually an assignment of an empty string.

This seems a bit inefficient. The data member name is first constructed as
an empty string, then assigned using the assignment operator of class string.
This is not our idea of initialization. We would like to directly initialize name
to the desired string. Such initialization (not assignment) can be achieved by
overriding the rule stated above. In each constructor for Person, we can instruct
the compiler what constructor to use for name, hence avoiding the default
constructor and the need for the extra assignment. Here’s the syntax:

class Person {

string name;

public:

Person(): name(’’john’’) { //call constructor with const char *

}

Person(const string& s): name(s) { //call copy constructor

}

Person(const char * str): name(str) { //call constructor with const char *

}

1Similarly, after the object is desctucted, the corresponding destructor for each of its
member data objects is called.
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string getName()const {

return name;

}

};

Whenever possible, always prefer initialization over assignment.
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Chapter 15

Recursive functions

15.1 A recursive process

Consider the factorial of an integer n. This is defined as

n! = n · (n − 1) · (n − 2) · · · 3 · 2 · 1
There are many ways to compute the factorial function. One way is by

making the observation that n! = n · (n − 1)!:

n! = n · (n − 1) · (n − 2) · · · 3 · 2 · 1
= n · [(n − 1) · (n − 2) · · · 3 · 2 · 1]
= n · (n − 1)!

Therefore, to compute n!, we compute (n− 1)! and multiply the result by n.
This gives rise to a recursive definition: we can compute (n − 1)! recursively in
the same way. If we add the fact that 1! = 1, then:

n! =

{

n · (n − 1)! n > 1
1 otherwise

Note that without 1! = 1 (we call it the base case) the recursive definition
is not complete. Every recursive definition must have a base case.

Recursive definitions can translate directly into recursive functions in any
programming language. All we need is to declare a function fact that takes and
integer n, and returns (an integer) n multiplied by the result of fact(n − 1).
Therefore, the function calls itself recursively.

int fact(int n) {

if (n>1)

return n*fact(n-1);

else

return 1;

}

int main() {

cout<<fact(6);

}

Using the substitution model described earlier (the parameter is replaced
with the value of the argument in the body of the function), we can observe the
recursive process generated by fact(6).
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fact(6)

6*fact(5)

5*fact(4)

4*fact(3)

3*fact(2)

2*fact(1)

1

2

6

24

120

720

Figure 15.1: Recursive process

15.2 An iterative process

Another way to compute the factorial of a number n is by specifying that we
first multiply 1 by 2, then multiply the result by 3, then by 4, and so on until we
reach n. For this, we can maintain a running product and a counter that counts
from 1 to n. Therefore, we update the product and the counter as follows:

product ← product · counter

counter ← counter + 1

Both the product and the counter can start at 1. Finally, n! will be the value
of the product when the counter reaches n + 1. While most of you are familiar
with this iterative process, it can also be expressed recursively. The following
is a recursive function implementation of this iterative process.

int fact_iter(int product, int counter, int n) {

if (counter<=n)

return fact_iter(product*counter,counter+1,n);

else

return product;

}

int fact_iter(int n) {

return fact_iter(1,1,n);

}

int main() {

cout<<fact_iter(6);

}

The idea is basically to carry forward the new values for all parameters as
arguments for the recursive function call. Let us observe the process generated
by fact iter(6) as we did in the previous section.
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fact_iter(6)

fact_iter(1,1,6)

fact_iter(1,2,6)

fact_iter(2,3,6)

fact_iter(6,4,6)

fact_iter(24,5,6)

fact_iter(120,6,6)

fact_iter(720,7,6)

720

Figure 15.2: Iterative process

15.3 Recursive vs. iterative (tail recursive)

Let us compare the two processes described in the previous sections. They both
compute the same mathematical function using a recursive implementation. 1

Moreover, they both require a number of steps proportional to n. We use
the notation Θ(n) (“theta” notation) to express that the running time of both
processes is proportional to n. In fact, they even perform the same sequence of
n multiplications obtaining the same sequence of partial products: 1, 2, 6, 24,
120, and 720. However, they evolve in different “shapes”.

The recursive process reveals a shape that grows then shrinks. By contrast,
the iterative process does not grow and shrink. We will see shortly that the
latter can be transformed into a standard loop iteration.

With the recursive process, the shape grows while the process builds up
a chain of deferred operations (multiplications in this case). More precisely,
a multiplication cannot be performed until the second operand is determined,
which does not happen until the recursive call returns. The shape then shrinks
while the multiplications are actually performed. The implication of such a
process is that the compiler must keep track of the operations to be performed
later on. In particular, the compiler must keep track of values of parameters
for every recursive call. For instance, in the example of Figure 1, when fact(5)
returns, the compiler must recall that 6 was the value for n prior to that point
in time. Similarly, when fact(4) returns, the compiler must recall that 5 was
the value for n prior to that point in time, and so on. As a result, the compiler
must store all values of n until the base case is reached. This means that the
amount of memory needed is proportional to n, or Θ(n).

In general, compilers use a stack to store this information. When the function
is called, the values of its parameters are pushed onto the stack. When the
function returns, the values of its parameters are popped off the stack. The
compiler uses the values stored at the top of the stack to access the parameters
at any point in time. This stack is usually referred to as the “call stack”.

6 6

5

6

5

4

6

5

4

3

6

5

4

3

2

6

5

4

3

2

1

6

5

4

3

2

6

5

4

3

6

5

4

6

5

6

Figure 15.3: The call stack for 6!

1It is important to distinguish between a recursive process (semantics) and a recursive
function (syntax). In fact, a recursive function may represent an iterative process (Section 2).
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With the iterative process, the compiler needs to remember only the current
values of the parameters: product, counter, and n. This is due to the fact that
the recursive call is the last thing performed by the process. This type of
recursion is called tail recursion: there is nothing left to do after the recursive
call returns. Therefore, the compiler does not really need to recall anything.
In fact, the current values of product, counter, and n completely determine the
state of the computation. If we stop the computation at any point in time,
and forget all the history, we can simply resume by starting from those values.
This is not the case for the recursive process (we must remember where we
stopped). While in general compilers still use the call stack, a “smart enough”
compiler will detect tail recursion. In this case, the amount of memory needed
is a constant independent of n (only store the current values of the parameters),
or Θ(1).

Compilers with the above property are said to use a tail recursive imple-
mentation. With the tail recursive implementation, the compiler transforms the
recursive function into a standard loop iteration (thus eliminating the stack).
To transform a tail recursion into a loop, the following is done:

• change the if to a while and drop the else if any

• eliminate the recursive call by using assignment to update the param-
eters instead of passing them as arguments

Here’s a tail recursive implementation of fact iter.

int fact_iter(int product, int counter, int n) {

while (counter<=n) {

product=product*counter;

counter=counter+1;

}

return product;

}

int fact_iter(int n) {

return fact_iter(1,1,n);

}

This should now look like a familiar implementation. It is nothing but the
iterative version of a tail recursive function. Here’s a comparison among the
alternative implementations of factorials:

recursive iterative tail recursive
time Θ(n) Θ(n) Θ(n)
space Θ(n) Θ(n) Θ(1)

So why use recursion at all? The answer to this question is that recursion is
sometimes the only natural way to think about a solution for the problem, and
gives a simple and elegant code.
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15.4 Bring on the rabbits

In 1200 AD, the italian mathematician Leonardo De Piza, also known as Leonardo
Fibonacci (don’t confuse him with Leonardo Da Vinci who is more recent), for-
mulated a problem on rabbits. His formulation lead to the conclusion that the
number of rabbits grows according the the following sequence, which has become
to be known as the Fibonacci sequence.

1, 1, 2, 3, 5, 8, 13, 21, . . .

Therefore, the Fibonacci of an integer n is defined as:

Fib(n) =

{

Fib(n − 1) + Fib(n − 2) n > 1
1 otherwise

To illustrate the power of recursion, here’s a recursive implementation of
Fibonaccis which is a direct translation from the mathematical definition:

int fib(int n) {

if (n>1)

return fib(n-1)+fib(n-2);

else

return 1;

}

This code is simple, elegant, clear, and self explanatory. But it is a terrible
way of computing Fibonaccis. Let’s look at the recursive process generated by,
say fib(5). The fib function calls itself twice each time it is invoked, so we will
end up with a tree like “shape” for the recursive process.

fib(5)

fib(4)

fib(3)

fib(2) fib(1)

fib(1) fib(0)

1 1

1

fib(2)

fib(1) fib(0)

1 1

fib(3)

fib(2) fib(1)

fib(1) fib(0)

1 1

1

Figure 15.4: Tree recursive process of Fibonacci

Note that the Fibonacci of three is computed redundantly twice, which is
almost half the work as seen by the above process. In general, the amount of
work in a tree recursive process is proportional to the number of leaves in the
tree. Similarly, the height of the call stack (amount of memory) is proportional
to the height of the tree because we need to keep track of only the information
above us in the tree at any point in the computation.
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It can be shown that the number of leaves in this case is always equal
to Fib(n). It can be also shown that Fib(n) is proportional to φn, where
φ = 1.61803... is the golden number. Therefore, the running time of this imple-
mentation of Fibonacci is Θ(φn), which is exponential in n (bad). By contrast,
the height of the tree, and hence the required memory, is only Θ(n) (not that
bad).

A better way is to think about an iterative process for Fibonacci which will
lead to an implementation with Θ(n) running time and Θ(1) space. The idea
is to come up with a number of variables that will capture the state of the
computation at any point in time. If we keep track of the last two Fibonaccis
in the sequence, we can always compute the next one. Therefore, a possible
iterative process is to maintain two numbers a and b, and updates them as
follows:

a ← b

b ← a + b

Starting with both a = 1 and b = 1, b will be Fib(n) after repeating this
process n − 1 times.

int fib_iter(int a, int b, int n) {

if (n>1)

return fib_iter(b,a+b,n-1);

else

return b;

}

int fib_iter(int n) {

return fib_iter(1,1,n);

}

Let’s look at the process generated by this implementation of the function
for fact(5) (compare this to Figure 4).

fib_iter(5)

fib_iter(1,1,5)

fib_iter(1,2,4)

fib_iter(2,3,3)

fib_iter(3,5,2)

fib_iter(5,8,1)

8

Figure 15.5: Iterative process of Fibonacci

The number of steps required by this implementation is proportional to
n. Therefore, this implementation has a Θ(n) running time and a Θ(n) space
requirement (the height of the call stack). Since the recursive call is the last
thing to be done, with a tail recursive implementation, only the current values
of the parameters are stored and the space requirement reduces to Θ(1). Here’s
a tail recursive implementation following the guidelines listed in Section 3.
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int fib_iter(int a, int b, int n) {

while (n>1) {

b=a+b;

a=b-a;

n=n-1;

}

return b;

}

int fib_iter(int n) {

return fib_iter(1,1,n);

}

Here’s a comparison among the alternative implementations of Fibonaccis.

recursive iterative tail recursive
time Θ(φn) Θ(n) Θ(n)
space Θ(n) Θ(n) Θ(1)

15.5 Exponentiation

Consider the problem of computing bn for an integer base b and a non-negative
integer exponent n. Again, using recursion, we first seek a simple direct trans-
lation from a mathematical definition to C++ code. Mathematically,

bn =

{

b · bn−1 n > 0
1 otherwise

Here’s a direct translation:

int exp(int b, int n) {

if (n>0)

return b*exp(b,n-1);

else

return 1;

}

This recursive process runs in Θ(n) time and Θ(n) space. Let us look now
for an iterative process. We maintain a running product and a counter, and we
update them according to the following rule until the counter reaches n:

product ← product · b
counter ← counter + 1

Alternatively, we can use n itself as a counter and decrement it until it
reaches zero. Starting with product= 1, and after n repetitions, product will be
equal to bn.
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int exp_iter(int product, int b, int n) {

if (n>0)

return exp_iter(product*b,b,n-1);

else

return product;

}

int exp_iter(int b, int n) {

return exp_iter(1,b,n);

}

This process runs in Θ(n) time and Θ(n) space. But it leads to a tail
recursive implementation that uses only Θ(1) space (see Section 3 for the trans-
formation).

int exp_iter(int product, int b, int n) {

while (n>0) {

product=product*b;

n=n-1;

}

return product;

}

int exp_iter(int b, int n) {

return exp_iter(1,b,n);

}

Here’s a comparison among the alternative implementations of exponentia-
tion:

recursive iterative tail recursive
time Θ(n) Θ(n) Θ(n)
space Θ(n) Θ(n) Θ(1)

15.6 Tower of Hanoi

In 1833, the french mathematician Edouards Luca suggested the following prob-
lem inspired by an old legend about the tower of Hanoi. We are given a tower
of n disks, initially stacked in decreasing size on one of three pegs, say A.

n

A B C

Figure 15.6: The tower of Hanoi
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The objective is to transfer the entire tower to one of the other pegs, say C,
using the other, say B, as a temporary peg, and obeying the following two rules
of the game:

• only one disk at a time can be moved

• a larger disk can never be moved onto a smaller one

The original legend (most likely also invented by Luca) says that n = 64 and
the disks are golden, and when all the disks are moved, the tower will collapse
and the world will end. But not to worry. It can be shown that at least 2n − 1
moves are needed. For n = 64, that’s 264 − 1 moves. If each move takes 1
second, that’s 584.9 billion years (the universe began around 13.7 billion years
ago).

The importance of this problem lies in the fact that the solution is naturally
recursive. Therefore, being able to write a recursive function is almost the only
practical way for solving this problem (of course every recursive implementation
can be made non-recursive, just simulate the call stack with arrays or vectors).

While the solution to this problem seems to be very hard at first, we may
assume that we know how to move a tower of n − 1 disks. Once we have done
that, here’s a solution for moving a tower of n disks.

• Move the first n − 1 disks from A to B using C as temporary

• Move the nth disk from A to C

• Move the first n − 1 disks from B to C using A as temporary

Therefore, to move the n disks, move the first n − 1 disks first, then move
the nth disk, then move the first n−1 disks again. This suggests a tree recursive
process in which the function calls itself twice each time it is invoked.

Let’s start with a basic function to move a disk from one beg to another.

void move(char a, char c) {

cout<<a<<’’->’’c<<’’\n’’;

}

Now onto the recursive implementation.

void hanoi(char a, char b, char c, int n) {

if (n>1) {

hanoi(a,c,b,n-1);

move(a,c);

hanoi(b,a,c,n-1);

}

else

move(a,c);

}

The tower of Hanoi is one of the best classical problems to illustrate the
power of recursion. One cannot hope for a better example of such a simple so-
lution for such a hard problem. Nevertheless, we can make some enhancements.
We can convert the tree recursive process into a linear recursive one by noting
that the second recursive call is always the last thing to be done. Therefore,
the second recursive call can be eliminated with a tail recursive implementation.
Here’s a tail recursive implementation following the guidelines listed in Section
3.
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void hanoi(char a, char b, char c, int n) {

while (n>1) {

hanoi(a,c,b,n-1);

move(a,c);

char temp=a;

a=b;

b=temp;

n=n-1;

}

move(a,c);

}

This runs in Θ(2n) time (2n − 1 moves are needed) and Θ(n) space (height
of the call stack).
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Chapter 16

Efficiency, doing it the crazy

way

16.1 Introduction

In this chapter we are going to focus on “crazy” ways for doing things. Why
say crazy? Because there exist ways that are much more direct and intuitive.
So why do things the crazy way? Because it’s going to be more efficient in
terms of time. We are going to look at four crazy examples of doing things:
exponentiation, testing primes, sorting, and searching (this introduction does
not suggest that crazy always means efficient).

16.2 Exponentiation

We have seen before how to compute bn for an integer base b and a non-negative
integer exponent n. This was done in a straight forward way using the following
recursive definition:

bn =

{

b · bn−1 n > 0
1 otherwise

Here’s a direct translation of the mathematical definition:

int exp(int b, int n) {

if (n>0)

return b*exp(b,n-1);

else

return 1;

}

The “crazy” idea: Instead of performing n multiplications, why don’t we use
repeated squaring? Therefore, square b to compute b2, then square the result
to compute b4, then square that to compute b8, and so until we reach bn. The
number of multiplications (squares) we perform in this case is at most log2 n,
because that’s how many times we can divide n by 2 before reaching 1. Of
course this works exactly only if n is a power of 2, e.g. 0, 2, 4, 8, 16, etc... But
we can fix that by using the old rule for odd n and squaring for even n.
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bn =







[bn/2]2 n even 6= 0
b · bn−1 n odd
1 n = 0

However, this at most doubles the number of multiplications from log2 n to
2 log2 n, because if n is odd then n − 1 is even. But this is still proportional to
log2 n (only a constant factor of 2). Therefore, we have Θ(log2 n) multiplication
operations. The running time for finding bn in this way is therefore Θ(log2 n)
instead of Θ(n) for the standard way. Here’s a direct translation of the new
recursive definition:

int square(int x) {

return x*x;

}

int fast_exp(int b, int n) {

if (n>0)

if (n%2==0)

return square(fast_exp(b,n/2));

else

return b*fast_exp(b,n-1);

else

return 1;

}

16.3 Testing primes

To test whether a number n is prime, simply see if it admits any divisors in
{2, . . . ⌊√n⌋}. This can be easily done in a loop:

bool prime(int n) {

for (int i=2; i<=sqrt(n); i++)

if (n%i==0)

return false;

return true;

}

The “crazy” idea: Instead of checking
√

n numbers, and hence spending
Θ(

√
n) time, perform Fermat’s test on few numbers. Huh? Of course this crazy

idea seems to demand from us a little number theory. So here it is:

Fermat’s little theorem: If n is prime, then any positive integer a < n
satisfies an−1%n = 1.

So let’s pick an integer a < n. If an−1%n 6= 1, then Fermat tells us that n
cannot be prime. That’s good. If an−1%n = 1, then Fermat does not really tell
us that n is prime 1, but then we have a reasonable doubt that it is. In fact, if n
were not prime, then this would be unlikely to happen. But to strengthen our
belief, we can pick another integer a < n and test whether an−1%n = 1. We
can repeat this Fermat test three or four times. If an−1%n = 1 in every time,
then we conclude that n is prime.

1If A implies B, then B does not necessarily imply A.

160



Of course there is still a tiny probability that we are wrong, but this idea
gives a much faster way for testing primality because we can use fast exp() to
compute an−1. For illustration, here’s a code to perform one Fermat test.

bool fast_prime(int n) {

int a=rand()%(n-1)+1; //a in {1..n-1}

if (fast_exp(a,n-1)%n==1)

return true;

else return false;

}

The function fast prime() makes a one simple call to fast exp(a, n − 1).
Since fast exp() runs in Θ(log2 n) time, then fast prime() also runs in Θ(log2 n)
time. While this is a much better running time compared to Θ(

√
n), we have

introduced a problem. Namely, an−1 can be very large (a can be close to n) and,
therefore, we risk the problem of overflow. Since we are interested in computing
an−1%n and not an−1, we can solve this problem by making fast exp(a, n− 1)
compute all its intermediate results modulo n. Therefore, we change fast exp()
to take one additional parameter m and compute everything modulo m.

int square(int x) {

return x*x;

}

int fast_exp(int b, int n, int m) {

if (n>0)

if (n%2==0)

return square(fast_exp(b,n/2,m))%m;

else

return (b*fast_exp(b,n-1,m))%m;

else

return 1;

}

bool fast_prime(int n) {

int a=rand()%(n-1)+1; //a in {1,...,n-1}

if (fast_exp(a,n-1,n)==1)

return true;

else return false;

}

16.4 Sorting

Sorting an array of elements is a problem that we have seen before and solved
using the idea of repeatedly finding the smallest element and swapping it with
the first in successive parts of the array (see Note 6). The running time of
such an algorithm is proportional to the square of the number of elements to be
sorted. Therefore, we spend Θ(n2) time to sort n elements. The reason for this
is that we need to check all n elements to find the smallest. Having done that,
we then need to check n − 1 elements to find the second smallest, then n − 2
elements for the third smallest, and so on until the elements are sorted. The

total number of checks is 1 + 2 + . . . + (n − 1) + n = n(n+1)
2 = Θ(n2).
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The “crazy” idea: Assume that the array is such that the left half and the
right half are sorted. Then sort the elements in Θ(n) time by merging the two
halves of the array: Use an auxiliary array and repeatedly copy the smallest
element of the two halves into successive positions. Then copy the auxiliary
array back into the original one. Here’s an example:

2 4 5 7 1 2 3 6

2 4 5 7 1 2 3 6

1

2 4 5 7 2 3 6

1 2

4 5 7 2 3 6

1 2 2

4 5 7 3 6

1 2 2 3

4 5 7 6

1 2 2 3 4

5 7 6

1 2 2 3 4 5

7 6

1 2 2 3 4 5 6

7

1 2 2 3 4 5 6 7
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1 2 2 3 4 5 6 7

1 2 2 3 4 5 6 7

The running time for this merging operation is Θ(n) because every time we
make a comparison we copy one element into the auxiliary array. Therefore, we
do this at most n times. Without worrying about the detail, we will assume the
existence of a function to merge two sorted halves of the array (assume also an
array of integers):

void merge(int * a, int p, int q, int r) {

//merge a[p]...a[q] and a[q+1]...a[r]

}

This “crazy” idea assumed that each half of the array is sorted. But what
if that’s not the case? In fact, that’s why the idea is “crazy”, because now we
are going to ensure that the two halves are sorted by performing the following:

• split each in two halves

• assume the two halves are sorted

• merge the two halves

The argument is carried recursively until each half is only one element and
is, therefore, safe to be assumed sorted. This method for sorting is known as
merge sort. To some extent, merge sort refrains from actually sorting. It only
perform merges. But to ensure that the two halves are sorted and ready to be
merged, it recursively uses merge sort on each one of them.

void merge_sort(int * a, int p, int r) {

if (p<r) { //more than one element

int q=(p+r)/2;

merge_sort(a,p,q);

merge_sort(a,q+1,r);

merge(a,p,q,r);

}

}

int main() {

int a[n];

. . .

merge_sort(a,0,n-1);

. . .

};
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So what is the running time of merge sort? As we argued before, to merge
the first two halves we need Θ(n) time. But before doing so, each half is merge
sorted. This means each half produces two other halves (quarters) to be merged
first. To merge these, we need Θ(n/2) + Θ(n/2) time. That’s Θ(n) time again.
We can observe that at every level of the recursion tree, we need at most Θ(n)
time. Therefore, we need a total time of Θ(n) times the number of levels. The
number of levels is guaranteed not to be more than log2 n because that’s how
many times we can divide n by 2 before reaching 1. We conclude that the
running time is Θ(n log2 n) (compare this to the previous Θ(n2) time).

1

2

1 1

2

1 1

2

1 1 1

2

4 4

8

8

8

8

Figure 16.1: Number of elements merged at each level of the recursion tree
starting with 8 elements
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1 1

2 1

3

6

1 1

2

1 1

2 1

3

5

11 11

11

11

6

Figure 16.2: Number of elements merged at each level of the recursion tree
starting with 11 elements

16.5 Searching

Finally, consider the problem of searching an array for a particular element,
called the key. A simple way to search is to check every element against the key.
If found, we return its position in the array; otherwise, we return -1.

int search(int * a, int n, int key) {

for (int i=0; i<n; i++)

if (a[i]==key)

return i;

return -1;

}

This algorithm runs in Θ(n) time because it will possibly check every element
in the array. For instance, if the key is not an element of the array, the loop
will be completely exhausted before we return.
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The “crazy” idea: Assume the array is sorted and split it in two halves,
determine which half may potentially contain the key, and only search that
half. By now we have hopefully learned that such a crazy idea is not really
crazy because we can apply it recursively. But what if the array is not sorted?
Then we can sort it, say using merge sort above in Θ(n log2 n) time. But this
alone is more than the trivial Θ(n) time presented above. So it is not justifiable.
However, it we are performing multiple searches, we only need to sort the array
once. Then every search will be efficient. Therefore, sorting will pay off. So
let’s assume the array is sorted and see how we can proceed from here. Assume
the following strategy:

• check the key against the middle element

• if found, return that position

• if the key is smaller, then we only need to search the first half

• if the key is larger, then we only need to search the second half

We can recursively apply the same strategy on the successive halves. There-
fore, for every check that we perform, we reduce the size of the array by half.
Of course, we can do this at most log2 n times before we reach an array of size
1. We conclude that in doing so, we only perform log2 n checks and, therefore,
our algorithm runs in Θ(log2 n) time. This algorithm is called binary search.

We need to make our search function now take extra parameters to determine
which part of the array we need to recursively search (in a similar way to merge
sort).

int binary_search(int * a, int p, int r, int key) {

if (p<=r) { //at least one element

int q=(p+r)/2;

if (a[q]==key)

return q;

if (a[q]>key)

return search(a,p,q-1,key);

if (a[q]<key)

return search(a,q+1,r,key);

}

else

return -1;

}

int main() {

int a[n];

. . .

merge_sort(a,0,n-1);

. . .

int pos=binary_search(a,0,n-1,key);

. . .

};
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This recursive search function is tail recursive because the recursive call
always comes last. Therefore, we can eliminate recursion using the standard tail
recursive implementation (change if to while, drop else, and replace recursive
call with assignment).

int binary_search(int * a, int p, int r, int key) {

while (p<=r) { //at least one element

int q=(p+r)/2;

if (a[q]==key)

return q;

if (a[q]>key)

r=q-1;

if (a[q]<key)

p=q+1;

}

return -1;

}
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Chapter 17

Happy Feet

17.1 Introduction

Consider our Person class as a motivating example:

class Person {

string name;

public:

Person(): name(’’john’’) {}

Person(const string& s): name(s) {}

Person(const char * str): name(str) {}

string getName()const {

return name;

}

};

In this chapter we address two problems:

• How can we keep track of the number of persons alive at any time in the
program (static members)?

• How can we create a new class Student without having to reinvent a Person
(inheritance)?

17.2 Static member data

Consider the problem of counting the number of persons that are alive at any
time in the program. The reason why this may be needed is irrelevant at this
point but, for instance, we can use it to discover potential memory leaks. This
counting task may seen trivial at a first glance (after all counting is a basic
thing): every time we declare a Person object, we increment a counter by 1.
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int main() {

int counter=0;

Person p=...;

++counter;

. . .

}

However, a deeper understanding of the problem will reveal some real diffi-
culty. What if Person objects are allocated dynamically at run time?

int main() {

int counter=0;

int n;

cin>>n;

. . .

Person * p=new Person[n];

counter=counter+n;

. . .

}

What about destruction? We need to also decrement the counter by 1 every
time a Person object is destructed.

int main() {

int counter=0;

int n;

cin>>n;

. . .

Person * p=new Person[n];

counter=counter+n;

. . .

delete[] p;

counter=counter-n;

}

But what if the destruction is handled automatically by the compiler, e.g.
local non-dynamic allocation:

void f() {

Person p=...;

++counter; //which counter?!

. . .

//must decrement counter here

//because p is destroyed

}
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And what about constructions that are automatically done by the compiler?

void f(Person p) {

//p is constructed locally

//using the copy constructor

//number of persons here changed

. . .

//p is destructed after

//function returns

//number of persons here changed again

}

int main() {

counter=0;

Person p=...;

++counter;

f(p);

. . .

}

Obviously, there is plenty of room to make mistakes. It is hard to detect
when the compiler is constructing temporary Person objects and when it is
destructing them. Not to mention the messy code that will result from all the
counter updates. Finally, counter will have to be declared as a global variable
to be accessed anywhere in the program (bad, what if another piece of code
declared the same global variable?).

Therefore, the best way to keep track of the number of persons in the pro-
gram is to use a counter as part of class Person itself and maintain that counter
inside the class. Here’s a first attempt:

class Person {

int counter;

string name;

public:

. . .

};

But soon we realize that by making the counter one of the member data of
class Person, ever person object will have its own counter. This definitely will
not achieve the desired effect. Fortunately, we can tell the compiler that all
Person objects must share the same counter. This is done by declaring counter
as a static member.
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class Person {

static int counter;

string name;

public:

. . .

};

A person object cannot be created without using a constructor. Similarly, a
Person object cannot be “killed” without using a destructor. Therefore, all we
need to do is maintain the counter appropriately in every constructor, and in
the destructor. This means that we have to declare the copy constructor and
the destructor in class Person (although we do not really need them except for
updating the counter).

class Person {

static int counter;

string name;

public:

Person(): name(’’john’’) {

++counter;

}

Person(const string& s): name(s) {

++counter;

}

Person(const char * str): name(str) {

++counter;

}

Person(const Person& p): name(p.name) {

++counter;

}

~Person() {

--counter;

}

int count()const {

return counter;

}

string getName()const {

return name;

}

};

Finally, we need to initialize the counter to 0. Static member data is initial-
ized outside the class as follows:

int Person::counter=0;
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Here’s an example of using the modified Person class:

void f(Person p) {

. . .

cout<<p.count(); //will see 3

. . .

}

int main() {

Person saad=Person(’’saad’’);

cout<<saad.count(); //will see 1

Person john;

cout<<saad.count(); //will see 2

cout<<john.count(); //will see 2

f(john);

cout<<saad.count(); //will see 2

cout<<john.count(); //will see 2

}

17.3 Static member functions

Consider the count() function above. This function behaves exactly the same
way regardless of which object invokes it. This is because the function count()
accesses only static member data. Therefore, it may be misleading (for a reader
of the code) to invoke this function from multiple objects. For this reason,
member functions of a class can also be declared static. When static, a member
function looses its self reference pointer this. As a result, a static member
function cannot access non-static member data. Furthermore, a static
member function cannot be declared as const, since const refers to the this
pointer (but can still be invoked on a constant object because it cannot access
its non-static member data).

class Person {

static int counter;

string name;

public:

. . . //equivalent to

static int count() { string Person::count() { //no this pointer

return counter; return Person::counter;

} }

string getName()const { string Person::getName(const Person * const this) {

return name; return (*this).name;

} }

};
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While it would still be possible to invoke a static member function through
an object, a static member function can be invoked through the class itself (a
better way):

int main() {

Person saad=Person(’’saad’’);

Person john;

cout<<saad.count(); //will see 2

cout<<john.count(); //will see 2

cout<<Person::count(); //will see 2

}

Public and private rules apply to static member data and static member
functions as well. For instance, if counter were public in class Person, one
could have done the following:

int main() {

Person saad=Person(’’saad’’);

Person john;

cout<<saad.counter; //will see 2

cout<<john.counter; //will see 2

cout<<Person::counter; //will see 2

}

17.4 Inheritance

Consider the problem of creating a class Student. This of course can be easily
achieved by repeating what we have done for class Person, and adding the extra
information specific to a student. In doing so, however, we are reinventing the
Person class. Moreover, creating Student objects will not appropriately update
the Person count, after all, a student is a person.

Instead of creating a Student class from scratch, C++ provides a way to
build on top of an existing class. This is motivated by the fact that a student
IS A person. Therefore, we should reuse the Person class to create the Student
class. This form of reuse is known as inheritance. More specifically, the IS A
relation means public inheritance:

class Student: public Person {

. . .

};

With public inheritance, we are telling the compiler that:

• Student is the “derived” class, and Person is the “base” class

• Person represents a more general concept than Student, and Student rep-
resents a more specific concept than Person

• Student has access to everything public in Person, and everything public
in Person is also public in Student

• Every object of type Student is also an object of type Person, but not
vice-versa
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• Anywhere an object of type Person can be used, an object of type Student
can be used just as well

Here’s an example:

void play(const Person& p) {

. . .

}

void study(const Student& s) {

. . .

}

int main() {

Person p=...;

Student s=...;

play(p); //ok

play(s); //ok, a student is a person (true only with public inheritance)

study(s); //ok

study(p); //error, a person is not a student

}

Similarly, anywhere a pointer to Person can be used, a pointer to Student
can be used just as well:

int main() {

int n=...;

bool party=...;

Person * p;

. . .

if (party)

p=new Person[n];

else

p=new Student[n];

. . .

}

To create the Student class, we have to consider the following:

• The Student class can access only the public members (data or functions)
of Person (why?)

• The Student class must declare its own constructors, and each constructor
must also tell the compiler how to construct the Person part (or the default
constructor for Person is used)

• The Student class must declare its own member data and functions
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class Student: public Person {

int id;

public:

Student() { //default constructor for Person used

id=0;

}

Student(int i) { //default constructor for Person used

id=i;

}

Student(const string& s, int i): Person(s) {

id=i;

}

Student(const char * str, int i): Person(str) {

id=i;

}

int getId()const {

return id;

}

};

ostream& operator<<(ostream& os, const Student& s) {

os<<s.getName()<<’’ ’’<<s.getId();

return os;

}

int main() {

Student john;

Student saad=Student(’’saad’’,1);

cout<<Person::count(); //we will see 2

}

17.5 The IS A relation

Public inheritance should only be used when we have an IS A relation (e.g. a
student is a person). The equivalence of public inheritance and IS A sounds
simple; however, sometimes intuition can be misleading. For example, it is a
fact that a penguin is a bird, and it is a fact that birds can fly. If we express
this in C++, we get:

class Bird {

public:

void fly() {...}

. . .

};
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class Penguin: public Bird {

. . .

};

Suddenly we have a problem: Penguins can fly!

int main() {

Penguin p=...;

p.fly(); //ok, but it shouldn’t

}

When we say that buirds can fly, we don’t really mean that all birds can
fly, only that, in general, birds have the ability to fly. Therefore, a more precise
model will recognize that there are several types of non-flying birds.

class Bird {

. . .

};

class FlyingBird: public Bird {

public:

void fly() {...}

. . .

};

class NonFlyingBird: public Bird {

. . .

};

class Penguin: public NonFlyingBird {

. . .

};

Similarly, it is a fact that penguins can sing, and it is a fact that Happy Feet
is a penguin (well, it’s controversial). If we express this in C++, we get:

class Penguin: public NonFlyingBird {

public:

void sing() {...}

. . .

};

class HappyFeet: public Penguin {

. . .

};

Suddenly we have another problem: Happy Feet can sing! Obviously this is
not true according to the movie. A better implementation is the following:

175



class SingingPenguin: public Penguin {

public:

void sing() {...}

. . .

};

class HappyFeet: public Penguin {

. . .

}

Figure 17.1: Happy Feet

Here’s another example: Is a square a rectangle? Mathematically speaking,
the answer is yes. A square is a rectangle whose width and height are equal. If
we express this in C++, we get:

class Rectangle {

int w;

int h;

public:

Rectangle(int w, int h) {

this->w=w;

this->h=h;

}

void setWidth(int w) {

this->w=w;

}

void setHeight(int h) {

this->h=h;

}
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int width()const {

return w;

}

int height()const {

return h;

}

};

class Square: public Rectangle {

public:

Square(int a): Rectangle(a,a) {}

};

Then we have a problem: something applicable to a rectangle, its width may
be modified independently of its height, is not applicable to a square. But public
inheritance says that everything applicable to a base class object -everything- is
also applicable to a derived class object.

int main() {

Square s=Square(5);

s.setWidth(3); //ok, but it shouldn’t be ok

};

17.6 IS A vs. HAS A

It is important to distinguish whether something IS A something else or HAS
A (is implemented in terms of) something else. For instance, in our Per-
son/Student example, a student is a person, but a person has a (is implemented
in terms of) string.

class Person {

string name;

. . .

};

class Student: public Person {

. . .

};

It is really bad to adopt the following implementation instead (why?):

class Person: public string {

. . .

};

class Student {

Person p;

. . .

};
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Consider creating a class Stack with two public member functions push()
and pop(). We can use the C++ vector class as a base class for Stack:

template<class T>

class Stack: public vector<T> {

public:

Stack() {}

Stack(const T& e): vecotr<T>(1,e) {}

void push(const T& e) {

push_back(e);

}

T pop() {

if (!empty()) {

T e=(*this)[size()-1];

pop_back();

return e;

}

else

return T(); //return a default element

}

};

However, if we do so, then anything applicable to a vector is also applicable
to a stack:

int main() {

Stack s;

. . .

//we can access any element is s

};

Therefore, it is better to implement a stack in terms of a vector. The relation
Stack HAS A (is implemented in terms of) vector is better than the relation
Stack IS A vector in this case:

template<class T>

class Stack {

vector<T> v;

public:

Stack() {}

Stack(const T& e): v(1,e) {}

void push(const T& e) {

v.push_back(e);

}
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T pop() {

if (!v.empty()) {

T e=v[v.size()-1];

v.pop_back();

return e;

}

else

return T(); //return a default element

}

};

17.7 Some concepts revisited

17.7.1 Construction

Construction is done from Base to Derived. For instance, when declaring a
Student object, the Person is constructed first, then the Student.

17.7.2 Destruction

Destruction is done from Derived to Base. For instance, when destructing a
Student object, the Student is destructed first, then the Person.

17.7.3 Default copy constructor

The default copy constructor performs a memberwise copy using the corre-
sponding copy constructor for each member, at every level in the hierarchy. For
instance, since we have not declared a copy constructor for Student, the default
copy constructor will copy the id, and then perform a copy at the base level.
Since we have a copy constructor for Person, this copy constructor will be used
(it will copy the name and increment the counter). Note that if we supply our
own copy constructor for Student, we must make sure to copy the base.

class Student: public Person {

public:

Student(const Student& s) {

id=s.id;

name=s.name; //error, name is private in Person

}

. . .

};

class Student: public Person {

public:

Student(const Student& s): Person(s) { //ok

id=s.id;

}

. . .

};
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17.7.4 Default assignment operator

Same description as above, simply replace copy constructor with assignment
operator. For instance, since we have not declared an assignment operator for
Student, the default assignment operator will copy the id, and then perform a
copy at the base level. Since we have not declared an assignment operator for
Person, the default assignment operator for Person will be used (it will copy the
name). Again, if we supply our own assignment operator for Student, we must
make sure to copy the base.

class Student: public Person {

public:

Student& operator=(const Student& s) {

if (this==&s)

return *this;

id=s.id;

name=s.name; //error, name is private is Person

return *this;

}

. . .

};

class Student: public Person {

public:

Student& operator=(const Student& s) {

if (this==&s)

return *this;

id=s.id;

(Person)(*this)=s; //assignment operator for Person

return *this;

}

. . .

};

Note: The assignment operator is not inherited, e.g. if Person declares an
assignment operator and Student publicly inherits from Person, then Student
would still have the default assignment operator (unless declared in Student).
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