
End-to-End Security Formalization and Alignment
for Federated Workflow Management

Matthew Dickinson, Saptarshi Debroy, Prasad Calyam,
Samaikya Valluripally, Yuanxun Zhang, Trupti Joshi, Dong Xu

University of Missouri-Columbia, USA
Email: {dickinsonmg, debroysa, calyamp}@missouri.edu, {svbqb, yzd3b}@mail.missouri.edu, {joshitr, xudong}@missouri.edu

Abstract—Traditionally, the allocation and dynamic adapta-
tion of federated cyberinfrastructure resources residing across
multiple domains for data-intensive application workflows have
been performance or quality of service-centric (i.e., QSpecs);
often compromising the end-to-end security requirements of
scientific workflows. Lack of standardized formalization meth-
ods of the workflows’ end-to-end security requirements, and
diverse/heterogenous domain resource and security policies make
inter-conflict characterization between application’s security and
performance requirements non-trivial, and leads to sub-optimal
resource allocation. In this paper, we present a joint security and
performance-driven federated resource allocation and adaptation
scheme to define and characterize a data-intensive scientific
application’s security specifications (i.e., SSpecs). In order to aid
security-driven resource brokering among domains with diverse
security postures, we describe an alignment technique inspired
by Portunes Algebra to combine domain-specific resource policies
(i.e., RSpecs) along the application workflow life cycle. We use
standardized guidelines that help in compute/storage resource
domain/location selection as well as network path selection based
on both application QSpecs and SSpecs. We implement our
security formalization and alignment methods as a framework,
viz., “OnTimeURB” and apply it on an exemplar Distributed
Computing workflow to show the benefits of joint QSpecs-SSpecs-
driven, RSpecs-compliant federated workflow management.

Index Terms—Data-intensive application, End-to-end security
requirement formalization, Cross-domain policy alignment, Dy-
namic resource provisioning.

I. INTRODUCTION

Data-intensive science applications (e.g., in areas of high-
energy physics, bioinformatics) often require specialized in-
struments and cyberinfrastructure (CI), i.e., compute/network-
ing/storage resources (e.g., supercomputers, federated data
repositories, public clouds) that do not always reside at the
data generation sites on researcher campuses [1]. This leads
to researchers relying on geographically distributed and fed-
erated resources connected with multi-domain physical net-
works equipped with software-defined networking (SDN) [2]
capabilities. A growing trend in multi-domain federations
can be seen in exemplar application communities such Large
Hadron Collider for physicists [3] and iPlant Collaborative for
informaticians [4], and thus the need to facilitate cross-campus
data-intensive science collaborations for these researchers is
becoming increasingly critical.

As shown in Fig. 1, provisioning of federated CI resources
is generally based on applications’ performance and quality
of service (QoS) requirements i.e., QSpecs which can be
viewed as a metaphorical gear. This QSpecs gear’s cogs in
most cases conflict with the application’s key security and
privacy requirements as well as remote instrument security,
i.e., the metaphorical SSpecs gear cogs. Additionally, strict

This work was partially supported by the National Science Foundation
under award: ACI-1440582. Any opinions, findings, and conclusions or
recommendations expressed in this publication are those of the author(s)
and do not necessarily reflect the views of the National Science Foundation.

Fig. 1. Inter-conflicts between SSpecs, QSpecs, and RSpecs of a data-intensive
application represented as metaphorical gears

security and privacy requirements may require extensive fire-
wall policies or selection of resources with scheduling policies
or resource capacity (e.g., number of licenses for analytics
packages) that may limit the peak performance expected in the
application workflows, as shown for the conflict case with the
metaphorical RSpecs gear cogs. These challenges in capturing
distributed application requirements and conflict phenomena
mitigation are compounded with the inherent complex nature
of distributed application workflows that demand different
Service Level Objectives (SLOs) (i.e., varying definitions of
QSpecs, SSpecs) for their life cycle stages across federated
resources (with unique RSpecs).

Therefore, we argue that there is a need to enhance the
ability of such distributed applications to securely use feder-
ated resources within predictable performance bounds. This
in turn will require a workflow-centric CI resource manage-
ment paradigm instead of the traditional strictly-QSpecs-driven
and/or strictly-SSpecs-driven approaches. This next-generation
federated CI resource management approach first needs to
universally define and formalize data-intensive application
QSpecs and related SSpecs from its security requirements
along the different stages of its workflow life cycle. This
new paradigm also needs to align the diverse domain security
postures and resource policies (i.e., RSpecs) into homogenous
policy statements that are comparable with application SSpecs.
Hence, solving the end-to-end security alignment problem
will lay the foundation of a workflow-centric joint QSpecs-
SSpecs-driven, RSpecs-compliant CI resource management
that minimizes the inter-conflict among the 3 metaphorical
gears while managing application workflows on federated
resources. The outcome of such end-to-end security align-
ment and corresponding resource selection can be performed
seamlessly with programmable technologies for computing
(e.g., OpenStack [5]), networking (OpenFlow [6] with SDN),
storage (iRODS [7]), and security (Shibboleth [8]).

Fig. 2. Steps involved in a joint QSpecs-SSpecs-driven, RSpecs-compliant
federated CI resource management scheme

In this paper, we present novel methods for end-to-end
security formalization and security-posture alignment (as il-
lustrated in Fig. 2) within a next-generation CI resource
provisioning environment that leverages private cloud (local)
and remote (public cloud) resources. The novelty of our
approach is in our formalization of SSpecs of a data-intensive
distributed application for different stages of its life cycle
utilizing resources across federated domains. For this, we
extend the National Institute of Standards and Technology
(NIST) guidelines [9] to define specific security categories
that are relevant to the ‘Data security’ and other ‘Auxiliary
security’ requirements for data-intensive applications. The
resultant formal SSpecs data structure is simple to create, easy
to understand and comprehensive enough to account for a wide
range of security requirements pertaining to data-intensive
application workflows.

Building upon the SSpecs formalization, we next propose a
novel security alignment method to align heterogenous domain
security postures into a homogeneous set of formal statements
in order to aid in resource provisioning driven by both applica-
tion SSpecs and QSpecs. The novelty of our alignment method
is in its use of a predicate logic, viz., “Portunes Algebra” [10]
for automated drill-down of domain-specific security and
resource policies from security documents into homogenous
policies. The resulting portunes statements are compared with
the NIST guidelines and specifications [9] to organize domain
resources (network/compute/storage) into “High”, “Moderate”,
and “Low” levels based on those combined policies. The
output of such a formalization and subsequent alignment
process is then fed into a joint QSpecs-SSpecs-driven federated
CI resource management algorithm for network path and
compute location selection at each stage of application life
cycle in a RSpecs-compliant manner. The resulting CI resource
provisioning thus ultimately ensures our goal of delivering
predictable application performance without sacrificing the
security requirements.

We implement our proposed security formalization and
alignment schemes in a unified resource broker frame-
work viz., “OnTimeURB” that performs joint QSpecs-SSpecs-
driven, RSpecs-compliant federated CI resource management
for an exemplar application, viz. SoyKB [11]. Our experiments

on a real-world testbed demonstrate how OnTimeURB helps
in aligning the domain security postures and pertinent resource
domain/location and network path selection amongst three
candidate (federation) domains along the SoyKB workflow
lifecycle. The domains refer to the resources at the following
institutions: University of Missouri (MU), University of Texas
at Austin (UT), and University of Southern California (USC).
By comparing results of our joint QSpecs-SSpecs-driven ap-
proach against only QSpecs-driven and only SSpecs-driven
approaches for federated CI resource management, we show
efficient resource allocation that satisfies SoyKB application’s
SSpecs, and QSpecs without overriding intermediate-domain
RSpecs through pertient policy alignment.

The remainder of the paper is organized as follows: Sec-
tion II presents related work. Section III describes the process
to define and generate SSpecs. Section IV discusses the formal
method of aligning domain policies and security postures. Sec-
tion V discusses the OnTimeURB implementation and results
of SoyKB application’s CI resource provisioning. Section VI
concludes the paper and suggests future work.

II. RELATED WORK

In terms of scheduling data-intensive workflows using tradi-
tional QoS-driven resource provisioning, different approaches
are proposed in [12], [13]. Authors in [12] show how QoS
requirements are determined by the application traffic type,
such as multimedia or file transfer. In our earlier work on
ADON (application-driven overlay network-as-a-service) [13],
we used SDN within hybrid cloud computing architectures for
on-demand and concurrent application handling for acceler-
ated performance of data-intensive application workflows. In
all of these works, security among domains is not explicitly
stated within the SLOs, when choosing amongst a set of
resource domains or interconnecting paths. Other works such
as [14], [15] extend QoS-driven approaches to include security
requirements. However, security alignment as a requirement
for resource provisioning has not been addressed in an end-
to-end manner. They opt to instantiate point solutions such as
SDN [16] and Network Function Virtualization (NFV) [17]
along with methods to test the solutions’ impact on federated
cloud security. In contrast, our work is unique because we ad-
dress the end-to-end multi-domain security design by defining
and aligning SSpecs of a data-intensive application along an
application workflow life cycle.

With regards to aligning diverse domain-security postures
using a standardized technique, the current literature lacks
foundational methods to define and formalize SSpecs. Al-
though the National Institute of Standards and Technology
(NIST) [18] has provided guidelines for Security and Pri-
vacy Controls for Federal Information Systems and Organiza-
tions [9], the security postures of institutions such as e.g., Uni-
versity of Missouri (MU) [19], University of Texas at Austin
(UT) [20], and University of Southern California (USC) [21]
can, and are heterogenous, disproportionate ranging from 5 to
150 pages of documents with limited, and in some cases - no
alignment with the NIST guidelines.

In related works for security formalization and alignment,
domain security assessment has generally been performed by
quantification [22], or risk analysis as suggested by NIST.
The current literature lacks any definitive solutions to directly
compare different domains’ security requirements. In [10], a
formal approach is proposed to align security policies within
an organization between physical, digital, and social domains,
where the security profiles are updated as wrappers along
the organization hierarchy. The alignment of domain security

policies is performed informally by authors in [23] to assess
organizational goals. Work in [24] discusses policies in terms
of sequences of actions; their framework allows refinement
of both systems and policies based on UML specifications.
However, they do not explicitly address end-to-end security
policies spanning multiple domains that affect application
performance as we do in our novel scheme that uses portunes
algebra and NIST guidelines in order to convert diverse or
even mutually orthogonal domain security postures into a more
homogenous set of formal statements.

Existing works pertaining to security and dependability for
federated CI resources in data-intensive research communities
mostly deal with security measures and point solutions to
counter confidentiality, availability, and integrity threats rather
than designing an end-to-end security design that helps in
dynamic provisioning and adaptation using such measures.
Exemplar solutions to Big Data transfer in a federated environ-
ment include Globus that provides the ability to use point solu-
tions such as InCommon [25], OpenID [26] and X.509 [27] to
access resources [28]. The Large Synoptic Survey Telescope
(LSST) community on the other hand provides detailed guide-
lines for multi-domain cybersecurity compliance with a list of
threat mitigating capabilities at involved domains [29]. These
communities can benefit from our formal approach of resource
provisioning based on multi-domain security requirements,
and augment their current approach of manual co-ordination
of policies to find security alignment in workflow management
across federated resources.

III. SECURITY SPECIFICATIONS FORMALIZATION

In this section we will first present a distributed computing
use case that can motivate the joint QSpecs-SSpecs-driven,
RSpecs-compliant federated workflow management. Next we
will propose our NIST inspired SSpecs formalization scheme.

A. Distributed Computing Use Case
Knowledge Base (KB) approaches, in areas such as trans-

actional genomics and breeding, allow users and researchers
to have a single point of information source. An exemplar
in this area is the SoyKB, which is a comprehensive web
resource developed at MU for soybean translational genomics
and breeding. The SoyKB application handles the management
and integration of soybean genomics and multi-omics data
along with gene function annotations, biological pathway and
trait information. The SoyKB has been featured as a model
use case for distributed computing in the systems biology area
within the Open Science Grid community [30].

The SoyKB requires large data sets from data archives being
transferred to MU for pre-processing and subsequently being
transferred to either local private cloud at MU or remote public
cloud HPC sites, viz., ISI (Information Sciences Institute)
at USC, and TACC (Texas Advanced Computing Center) at
UT for analysis as shown in Fig. 3. Following computation
completion, the resultant processed data will be transferred
to MU and also to the iPlant Collaborative [4] storage. For
different stages of the cross-domain transfer, the data can take
either dedicated high-speed Layer 2 connectivity or regular
Layer 3 Internet path depending on the QoS requirements and
availability of network resources.

As the first step towards joint QSpecs-SSpecs-driven re-
source management for SoyKB application, we define and for-
malize a data-intensive application’s SSpecs. Although existing
environments, such as the Global Environment for Network
Innovations (GENI) [31], make use of RSpecs and QSpecs
to request available resources, definition and characterization

Fig. 3. SoyKB user workflows with federated CI resource requirements

of SSpecs from application’s security requirements is not ad-
dressed directly in the orchestration of the workflow life cycle.
In the following, we list the key challenges in formalizing of
security requirements to SSpecs.

B. Challenges in formalizing SSpecs
• As the size, nature, and structure of data for a data-intensive

application change along the involved workflow’s life cycle,
so does change the security requirements associated with the
data. Representing such change in a standardized manner
becomes even more complicated when the different stages
of the workflow life cycle involves multiple domains.

• Not all these participating domains will treat data classifi-
cation with a unified standard, because domains carry their
own classification of data in their security postures. And not
all domains will be willing to accept an overriding security
classification standard on top of own their domain posture.

• A data-intensive application’s data security classification
is generally defined according to the originating domain’s
security posture. However, due to the diversity of different
domain postures, in most cases such classifications become
reduced to a conservative setup, or the security compliance
from both data-side and domain-side becomes complicated.

• Although security requirements of a data-intensive applica-
tion are predominantly data-driven, they directly correspond
to CI (network/compute/storage) resources where the data
resides.

• For any given stage in a workflow’s life cycle, additional
security requirements may be added on top of any initial
security requirements, such as scientific instruments gener-
ating the data, software analysis tools, and personnel associ-
ated and their privileges. The formal security requirements
definition needs to have such provisions.
Keeping in mind such challenges and the basic need for a

formalization of security requirements, we define SSpecs of a
data-intensive application as:

Definition 1 (SSpecs): A formal data structure to describe
the security requirements of the application workflow for any
state during the workflow life cycle in terms of data, CI
resources handling the data, instruments, software tools, and
personnel involved.

Example: Figure 4 shows a pictorial representation of our
proposed SSpecs formalization for a typical data-intensive
application. The data structure is divided into life cycle stages
with each life cycle stage further divided into Data and Aux-
iliary security requirements. The Data requirements are again

divided in to specific CI resource requirements in terms of net-
work, compute and storage resources in order to facilitate joint
QSpecs-SSpecs-driven, RSpecs-compliant resource brokering.
Both Data and Auxiliary requirements are expressed using
security requirement categories that follow NIST guidelines,
the description of the requirement for that category and finally
the level (High/Medium/Low) of that requirement. Details
about the SSpecs data structure are discussed next.

Fig. 4. A data-intensive application’s SSpecs format in terms of Data and
Auxiliary security requirements

C. Application workflow life cycle
Every data-intensive application workflow can be viewed

as collection of life cycle stages, such as acquisition, pre-
processing, processing, analysis, and collaboration. While go-
ing through these stages, data will be frequently changing
in form and size depending upon the scientific protocol
in the research experiment. In most cases, such life cycle
stage division is also associated with diverse CI, software, or
hardware resource requirements that essentially become part
of QSpecs. This in turn helps in compute/storage resource
selection and network path selection between domains for
distributed resource provisioning. As our objective in defin-
ing and characterizing SSpecs is to include an application’s
security requirements as a factor for such provisioning, it is
all but natural that the SSpecs of that application should also
be defined in terms of life cycle stages.

Defining SSpecs on the basis of the application workflow
life cycle serves two purposes that are directly linked to the
challenges described in Section III-B. Firstly, a life cycle based
approach obviates the need for having the application user(s)
original site’s security posture as an overarching influence on
the application SSpecs. This in turn removes any chance of
potential conflict between the data classification rules used
to define the SSpecs and any other domain’s (along the life
cycle) security posture. Secondly, such a life cycle based char-
acterization makes the addition of SSpecs into any resource
provisioning algorithm that uses QSpecs as the differentiating
factor in choosing ideal domains and paths.

TABLE I
NIST SP 800E GUIDELINES COMPATIBLE DATA AND AUXILIARY

SECURITY CATEGORIES AND FAMILY NAMES

Data Requirements Auxiliary requirements
ID Family ID Family
AC Access Control AT Awareness and Training
AU Audit and Accountability CM Configuration Management
CA Security Assessment and

Authorization
CP Contingency Planning

IA Identification and Authenti-
cation

IR Incident Response

SA System and Services Ac-
quisition

MA Maintenance

SC System and Communica-
tion Protection

MP Media Protection

SI System and Information In-
tegrity

PE Physical and Environmental
Protection

PL Planning
PM Program Management
PS Personnel Security
RA Risk Assessment

D. Data and Auxiliary Security Requirements

For any given stage of the workflow life cycle, application
SSpecs is divided into Data and Auxiliary security require-
ments. The Data requirements are based upon the factors (cat-
egories) that directly relate to the data security involving the CI
resources. We use NIST [32] guidelines for the comprehensive
list of 18 security and privacy control categories for federal
information systems. We further divide them into Data and
Auxiliary categories in accordance with our SSpecs data struc-
ture. Table I shows the list of 18 categories divided into Data
and Auxiliary security requirements and their corresponding
NIST descriptions.

The category description in the SSpecs data structure (as
shown in Fig. 4) differs from that of the description in
Table I. Descriptions in the data structure represents the
security requirements that are specified by the application
for that particular category. Depending upon the description,
the corresponding category at a particular life cycle stage is
given either a High/Moderate/Low level ranking based on the
NIST guidelines. As an example, in Fig. 4, data accessed
by anyone in a particular domain/stage is deemed as Low
level security requirement by NIST guidelines. In our opinion,
Table I represents the comprehensive list of security related
categories/issues that are relevant for a data-intensive appli-
cation. In general, applications do not specify any particular
requirements for most categories at different life cycle stages.
Further, if security requirements are not mentioned for any
category for a particular life cycle stage or even for the entire
workflow, the security requirement level is as Default.

The Auxiliary requirements are the security specifications
imposed on a workflow on top of Data requirements involving
CI resources. These mainly deal with security requirements
that can not be categorized into network/compute/storage
resources, rather they involve scientific instruments, analysis
tools and expensive software, and users/personnel related
social requirements, or a combination of all these at different
stages of the workflow life cycle. We associate 11 out of
18 NIST security control categories with Auxiliary security
requirements of a data-intensive application. The method of
assigning levels for such Auxiliary requirement categories is
the same as in the case of the Data requirements discussed
in the previous section and shown in Fig. 4. For example, a
scientific instrument at life cycle stage 1 of a data-intensive ap-
plication might be a very sophisticated, exclusive and secured
equipment that requires expert handling by technical staff with

sufficient training. However, the security requirements consid-
ers faculty and graduate students sufficiently trained and only
requires technician staff in the lab to be adequately trained.
According to the NIST security descriptions from [32], such
requirements fall under category “Awareness and training”
(AT) and can be ranked in the Moderate level as shown in
Fig. 4.

Similarly, user and personnel related security requirements
are also included into the Auxiliary requirements of SSpecs.
The reputation/trust of inter- or intra-domain users associated
with the workflow is an important factor in deciding whether
the security (in terms of confidentiality, integrity and avail-
ability) of the overall workflow is being compromised or not.
Thus, for each given user associated with any stage of the
workflow, the history of the user using that application, or
similar applications, or even resources associated with that
application can be taken into account and specified as a
part of security category description. It can subsequently be
scored with a level according to the NIST guidelines. We
identify, categories such as “Personnel Security” (PS) and
partly “Risk Assessment” (RA) as the areas where such user
related requirements can be specified. It is to be noted that such
user related security requirements are not same as “Access
Control” (AC) category, which mostly deals with access to
data at different life cycle stages. In PS and RA categories,
we rather associate users’ access to elements other than data
(e.g., instruments, hardwares, tools) and exception conditions
on top of specified rules for access to such elements based on
a user’s history.

IV. ALIGNING DOMAIN SECURITY POLICIES

As stated earlier, one of the major barriers in joint security
and performance-driven resource management is the fact that
in most cases the domain security postures involving RSpecs
are diverse and cannot be compared with application security
requirements for compliance. This is especially true for many
public and private universities in the United States who sep-
arate their security classification levels for different resources
from anywhere between three to six levels that are difficult to
align. For example, we specifically study the data classification
policies of a selection of universities related to the SoyKB ap-
plication: on one hand, universities such as, UT [20], USC [21]
classify the data into three different categories. Whereas,
MU [19] on the other hand, classify data into four different
categories. Moreover, universities, such as Harvard [33] uses
five categories. The resource security policies for each of
these classifications vary between institutions, making security
specification compliance while reserving federated resources a
burden for both data-intensive application users and resource
providers.

TABLE II
COMPARISON OF SECURITY POLICY LEVELS OF DIFFERENT UNIVERSITIES

MU UT USC
Highly Restricted Confidential Highly Sensitive
Restricted Controlled Sensitive
Sensitive Published Private
Public - -

More specifically, inconsistencies between the classification
levels of institutions can cause confusion in how the domain
resources should be classified. UT for instance, does not
classify any of its information as “Public”, thus making all
the resources apparently secured. Whereas the definition of
“Sensitive” at MU is different than the same at USC. In
addition to resource classification, the length and complexity

Fig. 5. Logical steps to align diverse domain security posture into standardized
NIST compatible security policies

of the security posture differ greatly with one university
having a 7 page generic posture with high-level policies and 7
different categories, whereas another university having a very
detailed posture with intricate policies of over 160 pages and
over 30 categories.

Thus, in order to align such diverse/heterogeneous security
postures into homogenous policy statements that can make
the domain RSpecs comparable to the application’s SSpecs for
resource brokering, we propose a 3-step security alignment
scheme. Fig. 5 shows our proposed 3-steps scheme, where
we first categorize the policies based on the type of resources
(network/compute/storage), then drill down security policies
pertaining to each of the resource types into homogenous
formal policy statements using “Portunes Algebra” [10], and
then assign security levels to each such resources by applying
NIST SP 800E guidelines. The outcome of such a process
is the homogenous categorization of different domain RSpecs
that is comparable with a data-intensive application’s SSpecs.

A. Portunes Algebra
We use portunes algebra [10] to perform the first step shown

in Fig. 5 in order to convert diverse domain security postures
into a more homogenous set of formal statements. Although,
the authors in [10] proposed portunes algebra to align physical,
digital, and social security polices within a domain to remove
inconsistencies, we are the first to use the portunes to boil-
down both generic postures (i.e., high level policies, e.g., MU)
and fine-grained postures (i.e., low level policies, e.g., UT)
into formal homogenous statements. Below, we discuss using
examples, the relevant concepts in applying portunes algebra
to represent simple and complex policies.

Definition 2 (Policy): A policy is a theory Θ in first-
order predicate logic, with behaviors T ∈ T , and P (), a
distinguished prefix-closed predicate over behaviors.

The formula P (T) means that behavior T is permitted
or possible; ∼ P (T) means that a behavior T is forbidden
or impossible. If neither P (T) nor ∼ P (T) can be derived
from a policy, then the permissibility of T is undecided. For
example, the policy {∼ P (Action1, Action2)} would forbid
all behaviors beginning with Action1 followed by Action2.

Definition 3 (Simple policy): A simple policy is a set of
sentences Θ of the form P (T) or ∼ P (T), with T being a
behavior.

A simple policy can be understood as assigning to each
behavior a value among: don’t care, permitted, forbidden, or
contradiction. Many policies allow certain behavior, however

Fig. 6. Representation of aligned security posture of any domain

they require that a certain result can be achieved in relation to
an institution goal. Often, it is not of essential importance how
this result is achieved. For example, there should be at least
one possible way to change the configuration of an e-mail
server. This means that security policies can forbid all but
one of the concerned behaviors, as long as this one behavior
remains possible. We can thus have a situation where out of
a set of behaviors, at least one should be possible.

Example 3.1: Remote access of public data is permitted by
using Secure Shell (SSH).

The corresponding portunes representation of the policy will
be nc(publicData, ssh) where nc denotes generic netcopy
action for remote access.

Definition 4 (Extended policy): An extended policy Θ is a
set of sentences of the form φ1 ∨ φ2 ∨ · · · ∧ φn, where each
φi is of the form P (T) or ∼ P (T), with T being a behavior,
and ∨ and ∧ denote conjunction and disjunction of policies
respectively.

The extended policies are only “extended” with respect
to simple policies, not with respect to the general notion of
policy. Extended policies are a subset of high-level policies to
be found in generic postures, and simple policies are a subset
of extended policies to be found in detailed postures.

Example 4.1: The server data should never leave a secure
server.

The corresponding portunes representation of the
policy will be nm(serverData, secureServer)
∧ nc(serverData, secureServer) assuming netmove
and netcopy being the only two actions permitted on secure
server data. Portunes specifies another basic action neteval
and expresses any simple or extended policies using these
three fundamental actions.

B. NIST conversion

As shown in Fig. 5, once the security postures are homog-
enized into portunes statements, we apply NIST guidelines
from NIST SP 800E document [9] to determine the security
level (High/Medium/Low/Default) of each type of resource
and for each of the 18 categories (discussed in Section III)
based on the detailed descriptions provided in [9]. This way,
the output of our proposed 3-step process is aligned RSpecs of
a domain that looks Fig. 6, and can be easily compared with
application SSpecs for joint QSpecs-SSpecs-driven, RSpecs-
compliant resource provisioning.

V. RESOURCE PROVISIONING IMPLEMENTATION AND
CASE STUDY RESULTS

We implement our proposed security formalization and
alignment scheme, and the ensuing workflow management
by developing algorithms and software elements as part
of a unified resource broker framework, viz., OnTimeURB
shown in Fig. 7. OnTimeURB intelligently use distributed
CI resources, and point solutions to dynamically manage
and adapt federated CI resources in an agile, timely and
federation policy-compliant manner by implementing SSpecs
formalization, RSpecs alignment, and 3-way gear optimization
algorithm shown in Algorithm 1 and explained in Section V-D.
OnTimeURB is built using RESTful APIs [34] that are modu-
lar, and interoperable with common data-intensive application
deployments, and it enables OnTimeURB to be integrated with
popular federated authentication and authorization frameworks
(e.g., Shibboleth-based). We used the SoyKB application
(discussed in Section III-A) as a use case for OnTimeURB
evaluation and next will show SoyKB security formalization,
policy alignment and federated resource allocation results
using OnTimeURB.

Fig. 7. OnTimeURB functional and logical architecture

A. SoyKB QSpecs
Fig. 8 shows SoyKB QSpecs generation using OnTimeURB

that includes 1Gbps data throughput between MU and remote
servers (i.e., within iPlant) with little or no packet loss in
order to justify wide-area network path selection to move data
to remote compute resources, instead of local computation.
QSpecs also include provisioning of adequate HPC computing
resources (12 cores, 12 GHz, 32 GB RAM) either at local
or remote site for faster processing of raw genomic data of
concurrent KB flows to meet strict QoS requirements in terms
of execution times, depending on the characteristics of the
different KB processing pipelines. Finally, the iPlant storage
requires 1 TB persistent hard drive for processed data for
remote collaboration. The data transfer from remote HPC sites
to iPlant needs to have 200 Mbps throughput.

B. SoyKB SSpecs
Fig. 9 shows SoyKB SSpecs using OnTimeURB for all

the life cycle stages from application security requirements.
The requirements are collected through a careful and relevant

Fig. 8. SoyKB application QSpecs for different stages of application life cycle using OnTimeURB framework

Fig. 9. SoyKB application SSpecs for different stages of application life cycle using OnTimeURB framework

questionnaire asking for network, compute, storage resource
and auxiliary requirements for different stages of the workflow
as part of our OnTimeURB framework. At the Acquisition
stage, the security requirements mostly pertain to network re-
source, with compute and storage security requirements set to
Default. Compute and storage security requirements are more
elaborate for processing and collaboration stages, respectively.
Whereas the auxiliary requirements are more all encompassing
where requirements, such as awareness and training, personnel
security, and risk assessment require consistently substantial
protection through the application life cycle.

C. Converting TACC RSpecs into portunes statements
Next we demonstrate some example of TACC RSpecs, i.e.,

UT security policies (UT-IRUSP) statements being converted
into portunes statements and categorized into network, com-
pute, storage resources or as auxiliary policies using our
OnTimeURB framework. Although the UT-IRUSP statement
document is more than 150 pages long, below we will show
policy statement alignment that is relevant to the SoyKB
application.

UT-IRUSP 4.2.3 mandates monitoring for identifying and
disabling of unauthorized (i.e., rogue) wireless access points.
The corresponding portunes statement is:

〈ne(∼ (nm(WAP, 1l, Server) ∨
nm(U WAP, 1l, Server)))〉lt

where WAP is Wireless Access Point and U WAP is unautho-
rized WAP. The location predicate 1l denotes the server can
be located at any generic location, and the entire statement is
true of all such generic locations signified by the expression
lt. This statement belongs specifically to network resource.

UT-IRUSP 4.3 recommends that UT Austin must approve all
network hardware connected to UT network system resource in
order to ensure integrity, the portunes statement is as follows:

〈∼ nm(System, 1l, UT SytemResources) ∨
nm(auth sys, 1p, UT SystemResources)〉tt

Similar to the location predicate, 1p denotes the process
predicate for any generic process, and tt signifies satisfaction
of all kinds of predicate logic. This statement can also be
categorized exclusively to network resources.

For compute resource specific policies, UT-IRUSP 17.1.3
states vulnerability assessments are performed annually, at
minimum, to identify software and configuration weaknesses
within information systems, yielding the portunes statement

〈(nc(results, file, 1l) ∧
ne(assess, software, InformationSystems))〉tt

A example of a specific policy UT-IRUSP 4.2.1 requires to
establish and communicate to Users the roles and conditions
under which Remote or wireless Access to Information Re-
sources containing Confidential Data is permitted, leading to
the portunes statement:

〈∼ ne(person, 1p, P rimaryServer) ∨
nm(person, 1p, server)〉tt

The above examples present only a small subset of portunes
statement generated from TACC and ISI domain/resource
security policies. For resource provisioning of SoyKB appli-
cation using OnTimeURB, we converted the all the policies
belonging to UT and USC that are relevant to SoyKB resource
provisioning.

D. Resource provisioning
OnTimeURB 3-way gear optimization algorithm shown in

Algorithm 1 takes an application a’s SSpecs SSa, QSpecs QSa
and different domain’s resource availability RAd, and aligned
RSpecs/domain policies DPd as inputs where d ∈ D, and D is
the set of domains. The outcome of the algorithm is resource
allocation Aa = {AN

a , A
C
a , A

S
a} in terms of network, compute,

and storage resources that satisfy both the SSpecs and QSpecs
of the application a.

Algorithm 1 follows a heuristic where the available re-
sources at each domain is checked for satisfiability of the
application QoS requirements. If satisfied, then each of the

network, compute, storage, and auxiliary security requirements
of the application SSpecs is compared with the aligned RSpecs
of the domain. If each category of all the resource types in
the domain RSpecs have equal or higher security level than
the corresponding application SSpecs, then that domain is
considered to satisfy the application SSpecs. This was when
both the QSpecs and SSpecs requirements satisfiability for all
the domains are evaluated, only the domain offering maximum
resources from the set of domains satisfying both QSpecs and
SSpecs is chosen to be the destination domain. Next, we will
use this algorithm to provision resources from UT, USC and
MU for different life cycle stages of the SoyKB application.

Algorithm 1: 3-way gear Optimization Algorithm

Data: SSpecs SSa = {SN
a , S

C
a , S

S
a , S

A
a } of application a

Data: QSpecs QSa = {QN
a , Q

C
a , Q

S
a} of application a

Data: Resource availability RAd = {RN
d , R

C
a , R

S
a } of

each candidate domain d ∈ D, with D domain set
Data: Aligned RSpecs or domain policies DPd =

{PN
d , P

C
a , P

S
a , P

A
d } of each candidate domain d

Result: Resource allocation Aa of application a
for all candidate domains d ∈ D do

if
(
RN

d ≥ resourceEquv(QN
a) && RC

d ≥
resourceEquv(QC

a) && RS
d ≥ resourceEquv(QS

a)
)

then
if
(
levelof(SN

a) ≥ levelof(PN
d) && levelof(SC

a) ≥
levelof(PC

d) && levelof(SS
a) ≥ levelof(PS

d) &&
levelof(SA

a) ≥ levelof(PA
d)

)
then

AN
d = resourceEquv(QN

a);
AC

d = resourceEquv(QC
a);

AS
d = resourceEquv(QS

a);
else

AN
d = 0; AC

d = 0; AS
d = 0;

else
AN

d = 0; AC
d = 0; AS

d = 0;
Ad = {AN

d , A
C
d , A

S
d };

end
Return Aa = maximize(Ad);

E. OnTimeURB optimization outcome and results
We use our proposed OnTimeURB framework to provision

resources for the SoyKB application, specifically for compute
location selection for Processing stage and ensuing network
path selection to the final storage facility at iPlant. This is
because the SoyKB application mandates data to be collected
at MU at the Acquisition stage and final public access from
the iPlant data store.

The three choices for compute location selection were MU,
TACC, and ISI HPC clusters. The outcome of OnTimeURB
joint QSpecs-SSpecs-driven resource provisioning scheme is
shown in Fig. 10 where TACC public cloud resources are
chosen over MU and ISI for data processing. Fig. 10 also
shows the outcome of our previous ADON [13] based resource
allocation that uses a traditional QSpecs-driven allocation, and
only SSpecs-driven allocation. The figure shows that in case
of ADON, local MU private cloud resources are chosen over
public cloud, and for only SSpecs-driven allocation remote
public cloud at ISI is chosen over TACC. Next we discuss the
reason behind such observations.

Figs. 11(a) and 11(b) show the reason behind the choice
of MU private cloud over public cloud with ADON based
QSpecs-driven allocation. Fig. 11(a) shows that due to local

Fig. 10. Comparing network path and domain selection outcomes for different
life cycle stages for SoyKB workflow between only QSpecs-driven, only
SSpecs-driven and joint QSpecs-SSpecs-driven allocation

resource availability and high priority task scheduling at local
site, the compute time for different sizes of soybean genomic
data at MU is much less than that at TACC and ISI which
closely comparable to each other. Although Fig. 11(b) shows
longer transfer time from MU to iPlant due to lower available
bandwidth, the scale of deterioration in transfer time (in
seconds) is no match to the scale of improvement in compute
time (in minutes). Therefore the overall end-to-end execution
time remains better at MU and consequently the QSpecs-driven
resource allocation chooses MU private cloud over public
cloud at TACC or ISI.

(a) Compute time comparison (b) Transfer time comparison

Fig. 11. SoyKB application performance comparison at different processing
locations for different sizes for genome data sizes

However, Fig. 12 shows a different story as far as satisfy-
ing the SoyKB SSpecs is concerned. The figure shows the
three domains’ aligned NIST-inspired RSpecs for network,
compute and auxiliary security policies (no storage, as it is
irrelevant for Processing stage) and their compliance with
SoyKB SSpecs for Processing stage (as shown in Fig. 9).
The levels representing lower and higher (or equal) than the
SoyKB application’s SSpecs levels for different categories are
shown using annotations in Fig. 12. We see that MU, due
to its very high level policies and small number of security
APIs, exhibit less than required security standards. Whereas,
public clouds, such as TACC and ISI that are designed for
remote HPC collaboration, supports all the SoyKB security
requirements. Therefore OnTimeURB resource provisioning
algorithm (Algorithm 1) chooses TACC as the final Processing
site due to its compliance with SoyKB SSpecs and marginally
better performance than ISI in terms of end-to-end execution
(compute and transfer time) time. However, only SSpecs-
driven allocation chooses ISI over TACC as ISI RSpecs are
more stringent in few categories than TACC (annotated in
Fig. 12) making ISI marginally better option than TACC in
terms of security.

Fig. 12. RSpecs alignment outcome of SoyKB application candidate sites/domains and their annotated compliance and non-compliance with SoyKB SSpecs

VI. CONCLUSIONS

In this paper, we motivated the need to formalize SSpecs of
distributed applications for more efficient workflow manage-
ment across federated resources. We showed how a process
of breaking down the security requirements across workflow
life cycle stages and applying NIST based categorization can
facilitate formalization of application SSpecs. Our unique use
of portunes algebra to align diverse domain postures resulted
in homogenizing domain RSpecs that is easily comparable with
a data-intensive application’s SSpecs to achieve joint QSpecs-
SSpecs-driven, RSpecs-compliant resource provisioning. Our
implementation of OnTimeURB and case study evaluation
with the SoyKB application demonstrated the benefits of our
proposed approach in ensuring both satisfaction of perfor-
mance and security requirements by limiting friction across
domains, without overriding any domain policies to gain per-
formance advantages. Our work advances the current knowl-
edge on how to intelligently perform resource allocations
among public and private cloud locations to reduce turnaround
times in a secured and policy-compliant manner. The data-
intensive application communities can benefit from our novel
approach of resource provisioning, and augment their current
techniques of manual co-ordination of policies.

Our future work is to build upon the foundations presented
in this paper, and comprehensively model the gear frictions for
other distributed computing based data-intensive applications.
We plan to create 3-way gear optimization algorithm exten-
sions and evaluate them for various distributed applications
and communities, such as, remote instrumentation for physi-
cists, and in the context of other cloud resource providers (e.g.,
Amazon Web Services, Microsoft Azure, NSF CloudLab).

REFERENCES
[1] R. Mount and D. Skinner, “Scientific collaborations for extreme-scale

science workshop report,” US Department of energy, Tech. Rep.
[2] I. Monga, E. Pouyoul, and C. Guok, “Software-defined networking for

Big-Data science - architectural models from campus to the WAN,” in
High Performance Computing, Networking, Storage and Analysis, 2012.

[3] “Large Hadron Collider,” http://home.cern/topics/large
-hadron-collider.

[4] S. Goff, et al., “The iPlant Collaborative: Cyberinfrastructure for Plant
Biology”. Frontiers in Plant Science, 2011.

[5] “OpenStack,” http://www.openstack.com.
[6] N. McKeown, T. Anderson, and H. Balakrishnan, “OpenFlow: Enabling

innovation in campus networks,” ACM SIGCOMM Computer Commu-
nication Review, vol. 38, p. 2, 2008.

[7] “Integrated Rule-Oriented Data System,” http://irods.org/.
[8] “Shibboleth,” https://shibboleth.net/.
[9] “Security and privacy controls for federal information systems and

organizations,” NIST SP800-30 Technical Report, Tech. Rep., 2013.
[10] W. Pieters, T. Dimkov, and D. Pavlovic, “Security policy alignment: A

formal approach,” Systems Journal, IEEE, vol. 7, no. 2, June 2013.
[11] T. Joshi, M. Fitzpatrick, S. Chen, Y. Liu, H. Zhang, R. Endacott,

E. Gaudiello, G. Stacey, and H. Nguyen, D. u, “Soybean Knowledge
Base (SoyKB): A web resource for integration of soybean translational
genomics and molecular breeding”, Nucl. Acids Res, 2014.

[12] W. Kim, P. Sharma, J. Lee, S. Banerjee, J. Tourrilhes, S.-J. Lee,
and P. Yalagandula, “Automated and scalable qos control for network
convergence,” in Proceedings of the Internet Network Management
Conference on Research on Enterprise Networking, 2010.

[13] R. B. Antequera, P. Calyam, S. Debroy, L. Cui, S. Seetharam, M. Dickin-
son, T. Joshi, D. Xu, and T. Beyene, “ADON: Application-driven overlay
network-as-a-service for data-intensive science,” in Cloud Computing,
IEEE Transactions on, 2016.

[14] C. Irvine and T. Levin, “Quality of security service,” in Proceedings of
the Workshop on New Security Paradigms, 2000.

[15] S. Lindskog, “Modeling and tuning security from a quality of service
perspective,” Ph.D. dissertation, Chalmers Univ. of Tech., 2005.

[16] A. Zaalouk, R. Khondoker, R. Marx, and K. Bayarou, “Orchsec: An
orchestrator-based architecture for enhancing network-security using
network monitoring and sdn control functions,” in Network Operations
and Management Symposium (NOMS), 2014 IEEE, May 2014, pp. 1–9.

[17] T. Wood, K. Ramakrishnan, J. Hwang, G. Liu, and W. Zhang, “Toward
a software-based network: integrating software defined networking and
network function virtualization,” Network, IEEE, May 2015.

[18] R. S. Ross, “Guide for conducting risk assessments,” NIST SP800-30-
Rev1 Technical Report, 2012.

[19] “MU security posture,” http://infosec.missouri.edu
/classification/definitions.html.

[20] “UT security posture,” http://security.utexas.edu/
policies/data_classification.

[21] “USC security posture,” http://itservices.usc.edu/
securityservices/.

[22] A. Taha, R. Trapero, J. Luna, and N. Suri, “Ahp-based quantitative ap-
proach for assessing and comparing cloud security,” in IEEE TrustCom,
2014.

[23] M. Corpuz and P. H. Barnes, “Integrating information security policy
management with corporate risk management for strategic alignment,”
in World Multi-Conference on Systemics, Cybernetics and Informatics,
2010.

[24] B. Solhaug and K. Stølen, “Preservation of policy adherence under
refinement,” Int. J. Software and Informatics, vol. 5, pp. 139–157, 2011.

[25] “Incommon,” https://www.incommon.org/.
[26] “OpenID,” http://openid.net/.
[27] “X.509 Specification,” http://docs.oasis-open.org/wss/20

04/01/oasis-200401-wss-x509-token-profile-1.0.pdf.
[28] R. Ananthakrishnan, J. Bryan, K. Chard, I. Foster, T. Howe, M. Lidman,

and S. Tuecke, “Globus Nexus: An identity, profile, and group man-
agement platform for science gateways and other collaborative science
applications,” in IEEE CLUSTER, 2013.

[29] B. Baker, K. Borne, T. Handley, J. Kantor, J. Hughes, R. Lambert, C. L.
Lee, H. Larrieu, and R. Plante, “LSST data management cybersecurity
draft plan,” 2015.

[30] “Open Science Grid,” http://www.opensciencegrid.org/.
[31] “GENI,” https://www.geni.net/.
[32] “Minimum security requirements for federal information and informa-

tion systems,” NIST, Tech. Rep., 2006.
[33] “Harvard security posture,” http://sites.gse.harvard.edu/

its/data-classification.
[34] M. Masse, “REST API design rulebook,” O’Reilly Media ISBN: 978-1-

4493-1050-9, 2012.

