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Abstract—With wider adoption of Software-Defined Network-
ing (SDN), network obfuscation and resource adaptation within
a cloud environment have emerged as cost-effective solutions
against cyber attacks. In spite of their implementation simplicity,
shortcomings of such one-dimensional strategies are considerable
against sophisticated attacks where the attacker/s have enhanced
visibility to the cloud network. In this paper, we propose
‘Whack-a-Mole’, a SDN-driven cloud resource management
scheme through network obfuscation that can help Cloud Service
Providers (CSPs) to: a) proactively protect critical services from
impending DDoS attacks and b) contribute very little service
interruption footprint while doing so. ‘Whack-a-Mole’ works
at two levels: it employs a novel virtual machine (VM) spawning
model that not only creates multiple VM-replicas of critical
services to new cloud resource instances, but also assigns VM-
replicas’ IP addresses through address space randomization.
Using numerical results, we show how such VM spawning can
be optimized based on realistic cloud Service Level Agree-
ments (SLA) without compromising its effectiveness. Finally,
‘Whack-a-Mole’ is implemented through SDN/OpenFlow con-
trollers over Open vSwitches on a GENI testbed where the
efficacy and effectiveness of the scheme is evaluated. The results
show ‘Whack-a-Mole’ to be as effective as random obfuscation
in evading attack events and more than 2x better on average
in attack avoidance over other static resource adaptation based
defense strategies.

Index Terms—Cloud Security, Address Randomization, Mov-
ing Target Defense, DDoS Attacks, Software-defined Networking.

I. INTRODUCTION

Network based Distributed Denial of Service (DDoS) at-
tacks are one of the most common threats impacting all types
of cloud based services ranging from finance industry to game
servers. The targets of such DDoS attacks include any and all
types of cloud service providers (CSP), from large enterprise
clouds to small scale campus private clouds causing billions
of dollars in damages to cloud providers and tenants. In most
common volumetric DDoS attacks targeting cloud resources,
the attacker/s achieve partial or complete disruption of regular
service users’ quality of experience (QoE) by flooding the
virtual machine (VM) hosting the service with huge volume
of packets. The packets consume the VM resources (network,
compute, and storage) thus leaving the VM unresponsive
to regular users’ requests. Such attacks continue to bother
the cloud industry as according to the State of the Internet
Survey [1], overall DDoS attacks are up (14%) in 2017 Q4
in comparison to 2016 and more than 50% of all attacks are

volumetric flooding attacks.
With the advent of Software-defined Networking (SDN) [2]

and OpenFlow [3], the traditional ‘detect-and-react’ DDoS
defense approaches [4] are transformed into more proactive
‘Cyber Agility and Defensive Maneuver’ mechanisms [5].
These are effective in consistently maintaining the Service
Level Agreements (SLA) between the providers and tenants
and help protect millions of dollars worth of cloud resources.
Such mechanisms can be designed to: (a) tackle intelligent
and sophisticated attacks by being one step ahead, (b) be
agile in responding to any attack trigger indicating impending
attack, (c) be cost effective in prudent utilization of cloud
resources while maneuvering. Amongst the ‘Cyber Agility and
Defensive Maneuver’ strategies, the Moving Target Defense
(MTD) [6] based resource obfuscation/adaptation mechanisms
empowered by SDN can be effective to protect critical cloud-
hosted applications. In order to make the implementation
of MTD based schemes simpler, most of the state-of-the-art
mechanisms however employ one-dimensional maneuvers that
are relatively easier to predict over time. This is especially true
when the attacker gains enhanced visibility of the network
in terms of the IP address used for the VMs hosting the
applications.

In this paper, we propose Whack-a-Mole: a SDN-driven
MTD based DDoS defense mechanism in cloud environments.
Through the SDN controller, Whack-a-Mole works at two
levels: first it proactively spawns replicas of VMs hosting
critical applications where the applications are seamlessly
migrated. Next, it mutates the IP addresses associated with
the services by assigning the VM replicas with IP addresses
belonging to different Address Spaces (ASes) where the entire
cloud network is divided into different ASes. The OpenFlow
switches with the help of SDN controller direct all new
incoming user (i.e., clients of cloud hosted services) requests
to the spawned VMs whereas the existing users are allowed
to finish their sessions with the old VMs. Upon completion
of the existing users’ sessions, the VMs are allowed to die
by freeing up the cloud resources and IP addresses that will
be reused for newly spawned VMs. In Whack-a-Mole, we
optimize the frequency of such spawning in order to keep it
frequent enough to thwart an impending attack, yet not so
frequent that it disrupts the cloud user QoE or satisfaction.
At the same time, the address mutation is optimized to keep
the new IP address selection as unpredictable as possible for



the attacker to guess. As a result, Whack-a-Mole is able to
create a network resource obfuscation process that protects
critical services from DDoS attacks and upholds the SLA
bounds at the same time.

We demonstrate the utility of Whack-a-Mole using a
GENI [7] based testbed implementation and evaluation. Using
GENI, we create a typical CSP and compare the performance
of proposed address mutation scheme against a completely
random mutation scheme and a deterministic one-dimensional
state-of-the-art mutation scheme. The results show that against
an intelligent attacker with partial visibility of the network and
probabilistic learning capability, Whack-a-Mole mutation
scheme is able to achieve as low probability of attack success
as a random mutation scheme. Whereas, Whack-a-Mole’s
probability of attack success improvement in comparison to a
deterministic one-dimensional mutation scheme is more than
2-fold on average.

The rest of the paper is organized as follows: Section II
discusses the related work. Section III presents the system
and attack model. Section IV discusses the scheme and op-
timization details. Section V discusses the GENI testbed im-
plementation and resilience performance evaluations. Finally,
Section VI concludes the paper.

II. RELATED WORK

The related work in MTD based DDoS attack defense can
be divided into three broad classes.

A. MTD-based cloud security solutions

In recent times, cloud based MTD works are gaining mo-
mentum in tackling cloud based threats, among these, [8–10]
are notable. In [8], the authors propose a MTD strategy to
marginalize the attackers within a small pool of decoy VMs.
Other notable work that applies MTD against cyber attacks
on VMs is [10] where the authors use VM duplication with
consumers redirected whenever the VMs running the critical
applications are attacked. In [9], the authors propose the one
of the very first efforts on network diversity based MTD for
cloud security. Most of these works are one-dimensional in
their defense strategy design and thus prone to failure against
sophisticated attacks with greater network visibility.

B. SDN enabled cloud security strategies

Works such as, [11–13] proposed SDN enabled MTD
cloud security schemes where either VM IP address mutation
schemes or VM migration schemes use OpenFlow [3] to route
cloud users to the target applications. Authors in [11] studied
the benefits and overheads of SDN-enabled MTD schemes for
VM migration. In [12], the authors perform an online VM mi-
gration strategy by predicting impending attacks using attack
traffic signature pattern recognition. While in [13], authors use
SDN to compute the ideal VM for migration based on multiple
factors. The common theme in most of such SDN enabled MTD
schemes are the ease of implementation ensuring successful
misdirection of attackers with limited budget and network
know-how.

C. Network address shuffling and randomization

Network address shuffling and randomization is one of
the most popular implementations of MTD in cloud [14–17].
Authors in [14] analyze the effectiveness of network address
shuffling by computing the probabilities and expectations of
at least one vulnerable VM getting attacked. In [15, 16], the
authors propose an optimal IP mutation scheme of allocating
IP addresses to each VM in the system. In [17], the authors
shuffle IP address among large number of virtual decoy nodes;
whenever the decoys get attacked, the shuffling scheme adapts
and reconfigures. However, such schemes assume infinitely
large address space and tend to be too wasteful to be im-
plementable.

III. SYSTEM AND ATTACK MODEL

In this section, we discuss the system and attack model
considered for this work.

A. System model

For Whack-a-Mole, we assume that the entire set of avail-
able IP addresses (does not need to be contiguous) is divided
into smaller address spaces (ASes) of equal size a. We also
assume that the ASes are more than the number of VMs, so
that there are enough redundancy. We also assume that within
a cloud network, there are different subnets, each consists of a
set of hosts physically connected through a switch. In such a
scenario, typical IP address mutation schemes [16, 17] mutate
the VM addresses within the address space of its own subnet,
which reduces the space of mutation and reduces the level of
unpredictability. At the same time those schemes suffer against
a more visible attacker which can somehow compromise the
subnet switch. To cope with this, we propose a novel model
of mutating (or spawning) the VM copies across the subnets
or in our case ASes.

Figure 1 shows the logical representation of
Whack-a-Mole process of spawning VMs into different
ASes aided by the SDN/OpenFlow controller. The controller
coordinates the spawning process through multiple Open
vSwitches (OVSes), i.e., switches that support OpenFlow
along the spawning path. The SDN/OpenFlow controller
governs the data flow to the VMs through the OVSes and
load balancers using the control path. The VMs share their
control/status information with the controller along the
control path. As shown in Figure 1, the regular users access
the application through the controller and OVSes along
the regular path. Our scheme also assumes the presence of
state-of-the-art intrusion detection system within the cloud
network that can detect impending attack and direct the
attacks on the target application to an old VM replica. The
VMs under attack is thus treated as a quarantine and the
associated IP address is not reused.

B. Attack model

In this work, we consider attacks on a target application,
(i.e., on a target VM) generated from one or multiple attackers
to be a Poisson point process [18, 19] with exponentially



Fig. 1: The cloud system model for Whack-a-Mole

distributed attack inter-arrival times. In our model, every VM
experiences two states: Attacked, i.e., when the target VM is
either under attack or being actively probed before an attack;
and Idle, when the VM is under no active attacks. As shown
in Figure 1, the attacker attacks the target application, or more
specifically the VM hosting the application along the attack
path. We assume the attacker/s to have partial visibility to
the cloud network, i.e., the attacker has the knowledge of IP
addresses and ASes used for mutation, although the mutation
process is unknown. However, we assume that the attacker
can employ probabilistic learning mechanisms to guess the
mutated IP address post VM spawning.

IV. Whack-a-Mole: SCHEME DETAILS AND
OPTIMIZATION

In this section we describe the overview of the proposed
Whack-a-Mole scheme. We first frame an optimization
problem to determine the spawning frequency of the VMs,
followed by the optimization outcome based on numerical
results. We next describe the overall spawning procedure of the
VMs across the subnets using the optimal spawning frequency.

A. Scheme overview

During the VM spawning procedure, Whack-a-Mole
needs to ensure that the ongoing users and packets are least
affected during the process. This can be achieved as follows.
Every VM has a lifetime. During this time it spawns another
VM (or replica), which will operate similarly (will have a
lifetime and spawn), on a different IP address, maybe on a
different subnet. So in this model, at any instance there will be
a number of VM instances, and the new users will be directed
to the newest VM. The old VMs will gradually die (or become
ineffective) after their lifetime expires. Thus in this model only
a small fraction of the users (only the ongoing ones) may need
to be redirected (when their VM will die) to the newer VM.
Also in this model a single attack cannot affect all the users,
as the users are distributed among multiple VM replicas. Thus
by dynamically spawning the VM replicas across the subnets,

TABLE I: Table of Notations

n , Number of VMs
M , Total number of ASes
N , Total number of subnets
I , Interval duration
a , Number of addresses in an AS
ci , Spawning cost of VMi

λa = 1
/
ta , R.V. for average DDoS attack frequency

µi = 1
/
ti , R.V. for average idle period frequency
Ti , VMi lifetime
bij , Whether ASj is assigned to VMi in the current

interval
Bi

j , Whether Sj is assigned to VMi in the current
intervals

xij , Number of times ASj is chosen for VMi in the last
ω − 1 intervals

Xi
j , Number of times Sj is chosen for VMi in the last

ω − 1 intervals
yij , Number of times ASj is assigned to VMi in the last

ω intervals
zij , Number of times ASj is assigned to Si in the last ω

intervals
Ri = 1

/
γi , Spawning rate of VMi

this model increases the level of unpredictability from an
attackers perspective, and at the same time ensures less user
redirection, thus fulfilling our dual objectives of robustness
and user satisfaction.

Fig. 2: Illustration of intervals, sub-intervals and active replicas
corresponding to a VM

We assume that time is divided into intervals. In each
interval, the controller assigns some address spaces to each
VM, so that two or more VMs are not assigned to the same
address space. In the next interval, the VM is assigned a
different set of ASes. Each interval is further divided into
several sub-intervals. In each sub-interval, a VM spawns
another instance (or replica) of that VM to a different IP
address. It does this by uniformly randomly choosing an IP
address within its own ASes that were assigned to it (by the
controller) in that interval. The chosen IP address may or may
not reside in the same subnet. Figure 2 shows an illustration
of the active replicas corresponding to a certain VM, where
A1 −A17 denotes different IP addresses..

Figure 3 shows the overview of the proposed scheme. In
Figure 3 the spawning interval and VM lifetime are assumed
to be γi and Ti respectively. Thus after γi, the replica a1
spawns another replica a2, which spawns another one after
its spawning interval and so on. The replicas die after their
lifetime, so that their addresses can be reused for future



replicas. The detailed scheme is described in the following
subsections. The effectiveness and efficiency of our proposed
scheme, thus, relies on its ability to optimize the spawning
frequency and VM lifetime that (a) does not increase the
DDoS attack probability, (b) and at the same time ensures
minimum user redirection and VM spawning overhead. In
this section, we first outline and formalize the optimization
problems for spawning frequency, and then use it to build the
problem formulation of dynamic VM spawning scheme across
the address spaces. Table I summarizes the notations used for
our modeling.

Fig. 3: Schematic of Whack-a-Mole VM spawning process

B. VM lifetime and spawning frequency optimization

In Figure 3 we can observe that last user/customer of a
replica uses the VM for atmost Ti−γi time units. Thus if the
spawning interval γi is increased (of spawning frequency is
decreased), the VM lifetime needs to be increased as well to
ensure that all the users can be served by the VM. Thus the
VM lifetime is proportional to the spawning interval and vice
versa.

The ideal VM spawning frequency should be such that it
is not too infrequent to make the VM vulnerable to DDoS
attacks (as infrequent spawning frequency increases the VM
lifetime). At the same time, the frequency should not be too
often to waste valuable cloud network resources. To solve this
frequency optimization problem, we assume the lifetime of
VMi to be Ti which ideally should be infinitely large (and so
is γi) if there is no DDoS attack, thus minimizing the network
resource wastage. However, due to threats of DDoS attacks,
Ti needs to be adjusted just enough so that it is less than the
DDoS attack inter-arrival time. This optimization problem can

be formulated as follows:

Minimize Ti

s.t. Ti ≤ DDoS attack inter-arrival time (1)

The constraint in Eq. (1) ensures that the all users using the
services of VM i during its lifetime do not encounter an attack.
Here, Ti will be a function of mean attack period duration
and idle period duration (attack inter-arrival times) ta and ti,
i.e., in other words, Ti will be dependent on λa and µi. The
exponentially distributed random variable for attack period
duration x with mean ta = 1

λa
is given by

f1(x) =

{
λae
−λax ∀ x ≥ 0

0 ∀ x < 0
(2)

Similarly, the exponentially distributed random variable for
idle period duration y with mean ti = 1

µi
is given by

f2(y) =

{
µie
−µiy ∀ y ≥ 0

0 ∀ y < 0
(3)

Let us assume that the random variable representing the
attack inter-arrival time be z which is the sum of two inde-
pendent random variables for Attacked and Idle periods x and
y respectively, i.e., z = x + y. Therefore, the distribution of
attack inter-arrival time z is obtained as:

fZ(z) = fX(x) ∗ fY (y)

=

∫ +∞

−∞
fX(z − y)fY (y)dy

=


λaµi[e

−λaz−e−µiz ]
(λa−µi) ∀ λa 6= µi

λ2aze
−λaz otherwise

(4)

In order to quantify the optimal Ti, we approach the problem
by first calculating the probability of VM being attacked before
it dies. Such a probability is expressed as:

Prob{VM getting attacked within its lifetime}

= Prob{z ≤ Ti} (VM attack being memoryless)

=

∫ Ti

−∞
fZ(z)dz

=


∫

Ti

0

λaµi[e
−λaz−e−µiz ]
(λa−µi) dz ∀ λa 6= µi∫

To

0
λ2aze

−λazdz otherwise

=


µi(e

−λaTi−1)+λa(1−e−µiTi )
λa−µi ∀ λa 6= µi

1− e−λaTi(λaTi + 1) otherwise
(5)

Now in order to optimize problem (1), probability of VM
getting attacked before it dies, i.e., Prob{z ≤ Ti} needs to
be minimized. This reduces the optimization problem from
equation (1) to:

Minimize
(

Prob{z ≤ Ti}
)

(6)



However, due to the asymptotic nature of exponentially
distributed random variable z, the nature of Eq. (5) is contin-
uously increasing and asymptotic; and thus does not have any
maxima or minima. Therefore, for a particular DDoS attack
scenario (i.e., with statistical λa and µi known), the optimal
Ti can be evaluated by tuning the desired probability of VM
getting attacked, i.e., Prob{z ≤ Ti}. However, in our model
the VM lifetime is also dependent on the spawning interval,
user’s service time and spawning costs, which gives rise to the
following set of constraints.

User satisfaction constraint: We assume that the spawning
interval) of VMi is given by γi. Also assume that the user’s
service time is s, which is exponentially distributed with mean
µu. Then Ti−γi (see Figure 3) should be sufficient enough so
that the last customer can finish its service within the lifetime
of the VM, with high probability, i.e.

Prob (s > Ti − γi) < τ1 (7)

where τ1 is an user defined threshold.
Spawning cost constraint: Also there is a spawning cost

associated with a VM, which is different for different VMs.
The spawning cost of a VMi is the sum of its snapshot cost,
and the network cost of imitating/copying snapshot files to a
different location. Assume that ci is the spawning cost of VMi,
then the total spawning cost in an interval is ciI

/
γi, should

be less than some cost budget τ2, i.e.

ciI
/
γi < τ2 (8)

where τ2 is an user defined cost budget.
Thus there is a clear tradeoff between the spawning cost of

a VM, its lifetime and its security under DDoS attack. If the
cost of a VM spawning is high, its spawning interval is also
high. Thus its lifetime should also needs to be higher to fulfill
objective (6). On the other hand, the lifetime cannot be too
high to make the VM vulnerable to attack.

C. Effects of VM lifetime and spawning frequency optimization

Using MATLAB based numerical results, we demonstrate
how the VM lifetime and thereby VM spawning interval can be
optimized based on different service and system parameters.

We first characterize Eq. (5) against Ti as shown in Fig-
ure 4(a). We can observe how the Prob{z ≤ Ti} gradually
increases and achieves saturation with larger values of VM
lifetime Ti. However, the slope of the probability increase is
dependent on the attack budget during the attack and idle pe-
riods ta and ti respectively. Consequently, the Ti optimization
is adaptive to: (a) the attack budget, and (b) the tolerable limit
of DDoS attack success. For example, if the attack budget is
high, i.e., an application is attacked every 10 seconds with
100 seconds of duration between consecutive attacks, and if
the system can handle up to 1 out of 10 successful attacks, the
optimal Ti should be around 50 seconds. Whereas for lower
attack budgets, in order to maintain the same attack success
tolerance, VM lifetime of 1000 seconds will suffice.

Figure 4(b) shows the attack success probability with dif-
ferent spawning duration γi for different attack budgets. We

assume τ1 = 0.1 for Figure 4(b). The characteristics are
similar to Figure 4(a) as we observe increasing Prob{z ≤ Ti}
with spawning interval γi. This is because the spawning
interval is proportional to the VM lifetime. We can also
observe that in order to safeguard a VM during its lifetime,
the spawning needs to be more frequent with increasing attack
budget. For example, if we keep a constant spawning interval
of 1000s against a 100x attack budget increase (i.e., from
10s/10000s to 10s/100s), then the attack success probability
increases by more than 4x.

We next demonstrate the characterization of attack success
probability against the spawning cost constraint ci in Fig-
ure 4(c). We assume τ2 = 0.1 and I = 30 seconds for
Figure 4(c). We can observe that for a fixed attack budget,
the attack probability clearly increases with higher spawning
cost. This is because higher spawning results in an increase in
the spawning interval, which increases the VM lifetime and
this attack success probability.

D. Spawning VMs at Unpredictable IP Addresses

With the established spawning rate and lifetime correspond-
ing to a VM, we next formulate our MTD based VM spawning
problem. The MTD is run at the SDN controller at every
interval to assign the ASes to the VMs. The objective of the
controller is mainly twofold. The first factor is to maximize the
entropy (or unpredictability) of assigning a VM to a particular
AS. The second factor is to maximize the unpredictability of
assigning a VM to a particular subnet. The key purpose of this
twofold objective is to ensure that the VMs not only spawns
at different addresses, but also across different ASes.

The first factor can be modeled as follow. Assume that bij
and Bij are binary variables which are one if ASj and subnet
Sj are assigned to VMi respectively in the current interval.
Also assume that xij and yij is the number of times ASj
is assigned to VMi in the last ω − 1 and ω (including the
current interval) intervals respectively. Then the number of
times ASj is assigned to VMi is given by yij = xij + bij . Thus
the probability (or fraction of times) of assigning ASj to VMi

in the last ω intervals is given by pij = yij
/∑M

j=1 y
i
j . Similarly

let us assume that Xi
j and zij is the number of times subnet Sj

is assigned to VMi in the last ω−1 and ω intervals respectively,
then zij = Xi

j+B
i
j . Then the probability of assigning VMj to

a subnet Si is given by qij = zij
/∑N

j=1 z
i
j . Thus our objective

function to maximize the overall unpredictability which can
be modeled as

Maximize
M∑
j=1

pij log

(
1

pij

)
+

N∑
j=1

qij log

(
1

qij

)
(9)

The objective is to find out the optimal set of bij corresponding
to the VMs, such that the following constraints are satisfied.

Integrity constraint: The address spaces chosen correspond-
ing to a particular VM as well as its chosen subnet should be
consistent, i.e., if an AS is chosen corresponding to a VM,
then the subnet where the AS resides should also be assigned



(a) (b) (c)

Fig. 4: Variation of attack success probability with (a) different VM lifetimes, (b) spawning intervals and (c) spawning costs.

to that VM. These give rise to the following set of constraints:
M∑
j=1

bij ≥ Bik ∀ASj ∈ Sk

L.Bik ≥
M∑
j=1

bij ∀ASj ∈ Sk

(10)

where L is a very large number, which ensures that if bij = 1,
then Bik = 1 if and only if ASj resides in subnet-k. On the
other hand, if Bik = 1 then at least one of the ASj ∈ Sk has
to be 1.

Spawning rate constraint: At any interval, each VM receives
enough address spaces depending on their spawning rates, i.e.
the VMs with higher spawning rates receive more ASes and
vice versa. If Ri is the spawning rate of VMi, then

max
∀i

(∑M
j=1 b

i
j

Ri

)
−min
∀i

(∑M
j=1 b

i
j

Ri

)
< δ (11)

i.e., the ratios of the address spaces allocated to a VM and
its spawning rate is more-or-less identical. Here δ is an user
defined constant. Also the number of addresses assigned to a
VM should be more than the addresses it needs, i.e.,

a.

M∑
j=1

bij > αIRi ∀i (12)

where a is the number of addresses in a subspace, and α is a
constant.

Other constraints: At any interval, all the ASes are assigned
to a VM. This ensures the utilization of all the available ASes,
which maximizes the level of unpredictability. We also need
to ensure that no two VMs are assigned to the same address
space, i.e.,

n∑
i=1

bij = 1 ∀j (13)

This constraint satisfaction problem can be solved by
finding all satisfiable bjj using one of Satisfiability Modulo
Theories (SMT) [20] solvers such as Z3 Prover [21].

Within an interval the VMs spawn their replicas at the
addresses that are chosen uniformly randomly among the ASes

assigned to that VM, without invoking the central controller.
This is depicted in Figure 2. This makes Whack-a-Mole
highly scalable when it comes to managing large number of
VMs.

V. SYSTEM IMPLEMENTATION AND EVALUATION

In this section, we describe the performance evaluation of
Whack-a-Mole on the GENI Cloud infrastructure [7].

Fig. 5: GENI cloud network experimental topology.

A. Testbed setup

We setup the GENI testbed by creating multiple slices that
represent ASes or subnets and VMs that represent the servers
hosting applications. The overall setup is shown in Figure 5.
The OVS with built-in SDN functionality is the controller;
it lies on a different slice and runs Whack-a-Mole. All the
VMs in subnet slices are connected directly to the OVS. Since
GENI cloud infrastructure does not allow dynamic ‘on the



fly’ VM generation once the resources are reserved, we create
empty stand-by VMs beforehand in order to act as dynamically
spawned VMs. For example, in Subnet 1, only one server
among many is up at the beginning of the experiment. When
the controller needs to spawn a new VM, it will dynamically
activate one of inactives. Overall, we use four subnets with 20
total servers or VMs.

For the SDN functionality, we use open-source POX con-
troller that is available on GENI platform’s OVS to implement
our Whack-a-Mole algorithm. For every flow that goes
through the OVS/controller, the routing part is dealt with
‘Control Plane’; while the SDN controller governs the ‘Data
Plane’. For the DDoS attacks, we install two attackers that
use ‘slowhttptest’ as attack tool. It is a compilation of various
DOS attack tools such as ‘slowloris’, ‘Slow HTTP POST’, and
‘Slow Read attack’ (based on TCP persist timer exploit) [22].
We use it on two Linux VMs acting as attackers to launch a
combined Layer 3 (TCP) and Layer 7 (HTTP request) attack
to the target application.

B. Experimental setup

The objective of the experiments is to compare the IP
address mutation performance of Whack-a-Mole with two
other candidate mutation schemes:

Deterministic: In this scheme the individual VMs spawn at
the addresses in a deterministic, round-robin fashion. This type
of scheme is employed by most one-dimensional state-of-the-
art VM migration based MTD mechanisms.

Random: In this scheme the new VM-replica addresses are
chosen uniformly randomly. Ideally if the addresses are chosen
randomly, then it maximizes the level of unpredictability. We
want to evaluate how close Whack-a-Mole performs in
comparison to the random mutation scheme.

Fig. 6: Illustration of the attackers learn-ability.

For the DDoS experiments, we design attacks with varied
learn-ability and visibility. At each sub-interval, the attacker
chooses the address for launching his next attack for the next
sub-interval to a particular VM. We assume that the VM
address in the current sub-interval is i. For each address-j, the
attacker calculates the probability that the VM will create a
replica with address-j in the next sub-interval, conditioned on
the fact that the current VM address is i. In order to achieve
it, the attacker keeps track of a window of w sub-intervals.
Thus, the probability Bj that j will be assigned to a VM
in the next window is calculated as the ratio of the number
of times address-j is assigned to that particular VM within
the “look-ahead” window of size w, and the total number of
times address-j is assigned to that VM. Thus the probability
of attacking j in the next sub-interval is Bj

/
w.

Figure 6 shows how the attacker predicts the next IP address
corresponding to a particular VM. In Figure 6 we assume that

the look-ahead window size w = 3, and assume that the current
VM address is A4. Now based on the historical spawning of
that VM, we can observe that A5 comes twice within the look-
ahead window after A4, whereas A7, A9, A11, A12 appears
once. Thus B5 = 1, B7 = B9 = B11 = B12 = 0.5. Bj is
zero for all the other addresses. Thus the attacker chooses A5

with a probability of B5/w = 1/3, whereas A7, A9, A11, A12

are chosen with a probability of 1/6 each.
The look-ahead window size w is basically an abstraction

that models how accurately a VM’s next spawning address is
predicted by an attacker. Notice that such attack strategy is ef-
fective mainly in case of deterministic (or semi-deterministic)
scheme. In case of a deterministic scheme, lesser values of
w results in higher attack success probability and vice versa.
Ideally w can be anywhere between 1 and the number of
VMs in the system. The key purpose of Whack-a-Mole is
to improve the level of unpredictability during the spawning
process so that such learning cannot help the attacker to launch
a successful attack.

The performance comparison between Whack-a-Mole,
Deterministic, and Random schemes is made in terms of
‘instances of successful attack’ and ‘probability of successful
attack’. An attack is considered successful if mutated IP
address of the replica VM upon spawning is the same as the IP
address of the VM under attack. Thus, these metrics measure
the unpredictability of the mutation schemes.

(a)

(b)

Fig. 7: Attack success probability with (a) w = 1 and (b) w = 3.



C. Effects of VM spawning at unpredictable addresses

We first observe the attack success probability for each can-
didate scheme for an experiment duration of 360 seconds. The
attacker generates a new IP address to attack and the system
spawns a new replica with a new IP address at every 20 second.
Thus, the experiment only measures Whack-a-Mole’s effi-
cacy in terms of VM spawning at unpredictable IP addresses
and not spawning rate efficiency. Each candidate scheme is
tested independently.

Figure 7(a) illustrates the attack success probability for the
total runtime of the test (i.e., 360 seconds) with the attacker’s
look-ahead window size of w = 1. Evidently, attacker’s
learning mechanism adapts with the Deterministic scheme’s
pattern after a while. In case of Deterministic scheme, the
attacker’s ability to precisely identify the new VM-replica
addresses results in gradual increase in attack success proba-
bility. In fact the attack success probability goes to 1 after 300
seconds. However, due to the unpredictability of Random and
Whack-a-Mole schemes, the success rate remains as low as
∼0.2.

We next repeat the experiment with the attacker’s look-
ahead window size of w = 3. In case of Deterministic
scheme, this signifies less precise attacks. This is shown in
Figure 7(b), where the attack success probability remains ∼0.4
throughout the span of our experiment. However, the success
rate in case of Whack-a-Mole and Random schemes remain
∼0.2. We can also observe that the attack success probability
is independent of the look-ahead window size in case of
Whack-a-Mole and Random schemes, i.e. the learn-ability
of the attacker does not help in launching successful attacks.

Figures 8(a)-8(b) show the number of successful attacks
at individual VMs with the look-ahead window size of 1
and 3 respectively. From these figures we can observe that
Whack-a-Mole and Random schemes exhibit near identical
performances with very few instances of successful attacks
for each VM. In case of Deterministic scheme, increasing the
window size from 1 to 3 reduces the attack success rate by
upto 3 times for some VMs. However, the performance of
Whack-a-Mole and Random schemes remain identical with
the variation in window sizes, and is signiificantly better than
the Deterministic scheme.

D. Whack-a-Mole vs Random mutation

One relevant question in this context is the following: “If
random address mutation gives optimal solution, then why
do we need Whack-a-Mole?”. The key reason of using
Whack-a-Mole is its scalability. In case of random muta-
tion, the controller needs to generate random addresses in each
sub-interval to ensure that no two VMs are assigned the same
address. This requires frequent intervention of the controller,
and required message exchanges between the controller and
the VMs. This is onerous in a large cloud environment. To
cope with this, Whack-a-Mole invokes the controller once
in an interval to assign non-overlapping address spaces to each
VM while maximizing the level of unpredictability. Through
experimental evaluations we claim that Whack-a-Mole still

provides identical resiliency compared to the random mutation
scheme.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed Whack-a-Mole, a SDN driven
MTD based network obfuscation scheme that works at two
levels: spawning of VM replicas across the subnets and
the choice of the replica addresses to improve the level of
unpredictability. Using numerical results, we showed how
Whack-a-Mole optimizes spawning frequency in order to
reduce attack success probability, yet limiting the user ser-
vice interruption. At the same time, using cloud scale GENI
testbed, we demonstrated how Whack-a-Mole’s replica cre-
ation and their chosen IP addresses are able to achieve close
to optimal unpredictability. The results of this work can help
the cyber security and CSP communities to leverage SDN
programmability in employing proactive, smart, and multi-
dimensional resource obfuscation based maneuvers against
DDoS attacks.

As this work seeks to design an address mutation scheme
that increases unpredictability, we focus on the proposed
scheme’s ability to reduce ‘probability of attack success’ rather
than ‘impact of successful attacks’. We believe that such
metrics can be measured by the VM response time with
varying attack intensity and attack budget; both of which
will be addressed in future extended version of the current
manuscript.
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