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I. INTRODUCTION

A. What is Science Big Data?
In recent years, most scientific research in both academia and industry has become increas-

ingly data-driven. According to market estimates, spending related to supporting scientific data-
intensive research is expected to increase to $5.8 billion by 2018 [1]. Particularly for data-
intensive scientific fields such as bioscience, or particle physics within academic environments,
data storage/processing facilities, expert collaborators and specialized computing resources do
not always reside within campus boundaries. With the growing trend of large collaborative part-
nerships involving researchers, expensive scientific instruments and high performance computing
centers, experiments and simulations produce peta-bytes of data viz., Big Data, that is likely to
be shared and analyzed by scientists in multi-disciplinary areas [2]. With the United States of
America (USA) government initiating a multi-million dollar research agenda on Big Data topics
including networking [3], funding agencies such as National Science Foundation, Department
of Energy, and Defense Advanced Research Projects Agency are encouraging and supporting
cross-campus Big Data research collaborations globally.

B. Networking for Science Big Data Movement
To meet the data movement and processing needs, there is a growing trend amongst researchers

within Big Data fields to frequently access remote specialized resources and communicate with
collaborators using high-speed overlay networks. These networks use shared underlaying compo-
nents, but allow end-to-end circuit provisioning with bandwidth reservations [4]. Furthermore, in
cases where researchers have sporadic/bursty resource demands on short-to-medium timescales,
they are looking to federate local resources with ‘on-demand’ remote resources to form ‘hybrid
clouds’, versus just relying on expensive over-provisioning of local resources [5]. Figure 1
demonstrates one such example where science Big Data from a Genomics lab requires to be
moved to remote locations depending on the data generation, analysis, or sharing requirements.

Thus, to support science Big Data movement to external sites, there is a need for simple, yet
scalable end-to-end network architectures and implementations that enable applications to use
the wide-area networks most efficiently; and possibly control intermediate network resources
to meet Quality of Service (QoS) demands [6]. Moreover, it is imperative to get around the
‘frictions’ in the enterprise edge-networks i.e., the bottlenecks introduced by traditional campus
firewalls with complex rule-set processing and heavy manual intervention that degrade the flow
performance of data-intensive applications [7]. Consequently, it is becoming evident that such
researchers’ use cases with large data movement demands need to be served by transforming
system and network resource provisioning practices on campuses.
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Fig. 1. Example showing need for science Big Data generation and data movement

C. De-Militarized Zones for Science Big Data
The obvious approach to support the special data movement demands of researchers is to

build parallel cyberinfrastructures to the enterprise network infrastructures. These parallel infras-
tructures could allow by-passing of campus firewalls and support ‘friction-free’ data-intensive
flow acceleration over wide-area network paths to remote sites at 1-10 Gbps speeds for seamless
federation of local and remote resources [8] [9]. This practice is popularly referred to as building
Science DMZs [10] (De-militarized Zones) with network designs that can provide high-speed
(1 Gbps - upto 100 Gbps) programmable networks with dedicated network infrastructures for
research traffic flows and allow use of high-throughput data transfer protocols. They do not
necessarily use traditional TCP/IP protocols with congestion control on end-to-end reserved
bandwidth paths, and have deep instrumentation and measurement to monitor performance of
applications and infrastructure. The functionalities of Science DMZ as defined in [4] include:

• A scalable, extensible network infrastructure free from packet loss that causes poor TCP
performance;

• Appropriate usage policies so that high-performance applications are not hampered by
unnecessary constraints;

• An effective “on-ramp” for local resources to access wide area network services; and
• Mechanisms for testing and measuring, thereby ensuring consistent performance.
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Following the above definition, the realization of a Science DMZ involves transformation of
legacy campus infrastructure with increased end-to-end high-speed connectivity (i.e., availability
of 10/40/100Gbps end-to-end paths) [11], [12], and emerging computer/network virtualization
management technologies [13], [14] for “Big Data flow acceleration” over wide-area networks.
The examples of virtualization management technologies include: (i) software-defined networking
(SDN) [15], [16], [17] based on programmable OpenFlow switches [18], (ii) RDMA over
Converged Ethernet (RoCE) implemented between zero-copy data transfer nodes [19], [20],
(iii) multi-domain network performance monitoring using perfSONAR [21] active measurement
points, and (iv) federated identity/access management (IAM) using Shibboleth-based entitle-
ments [22].

Although Science DMZ infrastructures can be tuned to provide the desired flow acceleration
and can be optimized for QoS factors relating to Big Data application “performance”, the policy
handling of research traffic can cause a major bottleneck at the campus edge-router. This can
particularly impact the performance across applications, if multiple applications simultaneously
access hybrid cloud resources and compete for the exclusive and limited Science DMZ resources.
Experimental evidence in works such as [9] show considerable disparity between theoretical and
achievable goodput of Big Data transfer between remote domains of a networked federation
due to policy and other protocol issues. Therefore, there is a need to provide fine-grained
dynamic control of Science DMZ network resources i.e., “personalization” leveraging awareness
of research application flows, while also efficiently virtualizing the infrastructure for handling
multiple diverse application traffic flows.

QoS-aware automated network convergence schemes have been proposed for purely cloud
computing contexts [23], however there is a dearth of works that address the “personalization”
of hybrid cloud computing architectures involving Science DMZs. More specifically, there is a
need to explore the concepts related to application-driven overlay networking with novel cloud
services such as ‘Network-as-a-Service’ to intelligently provision on-demand network resources
for Big Data application performance acceleration using the Science DMZ approach. Early works
such as our work on Application-Driven Overlay Network-as-a-Service (ADON) [24] seek to
develop such cloud services by performing a direct binding of applications to infrastructure
and providing fine-grained automated QoS control. The challenge is to solve the multi-tenancy
network virtualization problems at campus-edge networks (e.g., through use of dynamic queue
policy management), while making network programmability related issues a non-factor for
data-intensive application users, who are typically not experts in networking.

D. Chapter Organization
This book chapter seeks to introduce concepts related to Science DMZs used for acceleration

of Science Big Data flows over wide-area networks. The chapter will first discuss the nature of
science Big Data applications, and then identify the limitations of traditional campus networking
infrastructures. Following this, we present the technologies and transformations needed for
infrastructures to allow dynamic orchestration of programmable network resources, as well as for
enabling performance visibility and policy configuration in Science DMZs. Next, we present two
examples of actual Science DMZ implementation use cases with one incremental Science DMZ
setup, and another dual-ended Science DMZ federation. Lastly, we discuss the open problems and
salient features for personalization of hybrid cloud computing architectures in an on-demand and
federated manner. We remark that the contents of this chapter build upon the insights gathered
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through the theoretical and experimental research on application-driven network infrastructure
personalization at the Virtualization, Multimedia and Networking (VIMAN) Lab in University
of Missouri-Columbia (MU).

II. SCIENCE BIG DATA APPLICATION CHALLENGES

A. Nature of Science Big Data Applications
Humankind is generating data at an exponential rate; it is predicted that by 2020, over 40

zettabytes of data will be created, replicated, and consumed by the humankind [25]. It is a
common misconception to characterize any data generated at a large-scale as Big Data. Formally,
the four essential attributes of Big Data are: Volume i.e., size of the generated data, Variety
i.e., different forms of the data, Velocity i.e., the speed of data generation, and finally Veracity
i.e., uncertainty of data. Another perspective of Big Data from networking perspective is - any
aggregate “data-in-motion” that forces us to look beyond traditional infrastructure technologies
(e.g., desktop computing storage, IP networking) and analysis methods (e.g., correlation analysis
or multi-variate analysis) that are state-of-the-art at a given point in time. From industry per-
spective, Big Data relates to the generation, analysis, and processing of user-related information
to develop better and more profitable services in e.g., Facebook social networking, Google Flu
trends prediction, United Parcel Service (UPS) route delivery optimization.

Although the industry has taken the lead in defining and tackling the challenges of handling
Big Data, there are many similar and a few different definitions and challenges in important
scientific disciplines such as biological sciences, geological sciences, astrophysics, and particle
mechanics that have been dealing with Big Data related issues for a while. For example, genomics
researchers use Big Data analysis techniques such as MapReduce and Hadoop [33] used in
industry for web search. Their data transfer application flows involve several thousands of small
files with periodic bursts rather than large single-file datasets. This leads to large amounts of
small, random I/O traffic which makes it impossible for a typical campus access network to
guarantee end-to-end expected performance. In the following, we discuss two exemplar cases of
cutting-edge scientific research that is producing Big Data with unique characteristics at remote
instrument sites with data movement scenarios that go much beyond simple file transfers:

1) High Energy Physics: High energy physics or particle mechanics is a scientific field which
involves generation and processing of Big Data in its quest to find for e.g., the “God Particle”
that has been widely publicized in the popular press recently. Europe’s Organization for Nuclear
and Particle Research (CERN) houses a Large Hadron Collider (LHC) [26], [27], the world’s
largest and highest-energy particle accelerator. The LHC experiments constitute about 150 million
sensors delivering data at the rate of 40 million times per second. There are nearly 600 million
collisions per second and after filtering and refraining from recording more than 99.999% of
these streams, there are 100 collisions of interest per second. As a result, only working with less
than 0.001% of the sensor stream data, the data flow from just four major LHC experiments
represents 25 petabytes annual rate before replication (as of 2012). This becomes nearly 200
petabytes after replication, which gets fed to university campuses and research labs across the
world for access by researchers, educators and students.

2) Biological Sciences and Genomics: Biological Sciences have been one of the highest
generators of large data sets for several years, specifically due to the overloads of omics infor-
mation viz., genomes, transcriptomes, epigenomes and other omics data from cells, tissues and
organisms. While the first human genome was a $3 billion dollar project requiring over a decade
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to complete in 2002, scientists are now able to sequence and analyze an entire genome in a few
hours for less than a thousand dollars. A fully sequenced human genome is in the range of 100
- 1,000 gigabyte of data, and a million customers’ data can add up to an exabyte of data which
needs to be widely accessed by university hospitals and clinical labs.

In addition to the consumption, analysis and sharing of such major instruments generated
science Big Data at campus sites of universities and research labs, there are other cases that
need on-demand or real-time data movement between a local site to advanced instrument sites
or remote collaborator sites. Below we discuss the nature of four other data-intensive science
application workflows being studied at MU’s VIMAN Lab from diverse scientific fields that
highlight the campus user’s perspective in both research and education.

(a) Neuroblastoma application (b) RIVVIR application

(c) ElderCare-as-a-Service application (d) GENI classroom experiments application

Fig. 2. Science Big Data movement for different application use cases

3) Neuroblastoma Data Cutter Application: The Neuroblastoma application [9] workflow as
shown in Figure 2(a) consists of a high-resolution microscopic instrument on a local campus
site generating data-intensive images that need to be processed in real-time to identify and
diagnose Neuroblastoma (a type of cancer) infected cells. The processing software and high
performance resources required for processing these images are highly specialized and typically
available remotely at sites with large GPU clusters. Hence, images (each on the order of several
gigabytes) from the local campus need to be transferred in real-time to the remote sites for high-
resolution analysis and interactive viewing of processed images. For use in medical settings, it
is expected that such automated techniques for image processing should have response times on
the order of 10 - 20 seconds for each user task in image exploration.

4) Remote Interactive Volume Visualization Application (RIVVIR): As shown in Figure 2(b),
the RIVVIR application [28] at a local campus deals with real-time remote volume visualization
of large 3D models (on the order of terabyte files) of small animal imaging generated by MRI
scanners. This application needs to be accessed simultaneously by multiple researchers for remote
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steering and visualization, and thus it is impractical to download such data sets for analysis. Thus,
remote users need to rely on thin-clients that access the RIVVIR application over network paths
that have high end-to-end available bandwidth, and low packet loss or jitter for optimal user
Quality of Experience (QoE).

5) ElderCare-as-a-Service Application: As shown in Figure 2(c), an ElderCare-as-a-Service
application [29] consists of an interactive videoconferencing based tele-health session between a
therapist at a university hospital and a remotely residing elderly patient. One of the tele-health use
cases for wellness purposes involves performing physiotherapy exercises through an interactive
coaching interface that not only involves video but also 3D sensor data from Kinect devices at
both ends. It has been shown that regular Internet paths are unsuitable for delivery adequate user
QoE, and hence this application is being only deployed on-demand for use in homes with 1 Gbps
connections (e.g., at homes with Google Fiber in Kansas City, USA). During the physiotherapy
session, the QoE for both users is a critical factor especially when transferring skeletal images
and depth information from Kinect sensors that are large in volume and velocity (e.g., every
session data is on the order of several tends of gigabytes), and for administration of proper
exercise forms and their assessment of the elders’ gait trends.

6) Classroom Lab Experiments: It is important to note that Big Data related educational
activities with concurrent student access also are significant in terms of campus needs that
manifest in new sets of challenges. As shown in Figure 2(d), we can consider an example of a
class of 30 or more students conducting lab experiments at a university in a Cloud Computing
course that requires access to large amount of resources across multiple data centers that host
GENI Racks1 [29]. As part of the lab exercises, several virtual machines need to be reserved
and instantiated by students on remotely located GENI Racks. There can be a sudden bursts of
application traffic flows at the campus-edge router whose volume, variety and velocity can be
significantly high due to simultaneous services access for computing and analysis, especially the
evening before the lab assignment submission deadline.

B. Traditional Campus Networking Issues
1) Competing with Enterprise Needs: The above described Big Data use cases constitute a

diverse class of emerging applications that are stressing the traditional campus network envi-
ronments that were originally designed to support enterprise traffic needs such as e-mail, web
browsing and video streaming for distance learning. When appropriate campus cyberinfrastruc-
ture resources for Big Data applications do not exist, cutting-edge research in important scientific
fields is constrained. Either the researchers do not take on studies with real-time data movement
needs, or they resort to simplistic methods to move research data by exchanging hard-drives via
‘snail mail’ between local and remote sites. Obviously, such simplistic methods are unsustainable
and have fundamental scalability issues [8], not to mention that they impede the progress of
advanced research that is possible with better on-demand data movement cyberinfrastructure
capabilities.

On the other hand, using the “general purpose” enterprise network (i.e., Layer-3/IP network)
for data-intensive science application flows is often a highly sub-optimal alternative; and as

1GENI Racks are Future Internet infrastructure elements developed by academia in co-operation with industry partners such
as HP, IBM, Dell and Cisco; they include APIs and hardware that enable discovery, reservation and teardown of distributed
federated resources with advanced technologies such as SDN with OpenFlow, compute virtualization, and Federated-IAM.
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Fig. 3. Campus access network usage trend at MU

described earlier in previous section, they may not at all serve the purpose of some synchronous
Big Data applications due to sharing of network bandwidth with enterprise cross-traffic. Figure 3
illustrates the periodic nature of the enterprise traffic with total bandwidth utilization and the
session count of wireless access points at MU throughout the year. In Figure 3(a), we show
the daily and weekly usage patterns with peak utilization during the day coinciding with most
of the on-campus classes with a significant dip during the latter hours of night, and under
utilization in the early weekends especially during Friday nights and Saturdays. Figure 3(b)
shows seasonal characteristics with peak bandwidth utilization observed during Fall and Spring
semesters. Intermediate breaks and Summer semester shows overwhelmingly low usage due to
fewer students on campus. For wireless access points session counts shown in the bottom of
Figure 3(b), the frequent student movements around the campus leads to a large number of
association and authentication processes to wireless access points, and bandwidth availability
varies at different times in a day, week or month time-scale. It is obvious that sharing such
traditional campus networks with daily and seasonally fluctuating cross-traffic trends causes
significant amount of ‘friction’ for science Big Data movement and can easily lead to performance
bottlenecks.

To aggravate the above bottleneck situation, traditional campus networks are optimized for
enterprise ‘security’ and partially sacrifice ‘performance’ to effectively defend against cyber-
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attacks. The security optimization in traditional networks leads to campus firewall policies that
block ports needed for various data-intensive collaboration tools (e.g., remote desktop access of
a remote collaborator using RDP or VNC [31], GridFTP data movement utility [32]). Federal
regulations such as HIPAA in the USA that deal with privacy issues of health-related data
also increase the extent to which network access lists are tightly controlled and performance
is compromised to favor higher security stances. The blocking of ports in traditional campus
networks decreases the risk of malicious access of internal-network data/resources, however
it severely limits the ability of researchers to influence campus security policies. Even if ad-
hoc static firewall exceptions are applied, they are not scalable to meet special performance
demands of multiple Big Data application related researchers. This is because of the ‘friction’
from hardware limitations of firewalls that arises when handling heavy network-traffic loads of
researcher application flows under complex firewall rule-set constraints.

2) Hardware Limitations: In addition to the friction due to firewall hardware limitations,
friction also manifests for data-intensive flows due to the use of traditional traffic engineering
methods that have: (a) long provisioning cycles and distributed management when dealing with
under or over subscribed links, and (b) inability to perform granular classification of flows
to enforce researcher-specific policies for bandwidth provisioning. Frequently, the bulk data
being transferred externally by researchers is sent on hardware that was purchased a number
of years ago, or has been re-purposed for budgetary reasons. This results in situations where
the computational complexity to handle researcher traffic due to newer application trends has
increased, while the supporting network hardware capability has remained fairly static or even
degraded. The overall result is that the workflows involving data processing and analysis pipelines
are often ‘slow’ from the perspective of researchers due to large data transfer queues, to the point
that scaling of research investigations is limited by several weeks or even months for purely
networking limitations between sites.

In a shared campus environment, hosts generating differing network data-rates in their com-
munications due to application characteristics or network interface card (NIC) capabilities of
hosts can lead to resource misconfiguration issues in both the system and network levels and
cause other kinds of performance issues [30]. For example, misconfigurations could occur due
to internal buffers on switches becoming exhausted due to improper settings, or due to duplex
mis-matches and lower rate negotiation frequently experienced with new servers with 1 Gbps
NICs communicating with old servers with 100 Mbps; same is true when 10 Gbps NIC hosts
communicate with 1 Gbps hosts. In a larger and complex campus environment with shared
underlaying infrastructures for enterprise and research traffic, it is not always possible to predict
whether a particular pathway has end-to-end port configurations for high network speeds, or if
there will be consistent end-to-end data-rates.

It is interesting to note that performance mis-match issues for data transfer rates are not
just network related, and could also occur in systems that contain a large array of solid state
drives (versus a system that has a handful of traditional spinning hard drives). Frequently,
researchers are not fully aware of the capabilities (and limitations) of their hardware, and
I/O speed limitations at storage systems could manifest as bottlenecks, even if end-to-end
network bandwidth provisioning is performed as ‘expected’ at high-speeds to meet researcher
requirements.
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Fig. 4. Transit selection of Science flows and regular traffic within campus

III. TRANSFORMATION OF CAMPUS INFRASTRUCTURE FOR SCIENCE DMZS

A. An ‘On-ramp’ to Science DMZ Infrastructure
The inability of traditional campus infrastructures to cater to the real-time or on-demand sci-

ence Big Data application needs is the primary motivation behind creating a “parallel infrastruc-
ture” involving Science DMZs with increased high-speed end-to-end connectivity and advanced
technologies described previously in Section I-A. They provide modernized infrastructure and
research-friendly firewall policies with minimal or no firewalls in a Science DMZ deployment.
In addition, they can be customized per application needs for on-ramp of data-intensive science
flows to fast wide-area network backbones (e.g., Internet2 in USA, GEANT in Europe, or APAN
in Asia). The parallel infrastructure design thus features abilities such as dynamic identification
and orchestration of Big Data application traffic to by-pass the campus’ enterprise firewall and
use devices that foster flow acceleration, when transit selection is made to leverage the Science
DMZ networking infrastructure.

Figure 4 illustrates traffic flow ‘transit selection’ within a campus access network with Science
DMZ capabilities. We can see how intelligence at the campus border and department-level
switches enables bypassing of research data flows from campus firewall restricted paths onto
research network paths. However, enterprise traffic such as web browsing or e-mails are routed
through the same campus access network to the Internet through the firewall policed paths. The
research network paths typically involve extended VLAN overlays between local and remote
sites, and services such as AWS Direct Connect are used for high-speed layer-2 connections
to public clouds. With such overlay paths, Big Data applications can use local/remote and the
public cloud resources as if they all reside within the same internal network.

Moreover, research traffic can be isolated from other cross-traffic through loss-free, dedicated
‘on-demand’ bandwidth provisioning on a shared network underlay infrastructure. It is important
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to note that the ‘last-mile’ problem of getting static or dynamic VLANs connected from the
research lab facilities to the Science DMZ edge is one of the harder infrastructure setup issues.
In case of Big Data application cases, having 100 Gigabit Ethernet (GE) and 40 - 100 Gbps
network devices could be a key requirement. Given that network devices that support 40 -
100 Gbps speeds are expensive, building overlay networks requires significant investments from
both the central campus and departmental units. Also, the backbone network providers at the
regional (e.g., CENIC) and national-level (e.g., Internet2) need to create a wide footprint of their
backbones to support multiple extended VLAN overlays simultaneously between campuses.

Further, the end-to-end infrastructure should ideally feature SDN with OpenFlow switches at
strategic traffic aggregation points within the campus and backbone networks. SDN provides
centralized control on dynamic science workflows over a distributed network architecture, and
thus allows proactive/reactive provisioning and traffic steering of flows in a unified, vendor-
independent manner [18]. It also enables fine-grained control of network traffic depending on
the QoS requirements of the application workflows. In addition, OpenFlow enabled switches
help in dynamic modification of security policies for large flows between trusted sites when
helping them dynamically by-pass the campus firewall [16]. Figure 5 shows the infrastructural
components of a Science DMZ network within a campus featuring SDN connectivity to different
departments. Normal application traffic traverses paths with intermediate campus firewalls, and
reaches remote collaborator sites or public cloud sites over enterprise IP network to access
common web applications. However, data-intensive science application flows from research labs
that are ‘accelerated’ within Science DMZs by-pass the firewall to the 10 - 100 GE backbones.

B. Handling Policy Specifications
Assuming the relevant infrastructure investments are in place, the next challenge relates to

the Federated-IAM that requires specifying and handling fine-grained resource access policies in
a multi-institution collaboration setting (i.e., at both the local and remote researcher/instrument
campuses, and within the backbone networks) with minimal administrative overhead. Figure 6
illustrates a layered reference architecture for deploying Science DMZs on campuses that need
to be securely accessed using policies that are implemented by the Federated-IAM framework.
We assume a scenario where two researchers at remote campuses with different subject matter
expertise collaborate on an image processing application that requires access to an instrument
facility at one researcher’s site, and a HPC facility at the other researcher’s site.

In order to successfully realize the layered architecture functions in the context of multi-
institutional policy specification/handling, there are several questions that need to addressed by
the Federated-IAM implementation such as: (i) How can a researcher at the microscope facility
be authenticated and authorized to reserve HPC resources at the collaborator researcher campus?;
(ii) How can a OpenFlow controller at one campus be authorized to provision flows within a
backbone network in an on-demand manner?; and even (iii) How do we restrict who can query
the performance measurement data within the extended VLAN overlay network that supports
many researchers over time?

Fortunately, standards-based identity management approaches based on Shibboleth entitle-
ments [22] have evolved to accommodate permissions in above user-to-service authentication and
authorization use cases. These approaches are being widely adopted in academia and industry
enterprises. However, they require a central, as well as an independent ‘Service Provider’ that
hosts an ‘Entitlement service’ amongst all of the campuses that federate their Science DMZ
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Fig. 5. A generic Science DMZ physical infrastructure diagram

Fig. 6. Campus Science DMZ logical schematic showing architecture layers

infrastructures. Having a registered Service Provider in the Campus Science DMZ federation
leads to a scalable and extensible approach, as it eliminates the need to have each campus have
bilateral agreements with every other campus. It also allows for centrally managing entitlements
based on mutual protection of privacy policies between institutions to authorize access to different
infrastructure components such as inter-campus OpenFlow switches.

In order to securely maintain the policy directories of the federation, and to allow institutional
policy management of the Science DMZ flows, a ‘gatekeeper-proxy middleware’ as shown in
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Figure 6 is required. The gatekeeper-proxy is a critical component of the Science DMZ as it
is responsible to integrate and orchestrate functionalities of a Science DMZ’s: (a) OpenFlow
controller through a ‘routing engine’ [40], (b) performance visibility through a ‘measurement
engine’, and (c) ‘service engine’ which allows the functioning of the user-facing web portals
that allow a researcher requests access to overlay network resources.

To effectively maintain the gatekeeper-proxy to serve diverse researcher needs concurrently
on the shared underlay infrastructure, the role of a “Performance Engineer” technician within a
campus Science DMZ is vital. We envisage this role to act as the primary ‘keeper’ and ‘helpdesk’
of the Science DMZ equipment, and the success of this role is in the technician’s ability to
augment traditional System/Network Engineer roles on campuses. In fact, large corporations
that typically support data-intensive applications for their users (e.g., disaster data recovery and
real-time analytics in financial sector, content delivery network management in consumer sector),
have well-defined roles and responsibilities for a Performance Engineer.

Given that researcher data flows in Science DMZs are unique and dynamic, specialized tech-
nician skill sets and toolkits are needed. The Performance Engineer needs to effectively function
as a liaison to researchers’ unique computing and networking needs while coordinating with
multi-domain entities at various levels (i.e., building-level, campus-level, backbone-level). He/she
also has to cater to each researcher’s expectations of high-availability and peak-performance to
remote sites without disrupting core campus network traffic. For these purposes, the Performance
Engineer can use ‘custom templates’ that allow repeatable deployment of Big Data application
flows, and use virtualization technologies that allow realization of a ‘virtual tenant handler’
so that Big Data application flows are isolated from each other in terms of performance or
security. Moreover, the tools of a Performance Engineer need to help serve the above onerous
duties in conjunction with administering maintenance windows with advanced cyberinfrastructure
technologies, and their change management processes.

C. Achieving Performance Visibility
To ensure smooth operation of the fine-grained orchestration of science Big Data flows, Science

DMZs require end-to-end network performance monitoring frameworks that can discover and
eliminate the “soft failures” in the network. Soft failures cause poor performance unlike “hard
failures” such as fiber cuts that prevent data from flowing. Particularly, active measurements using
tools such as Ping (for round trip delay), Traceroute (for network topology inference), OWAMP
(for one-way delay) and BWCTL (for TCP/UDP throughput) are essential in identifying soft
failures such as packet loss due to failing components, mis-configurations such as duplex mis-
matches that affect data rates, or routers forwarding packets using the management CPU rather
than using a high-performance forwarding hardware. These soft failures often go undetected as
the legacy campus network management and error reporting systems are optimized for reporting
hard failures, such as loss of a link or device.

Currently, perfSONAR [21] is the most widely-deployed framework with over 1200 publicly
registered measurement points worldwide for performing multi-domain active measurements.
It is being used to create‘measurement federations’ for collection and sharing of end-to-end
performance measurements across multiple geographically separated Science DMZs forming a
research consortium [36]. Collected measurements can be queried amongst federation members
through interoperable web-service interfaces to mainly analyze network paths to ensure packet
loss free paths and identify end-to-end bottlenecks. They can also help in diagnosing performance
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bottlenecks using anomaly detection [37], determining the optimal network path [38], or in
network weather forecasting [39].

D. Science DMZ implementation use cases
Below we discuss two ideologically dissimilar Science DMZ implementation use cases. First,

we present a 3-stage transformation of a campus science infrastructure for handling data-intensive
application flows. Next, we shed light on a double-ended Science DMZ implementation that
connects two geographically distant campus Science DMZs for Big Data collaboration between
the two campuses.

(a) Past Science application flow path (b) Present Science DMZ architecture (c) Future Science DMZ upgrade plan

Fig. 7. An exemplar incremental campus Science DMZ implementation

1) An Incremental Science DMZ Implementation: In Figure 7, we show the stages of the
University of California-Santa Cruz (UCSC) campus research network evolution to support
data-intensive science applications [35]. Figure 7(a) shows the UCSC campus research network
before Science DMZ implementation with a 10 Gbps campus distribution core catering the three
main Big Data flow generators, e.g., Santa Cruz Institute of Particle Physics (SCIPP), a 6-Rack
HYADES cluster, and Center for Biomolecular Science & Engineering. A traditional (i.e., non-
OpenFlow) Dell 6258 access switch was responsible to route research data to campus border
router through core routers and ultimately to the regional CENIC (Corporation for Education
Network Initiatives in California) backbone. However, buffer size limitations of intermediate
switches created bottlenecks in both research and enterprise networks, particularly dedicated
10GE links to research facilities could not support science data transfer rates beyond 1 Gbps. In
2013, UCSC implemented a quick-fix solution to the problem as shown in Figure 7(b), which
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Fig. 8. An exemplar double-ended campus Science DMZ implementation

involved a Cisco 3560E OpenFlow switch connected with perfSONAR nodes and multi-core
DTNs. The Science DMZ switch currently at this time of writing, has direct links to all Big
Data applications and is connected to the border router with 10GE on both ends. In future,
UCSC has plans to install dedicated Science DMZ switches connected through 10GE links with
individual data intensive services, and a master switch connected to CENIC backbone through
100GE link, as shown in Figure 7(c). This 3-stage transformation is a common trend of campus
network evolution that has been seen in many other cases, and is increasing the footprint of
software-defined network elements (OpenFlow-compatible) in support of Big Data applications
across campus environments.

2) A Double-ended Science DMZ Transformation Example: Figure 8 shows how both The
Ohio State University (OSU) and MU campuses have transformed their Science DMZ infras-
tructures for inter-campus research collaborations. They are both connected through an extended
VLAN overlay that involves an Internet2 Advanced Layer 2 Service (AL2S) connection by way
of local regional networks of OARnet in Ohio, and GPN/MoreNet in Missouri, respectively. Each
Science DMZ has a matching DTNs equipped with dual Intel E5-2660, 128 GB of memory,
300 GB PCI-Express solid state drive, and dual Mellanox 10 Gbps network cards with RoCE
support. Each Science DMZ has perfSONAR measurement points for continuous monitoring at
1 – 10 Gbps network speeds. A common Dell R610 node in the OSU Science DMZ is used
to run an OpenFlow controller that controls both the OSU and MU Science DMZ OpenFlow
switches. Two HP 3800s are used to attach to the various nodes in the Science DMZ, and a single
NEC PF5820 aggregates the two connections at OSU. A NEC switch is connected to OSU’s
100 Gbps Cisco Nexus router at 10 Gbps, and has the ability to scale to 40 Gbps as the Science
DMZ grows to support future researchers and applications. At MU, the Science DMZ features
OpenFlow switches include a Brocade VDX 8770 switch to attach various nodes in the Science
DMZ, and a 100 Gbps Brocade MLXE router at 10 Gbps interface speeds, with the ability to
scale up to 100 Gbps speeds. This double-ended Science DMZ deployment between OSU and
MU has garnered support and fostered new collaborations between a number of researchers on
the two campuses, and is being viewed as model infrastructure for ‘team science’ projects.
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IV. NETWORK-AS-A-SERVICE WITHIN SCIENCE DMZS

If multiple applications accessing hybrid cloud resources compete for the exclusive and limited
Science DMZ resources, the policy handling of research traffic can cause a major bottleneck
at the campus edge router and impact the performance across applications. Thus, there is a
need to provide dynamic Quality of Service (QoS) control of Science DMZ network resources
versus setting a static rate limit affecting all applications. The dynamic control should have
awareness of research application flows with urgent or other high-priority computing needs, while
also efficiently virtualizing the infrastructure for handling multiple diverse application traffic
flows [34]. The virtualization obviously should not affect the QoS of any of the provisioned
applications, and also advanced services should be easy-to-use for data-intensive application
users, who should not be worrying about configuring underlying infrastructure resources.

Consequently, there is a need to provide fine-grained dynamic control of Science DMZ network
resources i.e., “personalization” leveraging awareness of research application flows, while also
efficiently virtualizing the infrastructure for handling multiple diverse application traffic flows.
More specifically, there is a need to explore the concepts related to application-driven overlay
networking with novel cloud services such as ‘Network-as-a-Service’ to intelligently provision
on-demand network resources for Big Data application performance acceleration using the
Science DMZ approach. Early works such as our work on Application-Driven Overlay Network-
as-a-Service (ADON) [24] seek to develop such cloud services by performing a direct binding of
applications to infrastructure and providing fine-grained automated QoS control. The challenge
is to solve the multi-tenancy network virtualization problems at campus-edge networks (e.g.,
through use of dynamic queue policy management), while making network programmability
related issues a non-factor for data-intensive application users, who are typically not experts in
networking. The salient features of ADON are as follows:

• ADON intelligently provisions on-demand network resources by performing a direct binding
of applications to infrastructure with fine-grained automated QoS control in a Science DMZ.

• In ADON, ‘network personalization’ is performed using a concept of “custom templates”
to catalog and handle unique profiles of application workflows.

• Using the custom templates and VTH concepts, ADON manages the hybrid cloud require-
ments of multiple applications in a scalable and extensible manner.

• ADON ensures predictable application performance delivery by scheduling transit selection
(choosing between Internet or extended VLAN overlays) and traffic engineering (e.g., rate
limit queue mapping based on application-driven requirements) at the campus-edge.

Figure 9 shows how through the ADON, data-intensive applications can co-exist on top of a
shared wide-area physical infrastructure topology, with each application demanding local/remote
network or compute resources with unique end-to-end QoS requirements. We can notice how
multiple science Big Data applications such as Neuroblastoma, ECaaS and Classroom Lab with
different QoS requirements are orchestrated through overlay networking without compromising
the overall end-to-end performance. Such an approach of application-driven orchestration of
Science DMZs seeks to lay the foundation for solving even harder issues that may transform
the way science Big Data research is carried out through collaborations across communities.
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Fig. 9. Multi-tenant application workflows on a shared wide-area physical infrastructure

V. CONCLUDING REMARKS

A. What have we learnt?
To summarize, the exponential growth of science Big Data traffic and ensuing accelerated

movement requirements are revolutionizing the way campus networks are being designed and
operated. The volume and velocity of science Big Data has necessitated a complete paradigm
shift from legacy campus network architecture principles and policies, especially in terms of
resource provisioning, QoS management, and coupling performance visibility and control. To
meet the need to make cross-campus Big Data movement friction free, today’s campus networks
are making provisions for on-demand proprietary access of high-speed physical resources by
Big Data applications through various network virtualization approaches. Such exclusive access
in order to isolate Big Data traffic from enterprise traffic is an intellectual evolution from the
traditional ways campus access networks were designed a decade ago where applications used
to share resources using best-efforts networks.

Moreover, in legacy campus access networks, the service providers used to jointly manage
QoS for campus related business and research traffic. However, with adoption of Science DMZ
infrastructures by research campuses to accelerate Big Data movement, the QoS initiative is
shifting from being service provider governed - to - Big Data researcher and application steered.
On-demand application-driven orchestration using intelligent resource allocation and network
virtualization with application-imposed QoS guarantees has become the widely-accepted future
direction of campus access network design for effective Big Data handling.
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Finally, making performance monitoring an integral part of science Big Data networking to
better steer data-intensive science flows within-and-outside the campus network, is providing
robustness and fault-tolerance capabilities to the campus network in its goal to handle Big Data.
Strategically located measurement instrumentation, and application-driven performance metrics
have facilitated better visibility and control on Big Data transfer performance between campuses,
and are enabling the identification and proactive avoidance of performance bottleneck scenarios
and network soft-spots.

B. The road ahead and open problems
Transformation of legacy campus infrastructures with adoption of Science DMZs has facilitated

“Big Data Highways” that use cutting-edge technologies, such as software-defined networking,
end-to-end performance monitoring, and network-virtualization. Typically, these efforts so far
have been mostly incremental where network engineers and designers upgrade the campus access
network with faster devices, gigabit fiber cables and intelligent flow control to cater specific
data-intensive applications’ needs. However, a truly ‘Research-defined Network’ (RDN), built to
control and troubleshoot all the networking aspects of data-intensive science applications is still
to be realized by network researchers and service providers. Such RDNs need to support the
full life-cycle of campus Big Data, from creation to computation and consumption.

Through RDNs, Big Data researchers will be able to dictate policies, security features, and
QoS guarantees specific to their applications. Making data-intensive research a driving force
behind campus Big Data network design will enable the network designers to better address
open issues, such as: (a) assurance of satisfactory user QoE when simultaneously scheduling
multiple science Big Data applications, (b) standardizing performance engineering techniques
and protocols for easy use and wide-adoption, and (c) selectively replicating time sensitive or
mission critical data across multiple platforms for reliability purposes and prudently selecting
replication sites to avoid end-to-end performance bottlenecks.

Building such RDNs is a first step to federate different ‘Big Data Highways’ to create a ‘Big
Data Interstate system’ where different campus Big Data network infrastructures seamlessly
come together. Creating such federations should be aimed towards faster sharing of research
data, enhancing cross campus research collaboration, and quicker troubleshooting of network
performance bottlenecks. Although early efforts led by Clemson University [36] are taking shape
in creating such multi-campus Science DMZ federations, there exists a number of open challenges
in realizing such collaborations.

The open challenges can be summarized as follows: (a) co-ordination of federated resources
with adherence to policies of multiple-domains, (b) enforcing federated and transparent access
control mechanisms over local autonomy to facilitate broader sharing, (c) building secured
middlegrounds for performance visibility and network control across Science DMZ domains,
and (d) creating social platforms or extending existing platforms for scientific collaborations,
such as Science Gateway [43] or HUBzero [44] where Big Data researchers, network designers,
and policymakers belonging to the same society can mingle, share data and expertise, collaborate,
and create new policies and rules for the federation. Solving these open issues are fundamental
in the future explorations that will lead to a Internet for Big Data in our society.
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VI. SUMMARY

To summarize, the key take-aways from this book chapter are:
• The unique characteristics and data movement requirements of science Big Data pose novel

networking challenges.
• These challenges motivate the need for creation of Science DMZs that are parallel infras-

tructures to enterprise infrastructures to accelerate performance of science Big Data flows.
• Application-driven orchestration of science Big Data flows is essential within the Science

DMZ to obtain expected performance and avoid performance bottlenecks.
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