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Abstract—Multi-domain network performance monitoring
(NPM) federations, such as perfSONAR rely on collaborative
measurement intelligence to identify network anomaly events
and diagnose performance bottlenecks affecting data-intensive
science applications. In this paper, we present a novel mea-
surement recommendation scheme to assist network operators
and application users by recommending pertinent samples from
a pool of measurement data involving multiple domains to
detect and troubleshoot correlated network anomaly events.
The recommendations are based on the principles of content-
based filtering. Such recommendations are complimented with
Bayesian Inference based domain reputation meta-information to
strengthen the veracity information of the recommended traces.
Using actual long-term and short-term perfSONAR traces, we
analyze recommendation results and show: a) how the content-
based filter recommends the most pertinent traces based on their
attributes, and b) the time-variant characteristics of domain
reputation. Finally, using synthetic traces, we show the effec-
tiveness of our proposed measurements recommendation scheme
in accurately identifying anomaly events for an exemplar use
case, and also show how our content filter based recommendation
scheme performs better in terms of false alarms in comparison
to: a) recommendations that consider partial trace features for
filtering, and b) greedy recommendation approaches based on
random trace selection.

Index Terms—Network Performance Monitoring, perfSONAR,
Measurement Recommendations, Content-based Filtering.

I. INTRODUCTION

Scientific communities that support large-scale data trans-
fers have extensively deployed multi-domain Network Perfor-
mance Monitoring (NPM) federations that use passive and ac-
tive measurements for monitoring and troubleshooting network
bottlenecks. Among these NPM federations, perfSONAR [1]
is the most widely instrumented framework within academia
and industry (more than 1400 instances worldwide). It uses
tools, such as Ping, Traceroute, OWAMP (for one-way delay
measurements), and BWCTL (for TCP/UDP throughput mea-
surements) to collect measurements such as end-to-end delay,
jitter, loss, and bandwidth. With growing perfSONAR deploy-
ments within multi-domain federations, the initial focus of
intra-campus network monitoring has shifted towards end-to-
end performance monitoring and troubleshooting of Big Data
applications. In multi-site Big Data collaborations, the appli-
cation traffic generated within a network (domain) traverses
several other domains or autonomous systems (ASes) before
reaching a destination. As a result, end-to-end performance
monitoring and troubleshooting becomes significantly harder
for standalone perfSONAR measurement instances (Measure-
ment Point Appliances or MPAs) installed at the source and
destination domains.

Thus, for accurate detection of network anomaly events that
impact end-to-end application performance and corresponding
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root cause diagnosis, measurement data sharing and collabora-
tion across domains becomes essential for network operators to
satisfy measurement analysis objectives. Such a collaboration
is manifested through sharing of perfSONAR measurement
data archives within data-intensive scientific communities such
as, Large Hadron Collider (LHC), Energy Science Network
(ESnet), and Internet2 for public access. Network operators
and domain application users subscribe to the perfSONAR data
from such communities and use relevant measurement traces
from their archives to troubleshoot similar network problems.
However, the current perfSONAR framework does not provide
the network operators and application users necessary tools or
services to filter out the most relevant data from vast archives
of measurement data that can help them accurately detect
and diagnose network events of interest [2]. Thus, operators
in most cases depend on greedy analysis based on intuition-
led random measurement trace selection (trial-and-error) that
could result in erroneous detection and ineffective diagnosis.

Furthermore, using shared measurement data from different
communities for network anomaly event detection may not
always prove useful as the measurement samples collected
from such community perfSONAR deployments could have
measurement mis-calibration issues, or issues such as invalid
(e.g., negative one-way delay values due to faulty clock syn-
chronization) or missing data. Such measurement data “verac-
ity” issues result in erroneous features [3], or too dense/sparse
or irregular (i.e., long data collection gaps) measurement
sampling frequency. This in turn can lead to missed events
or even exponential anomaly detection time [4]. In our earlier
work [5], we have shown how solving the measurement data
“veracity” problem can profoundly impact the accuracy of
anomaly event detection analysis. However, with the wide
adoption of perfSONAR measurement subscriptions within
communities, the instantaneous quality of the measurement
traces needs to be complimented with communities’ or do-
mains’ long-term “confidence indicators” in terms of sanity
of the measurement data being generated. Such “confidence
indicators” are essential for operators and application users
in order to subscribe to the communities that are reputed for
good measurement practices. This can consequently lead to
use of sanitized measurement data, which facilitates accurate
detection and subsequent troubleshooting upon analysis.

In this paper, we propose a “content filter” based mea-
surement recommendation scheme that recommends pertinent
measurement traces from a pool of candidate samples to assist
network operators and application users. The proposed scheme
ranks and recommends the most pertinent traces based on
similarity matching with a target trace/path for which the
operator/user needs help to perform some specific measure-
ment correlation analysis. The similarity matching scheme: a)
applies the principles of a content-based filtering technique by
taking into account the candidate traces’ features (spatial and
temporal attributes) such as, topology, metric, time range, and
alignment; and b) prioritizes such attributes on the basis of



a measurement analysis objective. In order to strengthen the
measurement data “veracity” information, we propose a novel
data sanity checking scheme. The measurement data sanity
scores are then extended to use a novel Bayesian Inference-
driven historical domain/community reputation scheme that
acts as “confidence indicators” to help the operators and users
in relevant long-term measurement subscriptions. The data
sanity together with domain reputation ultimately provides
essential meta-information on top of measurement recommen-
dation for the operators/users to take informed decisions.

We use real long-term and short-term perfSONAR traces
to show: a) how our scheme recommends most pertinent
traces from a large set of available traces from Department of
Energy (DOE) Lab sites’ archives based on similarity; and b)
how different DOE perfSONAR end-points demonstrate varied
characteristics of domain reputation in terms of measurement
data quality over a one-year time period. Finally, using an
exemplar spatial measurement analysis case study with syn-
thetic data that closely mimics real perfSONAR traces, we
show: a) how network anomaly event detection using traces
recommended by our proposed content filter ensures accurate
detection; and b) the relative advantages of content filter based
recommendation in terms of false alarms over recommendation
approaches that consider partial trace features for filtering, and
greedy recommendation approaches based on random trace
selection. Overall, the evaluation results demonstrate how our
proposed measurement recommendation scheme will enable
network operators and application users to intelligently use
subscribed community traces for diagnosing network events
that impact Big Data applications.

The rest of the paper is organized as follows: Section II
discusses the related works in this problem area. Section III
motivates the problem in greater depth. Section IV introduces
our content-based filtering approach. Section V proposes our
Bayesian Inference-based domain reputation scheme. Sec-
tion VI discusses the evaluation and results using real and
synthetic data. Section VII concludes the paper.

II. RELATED WORKS

Content-based social and community infrastructures have
been proposed and developed for different areas of comput-
ing. However, in relation to measurement frameworks, such
works are limited. In [7], the authors propose a tagging
and trust mechanism in social networks based on users and
their contents that is similar to our research of building a
reputation scheme for perfSONAR domains within scientific
communities. In [9], the authors propose a Social Cloud
Computing environment, outlining various aspects of a social
cloud with a resource/service sharing framework that utilizes
relationships established between the members of a social
environment. Filter-based (mostly content-based and collab-
orative) social/community environments have been proposed
in different areas of computing. In [10], the authors discuss
concepts and applications of collaborative and content-based
filtering schemes for social computing environments. In [12],
the authors compare the most popular collaborative filtering
techniques such as memory-based, model-based, and hybrid,
in a recommendation system. Our proposed measurement
recommendation scheme although has similarities to existing
schemes, it is the first to use content-based filtering for multi-
domain network performance monitoring federations.

The perils of using potentially misleading data, and related
guidelines to measurement best practices were first highlighted
in [3]. Our previous work on using sanitized measurement
data for anomaly detection [5] is closest to the work by [16]
where an anomaly detection system is developed based on
prediction of upper and lower dynamic thresholds of various

time-varying data trends. In [17], the authors proposed an
overlay fault diagnosis framework with a diagnosis uncertainty
reasoning analysis based on evidences similar to our work
in [5]. Although our earlier work [5] proposes a measurement
data sanitation scheme to quantify the certainty of a detected
anomaly event, in this paper we seek to extend such instanta-
neous data sanity into a historical and quantifiable reputation
score of the associated domain(s) and communities. Similar
reputation-based trust schemes have long been used by the
scientific community for decision making in shared environ-
ments. In [8], the authors present a reputation-based trust
model for peer-to-peer eCommerce communities. Whereas, in
[13], the authors describe a similar scheme to use Bayesian
Inference to build reputations for agents in the e-business
community. Further, works such as [14] extend such reputation
models by introducing an age factor in Bayesian Inference as
it is desirable to give greater weight to more recent ratings.
Reputation quantification techniques used in all such related
works lay the foundation for our proposed novel Bayesian
Inference based reputation model for measurement domains
that can foster performance tuning of Big Data applications in
shared community infrastructures.

Fig. 1: Network measurement attributes for different traces and the
non-triviality of comparison

III. PROBLEM STATEMENT AND MOTIVATION

Multi-domain data-intensive applications monitor end-to-
end network performance by installing perfSONAR MPAs
at source and destination domain end points and at strategic
locations along the intermediate path. Network operators and
application users in charge of such monitoring generally
watch for change events in measurement traces. However,
often analyzing traces from one such standalone path proves
insufficient for effective detection of critical events and subse-
quent troubleshooting. Thus, they subscribe to measurements
from other domains and data-intensive science communities
using perfSONAR to collaboratively share measurement data,
analyze the shared data, and effectively troubleshoot relevant
network events of interest. However, the current perfSONAR
framework has limited tools and public services to empower
the operators and application users to find the most relevant
and valid data that can help effective troubleshooting. Thus,
in most cases, operators resort to random trace subscriptions
that could lead to erroneous detection and ineffective as well
as time-consuming troubleshooting efforts.



Fig. 1 shows one such scenario where a network opera-
tor seeks to perform certain measurement analysis, such as,
detecting correlated network anomaly events on a network
path between domains A and B that involves a data-intensive
application flow. In order to achieve this, the operator has
collected Trace/s A-B (that we call ‘target’) with specific
features such as, network topology, periodicity, measurement
metric and time stamp, as shown in Fig. 1. However, in most
cases, traces involving one such standalone path, metric and
time stamp prove to be insufficient in solving critical network
anomaly events that impact an application flow. Thus the
operator has to rely on other candidate traces, i.e., Traces C-
D, E-F, and E-G that may have completely varied attributes
set involving different domains that may or may not have
correlation with the target Trace A-B. In such a scenario, it is
non-trivial for the operator to decide which among these traces
will be more useful to successfully and accurately perform the
specific measurement analysis objective.

The specific questions we seek to answer in this paper to
aid the network operators and application users in the scenario
showed in Fig. 1 are: a) Which are the most relevant among the
candidates traces (C-D, E-F and E-G) in terms of the specific
measurement analysis objective that the operator wants to
perform? b) How does the operator ascertain the quality of
the most relevant traces (among Traces C-D, E-F and E-G)
in terms of measurement calibration and data validity so as
to use only the pertinent traces for more accurate detection?
c) Which candidate domains’ (among C, D, E, F, and G)
measurement data should be subscribed in future that will
not only be relevant to troubleshoot specific network events
of interest but also are most likely to provide reliable quality
data to ensure effective troubleshooting? Next, we discuss the
“content filter” and “domain reputation” based measurement
recommendation scheme that assists the network operators and
application users to answer the above questions.

IV. CONTENT-BASED FILTERING MEASUREMENT
RECOMMENDATION

In this section, we propose our filter-based measurements
recommendation scheme. Our filtering approach is derived
from the concepts of content-based filtering techniques used
in many recommendation systems, especially by online retail
enterprises, such as Amazon, eBay. Content-based filtering,
also referred to as cognitive filtering, recommends items based
on a comparison between the contents/features of the items and
users’ profiles or interests.

Our proposed content filter based recommendation scheme
filters and ranks most relevant measurement traces from a pool
of traces based on measurement traces’ attribute similarity
and measurement analysis objective. We argue that for any
broad type of correlation analysis objective, i.e., spatial or
temporal, there are four important factors that define time-
series measurement traces’ attributes. They are: 1) topology,
i.e., the path taken by the measurement probe packets; 2)
metric, i.e., the measurement tool (one-way delay, throughput)
used to collect the samples; 3) time range, i.e., the time
stamp of the time-series measurements; 4) alignment, i.e., the
relative positions of the measurement sampling time stamp
instances. For each of these factors, we will quantify the
relative similarity between target trace and candidate traces
and then create an overall similarity score from individual
factor similarities. The overall similarity scores will help the
network operators to rank the candidate traces in the order of
their relevance.

A. Measurements Topology Similarity
Each perfSONAR measurement trace contains results from

an end-to-end probing with synthetic packets that start at the

source MPA, and traverse a set of hops to reach a destination
MPA. Thus, the topology attribute of each perfSONAR trace
can be represented as:

topo := (source, destination, hops) (1)
where hops is the set to represent the intermediate
nodes/routers in the topology.

This topology information is very important for correlating
measurements traces because - with the similarity between
traces’ topologies, probability of common network events of
interest increases. In our previous experiences with correlated
anomaly detection in perfSONAR traces [2], we observed
that traces with common hops are more useful than others to
establish correlation between anomaly events and to diagnose
the root causes more accurately. Therefore, we express the
topology similarity topo simii,j between target trace i and
candidate trace j as:

topo simii,j =
topoi ∩ topoj

topoi ∪ topoj

(2)

B. Measurements Metric Similarity
The measurement metric indicates the network performance

measurement tool used for monitoring, such as Ping, OWAMP,
BWCTL, etc. The measurement metrics similarity between
traces is of importance based on the type of measurement anal-
ysis sought. For example, in spatial analysis, such as correlated
anomaly detection, operators tend to use only homogenous
traces in terms of metrics to diagnose a root cause location.
Whereas, in temporal analysis, operators rely on different
metrics such as, OWAMP, traceroute to detect events in a
particular time window. Thus, we express measurement metric
similarity metric simii,j between traces i and j as a boolean
representation:

metric simii,j =
{

1, (mi = mj)
0, (mi! = mj)

(3)

C. Measurements Time Range Similarity
The measurement time range of a trace is one of the most

important measurement attributes for temporal analysis when
the duration of the traces becomes critical to detect a time-
specific network event. Thus, if two traces’ durations are
not aligned temporally, their time range similarity should be
equal to zero. Therefore, we express the time range similarity
range simii,j between traces i and j as:

range simii,j =
ri∩rj
ri

(4)

D. Measurements Alignment Similarity
Measurement alignment, i.e., the relative positions of mea-

surement sample instances is also significant for correlation
analysis with multiple dimension time-series measurements.
Samples that are closely aligned are easier to correlate and
have better chances of accurate detection of network events
upon analysis. Although, such alignment is closely related to
the measurement sampling periodicity, the periodicity itself
cannot be used as a factor in similarity matching. This is
because, in practice it is difficult to find perfectly periodic
samples; sample periods always fluctuate around a mean value.
Thus, relative alignment of sample instances between two
traces is a better metric to quantify their relative similarity. In
an illustrative example shown in Fig. 2, we show one target
and three candidate traces with different periods and sampling
patterns. As far as the similarity is concerned, candidate trace
1 is best aligned to the target trace as the mean relative
displacement between the trace 1 and the target trace is
minimum.



Fig. 2: Measurements alignment illustration between traces with
varied periodicity and non-aligned sample time stamp instances

Thus, for generic quantification of alignment between mea-
surement traces, we define an alignment displacement metric
d that denotes the mean relative distance between sample
instances of target trace i and candidate trace j. The metric d
is expressed as:

di,j =
∑
T

|tsi − ˆtsj | (5)

where tsi denotes target trace time stamp, ˆtsj denotes the
candidate time stamp closest to the target trace time stamp
tsi, and T denotes the number of such time stamps in the
target trace. The range of metric d varies between [0,+∞)
with smaller value indicating better alignment between traces.
In order to normalize d and be consistent with other similarity
factors, we transform the range of metric d between [0, 1] using
min-max normalization method, which can be expressed as:

align simii,j =
maxdi,j − di,j

maxdi,j
− mindi,j

(6)

where maxdi,j and mindi,j are the maximum and minimum
values of di,j .

E. Overall Similarity Scores and Analysis Objective
The overall measurements similarity is expressed as a

weighted product of the aforementioned four similarity factors:
overall simii,j =

∑
k

wk ∗ factor simiki,j (7)

where factor simiki,j denotes each of the aforementioned sim-
ilarity factors and wk denotes their respective weights for
the overall measurements similarity score. The values of the
weights depend on the relative importance of these attributes
to achieve different measurement analysis objectives. For
example, topology information is very important in spatial
analysis, such as correlated anomaly detection, thus making
weight wk for topo simii,j greater than other weights. In
order to simplify the weights but at the same time to have
a more comprehensive list of analysis objective scenarios,
we design a decision tree of different generic measurement
analysis objectives and corresponding relative importance of
attributes’ weights (wt, wm, wr, and wa respectively for each
of the similarity factors), as shown in Fig. 3.

Broadly, we divide the entire analysis objective space into
temporal and spatial analysis. In temporal analysis, the weights
for temporal factors, such as time range and alignment are
more important than spatial factors such as topology. These
categories are then further divided on the basis of relevance
of measurement metrics, and short and long term analysis.
The leaf nodes of the tree denote the relative importance
of attributes’ weights. We argue that most types of the
measurement analysis required for end-to-end data-intensive
application performance monitoring fall under one of these
subcategories.

For example, one of the most common measurement
analysis for end-to-end data-intensive application
management is the correlated anomaly event detection [2],

Fig. 3: Decision tree for different measurement analysis objectives
and the corresponding relative measurement attributes’ weights

which involves a spatial analysis and falls under
‘Analysis Objective’→‘Spatial’→‘Measurement Metric
Specific’→‘Short-term Change’. So, the relative weights
should be wt > wm > wa > wr.

V. DOMAIN REPUTATION

The concept of reputation is closely linked to trustworthi-
ness; an entity’s reputation is generally a subjective proof of its
historical actions and in most cases a measure of expectations
of future behavior. Reputation schemes are widely used in e-
commerce systems to build long-term beliefs for agents and
encourage good behavior. The main objective of proposing
a domain reputation scheme is to generate domain-centric
expectations for operators when they subscribe to perfSONAR
measurement data from different domains. Such a domain
reputation scheme can also encourage good measurement
practices (e.g., sharing of calibrated measurement tool data)
among domains. Such a domain reputation metric and ensuing
expectation will add a new dimension to the measurement
recommendation system to help operators and application
users make more educated collaborative decisions in multi-
domain infrastructure performance management.

A. Measurement Data Sanity
Reputation of any domain is a function of the quality

of measurement data generated from that domain. In our
previous work [5], in order to ascertain what features of
a sample set of measurement data qualify them as ‘good’,
we collected a considerable amount of perfSONAR one-way
delay (OWAMP) traces for different paths and different time
periods. In any random collection that are publicly accessible,
we observed that some measurements exhibit non-periodic
sampling pattern, i.e., either too dense or too sparse, and
some are invalid due to faulty clock synchronization between
measurement servers or data corruption (e.g., negative one-
way delay values). Therefore, we argue that it is of paramount
importance that subject to a given measurement analysis
objective, the collected perfSONAR samples should exhibit
some desired characteristics, which for spatial analysis with
OWAMP are: sampling pattern and data validity.

For sampling pattern, we collect perfSONAR OWAMP data
from different DOE labs and ESnet sites for different time
periods. Figs. 4(a) and 4(b) show one such exemplar sampling
time interval histogram for one-way delay measurements from
DOE lab site FNAL to ESnet POP site WASH. From the
figure, it is evident that the majority of sampling time-intervals
are gathered in the one zone (outlined by red curve) which
suggests that the majority exhibits expected characteristics in
terms of sampling pattern that is further corroborated through
K-Means Clustering as shown in Fig. 4(c). As for data validity,



(a) One day characteristics (b) One month characteristics (c) K-Means clustering

Fig. 4: Characteristics of one-way delay perfSONAR traces for FNAL↔WASH path

our investigations with perfSONAR traces reveal invalid data
because of faulty clock synchronization and/or data corruption
causing the value of delay to be ‘NaN’.

Thus, with sampling pattern and data validity being the two
most important factors in deciding the quality of perfSONAR
measurements data subject to a given analysis objective, we
define the sanity score of any trace with path (source destina-
tion pair) i as:

si =
Ni − (Ni − nmajority

i )− (Ni − nvalidi )

Ni
(8)

where Ni denotes the number of measurement samples in path
i, nvalidi denotes the number of valid data samples in in path i,
and nmajority

i denotes the number of samples in the majority
zone.
B. Bayesian Inference based Domain Reputation Calculation

Next, we employ Bayesian Inference to translate such data
sanity scores into a domain reputation. Bayesian Inference
is a beta distribution based probabilistic approach that is
well established in trust and reputation oriented computing
discipline. Through Bayesian Inference, new or an updated
reputation score (i.e., posteriori) of an entity can computed by
combining the old/previous reputation score (i.e., priori) with
a new belief.

In order to translate sanity scores into domain reputation,
we first discretize the measurement data sanity scores into data
sanity ratings of a particular domain using boolean variables
such as ‘Good’ (variable x) and ‘Bad’ (variable y), and some
sanity threshold ε. The value of ε is a measure of the degree of
conservativeness of the reputation scheme that is kept constant
for the entire system. The value of ε can be set based on the
distribution of measurements’ sanity scores in the system. If
the average sanity score of measurement data in the system is
very high, ε value is kept high to differentiate between good
and bad measurements, and vice versa. Usually for all practical
purposes, ε value is around [µ+ σ, µ+ 2 ∗ σ].

x = |i| ∀ si >= ε; y = |i| ∀ si < ε (9)
Therefore, at any given time t, the measurement data sanity

rating of any domain is represented as ρt = [x, y]t. Now if
there are T such discrete data sanity ratings collected over
a period of time, then the overall data sanity rating after T
collection is given as ρT = [x, y]T , where xT and yT are
expressed as:

xT =

T∑
t=1

λT−txt and yT =

T∑
t=1

λT−tyt (10)

where 0 ≤ λ ≤ 1 is called the ‘forgetting factor’ and keeps the
recent history of data sanity rating more relevant in reputation
calculation than ancient history. The value of λ represents
how forgetful a system is, with λ = 1 means the system
forgets nothing. Thus, this value is user opinion dependent,

such that, if the user thinks the historical reputation is also
very important, this value should be close to 1; however, if
the user thinks current reputations are more important, the
value should be close to 0.

Now after collecting T such discrete data sanity ratings, the
reputation of the domain responsible is expressed as a posterior
expectation of beta distribution of ρT and is represented as:

RT = E[beta(ρT )]

=
xT + 1

xT + yT + 2
(11)

VI. EVALUATION

We evaluate the performance of our proposed measurement
recommendation scheme using real and synthetic perfSONAR
measurements. Real perfSONAR measurement traces are used
to demonstrate the working of the recommendation scheme
and domain reputation establishment. Whereas, the synthetic
data is used to showcase the effectiveness of the recommenda-
tion scheme in terms of using the recommended samples for
accurate detection of correlated network anomaly events.

A. Recommendation scheme functionality with real traces
We collect hundreds of perfSONAR traces from DOE labs

and ESnet sites with perfSONAR end-points with different
measurement attributes as inputs to our proposed measurement
recommendation scheme. In Table I, we show the attributes
for only a small subset of collected samples. In this subset,
we have kept the trace BNL↔FNAL as the target trace (in
blue color font) and the rest as candidate traces. Applying
our proposed recommendation scheme, we seek to find the
most relevant traces for two separate measurement analysis
objectives: a) Temporal analysis for correlated anomaly event
detection [2] where complete topology information is not
available (which is often the case for public perfSONAR
datasets); and b) Spatial analysis for topology-aware correlated
anomaly event detection [15].

Table II shows the measurement attributes similarity scores
for the candidate measurement traces with the target trace
described in Table I. The score evaluations follow the scheme
described in Section IV and due to the varied attributes of
the collected traces, we observe that the similarity scores of
candidate traces based on different attributes can vary by a
considerable margin.

In Fig. 5, we show the historical reputation characteristic
comparison of 3 exemplar DOE lab sites based on one year
(Oct 2014 - Oct 2015) traces’ data sanity scores using the
scheme discussed in Section V. We observe that although these
are well known and seemingly reputed perfSONAR end-points



TABLE I: Real perfSONAR traces’ attributes description

Trace Name Metric Periodicity Time Range
bnl↔ fnal One-way

delay
[58, 62] 2015-09-01 00:00:57 ↔

2015-09-09 23:58:59
lbl↔ornl One-way

delay
[51, 68] 2015-09-03 05:39:18 ↔

2015-09-03 22:19:49
aofa↔bost One-way

delay
[51, 161] 2015-09-01 00:00:35 ↔

2015-09-01 05:35:22
bnl↔bois One-way

delay
[57, 63] 2015-09-01 00:00:20 ↔

2015-09-09 23:59:46
sacr↔bois One-way

delay
[53, 150] 2015-09-01 00:00:21 ↔

2015-09-01 16:42:37
bnl ↔bost One-way

delay
[53, 67] 2015-09-01 00:00:53 ↔

2015-09-01 05:35:20
hous ↔srs One-way

delay
[53, 69] 2015-09-05 05:31:18 ↔

2015-09-05 22:08:47
bnl ↔lbl One-way

delay
[61, 66] 2015-09-01 00:00:17 ↔

2015-09-09 23:59:13
newy ↔sacr Throughput [54, 67] 2015-09-01 00:00:52 ↔

2015-09-09 23:59:15
anl ↔newy Throughput [52, 64] 2015-09-01 00:01:00 ↔

2015-09-09 23:59:47
bnl ↔nash Throughput [57, 71] 2015-09-03 05:58:28 ↔

2015-09-03 22:38:15
denv ↔fnal Throughput [58, 67] 2015-09-01 00:00:51 ↔

2015-09-09 23:59:58

TABLE II: Measurement attributes similarity score description

Trace
Name

Topology
Similarity

Metric
Similarity

Alignment
Similarity

Time Range
Similarity

lbl↔ornl 0 1 0.456 0.077
aofa↔bost 0.077 1 0 0.026
bnl↔bois 0.385 1 0.999 1
sacr↔bois 0 1 0.103 0.077
bnl↔bost 0.4 1 0 0.026
hous↔srs 0 1 0.767 0.53
bnl↔lbl 0.333 1 0.999 1
newy↔sacr 0.125 0 0.999 1
anl↔newy 0 0 1 0.999
bnl↔nash 0.143 0 0.979 0.862
denv↔fnal 0.154 0 0.999 1

within the the data-intensive application communities deploy-
ing perfSONAR, not all the sites produce trustworthy data at
all times. Thus, we establish the need for a domain’s reputation
as a key factor in subscribing to that domain’s measurement
data for accurate detection and effective troubleshooting. For
example, according to Fig. 5, subscribing to data from domain
‘NEWY and ‘ATLA’ is likely to yield data with high veracity;
whereas, subscribing to STAR data may not always lead to
accurate correlated anomaly event detection and diagnosis.

Finally, we apply the relative weights of the measurement
attributes (as shown in Fig. 3) on the similarity scores based
on the two monitoring objectives: temporal and spatial. For
temporal analysis, we focus on detecting correlated anomaly
events in time series measurements where measurement metric
needs to be of similar type. Hence, we follow the path:
‘Analysis Objective’ → ‘Temporal’ → ‘Short-term Change’
→ ‘Measurements Metric Specific’, and assign the weights

Fig. 5: Historical reputation characteristics comparison of 3 exemplar
DOE lab sites with real perfSONAR traces over one year period

according to the rule wa > wr > wm > wt. Whereas for
spatial analysis, focus is on using measurements topological
information to drill down the location of events. Hence, it
follows the path: ‘Analysis Objective’ → ‘Spatial’ → ‘Mea-
surements Metric Specific’→ ‘Short-term Change’, with final
relative weights following the rule wt > wm > wa > wr.

The final recommendation outcomes and corresponding
ranking of a subset of candidate traces are shown in Table III
along with the traces’ data sanity scores, and corresponding
source and destination domains’ reputation scores. Table III is
a snapshot of the actual manifestation of our proposed recom-
mendation scheme to assist the operators and application users
to better gauge the relevance and veracity of collected samples.
For example, the Trace BNL↔BOIS (in blue font color as
shown in Table III) is the best choice among the candidates
(1st ranked) in terms of similarity and high instantaneous
data sanity score (0.993). Whereas, Trace BNL↔LBL (in red
font color), although being 2nd ranked for both temporal and
spatial analysis, may not be a good choice for candidacy as the
low sanity score (0.642) suggests sub-par data quality which
can be attributed to low reputation (0.611) of the destination
domain (LBL). Thus, operators should be advised to use Trace
DENV↔FNAL (in green font color) over Trace BNL↔LBL
for temporal analysis as the data quality of the former is much
better (0.972) in spite of having a slightly lower similarity
(0.765). However, DENV↔FNAL will not be a significantly
better choice over BNL↔LBL for spatial analysis due to the
former’s very low similarity score (0.327).

B. Recommendation scheme effectiveness with synthetic traces
In order to examine the effectiveness of our proposed

recommendation scheme in accurately identifying anomaly
events upon analysis, we perform experiments with synthetic
perfSONAR data. We randomly generate a one-week dataset,
and inject different number of correlated and uncorrelated
anomaly events to examine the detection accuracy. The syn-
thetic data is carefully generated to closely mimic the actual
perfSONAR OWAMP measurement traces. In order to inject
correlated anomaly events, we generate 100 traces and then
inject anomaly events in those traces at the same time. We
also inject events at random times as uncorrelated anomaly
events. The percentage of anomaly events in each trace varies
from 0.1%-1% of the trace sample population. The magni-
tudes of anomaly events vary from 10% - 60% over normal
measurements with higher magnitudes causing sharper spikes.

In the first experiment, we use the traces recommended
by our scheme to detect network anomaly events using an
exemplary temporal correlation analysis. For this experiment,
we use different number of recommendations and see whether
analysis with such recommendations can successfully identify
the correlated/uncorrelated anomaly events that we injected.
In Figs. 6(a), 6(b), and 6(c), we show the accuracy of such
anomaly event detection with our scheme recommending 2,
10 and all 100 traces, respectively. We observe that in this
particular scenario, 10 recommendations accurately detect all
the anomaly events with no false alarms. Whereas analysis
with only 2 recommendations lack the necessary data to
establish correlation, thus causing false alarms. Further, all
100 recommendations suffer from too much noise in anomaly
detection caused by undesired traces resulting in false alarms.
In Fig. 6(d), we showed the nature of detection accuracy with
the number of recommended traces exhibiting an inflection
within 10 - 40 recommendations range. Thus, we argue that
there exists: i) an optimal number of recommendations (in this
case 10) for accurate detection, and ii) an inflection point (in
this case 40) beyond which too many traces contribute to high
levels of noise resulting in false alarms.



TABLE III: Data sanity score and domain reputation results for selected traces used in exemplar analysis case study

Trace
Name

Data Sanity
Score

Temporal Correlation Analysis Spatial Correlation Analysis Domain Reputation
Overall Similarity
Score

Ranking Overall Similarity
Score

Ranking Source
Reputation

Destination
Reputation

bnl↔bois 0.993 0.938 1 0.938 1 0.983 0.984
bnl↔lbl 0.642 0.933 2 0.933 2 0.985 0.611
denv↔fnal 0.972 0.765 3 0.327 5 0.991 0.984
newy↔sacr 0.982 0.762 4 0.312 7 0.979 0.986
anl↔newy 0.984 0.221 5 0.273 10 0.987 0.986
bnl↔bost 0.953 0.197 10 0.453 3 0.983 0.964
hous↔srs 0.976 0.666 7 0.418 4 0.934 0.986

(a) 2 recommendations (b) 10 recommendations

(c) 100 recommendations (d) Accuracy vs. recommendations

Fig. 6: Accuracy of correlated anomaly detection in terms of false
alarms with varying number of recommended traces

Fig. 7: False Alarm Rate comparison among the three different
schemes evaluated

Finally, in Fig. 7, we show the benefits of our content
filter based recommendation scheme over the greedy recom-
mendation approach (random selection), and recommendation
strategy with filtering based on partial measurement features,
such as temporal aspects (time range) of the traces. For
this experiment, we vary the density of anomaly events and
pick equal number of recommended traces for each approach
being compared. We see that on an average the content filter
performs consistently better than the greedy and temporal filter
based approaches. It is interesting to observe that for a very

small density of anomaly events, the false alarm rate is higher
for all approaches. This is because, too few anomaly events
with minimal anomalous features are difficult to detect and
are neither related to the number of recommendations nor the
filtering approaches.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we established the need of a measurement
recommendation for network operators and users to effectively
troubleshoot bottlenecks affecting Big Data applications. Us-
ing a content-based filter, we proposed a measurement recom-
mendation scheme that filters and ranks best relevant traces
from a pool of candidate traces. The recommendation scheme
was complimented by a Bayesian Inference based domain rep-
utation calculation scheme that indicates the trustworthiness of
the collected samples among the involved domains. Using real
and synthetic perfSONAR short-term and long-term traces, we
showed how our content filter enables operators to intelligently
use less but relevant measurement samples to accurately detect
and diagnose performance bottleneck causing network events.

In future, we will extend our measurement recommendation
scheme to incorporate the principles of collaborative filtering.
Such a collaborative filtering approach will allow the operators
and application users to collectively troubleshoot common net-
work problems through similarity in multiple user perspectives
on top of similarity in measurement traces. Our work will thus
help data-intensive application communities to better socialize
around measurements and achieve expected performance.
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