
Resource Management in Mobile Edge Computing: A

Comprehensive Survey

XIAOJIE ZHANG and SAPTARSHI DEBROY, City University of New York, USA

With the evolution of 5G and Internet of Things technologies, Mobile Edge Computing (MEC) has emerged as a major

computing paradigm. Compared to cloud computing, MEC integrates network control, computing, and storage to customizable,

fast, reliable, and secure distributed services that are closer to the user and data site. Although a popular research topic, MEC

resource management comes in many forms due to its emerging nature and there exists little consensus in the community. In

this survey, we present a comprehensive review of existing research problems and relevant solutions within MEC resource

management. We irst describe the major problems in MEC resource allocation when the user applications have diverse

performance requirements. We discuss the unique challenges caused by the dynamic nature of the environments and use

cases where MEC is adopted. We also explore and categorize existing solutions that address such challenges. We particularly

explore traditional optimization based methods and deep learning based approaches. In addition, we take a deeper dive into

the most popular applications and uses cases that adopt MEC paradigm and how MEC provides customized solutions for each

use cases, in particular, video analytics applications. Finally, we outline the open research challenges and future directions. 1

CCS Concepts: · General and reference → Surveys and overviews; · Computer systems organization → Cloud

computing; Heterogeneous (hybrid) systems.

Additional Key Words and Phrases: Mobile edge computing, resource management, task oloading, machine learning,

data-intensive applications.

1 INTRODUCTION

With the rapid development of data science, data-intensive smart applications such as, smart transportation,
smart healthcare, AR/VR/MR, and real-time gaming are becoming increasingly popular. These applications often
require massive data computations/processing and have strict low/ultra-low latency requirement. Nevertheless,
deploying such applications on mobile devices is still a challenging problem, primarily due to their hardware
limitations. Particularly: i) most mobile devices do not have powerful central processing units (CPU) and thus
cannot host computation-intensive applications; ii) the battery capacity of mobile devices is greatly restricted by
the small physical size, i.e., intensive computation drains the battery quickly, which limits computation-intensive
application hosting; and iii) smart applications require considerable memory space and may cause device memory
shortages. In particular, machine learning and artiicial intelligence (ML/AI) based applications can easily occupy
the entire memory making the mobile devices signiicantly slow. The most obvious solution to address such
issues is the use of remote computation that can provide elastic and on-demand resources.

1This material is based upon work supported by the National Science Foundation under Award Number: CNS-1943338. Any opinions, indings,

and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily relect the views of the

National Science Foundation.

Authors’ address: Xiaojie Zhang, xzhang6@gradcenter.cuny.edu; Saptarshi Debroy, saptarshi.debroy@hunter.cuny.edu, City University of

New York, 695 park Avenue, New York, New York, USA, 10065.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0360-0300/2023/3-ART $15.00

https://doi.org/10.1145/3589639

ACM Comput. Surv.

https://doi.org/10.1145/3589639
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3589639&domain=pdf&date_stamp=2023-03-28

2 • Zhang and Debroy

Fig. 1. A three tiered computing architecture and involved components.

1.1 Tiered Computing Architecture: Cloud, Edge and Device

A tiered computing architecture (as shown in Fig. 1) that spans across cloud data centers, edge servers, and
local computation capabilities of mobile devices is the de-facto paradigm for such remote computation. The
tiers are typically classiied by reliability, latency, and computation capacity. Cloud resources in Tier 3 provides
users with powerful computing resources (e.g., CPU, GPU) with a choice of diferent operating systems. It also
provides pre-installed software and libraries (e.g., ML/AI, visual computing) that in turn enable mobile services
to support more sophisticated and complex end-to-end applications (e.g., 3D reconstruction) with better user
experience. However, due to the long network distance between the mobile user and the cloud data center
(i.e., switching, routing, and congestion), the application sufers a higher end-to-end delay. This makes cloud
computing unsuitable for many mission-critical mobile applications (e.g., AR/VR/MR, autonomous driving) that
have strict low end-to-end latency requirements. In recent times, MEC has emerged as the alternative approach
which is a combinations of the bottom two tiers in Fig. 1. The bottom tier consists of multiple heterogeneous
small base stations (SBS), including eNodeB (LTE 4G), eNodeB (5G NR), and WiFi access points (AP) that together
represent diferent wireless technologies. In addition, users can operate diferent types of mobile devices (e.g.,
smartphones, drones, and robots) with diverse computation and energy capacities. At the same time, computation
capacity can be augmented by the use of small scale edge nodes with CPU/GPU capabilities such as, Jetson
nano and TX2. This tier brings computation resources closer to the mobile devices, therefore is able to achieve
ultra-reliable (network reliability ≥ 99.999%) and low-latency communications (usually wireless). However, the
computation resources available at this tier are very limited due to the of limited computation capacity of the
mobile and edge devices. This makes it diicult to host sophisticated applications entirely within this tier. Tier
2 consists of several Macro base stations (MBS) that typically host city-level data centers (e.g., COSMOS [1])
containing considerable computation and storage resources that are able to host multiple virtual machines (VMs)
and containers simultaneously. In general, the MBS are connected to SBS via high-speed optical iber and thus
can provide reliable and low-latency communications.

ACM Comput. Surv.

Resource Management in Mobile Edge Computing: A Comprehensive Survey • 3

1.1.1 Edge Computing vs Fog Computing. In recent times, fog computing as a concept has become popular. As
both edge computing and fog computing bring computational resources closer to the mobile devices, there is often
debate about their similarities and diferences. The concept of fog computing is irst deined in [2] which states
that the characteristics of fog computing include low latency and location awareness, wide-spread geographical

distribution, mobility, very large number of nodes, predominant role of wireless access, strong presence of streaming

and real time applications, and heterogeneity. Although edge computing shares most of these characteristics, it
is more resource-limited and closer to data generation site than fog computing. Another way to distinguish
edge computing and fog computing is mentioned in [3, 4] which state that fog computing is designed to provide
computing, networking, storage, and control services anywhere from the cloud to mobile devices while the
edge computing utilizes resources only located at the edge of the network. The scope of this survey is resource
management in edge computing, but the collection of papers discussed here is not limited to ‘edge-only’ computing
as long as their proposed systems beneit from collaborative computing paradigms across edge, fog, and cloud.

1.2 Applications supported by MEC

In order to capture the challenges of resource management in MEC, it is necessary to understand the classiication
and characteristics of complex applications. According to the International Telecommunication Union (ITU),
current and future 5G mobile applications are classiied into three categories, viz., Enhanced Mobile Broadband
(eMBB), Massive Machine Type Communications (mMTC), and Ultra-reliable and Low-latency Communications
(uRLLC) [5]. As shown in Fig. 2, eMBB aims to support stable communication that have high bandwidth require-
ments (e.g., 4K video and Virtual Reality). Whereas, mMTC serves a massive number of IoT devices which are
active intermittently (e.g., smart city with high connection density). Finally, uRLLC accommodates services with
low-latency and high reliability requirements (e.g., connected autonomous vehicles). Therefore, given such diverse
set of requirements (viz., latency, scalability, availability and reliability), a combination of customized scheduling
and resource management strategies are needed to allow heterogeneous applications running on the same system
stack (includes computation and network). To this end, the concept of network slicing or virtual networks is being
used to allocate customized end-to-end resources to diverse applications with diferent requirements to ensure
performance satisfaction and mutual isolation. Network slices are deined as end-to-end logical/virtual networks
on top of a common shared physical network infrastructure. The design and composition of network slices are
driven by the need to fulill the latency, scalability, availability, and reliability requirements for vertical-speciic
applications, such as eMBB, uRLLC, or mMTC as shown in Fig. 2.

1.3 Challenges in MEC Resource Allocation

Given this tiered computing architecture and characteristics of complex applications, we can see that the
optimization problems to achieve eicient resource allocation and application management is more complicated
in MEC than traditional distributed and cloud systems due to the inherent heterogeneity of MEC resources.
Speciically the challenges are:

• As explained before, the diversity of applications and a variety of user speciied requirements add additional
complications to the system and application optimization problems in terms of resource allocation decision
making. This makes things especially complicated for joint optimization problems where resource provisioning
and placement problems involve both computation and network/radio resources. Since most of the joint
optimization problems are NP-hard, conventional approaches are unable to solve such problems eiciently.
• MEC environments are more dynamic and prone to faults/luctuations than traditional cloud environments.
These luctuations include and are not limited to: 1) unpredictable changes in user requirements and mobility,
2) dynamic network connecting devices and edge servers with luctuations in wireless channel quality, 3) edge
servers with luctuating computation resource availability, and 4) unpredictable changes in device energy

ACM Comput. Surv.

4 • Zhang and Debroy

Fig. 2. Applications and requirements of 5G Wireless Network and network slicing [6].

levels. Inability to handle such faults/luctuations eiciently and promptly may cause serious performance
degradation of mission-critical applications. At the same time, continuous handling of the luctuations though
eicient resource adaptations in order to optimize long-term system performance is a non-trivial problem.
• Real-time or close to real-time video analytics is being touted as the killer application in MEC in recent years.
Unlike generic applications, in video analytics the users may select diferent conigurations (e.g., frame rate,
frame resolution, and number of video sources) in order to balance the trade-of between application quality of
service (QoS) such as latency and energy consumption, and application quality of experience (QoE) such as
quality of analysis outcome. This makes eicient resource optimization even more challenging.

1.4 Related Surveys

Please refer to Appendix A in the Supplementary File for a summary of the existing surveys [7ś12] and their
comparison to this survey.

1.5 Our Contributions

In this survey, we focus on both system-side and application-side optimization problems within MEC systems,
viz., computation oloading decision-making, resource allocation, and coniguration adaptation in handling
dynamism in edge systems. In particular, the main contributions of this survey can be summarized as follows:

(1) We ofer a comprehensive discussion on the optimization of computation oloading and resource allocation at
the edge. In particular, we discuss these problems from diferent performance objectives’ perspective ranging
from simple (e.g., minimizing energy consumption and latency) to more complex (e.g., minimizing energy
consumption subjected to latency constraints).

(2) In this survey we also take a look at works that address the dynamic nature of the environments and systems
where MEC is adopted. We particularly focus on the impact of stochastic computation oloading that includes
dynamic task arrival, luctuations in channel quality, and changes in computation availability. We discuss
the existing works that propose service migration strategies within the edge architecture triggered by the
aforementioned system dynamism. We also investigate the role of MEC in vehicular networks, especially in
handling user mobility.

ACM Comput. Surv.

Resource Management in Mobile Edge Computing: A Comprehensive Survey • 5

(3) Most optimization problems in MEC are joint optimization problems and are Mixed-Integer Nonlinear Pro-
gramming (MINLP) based. It is diicult to obtain closed-form solutions for MINLP problems subject to
non-convex constraints and integer (or binary) parameters. In this survey, we discuss existing decentralized
frameworks for solving complex decision-making problems (e.g., user-server association, channel allocation,
computation oloading model selection). Game theory based frameworks are also introduced such as, po-
tential game, Stackelberg game, and matching game. We also discuss existing task queue management and
reinforcement learning (RL) techniques that make a sequence of decisions based on the changes in the edge
environment. We then show how recent works in federated learning use RL techniques and optimization.

(4) Finally, we highlight the challenges and solutions of deploying and optimizing video analytics worklows
on MEC. Typically, video analytics require considerable data transmission (e.g., live streaming video) and
computation resources to run sophisticated processing algorithms (e.g., larger and complex neural networks).
Compared to generic non-video applications, tasks in video analytics are both computation-intensive and
bandwidth-hungry. On the other hand, such tasks warrant performance guarantees (e.g., accuracy, complete-
ness) in addition to energy eiciency and latency sensitivity requirements. Therefore, simply optimizing
computation oloading and resource allocation strategies from the system point of view does not yield the
best performance. Thus for video analytics, the system optimizations to be application-aware is of paramount
importance. In this survey, we mainly consider three types of optimizations from a video analytics application
point of view: i) balance between performance of video analytics and cost for mobile devices, ii) task placement
for diferent video pipelines (i.e., sequential, parallel and hybrid) based on directed acyclic graph (DAG), and
iii) deep neural network (DNN)-level optimization, and distributed and collaborative model inference.

The rest of the paper is organized as follows. Section 2 presents the existing work in computation oloading
and resource allocation. Section 3 discusses the dynamic optimization problems in MEC. Section 4 presents the
edge optimization solution approaches. Section 5 discusses the challenges and solutions on video analytic in
MEC. Section 6 presents the open research challenges and future directions. Section 7 concludes the survey. A list
of important acronyms (in the order they appear in the survey) are summarized in Table 2 of the Supplementary
File.

1.6 Survey Methodology

Please refer to Appendix B in the Supplementary File.

2 COMPUTATION OFFLOADING AND RESOURCE ALLOCATION

As we discussed in the previous section, most modern mobile devices are limited by their battery and computing
capacities. Therefore, oloading their data to nearby edge servers for the purpose of energy preservation and
latency reduction makes a lot of sense. In this section, we describe and compare the common computation
oloading models, viz., 1) full oloading (or edge-only), and 2) partial oloading. We also discuss some common
optimization objectives (towards such computation oloading) in terms of latency and energy consumption
minimization. The classiication of related works (i.e., papers) in this space and their objectives and optimized
metric are summarized in Appendix F (particularly, Table 3 and Table 4) of the Supplementary File. Fig. 2 in the
Supplementary File presents their relative comparison.

2.1 Full Ofloading/Edge-only Computation

In full oloading [13ś22], mobile devices transfer the whole application data to the edge server(s). Since the
application only runs on the edge server, only the energy consumption of data transmission need to be considered.
The end-to-end application latency in such cases includes the data transmission time (from devices to edge
servers) and the computation time at the edge server. The former depends on the transfer data rate, while the

ACM Comput. Surv.

6 • Zhang and Debroy

Fig. 3. Survey organization. It presents papers that solve full ofloading and partial ofloading problems in generic commu-

nication and computation environment (Section 2). Then several dynamic factors (e.g., tasks, channels and mobility) and

their impacts on the edge system are presented. In particular, papers on service migration, vehicular network, and dynamic

network slicing are presented in Section 3. This follows the summary and comparison of existing mathematical tools and

techniques that are widely used to solve the problems of computation ofloading and resource allocation in Section 4. Finally,

video analytics as an exemplar application is discussed to show how application-side optimizations can improve the overall

performance in resource-constrained edge computing systems (Section 5).

latter depends on the allocated computing resources (such as CPU cycle frequency). In case of multiple edge
servers, the mobile device not only needs to determine whether the task should be oloaded, but also need to
select the best edge server. However, when more and more mobile devices choose the same server, resource
competition among mobile devices becomes more intense and the system performance starts to decline. Therefore,
both resource allocation and edge server selection are important factors in performance optimization of full
oloading strategies. Overall, the strategies where mobile devices beneit from full oloading can be classiied
into: 1) ones where the energy consumption can be reduced by sending the task data to the edge while satisfying
the latency constraint and 2) ones where the task can not meet the latency constraint by running it locally.

ACM Comput. Surv.

Resource Management in Mobile Edge Computing: A Comprehensive Survey • 7

The key to a successful (or beneicial) full oloading is to allocate suicient radio and computation resources such
that both the transmission time and energy can be minimized. However, such application-speciic minimization
can be deined in many diferent ways. For example, [14] studies full oloading strategy for a speciic area
with multiple IoT devices and multiple edge servers to minimize the end-to-end latency. The proposed sample
average approximation (SAA) based method achieves 20% of global cost reduction on a true base station dataset.
Authors in [22] and [15] propose oloading frameworks which aim to minimize the weighted energy consumption

and latency. In order to minimize the energy consumption while satisfying the end-to-end latency constraint, the
oloading decisions in [18] are determined by sub-carrier power and sub-carrier allocation strategy while [20]
performs a device classiication and priority determination strategy to make oloading decisions based on
communication channels and computation requirements. The summary and comparison of works proposing full
oloading strategies are described in Appendix F (particularly, Table 3) of the Supplementary File.

2.2 Partial Ofloading

Under ideal conditions, all application data should be sent to the edge server to be processed there. Nevertheless,
when mobile devices have to transmit a large amount of data (e.g., training data for machine learning, videos
processing) to the edge server, the transmission cost (to edge servers) may overcome the oloading beneits due
to the consequent increase in energy expenditure (due to data transmission) of the mobile devices. In order to
solve this problem, the partial oloading model [23ś32] allows mobile devices to oload part of the data to the
edge server, while the rest of the data is processed/executed locally. In such cases, mobile devices and edge servers
can process diferent parts of data, i.e., processing tasks concurrently, thereby reducing the end-to-end processing
latency. However, the energy consumption at mobile devices may increase compared to full oloading since local
computation at the devices can consume signiicant energy. Therefore, partial oloading frameworks typically
use a conigurable oloading ratio to control the trade-of between communication cost and computation cost
making such oloading models more lexible.

Related works in this space include [24] that proposes a partial oloading based video compression framework.
The authors formulate a latency-minimization problem for multi-user video compression with joint communica-
tion and computation resource allocation. Their simulation results show that as the number of devices increases,
the performance gap between the full oloading and partial oloading models becomes more evident. It indicates
that the partial oloading model can greatly reduce the system delay by introducing local computations. In order
to minimize the energy consumption, [31] proposes a Deep Reinforcement Learning (DRL)-based approach to
partially oload parts of tasks to the edge server based on the current queue length and the reward obtained from
cooperative spectrum sensing. This work allows devices to adjust their computation and transmission speeds
to perform diferent ratio of task oloading. Authors in [32] propose a multi-user and multi-server partial task
oloading and resource allocation framework. They use a many-to-one matching game to perform user-server
association and then solve the resource allocation and task partition problems at the user side with the queue
length bounds. In [29], the authors propose a novel three-node edge system that the data is divided into three
parts, i.e.: 1) device processing, 2) helper node processing and 3) edge node processing. The helper node acts as a
small edge server and a decode-and-forward relay for cooperative communication to help the user device oload
some of the data to the edge node. Such data partition is based on minimizing the total energy consumption of
the user and helper with a latency constraint.
Since the major motivation for partial oloading is energy saving, such works are widely used in energy

harvesting applications where mobile devices use harvested energy to perform local processing as well as data
transmission. Works such as [25] proposes a UAV-enabled wireless powered MEC system to maximize the sum of
computation rate of all the users. The UAV is equipped with a radio-frequency energy transmitter that can charge
multiple mobile users. It shows that the partial oloading mode achieves largest weighted sum computation

ACM Comput. Surv.

8 • Zhang and Debroy

bits compared to local computing and binary mode (i.e., a lexible selection between full oloading and local).
Authors in [33] integrate simultaneous wireless information and power transfer (SWIPT) technologies into MEC
system. Enabled by SWIPT and power splitting receiver, the user device can perform energy harvesting and
information decoding simultaneously. The authors propose an energy-eiciency problem to determine the relay
beamforming, device CPU frequency, transmission rate of uplink and downlink channels, and the task partition.
The goal is to minimize the system energy consumption while satisfying the latency constraint. Compared to [25]
and [33], authors in [30] make partial oloading decisions based on the backup power supply of an edge device
rather than that of users. The authors propose a renewable-powered edge-cloud computing system. Based on
whether the existing battery level can support the basic computation and transmission in each time slot, the
edge device can oload all the workload or part of the workload to the cloud, and select the number of active
servers. A summary and comparison of all such works that propose partial oloading frameworks are described
in Appendix F (particularly, Table 4) of the Supplementary File.

3 DYNAMISM IN EDGE COMPUTING

Fig. 4. Dynamism in Edge Computing.

Computation oloading and resource allocation optimization can be efectively performed when the task
information within the application model is known in advance and MEC environment is stable. However, for
real-time and complex applications, task models are not deterministic. Moreover, MEC environments are more
dynamic and prone to faults/luctuations than traditional cloud environments. Thus, especially for mission critical
applications, the optimization is unlikely to satisfy strict user requirements when such task dynamism and
environmental luctuations are not addressed. In this section, we discuss how the current literature address the
dynamic changes in MEC environments. To that end, related works in this space are primarily grouped into
stochastic computation oloading and several use cases such as service migration, vehicular edge computing,
and dynamic network slicing.

3.1 Stochastic Computation Ofloading

In this subsection, along with diferent aspects of stochastic computation oloading, we describe the list of factors
that leads to such model adoption. These include unpredictable changes in user requirements [17, 32, 34, 35]
and luctuating wireless [14, 17, 31, 36ś41] and computation resource availability [36]. Details can be found in
Appendix D in the Supplementary File.

3.2 Service Migration

Service migration from current edge server to a new edge server (from the user/device point of view) may occur
in the following situations as shown in Fig. 5a: i) the user is moving away from the current edge server and ii) the

ACM Comput. Surv.

Resource Management in Mobile Edge Computing: A Comprehensive Survey • 9

(a) An example of service migration for vehicular network.

(b) Mobility-aware migration: a mobile device is moving

from location 6 to location 3.

Fig. 5. Examples of service migration

resource availability at the current edge server has diminished and iii) the wireless interference caused by other
users. In those situations, the basic motivation for service migration is to ind a new edge server to maintain
service continuity and QoS/QoE. Fig. 5a shows an illustrative example of such migration where vehicle v1 is
driving towards the edge server e1 initiating service migration from e2 to e1, while vehiclev2 also heading towards
e1 and thus initiating similar migration. The cost of migrating a stateless application is the migration delay
in the network handover, which is usually negligible. However, stateful services such as VM and/or container
based systems need to move the running states (i.e., CPU states, memory) from current (i.e., source) server to
the new (i.e., destination) server. In such cases, the service may be suspended during the migration of those
run-time states and such migration cost cannot be ignored. Typically, service migration in edge computing is
based on the following two considerations: i) irstly, since service migration requires expensive operations and
resources, such as I/O, CPU, bandwidth, the QoS/QoE will be degraded during the process of migration. The
trade-of between service migration cost and migration beneit is crucial and ii) secondly, it is also very important
to ind a suitable strategy to determine how the memory of stateful services will be transmitted. Especially in a
resource-constrained system, this strategy has a great impact on the overall migration performance.

3.2.1 Taking Migration Decision. Here, we describe a list of strategies used to take migration decisions in an
edge computing environment. The papers are classiied into two types, viz., Mobility-aware migration [42ś46]
and QoE/QoS-based migration [39, 47, 48].

Fig. 5b shows an example of mobility-aware migration, where the network topology consists of a set of possible
service locations and it is assumed that each location is associated with an edge server. The state of the system is
deined as the distance between the user location and the service location. When mobile users are moving across
diferent geographical areas, we can predict the user mobility pattern to ind the optimal migration decision
(i.e., when and where to migrate). In [42, 43], the migration cost and the transmission cost are assumed to be
functions of distance. In [42], the authors propose a mobility-driven service migration for 1D mobility patterns.
In uniform 1D random walk, the mobile device moves to the left and right with equal probability r or stay in the
same location with probability 1 − 2r . Authors in [43] propose a distance-based migration framework to handle
2D mobility. While in 2D random walk (e.g., Fig. 5b), the mobile device steps to one of its six neighboring cells
with equal probability r or stays in the same location with probability 1 − 6r . In this work, the cost is modeled as
a constant-plus-exponential function with respect to the distance. The authors propose a distance-based MDP
and use a modiied policy-iteration approach to ind the optimal migration policy. Their numerical evaluations

ACM Comput. Surv.

10 • Zhang and Debroy

show that the proposed migration approach reduces the cost 9 − 54% compared with the never/always migrate or
myopic policies. This improvement largely depends on the total amount of available resources.

The mobility patterns of the above papers are either too simplistic or they assume that users’ mobility patterns
known in advance (e.g., the transition probabilities) - both scenarios are inadequate to deal with real world
mobility patterns. By contrast, [44] predicts the target area of the user’s movement by using an idealized geometric
model which is based on a 6-tuple information, viz., position, position error, speed, speed error, direction, and
direction error. The authors use T-pattern tree to mine local motion trajectory information, which can complement
location prediction in case of incomplete tuple information. However, this work only considers linear mobility
pattern. Works such as [46, 49] use ML-based techniques to implement mobility prediction. Authors in [49]
propose glimpse, a seq2seq model customized for predicting a sequence of future locations. The model consists of
an encoder and a decoder with both using LSTM neural networks. The authors use mobility data from New York
City CRAWDAD NCSU data set [45] to train the prediction model. The authors in [46] propose a DQN-based
task migration framework in MEC system which supports arbitrary moving patterns and network structures.

Instead, distance-based migration strategies use distance diferences as the only reference that cannot capture
the impact of other environmental luctuations on QoE/QoS performance. While in QoE/QoS (Performance)-based
Migration, the system jointly considers the impact of wireless condition and computation availability when
making migration decision - a more practical solution for real-world use-cases. In [47], a dynamic service-
migration mechanism based the user’s QoE is proposed. This mechanism considers both the user mobility and
the dynamic network resources (e.g., storage and bandwidth). The migration objective is to minimize the service
cost while improving the QoE by ofering diferent service resolutions. In [47], the migration decision is based on
a score function S and a cost function C . The migration cost function depends on the data size of the task. The
score function relects the relationship between the user’s QoE and the acquired service resolution. The authors
in [39] use a balance factor to characterize the trade-of between too frequent and too infrequent migrations in
consideration of the job completion rate, transmission cost and migration overhead. With the use of dynamic
spectrum access communication, frequent migration will adversely afect short-term performance, which may
be detrimental to the success of the tasks. However, too infrequent migration may leave the task vulnerable to
upcoming spectrum luctuations. A migration strategy is carried out by the optimizations of the trade-of between
transmission cost improvement and migration overhead. The strategy tries to ind the optimal ‘application
to edge server’ mapping which maximizes the beneit of migration. In [48], the authors use threshold-based
mechanisms to control the balance between too frequent and too infrequent migrations based on prediction
measurements. The authors study the service migration problem that considers network state and server response
time in making migration decisions. This work proposes a QoS-aware migration strategy that determines when
to migrate the service. The system monitors and predicts the QoS either when the user moves or the server
and/or network workload changes. When the predicted QoS violates the QoS threshold, the service migration
is triggered. Although Performance-based migration can capture realistic performance of applications to some
extent, it needs to collect huge amount state information to get accurate prediction. This inevitably adds more
network and computational overhead.

3.2.2 Stateful Live Migration in Edge. Although application performance is improved upon service migration, the
process is expensive that consumes extra network and computation resources. This in turn afects the performance
of the running application. To handle this issue, live migration strategies are introduced to reduce the service
downtime and the overall migration time. There are mainly two types of migration strategies, namely pre-copy
and post-copy.

In pre-copy migration [50], the whole memory of the source machine is transmitted to the destination machine
while the source machine is still hosting the application. In the meantime, the dirty memory pages will be
re-copied to the destination machine. This process terminates when the re-copied rate is greater than the page

ACM Comput. Surv.

Resource Management in Mobile Edge Computing: A Comprehensive Survey • 11

’dirty’-ing rate. Then the source stops the service and transmits the rest of dirty pages to the destination (i.e.,
stop and copy phase). Afterwards, the destination machine resumes the service for the mobile device. The key
factor afecting the performance of pre-copy is the dirtying rate. This can be considered as a synchronization
process between the source and destination machines. This synchronization also impacts the service downtime.
For example, under a low dirtying rate, the service can be kept running on the source until the whole memory is
copied. Therefore, the service downtime is simply the startup time of the new service instance on the destination.
But for a high dirtying rate, the service has to stop before the whole memory is copied, thereby causing longer
service downtime. To characterize the migration cost in pre-copy strategy, the authors in [51] propose a proit
maximization framework to optimize the trade-of between the migration gain (reduction of the delay between the
mobile device and the service machine) and the migration cost. The authors perform the pre-copy live migration
and estimate the total migration time based on the network bandwidth between the source and the destination,
the size of the memory, and the page dirtying rate of the application. Since the same migration time may cause
varying performance degradation for diferent applications (e.g., I/O intensive or CPU intensive), the migration
cost is determined by the total migration time, and a weighted sum of utilization of diferent resources.

While in post-copy [52], the source machine immediately suspends the service and only sends a minimal set of
the state data to the destination (e.g., CPU state, register). The destination machine resumes the service and the
source machine actively pushes remaining memory pages to the destination. For example, when page faults occur
at the destination, those pages will be pulled from the source machine. Compared to post-copy, the pre-copy
migration reduces the service downtime but adds more network overhead (i.e., transferring dirty papers). While
the post-copy migration transfers less data, but it subjects the service to considerable delays when calling the
missed memory pages - this lasts until the whole memory is transferred. Therefore, post-copy is not ideal for
mission-critical applications where low-latency is required. In the rest of this subsection, we will discuss several
edge frameworks based on pre-copy migration.

3.3 Vehicular Edge Computing

Mobility as the primary requirement for vehicular systems brings many unique challenges such as routing and
forwarding, content caching, trust and authentication, and lexible network management [53, 54]. However, the
scope of this survey is resource allocation and computation oloading aspects within edge systems, which are
two fundamental problems for vehicular edge computing (VEC). In recent years, edge computing combined
with Internet of Vehicle (IoV) techniques have provided a reliable and low/ultra-low latency computation and
communication environment for VEC, thus playing an important role in handling real-time vehicle traic and
latency-sensitive computation tasks. Vehicles can be considered as users/devices with unique abilities within the
MEC space as their fast-moving characteristics generate many stochastic resource allocation and computation
oloading problems. Authors in [55] propose a road-segment based network infrastructure where the system aims
to ensure that a task can be completed before the vehicles leaves the connecting roadside unit (RSU) under current
segment. A game-theoretic approach is used to determine whether a task should be processed locally or remotely,
followed by a Lagrange multiplier method to ind the optimal solution for resource allocation. In comparison, [56]
proposes a predictive oloading scheme which allows the vehicles to oload their tasks to the RSU in front
along the direction in which the vehicle is moving. With accurate prediction of communication and computation
latencies, the transmission cost for task output is greatly reduced since the output data can be transmitted
directly from RSU to vehicles. However, this work also requires additional information to determine the future
location of the vehicle. Instead of improving the end-to-end latency on average, the authors in [57] propose
a risk-sensitive task fetching and oloading framework. The proposed system formulates a risk minimization
problem by considering a set of reliability measures e.g., mean, variance, skewness, and other higher-order
statistics. The problem is solved by a ‘joint utility and policy estimation’-based learning algorithm. However,

ACM Comput. Surv.

12 • Zhang and Debroy

based on frequently changing vehicle density and computation requirements, the RSU operators usually need to
continuously adjust their computation oloading and resource allocation strategies. In this context, VEC systems,
such as [58ś60] that use DRL methods for computation oloading and resource allocation are further discussed
in subsection 4.3.3.

3.4 Dynamic Network Slicing

As discussed in Subsection 1.2, network slicing is a promising solution to solve resource management issues in
complex communication and computation environments where various applications with diferent requirements
are involved. Similarly, one of the key design goals of dynamic network slicing is to fulill the diverse slice
performance requirements and provide multi-dimensional resources on demand. For example, a dynamic network
slicing system should ideally be able to change its resource allocation policy according to actual user requirements
and resource availability, which may change periodically or randomly in both spatial and temporal dimensions.
Works such as [61ś63] focus on dynamic inter-slice and intra-slice resource management, which is an inherently
complicated problem. The authors in [61] jointly optimize dynamic assignment of tasks to slices, inter-slice
resource management, and intra-slice resource management. A mixed-integer problem is proposed whose
objective is to minimize the completion time of tasks. The problem is solved by an approximation algorithm with
bounded approximation ratio obtained from a game theoretic treatment. Authors in [62] propose EdgeSlice, a
decentralized resource orchestration system for dynamic network slicing. A performance coordinator and multiple
orchestration agents are deployed to handle inter-slice and intra-slice resource allocations, respectively. The
orchestration agents use DRL methods to manage resources for their own network slices under the supervision
of a coordinator (i.e., connecting the two sub-problems by introducing a set of auxiliary variables). Work such
as, [63] formulates a non-cooperative stochastic game in which tenants (i.e., service providers) aim to selishly
maximize their own long-term payof. To address the network dynamics, a DRL algorithm is proposed to make
joint communication and computation resource allocation policy.

On the other hand, eicient admission control is required to schedule incoming slice requests while guaranteeing
existing performance requirements. Works such as, [64ś66] address the admission control process in dynamic
network slicing. Authors in [64] propose a stochastic optimization to jointly optimize slice request admission
and resource allocation. The authors use Lyapunov optimization to handle unknown channel information and
traic distributions. A heuristic algorithm is applied to obtain the dynamic slice request admission decision with
the purpose of maximizing the operator’s revenue. Work such as [65] proposes a global service provisioning
component which aims to provide admission control for incoming slice requests. A blockchain-based bidding
system is applied to map user requests to appropriate network slices. Based on the prediction of network slices’
traic and user mobility patterns, a learning and forecasting based admission control is proposed in [66]. In this
work, the admission control problems are considered as two-dimensional geometric knapsack problems, where
slice requests are sorted in non-increasing order according to their proits and traic classes. The problem is
solved by a simulated annealing based algorithm.

4 OPTIMIZATION IN EDGE COMPUTING

Typically, joint optimization of computation oloading and resource allocation is deined as a Non-Convex
Mixed-Integer Nonlinear Programming (MINLP) problem (as shown in Fig. 6) that is NP-hard in general. It is
expensive and time-consuming to ind the optimal solution (e.g., closed-form expressions) to such problems.
One of the most widely used methods in solving joint task oloading and resource allocation problems is

bi-level optimization [18, 28]. This technique is also known as decomposition optimization. Here, the original
NP-hard problem is divided into two sub-problems and the solution is obtained by alternatively and iteratively
solving the sub-problems. This method typically used to separate computation oloading from resource allocation,

ACM Comput. Surv.

Resource Management in Mobile Edge Computing: A Comprehensive Survey • 13

Fig. 6. Joint optimization of computation ofloading and resource allocation in dynamic edge computing

i.e., the integer variables are relaxed (e.g., LP relaxation or Lagrangian relaxation) to turn the resource allocation
into convex optimization problems that can be easily solved by classic convex optimization algorithms. However,
when the optimal solution of the relaxed problem does not have all variables either 0 or 1 (i.e, some of them have
fractional values), the solution only gives an upper bound. That is, the quality of the integer solution after variables
are rounding back to integers may not at as good as that of the relaxed solution. Although methods such as Branch
and Bound (B&B) can be used to efectively solve such discrete and combinatorial optimization problems when
facing fractional values, they may cause huge computational complexity when the MEC contains a large number
of users and servers. In this survey, we discuss an alternative bi-level optimization, which turns the 0-1 integer
programming problem into a distributed problem. We then describe several decentralized frameworks such as
game theory and matching techniques that are used to obtain a high quality solution with less computational
overhead. On the other hand, to address user mobility and resource availability, it is necessary to continuously
compute such optimal decision. Thus, we also review the most widely used long-term resource allocation and
computation oloading techniques.

4.1 Decentralized Computation Ofloading

Since in real-world scenarios mobile devices running data-intensive applications are managed by individual
stakeholders (teams, agencies, users) who are selish in nature, most centralized solutions ignore the satisfaction
and willingness of users to agree to centralized server scheduling and resource allocation techniques. Therefore, in
real-world scenarios users and their applications may behave in a non-cooperative manner when facing resource
competition.

Let N be a set of players (i.e., mobile devices) and A be a set of feasible actions, an example of transformation
from centralized optimization into decentralized optimization can be stated as:

min
an ∈A

un (an , a−n), ∀n ∈ N ← min
an ∈A

N∑

n=1

un (an) (1)

where a−n is the set of strategies made by all other mobile devices except for device n andun is the cost function of
device n. This decentralized framework provides a solution that is close to the performance of optimal centralized
solution but with less computational overhead and at the same time ensures that all players are mutually satisied.

4.1.1 Game Theory. Game theory is one of the powerful tools to solve distributed optimization problems with
rational and selish actors, such as, multi-device and multi-server edge environments. Through a game theoretic
framework, mobile devices are considered as a set of players that distributedly select their oloading decisions
from a feasible strategy spaceA. As shown in Eq. (1), the original centralized optimization problem is transformed

ACM Comput. Surv.

14 • Zhang and Debroy

into multiple identical and distributed strategy making problems, i.e, scenarios where each mobile device aims to
ind a strategy an ∈ A to minimize its own cost (i.e., best response strategy). The most common way to deine a
game solution is Nash equilibrium (NE). At NE (deinition (1)), all mobile devices satisfy their inal oloading
strategies and have no incentive to deviate from their strategies. Therefore, if a mobile device at NE chooses full
or partial oloading, then it must indicate that the local computation leads to higher cost [67]. Otherwise, the
mobile device can just unilaterally switch to local computation without consulting other mobile devices.

Definition 1. A strategy proileA∗ = {a∗1,a
∗
2, ...,a

∗
N
} is a NE of a strategic oloading game, if at the equilibrium

S∗, no player (mobile device) can further reduce its cost by unilaterally altering its strategy, i.e.,

un (a
∗
n ,a

∗
−n) ≤ un (a

′
n ,a

∗
−n),∀a

′
n ∈ A,n ∈ N

Potential game [22, 67ś70] is one of the useful tools to ind the NE for game-based optimization frameworks
where players have the same interests and share a global potential function deined in Eq. (2)). The potential
function indicates the incentives of all mobile devices to change their strategies. For example, when a mobile
device updates its strategy, the same behavior occurs in both the cost function of the mobile device and the
potential function of all other mobile devices. The beauty of potential game is in its inite improvement property
(FIP) which ensures that any algorithm that asynchronously updates the player’s strategies is guaranteed to reach
a NE within inite strategy update iterations (e.g., linear time complexity [68], quadratic convergence time [67]).

Definition 2. A game is called a potential game if there exists a potential function (global cost function) p (a)

such that ∀n ∈ N and an ,a
′
n ∈ A, if

un (a
′
n ,a−n) < un (an ,a−n)

we have

p (a′n ,a−n) < p (an ,a−n)

Work such as, [69] utilizes a potential game approach to allow IoT users to maximize their own QoE. The
authors propose a near optimal ϵ−NE resource allocation mechanism to reduce the time complexity of the
best response algorithm to O (N /ϵ) i.e., the player can increase its QoE by no more than ϵ at ϵ−NE. In order to
customize it for edge computing, one needs to study the property of the original centralized problem and produce
a customized potential function. Works, such as [22, 67, 70] propose a multi-device computation oloading game
which seeks to minimize a weighted sum of computational time and energy of mobile devices in a multi-channel
wireless interference environment. Stackelberg game, a two-stage game model is also used to provide incentive
mechanism for computation oloading in edge computing [71ś73]. Here the players are labeled as a leader (e.g.,
edge servers) and multiple followers (e.g., mobile devices). In Stackelberg game, the leader chooses the best
response strategy to maximize its payof, while the followers react rationally to the leader’s action to minimize
their game cost functions [74]. The solution of Stackelberg game is Stackelberg equilibrium which is a little
diferent from NE where the follower’s optimal strategy is also the optimal strategy for the leader.

4.1.2 Two-sided Matching. Two-sided matching approaches can also help to solve decision making problems for
edge computing in a decentralized manner, especially for sub-channel allocation and user-server association
as deined in Deinition 3. A two-sided matching game for user-server association are typically modeled with
two sets of player i.e., mobile devicesU and edge servers S. Since one mobile device is only connected to at
most one edge server but one server can accept multiple mobile devices, the user-server association is deined
as many-to-one matching. Every mobile device u ∈ U has strict preference order ≻u over S ∪ {θ ∗} where θ ∗

denote local computation (no oloading), while every edge server s ∈ S has strict preference order ≻s over

ACM Comput. Surv.

Resource Management in Mobile Edge Computing: A Comprehensive Survey • 15

U . The preference order are deined by user-deined performance metric (e.g., latency, energy consumption).
Authors in [28] use energy consumption as its matching preference and formulate a two-sided matching game for
sub-channel access. In [32], the matching preference is deined as the weighted transmission rates in a descending
order, which is afected by the other UEs (matched to the same server) via co-channel interference. In [75], the
mobile user prefers to select the edge server that provides the higher oloading rate and computation resource,
while the edge server prefers the users with lower computation overhead.

Definition 3. A matching µ is a collection of pairs inU × S s.t. every u ∈ U is a member of at most one pair,

and every s ∈ S is a member of at most |U | pairs.

The matching game should also consider the externalities in which the matching preference dynamically
changes with the matching states of the other mobile devices in the same set [28, 32, 75, 76]. According to
Deinition 4, the goal of many-to-one matching is to obtain a stable matching µ such that both mobile devices and
edge servers have no incentive to exchange their matched pairs. A simple approach is to initialize a temporary
matching µ based on Deferred Acceptance (DA) method [76] i.e., mobile devices propose to their most preferable
edge servers and edge servers accept or reject mobile devices from its applicant list based on their applicant
preferences. The remaining mobile devices remain unmatched and repeat this process until all mobile devices are
matched. Once an initialized µ is ready, all the pairs are traversed to ind a block pair, then the matching process
is updated and repeated until a stable matching is achieved. The complexity of this approach is O (|U |2) [32].

Definition 4. A matching µ is blocked by a pair (u, s) ∈ U × S if s ≻u µ (u) and ∃s ′ ∈ µ (s) s.t. u ≻s u
′. Also,

a matching is stable if it is not blocked by any pair.

Fig. 7. The queue length of task bufer

4.2 Lyapunov Optimization

In order to address the temporal and spatial diferences in edge environments caused by user mobility and
resource availability, one can consider computation oloading and resource allocation as dynamic programming
problems. We study related Lyapunov optimization-based online algorithms that seek to make a sequence of
computation oloading and resource allocation decisions based on the changes in the edge environment.

4.2.1 Taskueue Management. Task queue management is a classic dynamic programming problem within edge
computing environments that is usually subjected to long-term queue constraints. We also discuss how Lyapunov
optimization balances the trade-of between queue stability and other user-deined performance metrics.

ACM Comput. Surv.

16 • Zhang and Debroy

When partial oloading is enabled, mobile devices need to maintain a local queue and a remote queue i.e.,
the arrived/oloaded but not yet executed tasks will be queued in the task bufer of the device and the edge
server. The queue length changes dynamically, triggering the need for online optimization. As shown in Fig. 7,
the evolution of the local and remote queue lengths can be stated as follows: 1) The local queue length at the
end of time slot t is determined by the number arrived tasks at the beginning of time slot t , the number of tasks
executed by the mobile device (which can be controlled by the device’s CPU-cycles frequency), and the number
of tasks oloaded to the edge server (which is controlled by the data rate) during the time slot t and 2) The length
of the remote queue at the edge server is determined by the number of unscheduled tasks executed by the server
(which is controlled by the computation resource allocated to the mobile device) and the number of oloaded
tasks from the mobile device during time slot t .

4.2.2 Long-term ueue Constraint. According to the Little’s law [17, 32], it is assumed that the average delay is
proportional to the sum queue length of the local queue and remote queue. Many works use long-term queue
constraints to describe the latency requirement.
For example, the authors in [17] propose an online joint radio and computational resource management

algorithm to minimize the ‘long-term weighted average’ power consumption of the mobile devices and the edge
server. In order to guarantee that the tasks can be completed within inite delay, the authors add the following
constraints to enforce the task bufers to be mean rate stable:

lim
T→∞

E[|Q (t) |]

T
= 0, lim

T→∞

E[|T (t) |]

T
= 0

where Q (t) and T (t) are the queue lengths of local and remote queues respectively. An extension of this type
of constraint is to further ensure the reliability of the queue by adding probabilistic constraints. In [32], the
authors propose a ultra-reliable and low latency communication (URLLC) task oloading and resource allocation
framework. The statistics of the queue length is studied and the authors impose probabilistic constraints to
characterize the queue length. This work uses two queue bufers to store the split tasks for local computation
QL (t) and oloading QO (t). The queue length constraints are expressed as follows:

lim
T→∞

1

T

T∑

t=1

Pr (QL (t) > dL) ≤ ϵL, lim
T→∞

1

T

T∑

t=1

Pr (QO (t) > dO) ≤ ϵO

where dL and dO are the the queue length bounds, ϵL and ϵO are the tolerable bound violation probabilities
(which are small values less than 1).

4.2.3 Lyapunov Optimization. Once the queue constraints are given, the problem seeks to ind ways to adjust
decisions according to the most recent queue length. Here, we discuss the Lyapunov Optimization that tackle
such problems. Many Lyapunov optimization frameworks [13, 17, 32, 77] have been proposed as solutions to
deal with task queue management problems that aim to stabilize the queue while optimizing a user-deined
long-term average performance objectives. The basic idea is to transform the original dynamic programming
problem into individual deterministic per-time slot optimization problems. Let us consider a typical queue-based
edge computing optimization system (e.g., Fig. 7) where Q (t) and T (t) indicate the lengths of local and remote
queues respectively. In time slot t , a Lyapunov function will be deined to drive the current optimal decision,
which is a quadratic equation that can be expressed as:

L
(

Θ(t)
)

=

1

2

(

Q (t)2 +T (t)2
)

ACM Comput. Surv.

Resource Management in Mobile Edge Computing: A Comprehensive Survey • 17

Then, the Lyapunov drift in computed to indicate the stability of the queue by measuring the diference in
function L(Θ(t)) between two adjacent time slots (i.e., t + 1 and t). It can stated as

∆(Θ(t)) = E[L
(

Θ(t + 1)
)

− L
(

Θ(t)
)

|Θ(t)]

In ∆(Θ(t)), the diference can be computed as:

L
(

Θ(t + 1)
)

− L
(

Θ(t)
)

=

1

2

(

Q (t + 1)2 − Q (t)2
)

+

1

2

(

T (t + 1)2 + T (t)2
)

Afterwards, the conditional Lyapunov drift-plus-penalty is applied to balance the trade-of between latency and
objective (i.e., energy minimization) optimization, which is stated as:

∆(Θ(t)) +V × E[X (t) |Θ(t)]

whereX (t) is the per-time slot objective function of the original problem andV is a control parameter that adjusts
the trade-of between queue stability and objective function. In [17], it shows that there exists an [O (1/V),O (V)]
trade-of between objective function and the queue stability.

4.2.4 Virtual ueue. The Lyapunov optimization method can also be used to solve optimization problems with
generic long-term constraint by introducing the virtual queue. In [13], the authors create a virtual queue as a
historical measurement of the exceeded latency for real-time video analytics. The virtual queue and the equivalent
long-term constraint are deined as:

q(t + 1) = [q(t) + l (t) − Lmax]
+ ← lim

T→+∞

1

T

T∑

t=1

lt ≤ Lmax

where l (t) is the average latency of video streams at time slot t and Lmax is an average latency threshold of
a long period (i.e, 1 → T). The stability of the queue ensures that the average latency does not exceed Lmax .
Similarly, [77] constructs a virtual queue to transform the long-term data transmission constraint into the
following equivalent long-term constraint, which is state as:

q(t + 1) = [q(t) − s (t) +
L

T
]+ ←

T∑

t=1

s (t) ≥ L

where s (t) is the amount of data transmitted in time slot t and the system needs to transmit L bits of data
within the deadline T . Although Lyapunov optimization method reduces the complexity of the original problem
by transforming the long-term problem into individual time slot problems, the transformed objective is still a
weighted function. For works with strict requirements, it is time consuming to ind the optimal V such that the
requirement can be satisied.

4.3 Learning-based Optimization

Papers mentioned above solve computation oloading and resource allocation problems using conventional
mathematical tools, such as Sample Average Approximation (SAA) [14], Lagrange dual decomposition and
subgradient projection [15], alternating direction method of multipliers (ADMM) [16], piecewise optimization [24],
successive convex approximation (SCA) method [25], and interior point method [29]. To formulate a realistic
optimization problem, these methods need to create precise mathematical models which are usually obtained by
performing extensive experimental measurements or drawing from historical experience. Therefore, conventional
mathematical tools may only be successful in some speciic use cases, as they rely entirely on pre-deined
mathematical models. In contrast, learning-based methods such as Reinforcement Learning (RL) allow the system
to estimate mathematical models from interactions between learning agents and edge environment, resulting

ACM Comput. Surv.

18 • Zhang and Debroy

Table 1. The comparison of individual papers working on RL.

Ref Actions Objective RL approach

[21] Channel allocation, User-association Maximize long-term downlink reward DDQN

[34] Computation oloading, Energy allocation
Minimize weighted sum of delay and

computation task dropping
DQN

[47] Service location, service resolution Maximize Quality of Experience (QoE) Q-learning

[58]
Server selection, Data transmission mode

selection
Maximize utility DQN

[59]
Spectrum, computing, and storing resource

allocation

Maximize the numbers of oloaded
tasks that are completed with satisied

QoS requirements
DDPG

[60] Channel prediction Maximize utility DQN

[78] Transmit power, Oloading decision-making
Minimize weighted energy
consumption and latency

Q-learning

[79]
Computing capability, Ratio of task computed

locally
Minimize execution time (subjects to

energy constraint)
Cooperative Q-learning

[80] Computation oloading, Energy harvest time Maximize computation rate DQN

[81] Device classiication Minimize energy consumption DQN

[82] Computation oloading, Energy allocation Minimize experienced delay DDQN

in a more eicient and adaptable solution. Furthermore, learning-based methods are able to capture the spatial
and temporal correlations between environmental states, making them more suitable for long-term/online
optimization. In particular, we focus on Markov Decision Process (MDP) and RL based techniques for edge
resource management. The RL frameworks in the current literature are classiied into the following two types,
viz., Q-learning based (i.e., a Q-table based iterative method) and Deep Q-learning based (i.e., deep neural network
based iterative method). We also present Federated learning (FL) as a novel distributed training scheme for
learning-based methods.

4.3.1 Markov Decision Process. Many learning based resource management problems in dynamic edge environ-
ment are modeled as Markov Decision Process (MDP). Although conventional optimization methods (e.g., value
or policy iteration) can be applied to obtain optimal long-term strategies for problems with known transition
probabilities, they are not always suitable for many dynamic edge systems. In many real-world use cases, the
value or the policy-based iteration mechanisms sufer from exponential computation complexity due to the
multi-dimensional state and action spaces. On the other hand, the system may also lack prior information i.e.,
transition probabilities. To address these issues of stochastic task oloading and resource allocation problems, RL
methods are being used in edge computing systems. RL is a major branch of artiicial intelligence and machine
learning (AI/ML) where the basic model can be deined as a tuple (S,A, P ,R,γ), where S andA denote the state
and action spaces, P (st+1 |st ,at) is the transition probability (unknown) from state st ∈ S to st+1 ∈ S after the
agent takes the action at ∈ A, the reward R (st ,at) represents the immediate utility obtained by taking action at
at state st . γ ∈ [0, 1) is the discount factor which determines the importance of future rewards compared to the
recently rewards. In RL, the agent (decision maker) deines the control policy π (st) = at as a mapping from a
state to an action and the goal of the agent is to learn an optimal policy π that maximizes the expected long-term
discounted reward which can be expressed as

π ∗ = argmax
π

E[

+∞∑

t=0

γ tR (st ,π (st)) |s0,a0], ∀s ∈ S

The agent should study the trade-of between exploration and exploitation and to ind an optimal balance among
the two. Exploration aims to ind better new action that may yield a higher reward in the future, while exploitation
using the action that has the highest cumulative reward tried in the past. A well-known solution is called ϵ-greedy,
which acts randomly with probability ϵ (exploring) and acts greedily with probability 1-ϵ (exploiting). In edge

ACM Comput. Surv.

Resource Management in Mobile Edge Computing: A Comprehensive Survey • 19

systems, the utilities are usually measured as computational and communication costs such as processing latency,
energy consumption or a combination of both. The key to obtain an efective learning policy is to ensure that
minimizing the expected cumulative discounted cost is equal to minimizing the objective function of the original
optimization problem. Table 1 describes the list of related papers that use RL based frameworks to optimize the
computation oloading and resource allocation in edge environments.

Fig. 8. Bellman equation and corresponding Q-table.

4.3.2 Q-learning. It is a model-free scheme to learn the quality of actions in unknown environments without
knowing any dynamic statistics. In Q-learning, the quality of action at is deined given certain state st as a
Q-value Q (st ,at). The optimal Q-value represents the maximum expected reward by following a policy π after
receiving the state st and taking the action at . Even though the state transition probabilities are unknown, the
optimal policy can be found in a recursive manner based on historical records. The update of Q-value can be
obtained via the Bellman equation (as shown in Fig. 8), where α is the learning rate which impacts the updating
speed of Q-value learning from the new value. The new value depends on two elements: 1) The immediate reward
R (st ,at) by taking action at in given state st . Then, the next state st+1 can be observed and 2) The update scheme
adds a weighted future value to the immediate reward. This weighted future value is computed by searching
the maximum Q-value of all the actions in state st+1, that is γ · maxa∈A (Q (st+1,a)). Conventional Q-learning
methods store and update the values of all the state-action pairs in a Q-table as shown in Fig. 8. The size of the
table entries equals to the size of state space times the size of action space. At each decision epoch, the agent is
going to search the Q-table by the given state and ind the optimal action based on state-action values. Also, the
corresponding value will be updated based on the Q-function.
Authors in [78] propose resource allocation for edge computing in IoT networks, where end devices adopt

the time division multiple access TDMA scheme to transmit their data to a gateway with edge server. In order
to minimize the ‘long-term weighted sum’ of power consumption and task execution latency in time-varying
channel gain condition, a ϵ-greedy Q-learning is used to make computation task oloading decision and select the
transmit power level from a set of discrete variables. Software deined edge cloudlet (SDEC) based RL optimization
framework is proposed in [79] to tackle the task oloading and resource allocation in wireless MEC. The authors
use a cooperative Q-learning technique to further enhance the search speed in Q-learning method. The basic
ideal is that the agents search diferent choices in parallel by sharing their information decreases the search time
greatly. In cooperative Q-learning, the Q-tables of agents that are located in the same vicinity are shared with one
another. Afterward, each agent takes the weighted average of the others Q-tables and uses the resulted table as
its new Q-table, where the weights are assigned based on agent’s expertness (rewards). In the simulation result,
they found that the proposed cooperative scheme achieves around 31.39% and 62.10% sum delay reduction when
compared to traditional Q-learning with random algorithm and Q-learning with epsilon greedy, respectively.
Authors in [47] use Q-learning to solve the service migration problem caused by user mobility and dynamic

ACM Comput. Surv.

20 • Zhang and Debroy

network resources. The objective is to ind the best service locations and service resolution that maximize the
system reward for a sequence of batch requests.

4.3.3 Deep Reinforcement Learning. Deep Q-network (DQN) complements Q-table to handle environments with
high-dimensional action-state spaces. To this end, the DQN method integrates the deep neural network (DNN)
into the RL framework by adding an online DNN, a target DNN, and an experience replay [83]. The online DNN
is used to approximate the Q-function, which is denoted as Q (s,a) ≈ Q (s,a;θ) where θ stands for the weights of
the online DNN. The target DNN is used to stabilize and improve the performance of the network and its weights
θ− are copied from the online DNN in every few iterations. The online DNN is trained to minimize a sequence of
the loss functions that are deined as MSEs between the current predicted Q-value and target Q-value. The loss
function at time-step t is is expressed as:

Lt (θ) = E[(R (st ,at) + γ argmax
a∈A

Q (st+1,a;θ
−)

︸ ︷︷ ︸
target Q-value

− Q (st ,at ;θ)
︸ ︷︷ ︸

predicted Q-value

)2]

The experience replay strategy is applied to address the instability during the training procedure. In particular,
the user experiences (st ,at , rt , st+) are stored into a replay memory of a inite size. At each learning epoch, the
DNN is trained by a random mini-batch of experiences from the replay memory. The use of experience replay
strategy helps to breaks the correlation of learning data. The framework of DNQ is illustrated in Fig. 9.

Fig. 9. An exemplary schematic of a framework with Deep Q-learning network

Works such as, [34] and [80] use DQN to optimally adapt task oloading decisions and resource allocation
in time-varying wireless channel conditions. Authors in [34] propose a DQN-based algorithm for a single-user
MEC system to jointly decide computation oloading and energy allocation. The states of the environment
include the channel qualities between the mobile user and the base stations, the energy queue state, and the
task queue state. In their simulation, they found that wider (with bigger number of neurons) DQN can better
approximate the Q-function compared to deeper (with more hidden layers) DQN. Their algorithm achieves up to
56% in performance improvement. However, the convergence of the proposed algorithm is slow and the whole
process leads to huge computational complexity. The reason behind this is the fact that DRL agents cannot handle
high-dimensional discrete states (i.e., the channel gain). In order to avoid the dimensionality problem and reduce

ACM Comput. Surv.

Resource Management in Mobile Edge Computing: A Comprehensive Survey • 21

complexity, DNN can be used to only solve some sub-problems [80]. In order to maximize the weighted sum
computation rate in a wireless powered system, [80] proposes a learning-based framework that decomposes the
original optimization problem (mixed integer programming non-convex problem) into an oloading decision
sub-problem and a resource allocation sub-problem. The framework irst uses DNN with an order-preserving
quantization method to obtain the binary oloading actions. Once the oloading actions are ixed, the original
problem reduces to a convex problem which can be easily solved using bisection search with O (N) complexity.
Authors in [81] addresses the long-term energy eiciency problem of an IoT-based network structure designed
for green energy management systems (in smart cities). They propose energy management architecture and
software model along with the DRL process. Moreover, the authors introduce a collaborative learning method in
which the edge server oloads the DNN training to the cloud to reduce computing costs and the edge server
deploys the online DNN based on the trained weights sent from the cloud.

Since Q-learning and DQN methods use the same values to select and evaluate an action, the Q-function may
be over-optimistically estimated. In order to address this problem, Double Deep Q-learning (DDQN) methods
decouple the selection from the evaluation [84]. Here, the target is as

y
DDQN
t = R (st ,at) + γQ (st+1, argmax

a∈A

Q (st+1,a;θ);θ
−)

In DDQN, the online DNN and its weight θ are used to determine the greedy policy while the target DNN
and weight are selected for value evaluation. Works, such as [21, 82] apply DDQN approaches to learn the
optimal computation oloading policy without apriori knowledge of network dynamic. Work such as, [21]
presents a multi-user deep reinforcement learning algorithm for user association and resource allocation in
heterogeneous networks. They use DDQN approach to solve a joint optimization problem with non-convex and
combinatorial features. The authors in [82] consider a representative mobile user in ultra-dense networks where
computational tasks are oloaded to the edge server via diferent base stations. They use a DDQN framework
to obtain the optimal oloading decision as well as energy unit allocation. Those works show that the DDQN
method outperforms Q-learning and DQN on both the learning speed and system performance.
DRL techniques are widely used in VEC to design learning policies which handle problems of stochastic

vehicular traic management. Authors in [58] adopt a deep Q-learning based approach for designing optimal
oloading schemes that jointly consider selection of target server and data transmission path (i.e., vehicle
to base station, vehicle to RSU, and vehicle to vehicle). The authors analyze the impact of real traic on the
obtained average utilities of a task with diferent oloading schemes. The proposed deep Q-learning scheme
yields higher oloading utility compared to game theoretic approaches. Authors in [59] propose a DRL-based
framework that optimizes spectrum, computing, and storage resource allocation jointly for moving vehicles and
their dynamically changing computing tasks. Since the convergence time of the DRL networks becomes longer as
the number of vehicles under the service area increases, the authors develop a hierarchical learning architecture
that decomposes the original problem into sub-problems of spectrum allocation and computing/storage resource
allocation. Subsequently, two deep deterministic policy gradient algorithms (i.e., DDPG, an improved actor-
critic algorithm that combines the advantages of policy gradient and DQN algorithms) are applied to solve the
sub-problems, respectively. Authors in [60] propose a model-assisted DRL framework where the DRL agent
adaptively selects the appropriate transition data to update the weights of an online DNN based on their learning
complexities (compared to other works that choose data randomly from experience). Such modiications improve
the performance of the DRL framework in handling time-varying transition memory created by fast-moving
vehicles.

4.3.4 Federated learning. With the increasing popularity of artiicial intelligence applications and the volume
of IoT data, traditional centralized data training on high-performance cloud data center or server is becoming
unsuitable as centralized training leads to considerable communication overhead along with other issues such

ACM Comput. Surv.

22 • Zhang and Debroy

as reliability and data privacy (discussions of such issues are beyond the scope of this survey) [85]. To solve
these issues, the concept of FL is developed by Google in 2016 [86] where edge devices download and train the
models using local data and only send the learnt parameters to the server for aggregation and model update. The
local training and aggregation are repeated until the loss function reaches convergence. Such exchange of model
parameters instead of raw data greatly improves data privacy and network resource conservation. Below, major
research on FL for edge resource allocation and FL driving edge resource allocation are discussed.

a. Resource optimization for FL: Given that edge devices are usually constrained in terms of computing
power and energy budget, implementing distributed data training on resource-constrained edge environment
remains a challenging problem. For example, the time and the energy consumption of FL caused by local training
and parameter transmission are two conlicting metrics. Therefore, striking a balance between the two is non-
trivial. In [87, 88], the authors minimize the weighted sum of training latency and total device energy consumption
by inding the optimal device CPU frequency, transmission latency, and local accuracy. In [87], a TDMA-based
communication time allocation scheme is adopted, while [88] uses an OFDMA-based communication scheme.
Problem decomposition and iterative algorithmic solution are proposed to obtain the optimal resource allocation
strategy under a given latency constraint.
Considering that the processing latency of local training and the transmission time of parameters (to server)

can vary signiicantly between devices, optimal client and global aggregation frequency selection strategies are
crucial to the convergence speed of FL. Work such as, [89] proposes a control algorithm that determines the
frequency of global aggregation under a given resource budget. To this end, the authors analyze the convergence
bound of distributed gradient descent from a theoretical perspective and study the trade-of between local update
and global parameter aggregation in terms of minimizing the loss function. Afterward, the control algorithm
uses non-i.i.d. data distribution, system dynamics, and model characteristics to make the frequency of global
aggregation dynamically adapt in real time. Authors in [90] propose a joint device scheduling and resource
allocation algorithm to maximize the model accuracy under a given training time budget. Similar to [89], this
work theoretically bounds the impact of the number of rounds and the number of scheduled devices to the
convergence bound of FL. Then, the trade-of between latency per round and number of required rounds to
achieve a ixed accuracy is investigated. The proposed accuracy maximization problem is solved by decoupling
resource allocation from device scheduling. A binary search algorithm is designed to obtain optimal bandwidth
allocation such that devices with worse channel conditions and/or weaker computation capabilities get more
bandwidth. In terms of device scheduling, a greedy algorithm is introduced to select devices with the least update
time, one after the other.

Authors in [91] bring FL into vehicular edge computing and propose a FL framework that jointly optimizes the
on-board computation capability (CPU frequency), transmission power, and local model accuracy to minimize
the maximum energy consumption (of vehicles) and computation latency. Since training devices are moving
vehicles in this work, new vehicles entering the current service area are added to the participating vehicles list if
the energy and latency can be minimized by selecting these new vehicles instead of the existing ones.

b. FL using DRL: In one of group among works on FL using DRL, DRL-based techniques (e.g., DQN, DDQN)
typically provide a model-free solution for optimizing FL frameworks, helping them deal with learning problems
under dynamic edge environments [92ś95]. Authors in [92] propose a DRL-assisted FL framework where DRL is
used to select Industrial Internet of Things (IIoT) devices with high quality data for local training. The proposed
framework aims to increase the model aggregation rate and reduce communication costs. The authors in [93] use
DRL to adjust the CPU-cycle frequency of mobile devices with the purpose of minimizing the weighted sum
of training time and energy consumption. To achieve update synchronization, devices reduce their CPU-cycle
frequency if they are faster in the training group. Work such as [94] uses DRL for channel selection and energy
decision in a mobility-aware FL network. This work aims to maximize the number of successful transmissions
while minimizing the energy and channel costs. The authors in [95] focus on the inter-client correlation across

ACM Comput. Surv.

Resource Management in Mobile Edge Computing: A Comprehensive Survey • 23

the clients as they propose a novel FL model that utilizes DRL to determine the weights of local parameters in the
aggregation process.

In the other group, DRL-based edge resource allocation and oloading decision making solutions are proposed
where FL helps to train DRL agents in a distributed manner, leading to higher resource eiciency (i.e., FL-assisted
DRL). In [96], authors compare the pros and cons of several training schemes of a DRL agent. In centralized
DRL, training data from all participants are uploaded to central servers and DRL agents are trained at servers.
Although centralized DRL gives the best performance, it sufers from massive redundant data transmission and
privacy risk. While distributed DRL is designed to train DRL agents individually on the participants, the additional
energy consumption and weak computing power of participating devices make them impractical in the real
world. By contrast, FL replaces raw data transmission with model parameter upload to reduce communication
cost. Secondly, FL selectively lets part of the devices train locally to achieve higher energy savings. Therefore,
FL-assisted DRL serves as an intermediate design between centralized and distributed DRL and represents the
best of both worlds. In [97], DRL agents are responsible for making oloading and energy allocation decisions for
IoT devices within an edge environment. To address the issues of non-I.I.D data, IoT devices which have suicient
computational and energy resources are selected to join the local training and global model aggregation process.
Authors in [98] propose a two-timescale DRL approach to make real-time computation oloading decisions and
resource allocation strategies in the ultra-dense 5G network scenarios. The authors leverage FL to train the DRL
model in a distributed manner, aiming to obtain faster and more robust training.

Fig. 10. Optimization for DAG-based application and single DNN-based application.

5 VIDEO ANALYTIC IN EDGE COMPUTING

Video analytics is one of the driving applications in edge computing that brings new resource allocation and
computing oloading challenges. Many critical, next generation use cases (e.g., disaster response, tactical scenarios,
industrial IoT, vehicular systems) that are increasingly relying on edge computing are driven by the need of
performing video analytic at scale and in real-time, thus making it one of the most adopted application domains
supported by edge systems. Compared to optimization for generic applications, optimizing real-time video
streaming at the edge requires customized solutions and frameworks. As shown in Fig. 10, the current literature
mainly considers two types of optimizations from a model point of view: 1) optimizing DAG-based worklows with
mixed generic tasks and DNNs and 2) optimizing single DNN-basedworklows. In order to optimize the DAG-based
worklows, inding optimal placement of distributed tasks across edge and end devices is paramount. While for
single DNN-based worklows, optimizing DNNmodel partition enables the edge system to run the target DNN in a

ACM Comput. Surv.

24 • Zhang and Debroy

distributed manner, either vertically or horizontally. Apart from these worklow-speciic optimizations, achieving
performance trade-of by balancing data conigurations and desired application performance is something that is
equally important for both optimization scenarios.

5.1 Performance Trade-of Study: Accuracy, Energy, and Latency

The performance of video analytics (often measured in terms of accuracy, energy eiciency, and latency) depends
on a variety of application data coniguration parameters such as, frame resolution, frame rate etc. The selection
of coniguration has a great impact on diferent performance metrics as increasing coniguration parameters
often result in higher quality, but at the cost of higher latency.
In works such as [13, 99], the authors use extensive measurements to establish the relationship between

diferent coniguration parameters and performance metrics. The authors in [99] study the trade-of between
latency and accuracy. They design and implement an edge-based orchestrator for Mobile Augmented Reality
(MAR). The orchestrator aims to ind the optimal server assignment and frame resolution based on empirical
modeling. From the measurement data with YOLO [100] and SSD [101], the relationship between computational
complexity, analytics accuracy, and video frame resolution is obtained and then itted into the optimization
problems. With respect to the video frame resolution, the authors model the computational complexity as a convex
function (e.g., quadratic or cubic), while the accuracy is itted into a concave function. The proposed problem is
solved by the block coordinate descent method that iteratively optimizes the video frame resolution and server
assignment. The edge-based orchestrator achieves 25% latency reduction at the cost of less than 1% accuracy
loss. However, this paper considers a simpliied latency model where the achievable data rate is considered as
constant for MAR users. Such strong assumptions might be impractical in the real-world wireless scenarios.
Compared to [99], the authors in [13] propose a framework for both coniguration adaptation and bandwidth
allocation for edge-assisted video analytics. This work aims to optimize the trade-of between accuracy and
energy consumption for a given service latency constraint. They consider a practical scenario in which multiple
video streams connect to the same edge server sharing a narrow uplink channel. Similar to the experiment in [99],
the results show that the frame resolution and frame sampling rate independently impact the accuracy. In order to
handle the problems caused by bandwidth variation and intrinsic dynamics of video contents, an online algorithm
based on Lyapunov Optimization is used to select the optimal CNN model, sampling frame rate, and uplink
bandwidth for each time slot. The proposed algorithm achieves a 44% reduction in energy consumption at the
cost of 4% accuracy loss. The authors in [102] develop a data-driven optimization framework which introduces a
complex interaction between accuracy, video bit rate, battery constraints, network parameters. The goal is to ind
an optimal oloading strategy for AR devices. This work formulates the coniguration adaptation problem caused
by time dynamic as a multiple-choice, multiple-constraint knapsack program and solves it with an improved
brute-force search.

In VideoStorm [103] and VideoEdge [104], the trade-of between query accuracy and resource demand is exten-
sively studied. VideoStorm [103] optimizes query scheduling by exploring utility-based resource management in
terms of query accuracy and delay; while VideoEdge extends the problem to query placement across a hierarchy
of clusters. More speciically, VideoEdge proposes a 3-tier hierarchical architecture, including cameras, clusters,
and the cloud for video analytics. For every video query, VideoEdge searches the components implementation,
knobs, and placement and inds a coniguration to balance the accuracy and resource demands using an eicient
heuristic.

5.2 Distributed Task Placement

Typically the pipeline of many complex video analytics applications are modeled as multi-stage tasks, varying
from sequential batch processing to branched pipelined tasks. This subsection discusses optimization techniques

ACM Comput. Surv.

Resource Management in Mobile Edge Computing: A Comprehensive Survey • 25

for DAG-based video pipelines. A directed acyclic graph G = (V,E) can be used to describe the video pipeline
and intermediate result passing between diferent stages. In graph G, each vertex v ∈ V can be described as
a task (e.g., encoding, decoding and object recognition). The edge e ∈ E represents the data passing between
tasks. As shown in Fig. 11, [68] shows the pipeline of face recognition. It contains three tasks which are executed
sequentially: 1) face detection, 2) feature encoding, and 3) face matching. The intermediate results are the face
images and lists of face encoding. The end-to-end performance of the video pipeline is determined by the critical
path of the DAG, that is the largest weighted path from source task to the sink task. In resource-constrained edge
environments, efectively placing these tasks in optimal computation locations is paramount. Nevertheless, when
tasks are placed on diferent edge servers, the critical path determination and performance estimation become
challenging problems due the heterogeneous processing capacity (e.g., CPU and GPU) and dynamically changing
wireless conditions at the edge servers.

Fig. 11. An exemplar task graph for face recognition [68]

As shown in Fig. 12, video pipeline graphs can be classiied into three types based on the dependencies among
tasks: 1) Sequential DAG, 2) Parallel DAG and 3) Mixed (arbitrary) DAG. Here, we describe the task placement
problems of diferent types of DAG. In general, the task placement for a DAG-based video pipeline can be stated
as aM × K matrix:

AM×K =

1 2 3 ... K

*...
,

+///
-

1 0 0 ... 0 1
0 0 1 ... 0 2
...

0 0 1 ... 0 M

where am,k = 1 indicates that the taskm is placed on edger server k , otherwise am,k = 0. Since a task can only be
placed on edge servers, the placement follows

∑

∀k ∈K am,k = 1.

Fig. 12. The DAG classification.

ACM Comput. Surv.

26 • Zhang and Debroy

a. Sequential DAG: Here, the tasks are executed one at a time. A task can only have one predecessor and one
successor. The pipelines of some photogrammetry-based applications (e.g., openMVG [105]) and well-known
image processing CNNs or DNNs (e.g., LeNet, AlexNet, and ResNet) can be described as sequential DAGs. The
basic idea of task placement for sequential DAG is task partition, i.e., tasks are partitioned into local-processing
tasks and remote-processing tasks to reduce the communication cost (latency and energy consumption). However,
this partitioning problem is usually integrated with other problems such as resource allocation and server
selection, making it challenging to solve. In [35], the authors propose a distributed oloading architecture and
formulate a strategic game to ind the optimal server selection and resource allocation, DAG partition and the
optimal coniguration for transmission power and CPU frequency at the mobile devices. The experimental results
show that the proposed oloading schemes saves 40% (in suicient network resource scenarios) to 60% (in limited
network resource scenarios) on the total energy consumption. Authors in [106] classify application components
into local-only phases and oloadable phases. The oloadable phases can be executed locally or to be transmitted
to the server for processing. In order to ensure predictable performance (e.g., response time) while minimizing
energy consumption, they propose a ‘Suspension-and Energy-Aware’ oloading algorithm where the tasks are
executed following the earliest-deadline-irst (EDF) task scheduling policy. For DNN partitioning, the discussions
are made in subsection 5.3.

b. Parallel DAG: A parallel DAG contains multiple sequential sub-DAGs that can be executed independently.
An example is given in Distream [107], where the proposed DAG contains multiple branches and each branch
is dedicated to process a speciic type of the detected object. The authors propose a stochastic partitioning
scheme by proiling the accumulated inference cost of all the possible execution paths in the DAG. Based on
these costs, a workload adaptation controller is applied to determine the probabilities for partitioning at certain
vertices. Authors in [108] propose Hetero-Edge, an edge computing platform designed to minimize the end-to-end
latency for real-time vision applications on heterogeneous edge clouds. This work uses a 3D scene reconstruction
as a driving application example for the evaluation of resource allocation and orchestration. Two practical
topologies, viz., Serial Topology (serial-DAG) and Parallel Topology (para-DAG) are considered for the 3D scene
reconstruction application. In para-DAG, the framework partitions the images into multiple sections during the
generation of disparity map. This partition creates a data-parallel bolt that runs the same disparity calculation
function to accelerate the computation. The platform is built on Apache Storm, and consists of multiple edge
servers and a distributed resource orchestration framework. The servers have heterogeneous computation and
networking resources. The orchestration framework stores edge application as Storm tasks which are deined by a
DAG and maps these tasks onto heterogeneous edge servers for eicient execution. The implemented testbed can
achieve 40% latency reduction with an average per-frame latency of 32 ms. In [109], a collaborative mobile edge
environment is established to split the pipeline of 3D reconstruction into high frequency and low frequency tasks.
The evaluation on a hardware testbed using publicly available datasets shows upto ∼ 54% reduction in latency
with negligible loss (∼ 4 − 7%) in reconstruction quality. These works [107ś109] use available edge resources
intelligently by enabling extreme task parallelization, which proves to be a highly efective approach.

c. Mixed DAG: This type of DAG has no dependency restrictions and a task can have multiple predecessors
and multiple successors. Many deep learning-based video processing applications have arbitrary DAGs, such
as MV3D [110] and MVSNet [111] in the ield of 3D object detection and reconstruction. For mixed DAGs, task
placement is more complicated as most of optimization problems are NP-hard. The authors in [112] present
Latency-Aware Video Edge Analytics (LAVEA), a low-latency video analytics edge computing platform that
can serve multiple clients at the same time. They assume that DAG tasks are only oloaded to the nearest edge
node (the edge-front node) via access points and formulate a mixed integer non-linear programming problem
(MINLP) to determine the oloading decision and connection rate assignment. The problem is solved by integer
relaxation and branch and bound (B&B) method. Since the edge-front node receives a large number of oloaded

ACM Comput. Surv.

Resource Management in Mobile Edge Computing: A Comprehensive Survey • 27

tasks from the clients at each time epoch, LAVEA uses a task queue prioritizer to minimize the makespan for
the task scheduling and proposes inter-edge collaboration to avoid workload overload on the edge-front node.
When the edge front-end node is full of requests, it starts to coordinate with nearby edge nodes by placing
some tasks on the less busy edge nodes so that all tasks can be scheduled within a reasonable time. In order to
reduce computation complexity of dependent task oloading, the authors in [113] consider each DAG as a set of
‘co-subtask’ stages (tasks with the same depth). A low scheduling heuristic is proposed to determine the task
scheduling priority based on the release time and maximum computation load of a task within a co-subtask stage.
Most of the work in this subsection only considers task placement without optimizing other aspects. It is crucial
that an edge framework can jointly optimize task placement, coniguration searching and resource allocation,
which together provide a highly eicient and adaptive system dedicated to video analytics.

5.3 Accelerate Model Inference

Previous subsections discuss video analytics from application-level perspective, here we list a set of optimization
approaches at the DNN-level. For a given task worklow and a set of coniguration parameters, video analytics
performance can be further improved by looking at the inner structure of the DNN model and the property of the
video content that will quicken the model inference. In this way, unnecessary communication and computation
under resource constraints can be avoided, thereby improving the overall inference eiciency. Here, we discuss
three useful methods, namely model partition, early exit, and input ilters.

Fig. 13. Schematic of vertical and horizontal DNN model partitioning

5.3.1 DNN model partition. A layered DNN model can be partitioned either vertically or horizontally across
mobile devices and edge servers to accelerate the computation and reduce energy consumption. Examples of
vertical and horizontal model partition for a 4 layer DNN are shown in Fig. 13.

a. Vertical partitioning: Most state-to-art DNN models contain a sequence of layers (e.g., convolution
layer, fully connected layer) that are executed sequentially by passing intermediate data between layers. Thus
conceptually, this method is quite similar to sequential DAG partitioning. The intuitive idea is to ind the best
partition point that oloads computation-intensive layers to the edge server with little data transmission. Given
that the DNN layers can vary signiicantly in both computation requirement and data size, the selection of
partition point can signiicantly afect the overall latency and energy consumption of mobile devices. In addition,
the application performance requirement as well as the edge environment may change frequently (as discussed
before). Thus it is necessary to build a layered-based prediction model. This can be done by deploying a real-time
monitor that periodically collects the availability of communication and computation resources in the system.
Neurosurgeon [114], Edgent [115] and SPINN [116] are cutting edge frameworks that provide automated,

adaptive and collaborative DNN inference at the edge. Driven by DNN model partitioning, Neurosurgeon [114]
and Edgent [115] establish a regression model to estimate the layer-wise performance (e.g., end-to-end latency

ACM Comput. Surv.

28 • Zhang and Debroy

or mobile energy consumption) and a dynamic mechanism to ind the optimal partition point that meets the
user-deined requirements during the run-time. The authors in Edgent [115] consider DNN inference under
dynamic network environment and build a reward-based coniguration map constructor to customize their
framework. SPINN [116] measures the inference latency using a 2-staged linear model based on the scaling factor
between the actual time and the oline latency estimation.

b. Horizontal partitioning: Among works that propose horizontal DNN partition, MoDNN [117] and [118]
are notable. MoDNN [117] is a distributed mobile computing system in Wireless Local Area Network (WLAN)
where the DNN models are partitioned by layers and mapped onto mobile devices to accelerate the computation.
Based on the computation time and the memory usage of the layers along with the worker’s resource availability,
each worker is mapped with a part of the layer inputs to increase the overall parallelism. Authors in [118]
propose a scalable Fused Tile Partitioning (FTP) of convolutional layers to minimize memory footprint and enable
parallelism. It also develops a novel work scheduling process to reduce overall execution latency.

5.3.2 Early exit. Conidence is an important factor in DNN inference. It indicates the likelihood that an anchor
box contains an object. Early exit method explores the relationship between the layer’s computational overhead
and conidence score. This method gives a layer-wise selection to further accelerate the inference at the edge
by terminating the ongoing processing at customized exit points. BranchyNet [119] proposes an open-source
framework to obtain ‘Branchy’ (i.e., branched) DNN with multiple early exit points. When the classiier at
a particular exit point is conident in the prediction (i.e., its conidence is above a threshold), the inference
can directly terminate. BranchyNet applies the weighted sum of the loss functions of each exit branch as its
optimization objective function. The results show that when using some well-known CNNs such as LeNet,
AlexNet, and ResNet for testing, BranchyNet can provide 2X to 6X acceleration on the CPU and GPU. Early
exit is also an enabler for distributed computing in edge when DNNs have more than one exit points. Authors
in [120] propose a 3-layer framework across mobile devices, edge, and cloud to execute diferent exit points of a
given DNN in a distributed manner. This work allows distributed devices and edge servers to jointly perform
classiication and aggregates the outputs.

(a) Early-Exit policy andDNNmodel partition based on [116] (b) Early-Exit policy across multiple edge server.

Fig. 14. Examples of Early-Exit policy

Furthermore, the DNN model inference at edge can be further optimized by combining early exit policy with
DNN model partition as proposed in [115, 116]. Compared to monotonous optimization of early exit strategies
or DNN model partitioning, this combined method can deal with diverse user requirements and dynamic edge
environments more lexibly. The secret lies in inding a combinatorial coniguration of exit points and partition
points which jointly optimize the overall performance. An example of early exit with DNN model partition is

ACM Comput. Surv.

Resource Management in Mobile Edge Computing: A Comprehensive Survey • 29

shown in Fig. 14a with 3 exit points. Authors in [115] maps system states (e.g., latency, bandwidth) to exit points
and partition points, then perform model partitioning on the selected exit point. While in [116], the on-device
inference continues even after the partition point. The advantage of this method is that when the mobile device
reaches an early exit point and the classiier gives a suicient conidence (above the predeined threshold), the
inference on the edge server can be stopped. This approach may also reduce the unnecessary data transmission if
the server-side inference has not yet started. In the illustrative Fig. 14a, if the irst exit point outputs a conident
prediction that the image contains a ‘cat’, then the execution of exit point 2 and 3 can be terminated and thus
computation resources can be saved. Otherwise, server-side inference will continue until a qualiied early exit
point is encountered. Based on this feature, SPINN achieves a speedup of up to 83% and 52% when compared to
Neurosurgeon [114] and Edgent [115].
However, works such as, [116] will signiicantly increase the energy consumption of mobile devices and

therefore it is not suitable for energy-constrained scenario. In fact, when there are multiple edge servers, the
inference can be accelerated by sending the layers of diferent early exit branches to diferent edge servers. For
example, as shown in Fig. 14b, we can let the exit point 2 and 3 run on two servers to improve parallelism. Similar
to [116], when exit point 2 is completed, it can notify the server who is running exit point 3 based on its prediction
conidence. We can also introduce another edge server to run exit point 1 to reduce the on-device computation
overhead. But this will incur extra communication overhead since the intermediate data generated by the irst
layer have to be transmitted to both edge servers, which in turn generates a more changeling optimization
problem.

5.3.3 Input Filter. Input ilter is a key accelerator for running DNN model inference in edge computing envi-
ronment with limited bandwidth and computation resources. Its objective is to remove redundant transmission
and computation without compromising the accuracy. The basic idea is to deploy a lightweight pre-processing
algorithm to determine the Region-of-Interest (RoI) within individual frames or ilter non-target-object across
consecutive frames. Then compute the diference among those areas or calculate the motion behaviors of the
target objects to further make inference decision. This approach signiicantly reduces the latency and energy
consumption, especially for video analytics.

Fig. 15. An example of input filter based on RoI and parallelism inference with 3 edge servers. The detected results are fused

back to the original frame.

Authors in [121] propose a Dynamic RoI Encoding technique to decrease the encoding quality of uninteresting
areas to reduce the transmission latency and bandwidth consumption. More speciically, this work uses candidate
RoIs generated by previous processed frame and slightly expands each RoI by one macroblock. A Parallel
Streaming and Inference pipeline is introduced to further reduce the latency. This work solves the problem
caused by object movement by shifting the bounding box based on the motion vectors from the current encoded

ACM Comput. Surv.

30 • Zhang and Debroy

frame. Similarly, [122] uses a linear velocity model to approximate the ground truth boxes based on temporal
correlation. While in [123], the authors apply an attention-based LSTM network to predict the region proposals
(RP) of a new frame based on detected historical frames. The bounding boxes of RPs are dynamically expanded
to address the trade-of between accuracy and latency. In addition, the authors propose a content-ware frame
partitioning and oloading pipeline that efectively assign RP-Boxes to the edge servers (as shown in Fig. 15).
Instead of targeting the RoIs or RPs, an alternate approach is to simply skip the non-target-object frames [124]
or consecutive frames which have little change [125]. The authors in [124] consider the bandwidth-eiciency
problem of real-time drone video analytics. The authors introduce the EarlyDiscard strategy, which is based
on on-board processing to identify and ilter useless frames, thereby reducing the number of frames required
for transmission. More speciically, a weak detector such as image classiication (e.g., MobileNet) is deployed to
ilter useless frames. Authors in NoScope [125] use a diference detector to compute the MSE between a labeled
reference frame and an unlabeled frame in order to skip the frames whose MSE is lower than the predeined
threshold. The authors also optimize the trade-of between accuracy and reference frame update speed. However,
both works require specialized pre-trained model for a small set of target object classes (e.g, trees, cars, boats).
Moreover, the weak detector [124] and diference detector [125] must have considerable small inference latency
and energy consumption compared to original model inference.

6 OPEN RESEARCH CHALLENGES AND FUTURE DIRECTIONS

The open research challenges and future directions on edge resource management can be found in Appendix E in
the Supplementary File.

7 DISCUSSION AND CONCLUSIONS

MEC is an emerging distributed computing paradigm that brings low/ultra-low latency, intelligent network and
compute capabilities to the users and helps preserve mobile devices’ energy. Due to the heterogeneity of edge
resources, application structures, and user’s requirements, most of optimization problems in MEC are NP-hard.
On the other hand, the dynamic nature of environments and use cases where MEC are deployed brings unique
challenges and thus adds novel design dimensions. This survey presented a state-of-the-art literature review
of research thrusts in MEC from various design, deployment, and application perspectives. In this survey, we
categorized and discussed the existing MEC research works based on their computation oloading models and
resource allocation strategies as well as performance metrics. We also discussed the DAG based task modeling
and placement problems for multi-stage computations. We then outlined the dynamic issues in MEC such as,
stochastic task arrival and channels and service migration followed by existing research eforts that address such
issues including MDP, Q-learning, and Deep Q-learning. Finally, we discussed the challenges of video analytics
in MEC from joint system-side and application-site optimization considerations. We believe that the outcomes of
this survey research will beneit the future distributed computing, smart applications, and data-intensive science
communities to build efective, eicient, and robust MEC environments.

REFERENCES

[1] Cloud Enhanced Open Software Deined Mobile Wireless Testbed for City-Scale Deployment - https://www.cosmos-lab.org/.

[2] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog computing and its role in the internet of things. In Proceedings of

the irst edition of the MCC workshop on Mobile cloud computing, pages 13ś16, 2012.

[3] Ashkan Yousefpour, Caleb Fung, Tam Nguyen, Krishna Kadiyala, Fatemeh Jalali, Amirreza Niakanlahiji, Jian Kong, and Jason P. Jue. All

one needs to know about fog computing and related edge computing paradigms: A complete survey. Journal of Systems Architecture,

98:289ś330, 2019.

[4] Cheol-Ho Hong and Blesson Varghese. Resource management in fog/edge computing: a survey on architectures, infrastructure, and

algorithms. ACM Computing Surveys (CSUR), 52(5):1ś37, 2019.

ACM Comput. Surv.

Resource Management in Mobile Edge Computing: A Comprehensive Survey • 31

[5] Petar Popovski, Kasper Flùe Trillingsgaard, Osvaldo Simeone, and Giuseppe Durisi. 5g wireless network slicing for embb, urllc, and

mmtc: A communication-theoretic view. Ieee Access, 6:55765ś55779, 2018.

[6] Thomas Fehrenbach, Rohit Datta, Bariş Göktepe, Thomas Wirth, and Cornelius Hellge. Urllc services in 5g low latency enhancements

for lte. In 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), pages 1ś6. IEEE, 2018.

[7] Pavel Mach and Zdenek Becvar. Mobile edge computing: A survey on architecture and computation oloading. IEEE Communications

Surveys & Tutorials, 19(3):1628ś1656, 2017.

[8] Yuyi Mao, Changsheng You, Jun Zhang, Kaibin Huang, and Khaled B Letaief. A survey on mobile edge computing: The communication

perspective. IEEE Communications Surveys & Tutorials, 19(4):2322ś2358, 2017.

[9] Shangguang Wang, Jinliang Xu, Ning Zhang, and Yujiong Liu. A survey on service migration in mobile edge computing. IEEE Access,

6:23511ś23528, 2018.

[10] Pawani Porambage, Jude Okwuibe, Madhusanka Liyanage, Mika Ylianttila, and Tarik Taleb. Survey on multi-access edge computing

for internet of things realization. IEEE Communications Surveys & Tutorials, 20(4):2961ś2991, 2018.

[11] Najmul Hassan, Kok-Lim Alvin Yau, and Celimuge Wu. Edge computing in 5g: A review. IEEE Access, 7:127276ś127289, 2019.

[12] Xiaofei Wang, Yiwen Han, Victor CM Leung, Dusit Niyato, Xueqiang Yan, and Xu Chen. Convergence of edge computing and deep

learning: A comprehensive survey. IEEE Communications Surveys & Tutorials, 22(2):869ś904, 2020.

[13] CanWang, Sheng Zhang, Yu Chen, Zhuzhong Qian, Jie Wu, and Mingjun Xiao. Joint coniguration adaptation and bandwidth allocation

for edge-based real-time video analytics. In Proc. IEEE INFOCOM, pages 1ś10, 2020.

[14] Cheng Zhang, Hailiang Zhao, and Shuiguang Deng. A density-based oloading strategy for iot devices in edge computing systems.

IEEE Access, 6:73520ś73530, 2018.

[15] Jianbo Du, Liqiang Zhao, Jie Feng, and Xiaoli Chu. Computation oloading and resource allocation in mixed fog/cloud computing

systems with min-max fairness guarantee. IEEE Transactions on Communications, 66(4):1594ś1608, 2018.

[16] Mengting Liu, F Richard Yu, Yinglei Teng, Victor CM Leung, and Mei Song. Distributed resource allocation in blockchain-based video

streaming systems with mobile edge computing. IEEE Transactions on Wireless Communications, 18(1):695ś708, 2018.

[17] Yuyi Mao, Jun Zhang, SH Song, and Khaled B Letaief. Stochastic joint radio and computational resource management for multi-user

mobile-edge computing systems. IEEE Transactions on Wireless Communications, 16(9):5994ś6009, 2017.

[18] Kang Cheng, Yinglei Teng, Weiqi Sun, An Liu, and Xianbin Wang. Energy-eicient joint oloading and wireless resource allocation

strategy in multi-mec server systems. In 2018 IEEE international conference on communications (ICC), pages 1ś6. IEEE, 2018.

[19] Yinghao Yu, Jun Zhang, and Khaled B Letaief. Joint subcarrier and cpu time allocation for mobile edge computing. In 2016 IEEE Global

Communications Conference (GLOBECOM), pages 1ś6. IEEE, 2016.

[20] Ke Zhang, Yuming Mao, Supeng Leng, Quanxin Zhao, Longjiang Li, Xin Peng, Li Pan, Sabita Maharjan, and Yan Zhang. Energy-eicient

oloading for mobile edge computing in 5g heterogeneous networks. IEEE access, 4:5896ś5907, 2016.

[21] Nan Zhao, Ying-Chang Liang, Dusit Niyato, Yiyang Pei, and Yunhao Jiang. Deep reinforcement learning for user association and

resource allocation in heterogeneous networks. In 2018 IEEE Global Communications Conference (GLOBECOM), pages 1ś6. IEEE, 2018.

[22] Jing Zhang, Weiwei Xia, Feng Yan, and Lianfeng Shen. Joint computation oloading and resource allocation optimization in heteroge-

neous networks with mobile edge computing. IEEE Access, 6:19324ś19337, 2018.

[23] Changsheng You, Kaibin Huang, Hyukjin Chae, and Byoung-Hoon Kim. Energy-eicient resource allocation for mobile-edge computa-

tion oloading. IEEE Transactions on Wireless Communications, 16(3):1397ś1411, 2016.

[24] Jinke Ren, Guanding Yu, Yunlong Cai, and Yinghui He. Latency optimization for resource allocation in mobile-edge computation

oloading. IEEE Transactions on Wireless Communications, 17(8):5506ś5519, 2018.

[25] Fuhui Zhou, Yongpeng Wu, Rose Qingyang Hu, and Yi Qian. Computation rate maximization in uav-enabled wireless-powered

mobile-edge computing systems. IEEE Journal on Selected Areas in Communications, 36(9):1927ś1941, 2018.

[26] Feng Wang, Jie Xu, Xin Wang, and Shuguang Cui. Joint oloading and computing optimization in wireless powered mobile-edge

computing systems. IEEE Transactions on Wireless Communications, 17(3):1784ś1797, 2017.

[27] Mengyuan Li, Shuo Yang, Zhenduo Zhang, Jinke Ren, and Guanding Yu. Joint subcarrier and power allocation for ofdma based mobile

edge computing system. In 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications

(PIMRC), pages 1ś6. IEEE, 2017.

[28] Y. Chen, B. Ai, Y. Niu, Z. Zhong, and Z. Han. Energy eicient resource allocation and computation oloading in millimeter-wave based

fog radio access networks. In ICC 2020 - 2020 IEEE International Conference on Communications (ICC), pages 1ś7, 2020.

[29] Xiaowen Cao, Feng Wang, Jie Xu, Rui Zhang, and Shuguang Cui. Joint computation and communication cooperation for mobile edge

computing. In 2018 16th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt),

pages 1ś6. IEEE, 2018.

[30] Jie Xu, Lixing Chen, and Shaolei Ren. Online learning for oloading and autoscaling in energy harvesting mobile edge computing.

IEEE Transactions on Cognitive Communications and Networking, 3(3):361ś373, 2017.

[31] Xiaojie Zhang, Amitangshu Pal, and Saptarshi Debroy. Deep reinforcement learning based energy-eicient task oloading for secondary

mobile edge systems. In 2020 IEEE 45th LCN Symposium on Emerging Topics in Networking (LCN Symposium), pages 48ś59. IEEE, 2020.

ACM Comput. Surv.

32 • Zhang and Debroy

[32] Chen-Feng Liu, Mehdi Bennis, Merouane Debbah, and H Vincent Poor. Dynamic task oloading and resource allocation for ultra-reliable

low-latency edge computing. IEEE Transactions on Communications, 67(6):4132ś4150, 2019.

[33] Zhigang Wen, Kaixi Yang, Xiaoqing Liu, Shan Li, and Junwei Zou. Joint oloading and computing design in wireless powered

mobile-edge computing systems with full-duplex relaying. IEEE Access, 6:72786ś72795, 2018.

[34] Xianfu Chen, Honggang Zhang, Celimuge Wu, Shiwen Mao, Yusheng Ji, and Mehdi Bennis. Performance optimization in mobile-edge

computing via deep reinforcement learning. In 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), pages 1ś6. IEEE, 2018.

[35] Xiaojie Zhang, Amitangshu Pal, and Saptarshi Debroy. Efect: Energy-eicient fog computing framework for real-time video processing.

In 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid), pages 493ś503. IEEE, 2021.

[36] Yunzheng Tao, Changsheng You, Ping Zhang, and Kaibin Huang. Stochastic control of computation oloading to a helper with a

dynamically loaded cpu. IEEE Transactions on Wireless Communications, 18(2):1247ś1262, 2019.

[37] Arvin Hekmati, Peyvand Teymoori, Terence D Todd, Dongmei Zhao, and George Karakostas. Optimal mobile computation oloading

with hard deadline constraints. IEEE Transactions on Mobile Computing, 19(9):2160ś2173, 2019.

[38] Weiwen Zhang, Yonggang Wen, and Dapeng Oliver Wu. Collaborative task execution in mobile cloud computing under a stochastic

wireless channel. IEEE Transactions on Wireless Communications, 14(1):81ś93, 2014.

[39] Xiaojie Zhang and Saptarshi Debroy. Migration-driven resilient disaster response edge-cloud deployments. In 2019 IEEE 18th

International Symposium on Network Computing and Applications (NCA), pages 1ś8. IEEE, 2019.

[40] Jordi Navarrette, Subash Shankar, Xiaojie Zhang, and Saptarshi Debroy. Formal modeling and analysis of multi-rogue backof

manipulation attacks in unlicensed networks. In 2020 16th International Conference on the Design of Reliable Communication Networks

DRCN 2020, pages 1ś7, 2020.

[41] Boyang Liu, Jin Wang, Shuai Ma, Fuhui Zhou, Yujiao Ma, and Guangyue Lu. Energy-eicient cooperation in mobile edge computing-

enabled cognitive radio networks. IEEE Access, 7:45382ś45394, 2019.

[42] Adlen Ksentini, Tarik Taleb, and Min Chen. A markov decision process-based service migration procedure for follow me cloud. In 2014

IEEE International Conference on Communications (ICC), pages 1350ś1354, 2014.

[43] Shiqiang Wang, Rahul Urgaonkar, Murtaza Zafer, Ting He, Kevin Chan, and Kin K Leung. Dynamic service migration in mobile

edge-clouds. In 2015 IFIP Networking Conference (IFIP Networking), pages 1ś9. IEEE, 2015.

[44] Hua Wei, Hong Luo, and Yan Sun. Mobility-aware service caching in mobile edge computing for internet of things. Sensors, 20(3):610,

2020.

[45] Injong Rhee, Minsu Shin, Seongik Hong, Kyunghan Lee, Seongjoon Kim, and Song Chong. CRAWDAD dataset ncsu/mobilitymodels (v.

2009-07-23). Downloaded from https://crawdad.org/ncsu/mobilitymodels/20090723, July 2009.

[46] Cheng Zhang and Zixuan Zheng. Task migration for mobile edge computing using deep reinforcement learning. Future Generation

Computer Systems, 96:111ś118, 2019.

[47] Min Chen, Wei Li, Giancarlo Fortino, Yixue Hao, Long Hu, and Iztok Humar. A dynamic service migration mechanism in edge cognitive

computing. ACM Transactions on Internet Technology (TOIT), 19(2):1ś15, 2019.

[48] Wuyang Zhang, Yi Hu, Yanyong Zhang, and Dipankar Raychaudhuri. Segue: Quality of service aware edge cloud service migration. In

2016 IEEE International Conference on Cloud Computing Technology and Science (CloudCom), pages 344ś351. IEEE, 2016.

[49] Chao-Lun Wu, Te-Chuan Chiu, Chih-Yu Wang, and Ai-Chun Pang. Mobility-aware deep reinforcement learning with glimpse mobility

prediction in edge computing. In ICC 2020-2020 IEEE International Conference on Communications (ICC), pages 1ś7. IEEE, 2020.

[50] Fei Ma, Feng Liu, and Zhen Liu. Live virtual machine migration based on improved pre-copy approach. In 2010 IEEE International

Conference on Software Engineering and Service Sciences, pages 230ś233. IEEE, 2010.

[51] Xiang Sun and Nirwan Ansari. Primal: Proit maximization avatar placement for mobile edge computing. In 2016 IEEE International

Conference on Communications (ICC), pages 1ś6. IEEE, 2016.

[52] Michael R Hines, Umesh Deshpande, and Kartik Gopalan. Post-copy live migration of virtual machines. ACM SIGOPS operating systems

review, 43(3):14ś26, 2009.

[53] Salman Raza, ShangguangWang, Manzoor Ahmed, andMuhammad Rizwan Anwar. A survey on vehicular edge computing: architecture,

applications, technical issues, and future directions. Wireless Communications and Mobile Computing, 2019, 2019.

[54] Lei Liu, Chen Chen, Qingqi Pei, Sabita Maharjan, and Yan Zhang. Vehicular edge computing and networking: A survey. Mobile networks

and applications, 26(3):1145ś1168, 2021.

[55] Junhui Zhao, Qiuping Li, Yi Gong, and Ke Zhang. Computation oloading and resource allocation for cloud assisted mobile edge

computing in vehicular networks. IEEE Transactions on Vehicular Technology, 68(8):7944ś7956, 2019.

[56] Ke Zhang, Yuming Mao, Supeng Leng, Yejun He, and Yan ZHANG. Mobile-edge computing for vehicular networks: A promising

network paradigm with predictive of-loading. IEEE Vehicular Technology Magazine, 12(2):36ś44, 2017.

[57] Sadeep Batewela, Chen-Feng Liu, Mehdi Bennis, Himal A. Suraweera, and Choong Seon Hong. Risk-sensitive task fetching and

oloading for vehicular edge computing. IEEE Communications Letters, 24(3):617ś621, 2020.

[58] Ke Zhang, Yongxu Zhu, Supeng Leng, Yejun He, Sabita Maharjan, and Yan Zhang. Deep learning empowered task oloading for mobile

edge computing in urban informatics. IEEE Internet of Things Journal, 6(5):7635ś7647, 2019.

ACM Comput. Surv.

https://crawdad.org/ncsu/mobilitymodels/20090723

Resource Management in Mobile Edge Computing: A Comprehensive Survey • 33

[59] Haixia Peng and Xuemin Shen. Deep reinforcement learning based resource management for multi-access edge computing in vehicular

networks. IEEE Transactions on Network Science and Engineering, 7(4):2416ś2428, 2020.

[60] Yi Liu, Huimin Yu, Shengli Xie, and Yan Zhang. Deep reinforcement learning for oloading and resource allocation in vehicle edge

computing and networks. IEEE Transactions on Vehicular Technology, 68(11):11158ś11168, 2019.

[61] Sladana Jošilo and György Dán. Joint wireless and edge computing resource management with dynamic network slice selection.

IEEE/ACM Transactions on Networking, 2022.

[62] Qiang Liu, Tao Han, and Ephraim Moges. Edgeslice: Slicing wireless edge computing network with decentralized deep reinforcement

learning. In 2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS), pages 234ś244. IEEE, 2020.

[63] Xianfu Chen, Zhifeng Zhao, Celimuge Wu, Mehdi Bennis, Hang Liu, Yusheng Ji, and Honggang Zhang. Multi-tenant cross-slice

resource orchestration: A deep reinforcement learning approach. IEEE Journal on Selected Areas in Communications, 37(10):2377ś2392,

2019.

[64] Jie Feng, Qingqi Pei, F Richard Yu, Xiaoli Chu, Jianbo Du, and Li Zhu. Dynamic network slicing and resource allocation in mobile edge

computing systems. IEEE Transactions on Vehicular Technology, 69(7):7863ś7878, 2020.

[65] Mohammed Amine Togou, Ting Bi, Kapal Dev, Kevin McDonnell, Aleksandar Milenovic, Hitesh Tewari, and Gabriel-Miro Muntean.

Dbns: A distributed blockchain-enabled network slicing framework for 5g networks. IEEE Communications Magazine, 58(11):90ś96,

2020.

[66] Vincenzo Sciancalepore, Xavier Costa-Perez, and Albert Banchs. Rl-nsb: Reinforcement learning-based 5g network slice broker.

IEEE/ACM Transactions on Networking, 27(4):1543ś1557, 2019.

[67] Xu Chen, Lei Jiao, Wenzhong Li, and Xiaoming Fu. Eicient multi-user computation oloading for mobile-edge cloud computing.

IEEE/ACM Transactions on Networking, 24(5):2795ś2808, 2015.

[68] X. Zhang and S. Debroy. Energy eicient task oloading for compute-intensive mobile edge applications. In ICC 2020 - 2020 IEEE

International Conference on Communications (ICC), pages 1ś6, 2020.

[69] Hamed Shah-Mansouri and Vincent WS Wong. Hierarchical fog-cloud computing for iot systems: A computation oloading game.

IEEE Internet of Things Journal, 5(4):3246ś3257, 2018.

[70] Jun Guo, Heli Zhang, Lichao Yang, Hong Ji, and Xi Li. Decentralized computation oloading in mobile edge computing empowered

small-cell networks. In 2017 IEEE Globecom Workshops (GC Wkshps), pages 1ś6. IEEE, 2017.

[71] Yang Liu, Changqiao Xu, Yufeng Zhan, Zhixin Liu, Jianfeng Guan, and Hongke Zhang. Incentive mechanism for computation oloading

using edge computing: A stackelberg game approach. Computer Networks, 129:399ś409, 2017.

[72] Zehui Xiong, Jiawen Kang, Dusit Niyato, Ping Wang, and H Vincent Poor. Cloud/edge computing service management in blockchain

networks: Multi-leader multi-follower game-based admm for pricing. IEEE Transactions on Services computing, 13(2):356ś367, 2019.

[73] Zehui Xiong, Shaohan Feng, Dusit Niyato, Ping Wang, and Zhu Han. Optimal pricing-based edge computing resource management in

mobile blockchain. In 2018 IEEE International Conference on Communications (ICC), pages 1ś6. IEEE, 2018.

[74] Andrzej Wilczyński, Agnieszka Jakóbik, and Joanna Kołodziej. Stackelberg security games: Models, applications and computational

aspects. Journal of Telecommunications and Information Technology, 2016.

[75] Quoc-Viet Pham, Tuan Leanh, Nguyen H Tran, Bang Ju Park, and Choong Seon Hong. Decentralized computation oloading and

resource allocation for mobile-edge computing: A matching game approach. IEEE Access, 6:75868ś75885, 2018.

[76] Xiaojie Zhang and Saptarshi Debroy. Adaptive task oloading over wireless in mobile edge computing. In Proceedings of the 4th

ACM/IEEE Symposium on Edge Computing, pages 323ś325, 2019.

[77] Su Pan and Yuqing Chen. Energy-optimal scheduling of mobile cloud computing based on a modiied lyapunov optimization method.

IEEE Transactions on Green Communications and Networking, 3(1):227ś235, 2018.

[78] Xiaolan Liu, Zhijin Qin, and Yue Gao. Resource allocation for edge computing in iot networks via reinforcement learning. In ICC

2019-2019 IEEE International Conference on Communications (ICC), pages 1ś6. IEEE, 2019.

[79] Nahida Kiran, Chunyu Pan, Sihua Wang, and Changchuan Yin. Joint resource allocation and computation oloading in mobile edge

computing for sdn based wireless networks. Journal of Communications and Networks, 22(1):1ś11, 2019.

[80] Liang Huang, Suzhi Bi, and Ying-Jun Angela Zhang. Deep reinforcement learning for online computation oloading in wireless

powered mobile-edge computing networks. IEEE Transactions on Mobile Computing, 19(11):2581ś2593, 2019.

[81] Yi Liu, Chao Yang, Li Jiang, Shengli Xie, and Yan Zhang. Intelligent edge computing for iot-based energy management in smart cities.

IEEE Network, 33(2):111ś117, 2019.

[82] Xianfu Chen, Honggang Zhang, Celimuge Wu, Shiwen Mao, Yusheng Ji, and Medhi Bennis. Optimized computation oloading

performance in virtual edge computing systems via deep reinforcement learning. IEEE Internet of Things Journal, 6(3):4005ś4018, 2018.

[83] Zhi Zhou, Xu Chen, En Li, Liekang Zeng, Ke Luo, and Junshan Zhang. Edge intelligence: Paving the last mile of artiicial intelligence

with edge computing. Proceedings of the IEEE, 107(8):1738ś1762, 2019.

[84] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-learning. In Proceedings of the AAAI

Conference on Artiicial Intelligence, volume 30, 2016.

ACM Comput. Surv.

34 • Zhang and Debroy

[85] Dinh C Nguyen, Ming Ding, Quoc-Viet Pham, Pubudu N Pathirana, Long Bao Le, Aruna Seneviratne, Jun Li, Dusit Niyato, and

H Vincent Poor. Federated learning meets blockchain in edge computing: Opportunities and challenges. IEEE Internet of Things Journal,

8(16):12806ś12825, 2021.

[86] Haftay Gebreslasie Abreha, Mohammad Hayajneh, and Mohamed Adel Serhani. Federated learning in edge computing: a systematic

survey. Sensors, 22(2):450, 2022.

[87] Nguyen H Tran, Wei Bao, Albert Zomaya, Minh NH Nguyen, and Choong Seon Hong. Federated learning over wireless networks:

Optimization model design and analysis. In IEEE INFOCOM 2019-IEEE conference on computer communications, pages 1387ś1395. IEEE,

2019.

[88] Zhaohui Yang, Mingzhe Chen, Walid Saad, Choong Seon Hong, and Mohammad Shikh-Bahaei. Energy eicient federated learning

over wireless communication networks. IEEE Transactions on Wireless Communications, 20(3):1935ś1949, 2020.

[89] Shiqiang Wang, Tifany Tuor, Theodoros Salonidis, Kin K Leung, Christian Makaya, Ting He, and Kevin Chan. Adaptive federated

learning in resource constrained edge computing systems. IEEE Journal on Selected Areas in Communications, 37(6):1205ś1221, 2019.

[90] Wenqi Shi, Sheng Zhou, Zhisheng Niu, Miao Jiang, and Lu Geng. Joint device scheduling and resource allocation for latency constrained

wireless federated learning. IEEE Transactions on Wireless Communications, 20(1):453ś467, 2020.

[91] Huizi Xiao, Jun Zhao, Qingqi Pei, Jie Feng, Lei Liu, and Weisong Shi. Vehicle selection and resource optimization for federated learning

in vehicular edge computing. IEEE Transactions on Intelligent Transportation Systems, 2021.

[92] Peiying Zhang, Chao Wang, Chunxiao Jiang, and Zhu Han. Deep reinforcement learning assisted federated learning algorithm for data

management of iiot. IEEE Transactions on Industrial Informatics, 17(12):8475ś8484, 2021.

[93] Yufeng Zhan, Peng Li, and Song Guo. Experience-driven computational resource allocation of federated learning by deep reinforcement

learning. In 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages 234ś243. IEEE, 2020.

[94] Huy T Nguyen, Nguyen Cong Luong, Jun Zhao, Chau Yuen, and Dusit Niyato. Resource allocation in mobility-aware federated learning

networks: A deep reinforcement learning approach. In 2020 IEEE 6th World Forum on Internet of Things (WF-IoT), pages 1ś6. IEEE, 2020.

[95] Nang Hung Nguyen, Phi Le Nguyen, Duc Long Nguyen, Trung Thanh Nguyen, Thuy Dung Nguyen, Huy Hieu Pham, and Truong Thao

Nguyen. Feddrl: Deep reinforcement learning-based adaptive aggregation for non-iid data in federated learning. arXiv preprint

arXiv:2208.02442, 2022.

[96] Xiaofei Wang, Yiwen Han, Chenyang Wang, Qiyang Zhao, Xu Chen, and Min Chen. In-edge ai: Intelligentizing mobile edge computing,

caching and communication by federated learning. IEEE Network, 33(5):156ś165, 2019.

[97] Jianji Ren, Haichao Wang, Tingting Hou, Shuai Zheng, and Chaosheng Tang. Federated learning-based computation oloading

optimization in edge computing-supported internet of things. IEEE Access, 7:69194ś69201, 2019.

[98] Shuai Yu, Xu Chen, Zhi Zhou, Xiaowen Gong, and Di Wu. When deep reinforcement learning meets federated learning: Intelligent

multitimescale resource management for multiaccess edge computing in 5g ultradense network. IEEE Internet of Things Journal,

8(4):2238ś2251, 2020.

[99] Qiang Liu, Siqi Huang, Johnson Opadere, and Tao Han. An edge network orchestrator for mobile augmented reality. In IEEE INFOCOM

2018-IEEE Conference on Computer Communications, pages 756ś764. IEEE, 2018.

[100] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Uniied, real-time object detection. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 779ś788, 2016.

[101] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot

multibox detector. In European conference on computer vision, pages 21ś37. Springer, 2016.

[102] Xukan Ran, Haolianz Chen, Xiaodan Zhu, Zhenming Liu, and Jiasi Chen. Deepdecision: A mobile deep learning framework for edge

video analytics. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications, pages 1421ś1429. IEEE, 2018.

[103] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Philipose, Paramvir Bahl, and Michael J Freedman. Live video analytics

at scale with approximation and delay-tolerance. In 14th {USENIX} Symposium on Networked Systems Design and Implementation

({NSDI} 17), pages 377ś392, 2017.

[104] C. Hung, G. Ananthanarayanan, P. Bodik, L. Golubchik, M. Yu, P. Bahl, and M. Philipose. Videoedge: Processing camera streams using

hierarchical clusters. In 2018 IEEE/ACM Symposium on Edge Computing (SEC), pages 115ś131, 2018.

[105] Pierre Moulon, Pascal Monasse, Romuald Perrot, and Renaud Marlet. Openmvg: Open multiple view geometry. In International

Workshop on Reproducible Research in Pattern Recognition, pages 60ś74. Springer, 2016.

[106] Zheng Dong, Yuchuan Liu, Husheng Zhou, Xusheng Xiao, Yu Gu, Lingming Zhang, and Cong Liu. An energy-eicient oloading

framework with predictable temporal correctness. In Proceedings of the Second ACM/IEEE Symposium on Edge Computing, pages 1ś12,

2017.

[107] Xiao Zeng, Biyi Fang, Haichen Shen, and Mi Zhang. Distream: scaling live video analytics with workload-adaptive distributed edge

intelligence. In Proceedings of the 18th Conference on Embedded Networked Sensor Systems, pages 409ś421, 2020.

[108] Wuyang Zhang, Sugang Li, Luyang Liu, Zhenhua Jia, Yanyong Zhang, and Dipankar Raychaudhuri. Hetero-edge: Orchestration of

real-time vision applications on heterogeneous edge clouds. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications,

pages 1270ś1278. IEEE, 2019.

ACM Comput. Surv.

Resource Management in Mobile Edge Computing: A Comprehensive Survey • 35

[109] Xiaojie Zhang, Mingjun Li, Andrew Hilton, Amitangshu Pal, Soumyabrata Dey, and Saptarshi Debroy. End-to-end latency optimization

of multi-view 3d reconstruction for disaster response. In 2022 10th IEEE International Conference on Mobile Cloud Computing, Services,

and Engineering (MobileCloud), pages 17ś24. IEEE, 2022.

[110] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia. Multi-view 3d object detection network for autonomous driving. In Proceedings

of the IEEE conference on Computer Vision and Pattern Recognition, pages 1907ś1915, 2017.

[111] Yao Yao, Zixin Luo, Shiwei Li, Tian Fang, and Long Quan. Mvsnet: Depth inference for unstructured multi-view stereo. In Proceedings

of the European Conference on Computer Vision (ECCV), pages 767ś783, 2018.

[112] Shanhe Yi, Zijiang Hao, Qingyang Zhang, Quan Zhang, Weisong Shi, and Qun Li. Lavea: Latency-aware video analytics on edge

computing platform. In Proceedings of the Second ACM/IEEE Symposium on Edge Computing, pages 1ś13, 2017.

[113] Yuvraj Sahni, Jiannong Cao, Lei Yang, and Yusheng Ji. Multihop oloading of multiple dag tasks in collaborative edge computing. IEEE

Internet of Things Journal, 8(6):4893ś4905, 2020.

[114] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason Mars, and Lingjia Tang. Neurosurgeon: Collaborative

intelligence between the cloud and mobile edge. ACM SIGARCH Computer Architecture News, 45(1):615ś629, 2017.

[115] En Li, Liekang Zeng, Zhi Zhou, and Xu Chen. Edge ai: On-demand accelerating deep neural network inference via edge computing.

IEEE Transactions on Wireless Communications, 19(1):447ś457, 2019.

[116] Stefanos Laskaridis, Stylianos I Venieris, Mario Almeida, Ilias Leontiadis, and Nicholas D Lane. Spinn: synergistic progressive inference

of neural networks over device and cloud. In Proceedings of the 26th Annual International Conference on Mobile Computing and

Networking, pages 1ś15, 2020.

[117] Jiachen Mao, Xiang Chen, Kent W Nixon, Christopher Krieger, and Yiran Chen. Modnn: Local distributed mobile computing system

for deep neural network. In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017, pages 1396ś1401. IEEE, 2017.

[118] Zhuoran Zhao, Kamyar Mirzazad Barijough, and Andreas Gerstlauer. Deepthings: Distributed adaptive deep learning inference on

resource-constrained iot edge clusters. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 37(11):2348ś2359,

2018.

[119] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. Branchynet: Fast inference via early exiting from deep neural

networks. In 2016 23rd International Conference on Pattern Recognition (ICPR), pages 2464ś2469. IEEE, 2016.

[120] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. Distributed deep neural networks over the cloud, the edge and end

devices. In 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), pages 328ś339. IEEE, 2017.

[121] Luyang Liu, Hongyu Li, and Marco Gruteser. Edge assisted real-time object detection for mobile augmented reality. In The 25th Annual

International Conference on Mobile Computing and Networking, pages 1ś16, 2019.

[122] Woo-Joong Kim and Chan-Hyun Youn. Lightweight online proiling-based coniguration adaptation for video analytics system in edge

computing. IEEE Access, 8:116881ś116899, 2020.

[123] Wuyang Zhang, Zhezhi He, Luyang Liu, Zhenhua Jia, Yunxin Liu, Marco Gruteser, Dipankar Raychaudhuri, and Yanyong Zhang. Elf:

accelerate high-resolution mobile deep vision with content-aware parallel oloading. In Proceedings of the 27th Annual International

Conference on Mobile Computing and Networking, pages 201ś214, 2021.

[124] Junjue Wang, Ziqiang Feng, Zhuo Chen, Shilpa George, Mihir Bala, Padmanabhan Pillai, Shao-Wen Yang, and Mahadev Satyanarayanan.

Bandwidth-eicient live video analytics for drones via edge computing. In 2018 IEEE/ACM Symposium on Edge Computing (SEC), pages

159ś173. IEEE, 2018.

[125] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia. Noscope: optimizing neural network queries over video at

scale. arXiv preprint arXiv:1703.02529, 2017.

ACM Comput. Surv.

	Abstract
	1 Introduction
	1.1 Tiered Computing Architecture: Cloud, Edge and Device
	1.2 Applications supported by MEC
	1.3 Challenges in MEC Resource Allocation
	1.4 Related Surveys
	1.5 Our Contributions
	1.6 Survey Methodology

	2 Computation Offloading and Resource Allocation
	2.1 Full Offloading/Edge-only Computation
	2.2 Partial Offloading

	3 Dynamism in Edge Computing
	3.1 Stochastic Computation Offloading
	3.2 Service Migration
	3.3 Vehicular Edge Computing
	3.4 Dynamic Network Slicing

	4 Optimization in Edge Computing
	4.1 Decentralized Computation Offloading
	4.2 Lyapunov Optimization
	4.3 Learning-based Optimization

	5 Video Analytic in Edge Computing
	5.1 Performance Trade-off Study: Accuracy, Energy, and Latency
	5.2 Distributed Task Placement
	5.3 Accelerate Model Inference

	6 Open Research Challenges and Future Directions
	7 Discussion and Conclusions
	References

