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Abstract—In order to cater the growing spectrum demands
of large scale future 5G Internet of Things (IoT) applications,
Dynamic Spectrum Access (DSA) based networks are being pro-
posed as a high-throughput and cost-effective solution. However
the lack of understanding of DSA paradigm’s inherent security
vulnerabilities on IoT networks might become a roadblock
towards realizing such spectrum aware 5G vision. In this paper,
we make an attempt to understand how such inherent DSA
vulnerabilities in particular Spectrum Sensing Data Falsification
(SSDF) attacks can be exploited by collaborative group of
selfish adversaries and how that can impact the performance
of spectrum aware IoT applications. We design a utility based
selfish adversarial model mimicking collaborative SSDF attack in
a cooperative spectrum sensing scenario where IoT networks use
dedicated environmental sensing capability (ESC) for spectrum
availability estimation. We model the interactions between the
IoT system and collaborative selfish adversaries using a leader-
follower game and investigate the existence of equilibrium. Using
simulation results, we show the nature of adversarial and system
utility components against system variables. We also explore
Pareto-optimal adversarial strategy design that maximizes the
attacker utility for varied system strategy spaces.

Index Terms—Dynamic spectrum access, Internet of things,
collaborative attacks, leader-follower game, selfish adversary.

I. INTRODUCTION

With wider autonomous deployments of potentially large
scale Internet of Things (IoT) applications, the access networks
will face the burden of hauling large volume of data that
these applications produce and consume. Since most of the
IoT devices are expected to be connected wirelessly, there
will be an unprecedented need for higher capacity wireless
networks; where the current operational Industrial, Scientific
and Medical (ISM) or licensed bands will fall short. In
recent times, dynamic spectrum access (DSA) based secondary
(unlicensed) communication has been proposed as a high
throughput solution for the growing demands of wireless IoT
networks. DSA based solutions are currently being pursued
for the growing demands of commercial networks, smart cities
with smart vehicular networks and smart grids, and military
communications to name a few.

However, the promise of DSA based IoT communications
comes at a price due to two broad reasons in particular. First,
the dynamic and open philosophy of spectrum sharing ampli-
fies the vulnerabilities of existing IoT applications. Second,
new threats may arise due to the inherent DSA vulnerabilities
that emerge from dynamic spectrum sensing, and spectrum
negotiation. Fig. 1 exemplifies a smart city scenario with
DSA based IoT applications with cascading effects triggered
from attacks during spectrum sensing. The figure shows a
collaborative/organized set of adversaries looking to cripple
the IoT operations, choosing to penetrate the network using
DSA vulnerabilities. This is particularly true when the under-
lying DSA functionality of the IoT network uses cooperative
spectrum sensing [1] with multi-sensor enabled Environmental
Sensing Capability (ESC) [2].
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Fig. 1: Collaborative attacks by collaborative adversaries on DSA based IoT
systems in a Smart City Scenario

Such collaborative adversaries intelligently manipulate
sensed spectrum data in order to misguide the Spectrum
Access System (SAS) who periodically receives and fuses
individual dataset from ESC sensors. As the SAS’s ability to
perform spectrum availability estimation is critically depen-
dent upon the accurate, local and timely information about
spectrum availability, careful and intelligent manipulation by
a set of collaborative adversaries working towards a common
goal can severely impact the performance of the overlaying
IoT network. Such attacks are called Spectrum Sensing Data
Falsification Attacks (SSDF). Although research exploration
has been made on defense to prevent such attacks, design and
analysis of truly intelligent and collaborative attack models and
their impact on the IoT network performance are rare. Factors,
such as, number of compromised agents, quantization of the
spectrum information [3], and overall attack budget can have
significant implications on the IoT network; thus warranting
careful exploration.

In this paper, we design an intelligent collaborative SSDF
attack model and analyze its impact on a DSA based IoT
network. We first characterize organized selfish attack strate-
gies, given that the adversaries have some knowledge about
the underlying DSA system. In particular, we design a utility
based attack model for a given resource budget in a cooperative
sensing scenario where collaborative attackers try to inflict
maximum damage, yet evade detection. In order to design the
attacker utility, we characterize adversarial gain, cost of attack,
and attack detection probability based on attack variables. The
IoT network or system utility is designed based on secondary
usage, successful attack detection probability, and probability
of misdetection. The behavioral interaction between the attack-
ers and the system is captured using a leader-follower game
where attackers are the follower, selecting strategies in order
to maximize their own utility in response to the leader, i.e.
system. We analyze the game to prove the non-existence of a
Nash Equilibrium (NE) and design Pareto-optimal adversarial
strategies based on multiple system strategy-spaces. Finally,
using simulations, we show the nature of individual adversarial
and IoT network performance metrics with varied attack and
system variables. We also validate the existence of Pareto-
optimal adversarial strategies through simulation results.
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The remainder of the paper is organized as follows. Sec-
tion II describes the related work. Section III presents our
system model. Section IV discusses the steps of our attack
model design. Section V presents the leader-follower game
design and analysis. Section VI discusses evaluation and
results. Section VII concludes the paper.

II. RELATED WORK

There are a number of notable solutions against traditional
integrity, confidentiality, and availability attacks in IoT de-
vices, such as [4–7]. Authors in [4] provide a classification
of IoT security challenges, e.g., physical, network, software,
and encryption attacks. Authors in [5] provide a survey on
IoT privacy and security challenges focusing on studying the
privacy attributes. In [6], the authors focus on IoT safety mea-
sures such as, key management and algorithm, security routing
protocol, data fusion technology, and authentication and access
control. In [7], authors have surveyed the research status of
key technologies used in IoT security including encryption
mechanism, communication security, sensor data protection,
and cryptographic algorithms. Most of these works address
some specific types of IoT threats based on certain security
objectives. In this paper however, we look to investigate the
DSA based vulnerabilities on IoT networks.

Notable works dealing with DSA vulnerabilities in 5G
applications include [8–11]. Authors in [8] provide a security
analysis on a well established DSA radio developed by Shared
Spectrum Company under the DARPA xG program. In [9, 10],
the authors propose robust trust models to defend against
intelligent SSDF attacks. Authors in [11] show how DSA can
cause a new set of challenges when it comes to denial of
service (DoS) attacks. Although these make notable contri-
butions in DSA based application security, very few focus on
understanding how the inherent security vulnerabilities of DSA
would impact the performance of future 5G IoT networks.

There are also recent works that deal with DSA based
secondary network security and privacy that are applicable
for IoT networks [12, 13]. Authors in [12] have focused
on PUE attacks in cognitive radio (CR) based IoT networks
and proposed an improved energy detection with localization
scheme for detecting PUE attacks. Work such as, [13] has
proposed trust based defense mechanisms against data fal-
sification attacks. However, most of these works lack of a
sophisticated attack model that capture intelligent behavior of
collaborative adversaries. In this paper, we seek to design an
intelligent and collaborative SSDF attack on DSA based IoT
networks.

III. SYSTEM MODEL AND BACKGROUND

In this paper, we assume a DSA based secondary IoT
network that can access the licensed bands in the absence of
primary users. We assume the IoT network to use K ESC
terminal/nodes to perform cooperative sensing in order to
determine the presence of primary in N channels. In a three
step cooperative sensing process, the ESC nodes sense the
spectrum locally first, take local decision, send the decision to
a fusion center (FC), e.g., SAS that makes final decision based
on local decisions of multiple such ESCs. The fusion rule used
by FC/SAS to decide on each channel’s availability based on
individual decisions by ESCs on that particular channel can
be based on majority voting, K out of N , weighted average,
or AND/OR rule.

We assume that FC accumulates quantized PSD values
(not raw PSD values) from all K nodes for all N channels
and apply the fusion rule. We assume a multi-bit quan-
tized model [13], where quantized thresholds are successively

∆, 2∆, 3∆, · · · ,M∆, M = 2B−1, ∆ = (Vmax−Vmin)/2B ,
and B is the number of bits used to send quantized results after
each sensing. Value of ∆ is decided based on a centroid ESC
node, so that for every other ESC nodes present in the system,
for one particular channel, ∆ is universal during quantization.
If the detected power spectral density (PSD) values belong
to a certain interval of quantization, ESC nodes send the
corresponding B bit quantized value to the FC. Therefore,
periodically FC receives K vectors of N elements with each
element being B bits in length.

The collaborative adversaries try to compromise the ESC
nodes, more specifically the multi-bit quantized PSD values for
each channel emanating from the compromised ESC nodes to
exploit the FC fusion rules. The idea is to compromise enough
ESC nodes to change the final channel decision by the FC that
can significantly affect the secondary IoT communication, yet
not getting detected. In our system, we also assume hardware
error by ESC nodes (PHE) that work in favor of the collabora-
tive adversaries towards turning the channel decision into their
favor. One such example of collaborative attack compromising
ESC nodes is depicted in Fig. 2 where compromising only
quantized values (here only 1 bit quantization) from two ESCs
(ESC1 and ESC5) is sufficient to change the overall decision
by FC (which uses a majority voting rule) from available (0)
to occupied (1), thus resulting the IoT device not using the
channel in spite of the channel being actually available. In
this example, the hardware error ESC2 works in favor of the
collaborative attackers.

Collaborative 
SSDF attack

Channel 
occupied

IoT device

ESC1

ESC2

Hardware 
Error

Legends:

Falsified sensing information
Falsified channel decision

Accurate sensing information

FC/SAS ESC3

ESC4

ESC5

0 {1}

{0}

{0}
Falsified 

Data

0 {1}

Erroneous sensing information

Attack propagation path

0 {1}

Falsified 
Data

Compromised

Compromised

Fig. 2: Compromised ESCs through collaborative SSDF attack cause channel
decision change for IoT device exploiting FC/SAS majority voting fusion rule

IV. COLLABORATIVE ADVERSARIAL MODEL DESIGN

Based on the system model, this paper seeks to design a
utility based game theoretic collaborative adversarial model
for a secondary IoT network using a cooperative spectrum
sensing based DSA environment.

A. Adversarial Gain
As mentioned before, the purpose of the collaborative at-

tackers is underutilization of the channels by the secondary IoT
devices, i.e., making sure available channels are considered
as occupied by the FC/SAS. With total N channels in the
system, we assume that the attackers have a target of attacking
Na channels where Na ≤ N based on attacker objectives
and available budget. For a given situation, attackers only
have the information about geographic locations of primary
transmitters. So when attackers aim to attack any channel,
i.e., changing available to occupied, their collaborative strategy
will be to attack the channel whose primary is nearer to the
region’s centroid. Thus, the channels are sorted in descending
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order according to their sensed PSD values at centroid and the
first Na channels from the list are chosen for attack. In such
a collaborative attack model,

Adversarial gain =
Nas
Na

(1)
where Nas =

∑Na
n=1 P

n
s , i.e., number of channels where attack

was successful. Here Pns is the attack success probability of
channel n and can be computed as

Pns =

{
1 if

Kn
a+K

n
η

K ≥ L
0 otherwise

(2)

where L is the FC fusion rule parameter, i.e., the fraction of
total votes required for channel occupancy decision. In this
model, the attackers have to attack Kn

a number of ESC nodes
collaboratively for successfully changing the decision for any
nth channel with Kn

a = K×L−Kn
η , where Kn

η is the number
of honest (non-compromised) ESC nodes whose sensed PSD
is higher than the threshold PSD value for primary presence
(ηn) including ESC hardware error and/or overlapping signal
effects. Kn

η can be expressed as, Kn
η = K × Pnf × Pn0 ×

PnHEη+Pnη × [1−Pnf ×Pn0 ]×K, where Pnf is the false alarm
probability on nth channel, Pn0 is probability of absence of
primary in nth channel, Pnη is the probability that a node with
hardware error will cross the threshold ηn, and PnHEη is the
probability that the observed PSD will cross the threshold ηn.
Thus, Eq. (2) can be rewritten as,

Pns =

{
1 if (Kn

a + Pnf P
n
0 P

n
HEη + Pnη [1− Pnf Pn0 ]) ≥ L

0 otherwise
(3)

B. Cost of attack
Depending on the fusion rule, the attackers have to collab-

oratively compromise Kn
a ESC nodes in order to sufficiently

change the channel’s decision. However, to attack the ESC
nodes, the attackers incur some cost which is proportional to
the number of ESC nodes attacked. Now due to the shadowing
and fading characteristics, some ESC nodes will see the lower
PSD values than the centroid and some will see higher. At the
same time, due to hardware errors, some nodes will observe
PSD values different than expected. The attackers will exploit
these abnormalities, more specifically exploit ESC nodes that
are expected to see higher than usual. This way, the attackers
need to compromise less ESC nodes, hence minimizing the
cost. If KTa is the total number of nodes compromised to
change decision on Na channels, then,

Cost of attack =
KTa

K
(4)

where KTa = P (KTa)×K. Now, the probability for attacking
Ka nodes for changing decision on nth channel is given
as, P (Kn

a ) =
Kn
a

K−Kn
η

. Then, using the inclusion-exclusion
identity, P (KTa) can be easily computed from P (Kn

a ).

C. Successful attack detection
Another objective that the attackers is avoiding detection.

We assume that the IoT system to have a detection threshold
ζ, above which and reported PSD value by the ESC is regarded
as an indicator of compromise, and helps the system to detect
compromised ESC nodes. More specifically, if the quantized
PSD value of an ESC crosses ζ for J out of N number of
channels, then the ESC node is identified as compromised and
SAS discards that node’s reported PSD values for all channels.
If we assume κd to be the set of successfully detected ESC
nodes by the system, then,

Successful attack detection =
|κd|
KTa

(5)

where κd is expressed as, κd = {K1
ad∩K2

ad · · ·∩Kn
ad} ∀ n ∈

Na. Here Kn
ad is the number of detected ESC nodes that

compromised PSD values on nth channel and can be expressed
as Kn

ad = {P (κa
n)× Pndetection × ki} ∀ ki ∈ K \Kn

η , where
P (κa

n) is the probability of an ESC node to be in the set of
successfully detected ESC nodes for channel n, Pndetection the
probability of successful detection in channel n.

Based on these three parameters, i.e., Adversarial gain,
Cost of attack, and Successful attack detection, we devise an
objective function of the collaborative attackers’ utility that
follows a market-based approach:

maximize Ua =
Nas
Na
− KTa

K
− |κd|
KTa

subject to 1 ≤ Na ≤ N, 0 ≤ KTa ≤ K,
0 ≤ |κd| ≤ KTa.

(6)

V. GAME FORMULATION

In this section, we first express the IoT network/system
utility function and then analyze the effective attacker strategy
by designing a Leader-follower game model. The system
utility has three following components:
Secondary usage: The IoT system’s secondary usage is
expressed as the utility of any DSA based secondary network
in successfully utilizing available channels and that can be
expressed as:

Secondary usage =
N −Nas

N
(7)

In order to maximize the secondary usage, the number of
successfully attacked channel Nas needs to be minimized.
Successful attack detection: This component is the same
as in attackers’ utility formulation, however, the system will
try to increase the attack detection probability by controlling
different system parameters. Hence from Eq. (5):

Successful attack detection =
|κd|
KTa

Misdetection: At the same time, increasing the attack detec-
tion probability would also increase the chances of misdetec-
tion (when the system is too conservative) which the system
would try to avoid. The system strategy can be controlled by
choosing J where 1 ≤ J ≤ N with J = N represents highly
relaxed system strategy where a ESC node needs to report PSD
values greater than ζ for all N channels in order to be regarded
as compromised by the system or SAS. Thus, if |κmd| is the
total number of ESC nodes reporting PSD values above ζ for
J or more channels, then

Misdetection =
|κmd|

K −KTa
(8)

Thus, similar to attacker utility function, the overall system
utility is expressed as:

maximize Us =
N −Nas

N
+
|κd|
KTa

− |κmd|
K −KTa

subject to 1 ≤ Na ≤ N, 0 ≤ |κd| ≤ KTa,

1 ≤ J ≤ N, 0 ≤ |κmd| ≤ KTa.

(9)

Game Optimization: We design the interactions between the
system and the collaborative attackers as a Leader-follower
game where system leads by deciding on a strategy, i.e., value
of J with collaborative attackers following by strategizing with
a value of Na; both trying to maximize their own utility. In
a complete information game, J will be a known parameter
to the attackers, whereas for partial information game, exact
system J will be unknown, however a common knowledge
of the range of J is available. We try to find the existence
of optimum adversarial strategy for NE. We also explore a
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Pareto-optimal adversarial strategies based on multiple system
strategy space.

Lemma 1: For an incomplete information game with un-
known system strategy J , the optimal attacker strategy is Na
= {z|z = n, where Kn

a < |Kn
ad|} where z ∈ Z.

proof 1.1: We know from Eq. (6) that the adversarial gain
and cost of attack are J independent; but the successful attack
detection is J dependent. Thus the attacker should attack
only nth channel if and only if Ka

n < |Kad
n|. As Kn

ad =
{P (κa

n)× Pndetection × ki} for all ki ∈ {K} \Kn
η , therefore

the term Kn
ad is independent of J and hence for any channel

n, if Ka
n < |Kad

n|, assuming that the attacker knows ζn, the
theorem holds for any J set by the system where attacker can
guarantee non detection yet success. If the solution space is
small then it is possible to calculate Ka

n < |Kad
n| for the

entire game tree and Na = {z|z = countof(n)} is feasible.
Now, if the collaborative adversaries obey this lemma, then

they can guarantee zero attack detection. But as κa
n and

Pndetection depend on PSD values seen by ESC nodes, for any
random distribution of PSD we cannot claim NE. But for any
random PSD, Na = 1 is the Pareto optimal solution. This
Pareto optimality depends on cost of attack; Na = 1 is the
value for which cost of attack will be minimum, independent
of any random distribution of PSD. Hence for any system
strategy J , there exist an attacker strategy Na for which
adversarial model becomes Pareto optimal.

Lemma 2: For any complete information game with given
system strategy J , the optimal attacker strategy Na =
{z| argmin

z
|κd|} where z ∈ Z.

proof 2.1: For each attacked channel n, the attacker can
calculate Kn

ad = {P (κa
n) × Pndetection × ki} for all ki ∈

{K} \ Kn
η . Therefore, if the attacker knows system J , then

|κd| can be truly calculated and thus attacker’s strategy should
be to minimize |κd|. Thus, the attacker will choose Na = z
that will guarantee the minimum detection |κd|.

Now as κna depends on the PSD distribution, Kn
ad will also

depend on the PSD. Hence there cannot exist a NE for a known
system strategy J . Again assuming that the attacker knows ζn
and J both, then the attacker will try to attack at least J − 1
channels confidently without worrying about detection. Thus
attacker can guarantee non detection yet maximum success.
Considering the attacker strategy space and aggressive system
strategy J , as Na is an increasing non-zero integer, Na =
1 will guarantee the best response with minimum detection
|κd| for any known J . Hence for any known system strategy
J , there exists an attacker strategy Na for which adversarial
model becomes Pareto optimal.

Lemma 3: For any partial information game range with
known ranges of strategy J , if 1 ≤ J ≤ N

2 , then the optimal
attacker strategy Na ≤ N

4 and if N
2 + 1 ≤ J ≤ N , then the

optimal attacker strategy Na ≤ N
2 .

proof 3.1: If the solution space for Na is small for small
number of N , then according to Lemma 1, it is possible to
calculate Ka

n < |Kad
n| for the entire game tree and then

Na = {z|z = n where Ka
n < |Kad

n|} is optimal. But if N
is sufficiently large, then it’s not possible to calculate Ka

n <
|Kad

n| for the entire game tree and the solution approach
has to be an approximation. Given the fact that the attacker
knows the range of J , the attacker can approximate Na to
optimize Ua. If J is in aggressive range, i.e., 1 ≤ J ≤ N

2 ,
then attacker’s approach has to be aggressive to maximize Ua
by trying to maximize the adversarial gain, i.e., NasNa

. In such
as scenario, the optimal attacker strategy will be Na ≤ N

4 .
In the contrary, if J is conservative, i.e., N

2 + 1 ≤ J ≤ N ,
then in order to maximize Ua, attacker’s approach should be

minimizing successful attack detection, i.e., |κd|KTa
. Hence in

this case attacker strategy will be conservative in nature, i.e.,
Na ≤ N

2 which is the lower limit of J range.
In this case, no NE exists due to the dependency on PSD,

but there exist two Pareto optimal solutions. For 1 ≤ J ≤ N
2 ,

if the attacker chooses any strategy Na <
N
4 , then they may

end up minimizing Ua. Considering the best case scenario
with upper limit of J (J = N

2 ), the attacker can attack max
Na = N

2 channels without getting detected. Now considering
the worst case scenario with J = 1, the attacker can attack
max Na = 1 channels without getting detected. Hence Pareto
optimal solution should be the average case, i.e., Na = N

4 .
Similarly, for the range of N

2 +1 ≤ J ≤ N , the Pareto optimal
solution is Na = N

2 . Considering the best case scenario with
J = N , the attacker can attack maximum Na = N channels
without getting detected. And considering the worst case with
J = N

2 +1, the attacker can attack max Na = N
2 +1 channels

without getting detected. Hence Pareto optimal solution should
be the average case, i.e., Na = N

2 .

VI. SIMULATION AND RESULTS

We conduct extensive simulation experiments to analyze the
impact of coordinated group of selfish adversaries employing
our proposed utility based selfish adversarial model on the
performance of DSA based IoT applications. In the simulation
model, eight ESC nodes are deterministically deployed in a
grid pattern with a varying number of channels (10 to 20)
in the system with 1 MHz bandwidth each, and the primary
detection threshold of -80 dBm to conform with 3.5GHz
standard. The sensed PSD values follow a normal distribution
with a varying mean (-100 to -60 dBm) and standard deviation
of 10 dBm in order to mimic environmental and hardware
error effects.

Cost of attack: In Figs, 3(a) and 3(b), we show the
nature of cost of attack to compromise ESC nodes against
different values of Na. In Fig. 3(a), we show cost of attack
characteristics for different values of K. As expected, for any
value of K, cost of attack increases with more channels to be
attacked. However, we observe an inflection characteristic for
K = 16 when the cost of attack is less for any particular Na
than K = 8 and K = 24. This signifies that there exists an
optimal fraction of total number of ESC nodes in the system
where irrespective of the channel attack requirement, the cost
of attack is minimum. In Fig. 3(b), we show the cost of attack
characteristics for varying number of total channels in the
system. Similar characteristics are observed where an optimal
fraction of total number of channels exists for minimum cost
of attack. Thus for collaborative attack objectives that are
one-dimensional in nature in terms of minimizing cost of
attack, there exist optimal strategies in terms of fraction of
total ESC nodes and total number of channels to be attacked.

Successful attack detection: In Fig. 3(c), we show the
successful attack detection characteristics of compromised
ESC nodes vs Na for different values of system J . It can be
observed that as expected, the detection probability increases
with Na. We also observe that for conservative J , even
for attacks on a few channels, i.e., 1 or 2, the detection
probability is high. However, with more relaxed J , the
detection probability is significantly low (less than 20%) for
low intensity attacks.

Secondary usage: In Fig. 3(d), we observe that the secondary
usage decreases with increasing attack intensity in terms of
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Fig. 3: (a) Cost of attack characteristics for different number of ESC nodes, (b) Cost of attack characteristics for different number of channels, (c) Successful
attack detection characteristics for different system strategy J , (d) Secondary usage characteristics for total number of channels in the system

(a) (b) (c)

Fig. 4: (a) Misdetection characteristics for different system strategy J , (b) Attacker utility characteristics for different system strategy J , (c) System utility
characteristics for different number of attacked channels Na

Na. The system can counter the effect of such decrease by
utilizing more available channels in the system provided the
attack intensity remains constant.

Misdetection: Fig. 4(a) shows the nature of misdetection of
honest ESC nodes for different number of system J . It can be
seen that when system J is very conservative, misdetection is
rampant for low intensity attacks, i.e., Na = 1, 2. However,
for any other range of J , misdetection can be controlled
for any attack intensity. This can help the system decide J
without worrying too much about misdetection.

Attacker utility: In Fig. 4(b), we show the attacker utility
characteristics for different system strategies J . We observe
that when system strategy J is not known (from lemma 1),
Na = 1 exhibits highest value of Ua. Whereas from lemma 2,
when J value is known, then also Na = 1 is Pareto optimal for
the collaborative adversaries. If J is in conservative range, i.e.,
from 1 to 10, then Na ≤ 5 exhibits Pareto optimality which
is consistent with theoretical findings according to Lemma
3. Similarly, for J from 10 to 20, Na ≤ 10 shows Pareto
optimal strategy that is consistent with the theoretical findings.

IoT system utility: Fig. 4(c) shows system utility character-
istics for different values of Na. It can be observed that when
system J is very conservative, the overall system utility is
higher than other values of J for any attack intensity. Thus,
we can conclude that the secondary IoT system is better off
being conservative (J ≤ 2) than relaxed in order to maximize
its own utility.

VII. CONCLUSION AND FUTURE WORK

In this paper, we made an attempt to understand how
inherent DSA vulnerabilities can be exploited by collaborative
group of selfish adversaries via intelligent SSDF attacks. Our
theoretical and simulation results are consistent in finding
Pareto optimal adversarial strategy design in terms of deciding
on the number of channels to be attacked at any stage in

order to maximize the attacker utility. The results also show
that the IoT system is better off being conservative than
relaxed in order to maximize its own utility in the event of
a collaborative SSDF attack. In future, we will explore other
DSA based attacks such as PUE and their effects on secondary
IoT networks and also devise effective system strategies in
order to counter such intelligent and collaborative adversarial
strategies.
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