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Abstract—Security vulnerabilities that are unique to unlicensed
(secondary) networks have been well studied in literature. How-
ever, the nature and impact of traditional wireless network
threats, such as backoff manipulation when applied to secondary
networks, require further investigation in particular for multiple
rogue station scenarios. In this paper, we perform modeling and
analysis of multi-rogue backoff manipulation attack strategies
in secondary wireless networks using the PRISM probabilistic
model checker. Our secondary network implementation in PRISM
includes scenarios where: a) sub-band (channel) occupancy by
licensed (primary) nodes follows an ON-OFF model with param-
eters derived from real measurement data and b) the secondary
network consists of up to three rogue secondary stations out of
eight total with all following CSMA/CA like contention process for
channel access. Unlike honest secondary stations, the rogues carry
out a backoff-manipulation strategy of selecting a backoff timer
that deviates from the backoff-selection process mandated by the
secondary network. Unlike simulation based analysis, our analysis
using PRISM model checker considers all possible combinations
of system parameters and proves that for any set of primary ON-
OFF parameters and for any density of rogues in the network, a
fixed backoff selection (instead of random) maximizes the channel
access probability of a particular rogue irrespective of other
rogues’ selection strategy. The results from this work will help
generate deeper understanding of medium access threat landscape
of secondary networks and foster design of more resilient access
control strategies.

Index Terms—Formal methods, PRISM, backoff manipulation
attacks, dynamic spectrum access, unlicensed users.

I. INTRODUCTION

The spatial and temporal under-utilization of radio spectrum
have motivated a paradigm shift from static towards dynamic
spectrum management where unlicensed (secondary) networks
comprising of non-license holding secondary users/stations
can ‘borrow’ idle spectrum from the primary license holders
(users) without causing harmful interference to the latter. Such
secondary networks are required to continuously monitor the
presence of primary users on licensed sub-bands (channels)
and opportunistically access the unused or under-utilized sub-
bands [1], [2]. As shown in Figure 1, this entire process
comprises of four distinct but inter-dependent stages: a) channel
sensing often using cognitive radios, b) channel availability de-
cision making based on statistical models, c) available channel
access by secondary users, and d) data transmission through
accessed channel. As licensed channels are made available
to the secondary users, they are expected to adhere to the
regulations pertaining to all the stages of unlicensed access.

In most cases, the channel sensing, decision making, and
channel usage are strictly regulated by Federal Communica-
tions Commission (FCC) with harsh consequences for anyone
who violates them. However, regulations about channel access
among secondary users in many cases fall under the purview
of the secondary network administrator/controller with relaxed
compliance requirements leading to regulatory constraints that
are not always being strictly enforced. This is especially true
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Fig. 1: Different stages of unlicensed secondary usage of
licensed sub-bands/channels

for secondary networks that are distributed in nature, such
as [3], [4]. This is due to the fact that in such use cases
there is no central entity to oversee the channel access control
process and thus the secondary users resort to contention based
medium access control (MAC) protocols. This results in some
rogue secondary users actively manipulating the channel MAC
contention process for selfish and malicious purposes that can
propagate to the entire network with cascading effects.

One of the most prominent ways of gaining unfair advan-
tage during contention is backoff manipulation attack. Backoff
manipulation attacks are denial-of-service (DoS) attacks on
wireless networks where rogue stations (users) choose a very
small value for minimum contention window aiming to unfairly
win the contention process and thereby monopolize channel
access. Backoff manipulation attacks are also feasible in sec-
ondary networks where contending secondary users use Carrier
Sense Multiple Access with Collision Avoidance (CSMA/CA)
based MAC protocol for channel contention. Although in the
last decade many notable works [5], [6], [7] have studied
generic wireless network-like backoff manipulation attacks, few
have delved into modeling secondary network specific backoff
manipulation attacks that maximize rogue user’s channel access
probability. At the same time, exploration and modeling of such
attack behavior when multiple such rogue agents are present (in
the network) also remain uncharted waters.

In this paper, we use the PRISM probabilistic model checker
to compute the probability of channel access by rogue sec-
ondary stations when the primary user is not using the channel
(i.e., the channel is in OFF state) in the presence of multiple
rogue in the secondary network. The number of secondary
stations range from four to eight, with the number of rogue
secondaries ranging from zero to three. Rogues carry out
a backoff manipulation strategy, deviating from the backoff
selection process specified by the secondary CSMA/CA in-
spired contention based MAC protocol. Our results indicate that
rogue behavior does improve the probability of success, with
particular selections giving an overwhelming advantage. With



two rogues, certain combinations in terms of backoff selection
are shown to substantially reduce the probability of success for
any honest secondary station in a network, while results for
three rogues reinforce the optimality of such selection strategies
observed in scenarios with fewer rogues. Unlike simulation,
our PRISM model checker implementation takes into account
all possible unfoldings of the contention process, which is
made possible both by utilities of the tool, and the modeling
techniques applied. Although the overall results corroborate
with early works on backoff manipulation attacks, our unique
formal methods based approach is able to prove that a fixed
backoff selection rogue strategy leads to higher success even
in multiple rogue scenarios.

The rest of the paper is organized as follows. Section II
discusses the related work and motivation. Section III describes
the PRISM implementation details. Section IV presents and
discusses the results. Section V concludes the paper.

II. RELATED WORK AND MOTIVATION

In this section we discuss the related work and motivation
behind this work. First we discuss backoff manipulation attacks
on IEEE 802.11 networks followed by the similar attacks in
secondary networks. Finally, we discuss the applications of
formal methods in network protocol verification.

Works such as [5], [6], [7], [8], [9] investigate backoff
manipulation attacks in different types of wireless networks
that are non-DSA. In [5], authors present backoff manipulation
as one of the many ways of denying channel access to honest
stations, whereas DOMINO [6] presents an analytical model
of how such greedy behavior can be effectively detected with
simulation results - both are considered seminal works on IEEE
802.11 networks. Works such as [7], [8], and [9] build upon
DOMINO to design even more effective detection methods
through statistical modeling and network deployed experiments.
However, no such works focus on modeling effective attack
strategies for greater impact on the network. Most of the attack
models used in such works are generic and may not prove very
effective in a dynamic spectrum access setting. Furthermore,
scenarios with multiple rogues and their effects are never
explored, which is the focus of this paper.

In recent years, notable works, such as [10], [11], [12],
[13] explore the nature of backoff manipulation attacks in
cognitive radio networks. In [10] authors propose a coordi-
nated physical and MAC layer attack manifested through small
backoff window selection. Authors use analysis and simulation
to demonstrate the attack effects. Authors in [10] present a
survey on security threats and detection techniques in cognitive
radio networks where they discuss how generic wireless backoff
manipulation attacks can be extended to secondary networks.
Whereas in [12] and [13], authors propose DoS attacks called
‘Off-sensing attacks’ that affect the contention process among
the secondary stations by manipulating their knowledge of
licensed spectrum availability. Although it explores a derivative
of backoff manipulation, the attack still exploits the inherent
vulnerabilities of CSMA/CA contention process. Overall, the
scope of existing works towards backoff manipulation attacks
in secondary network are limited in terms of optimizing attack
strategy, as most of the works use analytical modeling with
strong assumptions and thereby limit the real-world applicabil-
ity. At the same time, almost all such works use Monte-Carlo
simulations that only consider a limited number of scenarios
with certain parameter combinations. Simulation is of course

unable to provide guarantees, thus motivating our approach
to use formal methods, and in particular model checking, to
provide provable bounds over all possible executions.

Although network protocol verification was one of the early
driving forces behind model checking, the early projects in-
volved verification of non-probabilistic systems (unlike the
backoff manipulation attack) and effective probabilistic model
checkers have appeared only over the last decade. One early
work verifying similar probabilistic systems was by [14],
who verified certain correctness properties of the CSMA/CA
contention resolution protocol in IEEE 802.15.4 low-rate wire-
less personal area networks. Since then, there have been a
few attempts to use formal methods to prove/analyze various
properties of CSMA protocols. One such example is [15] who
proved stability properties of wireless networked control sys-
tems’ unslotted CSMA/CA protocol with 2-4 nodes. The only
work that performs formal analysis of the backoff procedure
CSMA/CA based MAC protocol in wireless sensor networks
is performed in [16]. However, we are not aware of any who
have used formal methods for the backoff manipulation attacks
in secondary networks that is our primary focus. Additionally,
in the presence of multiple rogues (along with non-rogues) any
realistic model must have enough nodes which leads to scala-
bility challenges if meaningful results are to be expected. Our
work presented here is thus guided by scalability concerns, both
in terms of the underlying formalism and model abstractions.

III. APPROACH

Our approach to this problem relies on model checking to
formally model and prove properties of backoff manipulation
attacks in a multi-rogue setting. The model checking approach
to formal verification consists of codifying the behavior of a
system as concurrent finite state machines (FSMs), and proving
properties on all behaviors of the product machine resulting
from their parallel composition [17]. FSM transitions may be
deterministic or nondeterministic, with the latter allowing for
states with several possible successors. Given a set of state
machines, a model checker then constructs a representation
(i.e., the model) capturing all interleavings of the FSMs,
and explores the model up to exhaustion for satisfaction,
or violation, of specified properties. Specifications are given
in a formal language distinct from the modeling language,
which include not just the usual Boolean-valued operators, but
others codifying temporal aspects, such as eventualities and the
ordering of a sequence of events.

The primary problem with model checking is state space
explosion, due largely to the exponential number of interleav-
ings. One common approach alleviating state space explosion
is the use of binary decision diagrams to represent model states
and transitions symbolically instead of explicitly, which can in
some cases expand the size of feasible models many orders
of magnitude. Other notable optimizations and advancements
have been developed, a particularly useful one to be discussed
in Section III-A.

Typically, the investigator will produce a set of specifications
for validating the correctness of the model — that is, to
check that the system codified does exhibit the basic behavior
intended, e.g. that state A always follows with state B, as is
known to be the case. Thereafter, the model checker is run
using specifications for verifying that desired behavior does
occur, while undesired behavior does not.



A. Probabilistic Model Checking with PRISM

Probabilistic model checking is an extension of model check-
ing where FSM transitions may be associated with probabilities,
thereby facilitating the computation of, among many other
related figures, probabilities for the satisfaction of specifications
within a model. We use the most common probabilistic model
checker, PRISM [18]. Its language for model description is
based on the Reactive Models formalism [19], with support for
numerous types of models: as with ordinary model checking, it
permits both deterministic and nondeterministic behavior, while
allowing for time to be modeled discretely and continuously,
including with real-valued clock variables.

At the basic level, PRISM supports nonprobabilistic model
checking of formulae in Linear Temporal and Computation
Tree Logics (LTL and CTL, respectively). These logics are
extended with the introduction of operators for computing
(or verifying) probability (bounds), including for steady-state
behavior of nonterminating processes. PRISM also provides a
rewards mechanism that enables one to compute means for
metrics on model behavior, while filters can be applied to
restrict analyses to sets of states meeting user-defined criteria.
PRISM also provides a powerful symmetry reduction option,
which we exploit for multi-station scalability. Model compo-
nents are organized into modules, which, once defined, can
be used to instantiate other instances within the model. Given
such a model, PRISM can exploit the symmetry among these
modules to build a symbolic representation more efficiently,
thus avoiding the exploration of equivalent traces. For our
study, we chose discrete-time Markov chains (DTMCs), being
the natural fit for slotted CSMA like protocols, while also
exhibiting determinism, which greatly improves scalability.

B. Primary User Model

In our model, each primary user on a particular channel
alternates between the ON and OFF state according to a 2-
state Markov process.The activity process of primary user is
expressed as a transition matrix:

P =

[
PON→ON PON→OFF

POFF→ON POFF→OFF

]
For real values of transition probabilities, we use the data

collected by RWTH Aachen Mobnets [20]. For our primary
activity model, we use two TV primary sub-bands from the
measurements dataset with the following center frequencies and
ranges: 770 MHz (Range 20-1520 MHz) and 2250 MHz (1500-
3000 MHz). Each measurement unit is a 6000×8192 matrix
of primary (TV transmitters) power spectrum density (PSD)
in dBm for 200KHz primary channel granularity. Figures 2(a)
and 2(b) show PSD values of the two sub-bands for the
entire time-sweep and their corresponding PSD thresholds (-
107 dBm/200 kHz and -108 dBm/200 kHz) derived from their
respective means. By comparing the PSD values with the
threshold we determine the primary ON and OFF states in the
bands. We then use the comparison results to estimate transition
probabilities between ON and OFF states for the sub-bands. We
denote Pi→j as the probability that a channel transits from state
i to state j and apply well-known likelihood estimator for the
transition probability [21] as:

Pi→j =
#transitions from state i to state j

#number of i states

Fig. 2: RWTH Mobnets dataset power spectral densities in two
primary sub-bands with respective thresholds

By applying this method, the primary ON and OFF transition
probabilities for the two sub-bands used from our primary
model are calculated as,

P[20,1520] =

[
0.9087 0.0913
0.0404 0.9596

]
P[1500,3000] =

[
0.8513 0.1487
0.0553 0.9447

]

Fig. 3: The secondary rogue and non-rogue CSMA/CA based
contention process



C. Secondary Contention Protocol

Figure 3 illustrates the finite state machine depicting our
CSMA/CA like secondary contention protocol. In our model
the secondary protocol is triggered by the primary going to
the OFF state with all secondary stations (rogue and honest)
contending to access the available channel. For the purpose of
this work, several abstractions (from IEEE 802.11 CSMA/CA)
were employed in order for the model to mimic contention
process in notable secondary MAC protocols, such as [4],
[22] and also for our computations to be tractable for larger
numbers of stations. These abstractions occur both within the
secondary station modules, and in their interaction through a
shared medium with the primary station. To begin, we view
the arrival of a clear-to-send (CTS) message as successful
access of the channel by a secondary, and do not model the
frame transmission. As soon as a secondary station reaches the
success state, or all secondaries reach the abort state, the model
reaches a sink state, halting any further progress.

Next, all interframe space (Wait IFS), such as DIFS and SIFS
occurring are eliminated to reduce state space. Additionally, if
a secondary station is on its last retry, and it is determined
that the secondary will fail on this attempt, then that secondary
immediately transitions into the abort state. This trims the state-
space by a slight amount, while also allowing for probabilities
computed regarding failure to accurately reflect that a station
was on its way to abort, even though it would not have yet
reached the designated abort state otherwise. These abstractions
enable us to verify systems with up to eight stations, with the
number of retries limited to three. While the number of retries
in particular may seem rather low compared to the true retry
limit of 15, later we will show that fairly definitive results
can be derived with this value. A major source of state space
explosion lies in selecting the random backoff value. Thus we
model a different state machine that uses conditional proba-
bilities to emulate this selection while producing completely
equivalent behaviors. This avoids the associated state-space
increase entirely, at the cost of some extra computation time.

Outside of the secondary station modules, the time for
transmissions are parameterized by constant multipliers of time
slots, each representing 51.2 µs. For our study, we establish the
propagation time as amounting to one time slot, the roundtrip
time as double that, and the CTS timeout as double the last. All
behaviors within the protocol that are based on these parameters
are defined in terms of them in the model. A single three-valued
channel variable is used to capture the communication medium.
Messages, and their propagation through the medium, are not
themselves modeled. Instead, activity along the medium is
captured through idle, low and high (abnormal) values — once
the latter value is attained, any communication on the channel
before inactivity is characterized as abnormal, indicating a
garbled message. Our contention protocol does not model IEEE
802.11 CSMA/CA acknowledgements (ACK) from intended
receivers to the contending stations, i.e., potential senders.
Successful reception of an ACK is reflected by inactivity along
the channel within one roundtrip-time of a request-to-send
(RTS) message being transmitted. At any time step, the primary
may probabilistically (not nondeterministically) issue an ON
signal, causing all secondaries which have not yet aborted to
reset, keeping their current value for number of retries.

Rogue secondary station modules occur as little modifica-
tions to those of honest secondary stations - they are given fixed

values for their K (i.e., number of retries in Figure 3), which
are parameterized in the model by constants. As such, rogue
secondaries never reach an abort state, as their K values never
change, and so never reach the limit. Nevertheless, they still
choose random backoff values from 0 to 2K−1 upon reaching
the contention window, and wait the full CTS timeout before
retrying. Our model is deterministic and follows discrete time
steps. There is a single initial state, where the primary node
is OFF and all secondary stations are in their carrier sense
state (with K = 0 if not fixed). With nondeterminism, we
could have any subset of the stations begin their communication
attempts at any time step, in order to capture the dynamic
nature of shared-medium communication. However, the results
from PRISM would be returned as bounds for all possibilities,
and given the wide range of different behaviors, we opted
for precise probabilities for each possible scenario, over more
comprehensive yet possibly wide-ranging bounds.

D. Specifications
For all models, we expect (and validated) the following

behaviors, stated in English and PRISM’s temporal logic
specification language, where P<=0 [spec] checks that the
probability of satisfying spec is (at most) 0:
• When the primary does turn on, all secondaries that have

not aborted do reset. (That is, stop sending, return to
carrier sense, and reset their internal clocks.)
P<=0 [F (p=1 & (X (s1<5 & ... & sR<5 &
((0<s1 & s1<4)|...|(0<sR & sR<4)))))]

• Secondaries are only sending in their sending states. (That
is, the sending variable is only on in the sending state.)
P<=0 [F (sending1 & s1!=2)]

• Secondaries that have aborted or succeeded remain in that
state.
P<=0 [F (s1=4 & (F s1!=4))]
P<=0 [F (s1=5 & (F s1!=5))]

• Only one secondary may succeed.
P<=0 [F (s1=5 & (s2=5 | ... | sR=5))]
P<=0 [F (sR=5 & (s1=5 | ...))]

• The channel only carries a signal when a secondary is
sending.
P<=0 [F (ss > 0 & !sending1 & ... &
!sendingR)]
P<=0 [F (ss = 0 & !s1=5 & ... & !sR=5 &
(sending1 | ... | sendingR))]

Additionally, when there are rogue secondary stations, we
expect that those modules never reach an abort state. 1

Having established that these behaviors are captured by
our model, we check the following probabilities, where P=?
[spec] queries for the probability that spec is satisfied:
• The probability of success for any secondary in the model,

and the same probability without any secondary aborting.
P=?[F (s1=5 | ... | sR=5)]
P=?[!(s1=4 | ...) U (s1=5 | ... |
sR=5)]

1We also considered the property that there is eventual success whenever
there is a rogue. When there are two rogues, this is not necessarily the case, as
will be seen. However, when there is one rogue, PRISM will compute a 100%
probability of eventual success for some secondary, even as the specification
will fail when considered nonprobabilistically. The issue is that the primary, as
mentioned, may turn on at any time step, thwarting any potentially successful
sequence of states. However, the probability for the primary turning on and of
staying on diminishes geometrically, so that the probability of no secondary
ever reaching the success state shrinks to 0.



• For models with rogue secondaries, the probability of a
rogue succeeding, as well as succeeding without another
secondary aborting.
P=?[F (sR=5)]
P=?[!(s1=4 | ...) U sR=5]

The reason we computed those probabilities of success
without aborts is as follows. It may occur that one station
succeeds due to one or more of the other stations aborting.
Given that our model is only tractable for a low retry limit, these
aborts are effectively premature. Thus, any difference in the
probability of success and success without an abort represents
scenarios where an honest secondary could have still succeeded.
We use this difference to give an upper bound for the true
probability of success for an honest secondary, in the following
way: since the behavior of the honest secondaries is symmetric,
we may take this difference and distribute this equally to the
probability of any honest secondary’s success within the model.
Similarly, the probability of success by a rogue without an abort
gives a lower bound for the true probability of success by a
rogue secondary.

As mentioned earlier, PRISM offers a reward mechanism,
which can be used for computing means. Within each module,
those transitions which occur with the passage of one time
slot are labeled with the identifier “time”. On one hand, this
synchronizes the timed actions of all the modules. On the other,
this is used to increment a reward for counting the number of
time slots that have elapsed, and can be used to compute a
mean for any certain (as in, 100% probable) event.

As it happens, symmetry reduction does not support the
computation of rewards, and we observed discrepancies be-
tween the reported values for reduced and unreduced versions.
However, by comparing the values from unreduced models to
those generated with symmetry reduction, we were able to
observe a useful pattern that allows us to gauge the extent of
the error for those larger models that could not be approached
without reduction.

IV. RESULTS AND DISCUSSIONS

Our specifications validating model correctness passed with
little to no time for models of all sizes. The following results
took over 3000 computing hours on a workstation with a 4-
core Xeon CPU (3.6-3.9 GHz) and 64GB RAM. The longest
computation itself took over 520 hours – this is with the help of
symmetry reduction, which in this most extreme case, reduced
the sizes of the state space and number of transitions by factors
of roughly 300 each. The first set of results presented use the
primary ON-OFF model values of parameter set P[20,1520] of
the first sub-band.

A. No rogues
As seen in Table I, with no rogues, the probability of

any secondary succeeding decreased gradually, from about
0.994 with four secondary stations, to about 0.976 with eight
secondary stations. This probability can be divided among the
symmetric honest secondaries to get their individual probability
of success, which is very nearly the reciprocal of the number
of secondaries. We note that the probability of success without
any station aborting drops significantly, from 0.914 with four
secondary stations, to 0.524 with eight secondary stations. This
indicates that the probability of eventual success would be even
higher, given a greater retry limit.

TABLE I: Probabilities of Success with No Rogues

No. of Secondaries 4 5 6 7 8
Eventual Success 0.9940 0.9921 0.9885 0.9834 0.9765

Without Abort 0.9139 0.8346 0.7295 0.6215 0.5238

B. One Rogue
With a single secondary rogue as shown in Table II, we

can see the effectiveness of each fixed value for K across
increasing numbers of stations. Keeping K at 0, which specifies
immediately trying once inactivity is detected in the carrier
sense state, is the poorest choice: not only is the probability of
success relatively low (ranging from 0.327 to 0.466), but there
is a significant difference from the corresponding probability
without an abort occurring (growing from 0.015 to 0.17 with
seven stations). This indicates that, given more retries, other
secondaries may still succeed. While this rogue secondary is
retrying immediately as described, it still leaves a window for
other stations to succeed as it waits the CTS timeout.

TABLE II: Probabilities of Success with One Rogue

K # Secondaries 4 5 6 7 8
0 Rogue succ.≤ 0.3273 0.4017 0.4449 0.4658 0.4746

Rogue succ.≥ 0.3124 0.3439 0.3297 0.2937
Honest succ.≤ 0.2292 0.1640 0.1341 0.1177
Honest succ.≥ 0.2242 0.1496 0.1110 0.0890 0.0751

Mean time 29.99 34.99 40.16 < 73.9
1 Rogue succ.≤ 0.6742 0.6699 0.6745 0.6803 0.6857

Rogue succ.≥ 0.6547 0.6316 0.6138 0.5980
Honest succ.≤ 0.1151 0.0921 0.0772 0.0670
Honest succ.≥ 0.1086 0.0825 0.0651 0.0533 0.0449

Mean time 21.21 23.27 25.29 < 41.6
2 Rogue succ.≤ 0.8754 0.8722 0.8707 0.8698 0.8692

Rogue succ.≥ 0.8705 0.8632 0.8560 0.8492
Honest succ.≤ 0.0432 0.0342 0.0288 0.0251
Honest succ.≥ 0.0415 0.0319 0.0259 0.0217 0.0187

Mean time 15.51 16.22 16.98 < 27.4
3 Rogue succ.≤ 0.5631 0.5521 0.5484 0.5473 0.5471

Rogue succ.≥ 0.5538 0.5338 0.5168 0.5014
Honest succ.≤ 0.1487 0.1166 0.0966 0.0831
Honest succ.≥ 0.1456 0.1120 0.0903 0.0755 0.0647

Mean time 22.68 25.16 27.69 < 48.9

The optimal value for K is observed as 2, with probabilities
of success staying near 0.87 and decreasing slightly with
increasing numbers of stations. The corresponding probabilities
without aborts only differ by up to 2%, in the seven station
model. This indicates that a value of 2 for K gives fairly
dependable chances of success for the rogue. The values
computed for the mean number of time slots further support
this: it would seem that by choosing such a value, the rogue
manages to avoid early collisions by other stations, while giving
it short enough backoff times to acquire the channel.

C. Two Rogues
The analyses for two rogue scenarios are divided between

situations where the rogues have the same value for K, and
those where they have different values. In the latter case, we
only examine scenarios where the values differ by 1 with fairly
insightful results.

1) Same Value for K: In Table III we show that when both
rogues have K = 0, neither one is able to succeed, and only
honest rogues are able to acquire the channel — this occurs
with probabilities decreasing from 0.935 to 0.819 as the total
number of secondaries increases from four to eight. As the
probability of success is not 1, no mean can be computed for the



TABLE III: Probabilities with Two Rogues, Same K

K # Secondaries 4 5 6 7 8
0 Rogue succ. = 0.0000 0.0000 0.0000 0.0000 0.0000

Honest succ. ≥ 0.4676 0.3031 0.2196 0.1695 0.1364
1 Rogue succ. ≤ 0.3977 0.3860 0.3829 0.3832 0.3851

Rogue succ. ≥ 0.3813 0.3607 0.3461 0.3351
Honest succ. ≤ 0.1187 0.0929 0.0770 0.0660
Honest succ. ≥ 0.1023 0.0760 0.0586 0.0467 0.0383

Mean time 21.60 23.17 24.86 < 34.0
2 Rogue succ. ≤ 0.4261 0.4239 0.4247 0.4257 0.4264

Rogue succ. ≥ 0.4232 0.4170 0.4109 0.4041
Honest succ. ≤ 0.0768 0.0553 0.0445 0.0384
Honest succ. ≥ 0.0739 0.0507 0.0377 0.0297 0.0245

Mean time 16.65 17.86 < 22.5 < 27.3
3 Rogue succ. ≤ 0.3786 0.3700 0.3674 0.3668 0.3666

Rogue succ. ≥ 0.3756 0.3631 0.3535 0.3443
Honest succ. ≤ 0.1244 0.0913 0.0733 0.0623
Honest succ. ≥ 0.1214 0.0867 0.0663 0.0533 0.0533

Mean time 18.67 20.47 < 26.2 < 32.3

TABLE IV: Probabilities with Two Rogues, Different K

K # Secondaries 4 5 6 7 8
0 Rogue succ. ≤ 0.0824 0.1000 0.1100 0.1155 0.1178

Rogue succ. ≥ 0.0782 0.0847 0.0791 0.0691
1 Rogue succ. ≤ 0.6811 0.6730 0.6806 0.6908 0.6995

Rogue succ. ≥ 0.6633 0.6326 0.6126 0.5959
Honest succ. ≤ 0.1293 0.0942 0.0771 0.0670
Honest succ. ≥ 0.1182 0.0757 0.0524 0.0388 0.0305

Mean time 20.32 22.98 22.42 < 36.2
1 Rogue succ. ≤ 0.3335 0.3263 0.3246 0.3252 0.3267

Rogue succ. ≥ 0.3297 0.3175 0.3093 0.3031
2 Rogue succ. ≤ 0.6008 0.5998 0.5978 0.5955 0.5933

Rogue succ. ≥ 0.5977 0.5936 0.5874 0.5808
Honest succ. ≤ 0.0363 0.0296 0.0258 0.0232
Honest succ. ≥ 0.0328 0.0247 0.0194 0.0159 0.0133

Mean time 15.28 15.98 < 19.2 < 22.6
2 Rogue succ. ≤ 0.6321 0.6366 0.6402 0.6422 0.6430

Rogue succ. ≥ 0.6298 0.6306 0.6278 0.6220
3 Rogue succ. ≤ 0.2305 0.2204 0.2163 0.2146 0.2138

Rogue succ. ≥ 0.2291 0.2168 0.2087 0.2023
Honest succ. ≤ 0.0706 0.0509 0.0409 0.0351
Honest succ. ≥ 0.0687 0.0476 0.0359 0.0286 0.0239

Mean time 15.93 17.05 < 21.2 < 25.5

number of time slots until success. It is evident from Table III
that the best choice, again, occurs with K = 2, and we can
even observe some non-monotonicity in the probabilities of
success: they decrease slightly from 0.4261 (for each rogue)
with four stations to 0.4239 with five stations, and then inch
back up to 0.4264 with eight stations. This non-montonicity
is also observed with K = 1, but with lower probabilities
of success, while the probabilities of success were strictly
decreasing, though slightly, as the number of stations increases
when K = 3.

2) Different Values for K: With differing Ks, the possible
combinations examined were with K set to 0 and 1, to 1 and
2, and to 2 and 3. In the first case, the rogue with K = 0 rogue
starts off with a success probability lower than that of a rogue
acting honestly when there are only four stations total, but
steadily outperforms honest rogues as the number of stations
increases. The rogue with K = 1 enjoys a success rate near
70% for all station counts. In the latter two cases, the station
with K = 2 achieves success rates of about double that of with
K = 1 and triple that of with K = 3 for all station counts. In
the latter case, honest secondaries have success rates decreasing
from 0.069 to 0.029 as the number of stations increase. In the
former case, honest secondaries start with success rates of 0.033
to less than 0.015.

TABLE V: Probabilities of Success with Three Rogues

K # Secondaries 5 6 7
1 Rogue succ. ≤ 0.2373 0.2315 0.2305

Rogue succ. ≥ 0.2276 0.2106 0.1976
2 Rogue succ. ≤ 0.3390 0.3347 0.3319

Rogue succ. ≥ 0.3320 0.3200 0.3090
Honest succ. ≤ 0.0542 0.0498 0.0461
Honest succ. ≥ 0.0423 0.0330 0.0264

Mean time 19.34 < 22.9 < 26.9
1 Rogue succ. ≤ 0.2848 0.2796 0.2793

Rogue succ. ≥ 0.2780 0.2643 0.2543
2 Rogue succ. ≤ 0.4668 0.4666 0.4650

Rogue succ. ≥ 0.4615 0.4554 0.4472
3 Rogue succ. ≤ 0.1712 0.1646 0.1612

Rogue succ. ≥ 0.1682 0.1581 0.1506
Honest succ. ≤ 0.0462 0.0407 0.0370
Honest succ. ≥ 0.0386 0.0297 0.0236

Mean time 17.45 < 20.2 < 23.4
2 Rogue succ. ≤ 0.2738 0.2698 0.2695

Rogue succ. ≥ 0.2657 0.2515 0.2390
Honest succ. ≤ 0.1015 0.0818 0.0708
Honest succ. ≥ 0.0893 0.0635 0.0479

Mean time 21.25 < 25.9 < 31.2
2 Rogue succ. ≤ 0.3462 0.3451 0.3459

Rogue succ. ≥ 0.3408 0.3321 0.3227
3 Rogue succ. ≤ 0.1542 0.1458 0.1429

Rogue succ. ≥ 0.1506 0.1371 0.1274
Honest succ. ≤ 0.0839 0.0663 0.0568
Honest succ. ≥ 0.0767 0.0547 0.0414

Mean time 19.14 < 22.9 < 27.2

D. Three Rogues
As shown in Table IV, the analysis for three rogue scenarios

is performed for four situations, each having at least one rogue
with K = 2: 1) one rogue has K = 1 and the other two have
K = 2; 2) the rogues take different values of 1, 2, and 3; 3) all
the rogues take the same value; and 4) one rogue has K = 3
and the other two have K = 2. These situations were chosen, as
K = 2 was shown to lead to the highest probability of success,
while K = 0 was shown to lead to very low probability of
success in the presence of other rogues. Because the number
of honest stations is lower, symmetry reduction was not as
effective in reducing computational intensity, so data was only
obtained for station count from 5 to 7.

Once again, it can be seen that rogues having K = 2
generally achieve higher probabilities of success. The slight
caveat to this is when all rogues choose this value, in which
case no single rogue can improve their probability of success
by having their K set otherwise, and the probability of success
is even lower than a rogue with K = 1 when the three rogues
choose different values. At the same time, when all rogues
choose K = 2, honest secondaries have a substantial bump in
their probability of success, and we can see an increase in the
mean time taken until some secondary station succeeds.

E. Second Primary Parameter Set
As mentioned earlier, all previous results were obtained

using the first set of primary ON-OFF model parameters,
i.e., P[20,1520]. When the second set of parameters (parameter
set P[1500,3000].) were used, probabilities of success generally
decreased, but by amounts averaging less than 0.13%. In
general, the higher probability of the primary switching ON
led to slightly poorer performance by honest secondaries and
rogues with K = 2, likely due to the higher incidence of
would-be successful requests being abandoned due to a switch.
Exceptions to this include when two rogues chose K = 0, in
which case the performance of honest secondaries was slightly
improved. Otherwise, no significant changes in behavior arise.



F. Summary of Results

With multiple rogues, we observed the highest probability
of success for a rogue when there are two, with one rogue
choosing K = 0, and the other, K = 1. This can be
interpreted as an elementary coordinated backoff manipulation
attack strategy, where the rogue with the lower value essentially
disrupts the attempts made by other secondaries, allowing for
the other rogue to acquire the channel. Following the trend as
the number of stations increases, it would appear that this may
not be as successful with a more realistic number of retries, as
the probability of having an honest secondary abort (after only
three retries) increases gradually.

This aside, superior outcomes generally occur when rogues
participate with a strategy of K fixed at 2, and this holds across
all numbers of rogues and stations studied. The advantage is
substantial when no other rogues occur, or when they choose
other fixed values for K. This suggests that the rogue(s) can
benefit from avoiding earlier collisions by spending a modest
amount of time in the contention window. This corroborates
with the results from early works on backoff manipulation
attacks on wireless networks that argued that smaller K values
lead to higher rogue success. At the same time, our results prove
that rogue strategies with K = 2 have higher success rate than
other K values even when multiple rogues are present in the
network trying to maximize individual channel access success
probabilities.

V. CONCLUSIONS AND FUTURE WORK

In this paper, using PRISM probabilistic model checker,
we performed modeling and analysis of multi-rogue backoff
manipulation attack strategies for multi-rogue setting. Using
model parameters derived from real measurement data, our
results prove (unlike simulation based analysis) that for any set
of primary ON-OFF parameters and for any density of rogues
in the network, a fixed backoff selection (instead of random)
maximizes the channel access probability of a particular rogue
irrespective of other rogues’ selection strategy. The results from
this work will help generate deeper understanding of medium
access threat landscape of secondary networks and foster design
of more resilient access control strategies.

In future, aside from exploring the current model with
other combinations of fixed K, we aim to explore situations
with more rogues. In this study, we set the value for the
propagation time to 1 time slot, from which the values for
roundtrip and CTS timeout follow. This can be altered to reflect
different network topologies, although this will also diminish
the scalability afforded by symmetry reduction. As mentioned,
our current model also does not include the second backoff time
waiting period, but it may be possible to model this without
too much penalty, although this is not without its challenges.
It is possible to apply a probability distribution to the initial
state of a model. With some appropriate data, we will be able
to more accurately model real-world behavior, though how this
will affect the efficiency of computation cannot be immediately
ascertained.

Applying the different types of models made available in
PRISM, nondeterminism will be incorporated to permit secon-
daries to become active at any stage in the contention process.
Probabilistic timed automata have also seen popular use in this
area, and having real-time clocks will extend this investigation
to unslotted CSMA/CA like contention process.

Finally, we plan on identifying and analyzing collaborative
strategies that rogues may use to improve their success rates.
At the same time, in the future we intend to explore the
vulnerabilities of other non-contention based secondary MAC
protocols applied in a small-cell setting and analyze attack
strategies. The results from this work and future directions will
help generate deeper understanding of medium access threat
landscape of secondary networks and foster design of more
resilient access control strategies.
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