
Deep Reinforcement Learning Based Energy-efficient Task
Offloading for Secondary Mobile Edge Systems

Xiaojie Zhang∗, Amitangshu Pal†, Saptarshi Debroy∗
∗ Computer Science, City University of New York, New York, NY 10065

† Computer and Information Sciences, Temple University, Philadelphia, PA 19121
Email:{xzhang6@gradcenter.cuny.edu, amitangshu.pal@temple.edu, saptarshi.debroy@hunter.cuny.edu}

Abstract—In order to support last-mile wireless connectivity of
computation-intensive applications, edge systems can benefit from
secondary (i.e., opportunistic) utilization of licensed spectrum.
However, spectrum sensing for such secondary utilization can
end up causing considerable energy consumption for already
energy-constrained mobile devices. In this paper, we propose
an energy-aware task offloading strategy for secondary edge
systems that aims to find trade-offs between channel sensing
and task offloading for mobile device energy optimization. The
proposed strategy employs a Deep Reinforcement Learning based
approach that rewards secondary mobile devices for taking part
in cooperative spectrum sensing by allowing them to offload their
compute-intensive tasks to edge servers in order to conserve
energy. Using simulations, we demonstrate how effectively the
proposed strategy can capture dynamic channel states and en-
force intelligent offloading decisions. Results show our strategy’s
benefits over optimization-based approaches and demonstrate its
practicality for real-world use-cases where devices are controlled
by different stakeholders.

Index Terms—Mobile edge computing, energy efficiency, task
offloading, deep reinforcement learning, cooperative spectrum
sensing, secondary users.

I. INTRODUCTION

Rapid emergence and deployment of complex, computation-
intensive, and mission-critical applications, such as 3D recon-
struction [1] of static or dynamic scenes, augmented/virtu-
al/mixed reality (AR/VR/XR) [2]–[4], and visual computing
are placing considerable computation resource demands on
camera-enabled mobile devices that are capturing the images
and videos used for such applications. However, these end
devices (e.g., drones, robots, and vehicles) that are limited
by their physical size, computation capability, and/or energy
budget are proving to be incapable of handling all in-device
computations required by such applications. At the same time,
offloading all computations to cloud data centers is proving
to be counter-productive as it incurs considerable end-to-end
latency that fails to satisfy the often real-time delay require-
ments of such latency-sensitive applications [5]. Alternatively,
Mobile-edge computing (MEC) as a new paradigm can elimi-
nate ‘device-computation’ constraints and ‘cloud-computation’
delays by offering considerable computation resources closer
to the application site [6], [7].
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Fig. 1: Modern edge-assisted compute-intensive application use cases using
unlicensed spectrum for device-to-edge wireless communication

Many of such MEC/edge-assisted applications are deployed
in emerging and dynamic use-cases (e.g., disaster response [5],
tactical scenarios [8], and connected automated vehicles
(CAVs) [9]) that are challenged in terms of availability of
licensed spectrum for last mile (mobile device to edge) wire-
less connectivity. Thus researchers have recently proposed
dynamic spectrum access [10]–[13] to support such last mile
connectivity by allowing the involved devices opportunistically
use licensed radio spectrum as secondary users (SU) when
the license holders i.e., primary users (PU) are not using the
spectrum channels. Adoption of such secondary mode of wire-
less communication is facilitated by Federal Communications
Commission’s (FCC) new ruling on unlicensed communica-
tions on 6 GHz spectrum band where secondary mobile de-
vices are allowed to use licensed spectrum in a power-efficient
manner without interfering with PU transmission [14]. In order
to achieve that, mobile devices acting as SUs can: i) take part
in cooperative spectrum sensing [15], [16] where such SUs
periodically sense local spectrum for PU transmission, ii) fuse
individual spectrum information at a fusion center (FC), iii)
use the fusion outcome to identify available (free from PU
transmission) channels within the spectrum, and iv) use such
available channels for data transmission during task offloading
to edge servers (as shown in Fig. 1).

Unlike traditional spectrum sharing use cases, such as
Citizen Broadband radio Service (CBRS) in 3.5 Ghz [17]
where dedicated sensing infrastructures are deployed to per-
form spectrum sensing on behalf of SUs, the aforementioned
emerging and dynamic use cases in 6 GHz band have to reply
on mobile SU devices themselves taking part in the sensing



process. However achieving cooperative spectrum sensing in a
MEC system supporting such use cases is challenging as the
SU devices there are also responsible for data transmission
and local-computation. Long periods of spectrum sensing can
consume non-negligible amount of energy that puts pressure
on already energy-constrained mobile devices as their primary
roles in compute-intensive applications are to contribute to the
local computation process and offload (fully/partially) data to
edge servers - both of which result in considerable energy
consumption. Therefore, the default strategy of such devices
would be to act selfishly by sticking to their primary roles
and not contribute to the cooperative sensing process in order
to conserve energy. However, lack of cooperation in sensing
by SU devices significantly compromises the accuracy of the
fused channel availability (from PU transmission) information
with false alarms. This in turn limits the mobile devices’ ability
to use available channels for task offloading (for false posi-
tives) as well as increasing the chances of harmful interference
with the PUs (for false negatives). Thus for secondary mobile
edge systems operating in an opportunistic manner on licensed
spectrum, there is a need to find a trade-off between channel
sensing and task offloading for device energy optimization.

In this paper we propose an energy-aware task offloading
strategy for MEC systems that utilize the licensed spectrum
in an opportunistic way for data transmission from mobile
devices to edge servers. The proposed strategy deploys a
deep reinforcement learning (DRL) based approach in order
to capture the spatio-temporal characteristics of PU spectrum
usage activity that is key to improve the device sensing effi-
ciency without increasing energy expenditure footprint for task
offloading. Unlike prior works using DRL [12], [13] that tackle
the problem of making sensing decision with fully cooperative
SUs, we use deep learning for scenarios where mobile devices
acting as SUs are selfish in nature and are trying to minimize
their own energy consumption. In our strategy, SU devices are
rewarded for taking part in cooperative sensing by allowing
them to offload their computation-intensive tasks to the edge
servers in order to converse energy. In particular: i) We design
a DRL-based sensing strategy which helps to improve sensing
efficiency and save device sensing energy; ii) We devise a
novel rule-agnostic spectrum information fusion mechanism
to identify available channels; iii) We develop a reward-based
sensing mechanism which allows SU devices to compete for
computation (from common edge server) and network/spec-
trum resources (available channels) as an incentive for taking
part in cooperative spectrum sensing; and iv) We propose a
mechanism to provide SU devices the flexibility to configure
computation speed and transmission power. This allows SU
devices to intelligently offload tasks to the edge servers either
partially or fully based on their energy budget.

We perform extensive and realistic simulations in order to
verify the learning ability of the proposed DRL based task
offloading strategy. The results demonstrate high adaptability
and efficiency in optimizing the weighted objective. We show
how effectively the algorithm can capture the nature of chan-
nel states and can propose intelligent policy for offloading

decision-making under different system environment settings
(e.g., fusion rules). We also show the existence of significant
correlation between the channel-sensing contribution that a SU
device is willing to make and its core computation require-
ments (e.g., computation cycles and data size). In addition,
we demonstrate that the reward mechanism guarantees higher
benefit by using our proposed learning-based sensing policy
compared to non-intelligent channel-sensing policies, such as
greedy sensing (i.e., strategy where SU devices always sense
all the channels). The results highlight that our reward-based
solution can be practical in many real-world use cases, such
as disaster response, tactical scenarios, and CAVs where SU
devices are controlled by different stakeholders and are only
motivated by their own energy preservation requirements. We
also compare our solution to non-learning based Lyapunov
optimization approaches that are widely used for dynamic
systems [18], [19]. We show that without complete knowledge
about the features of the underlying mathematical model
(which Lyapunov optimization approaches demand), our pro-
posed DRL based algorithm has the ability to intelligently
adjust computation speed and transmission power according
to the changes in energy preservation and task offloading
requirements.

The rest of the paper is organized as follows. Section II
presents the related work. Section III proposes the system
model. Section IV presents the deep reinforcement learning
based strategy. Section V introduces the baseline Lyapunov
optimization based approach. Section VI discusses the perfor-
mance results. Section VII concludes the paper.

II. RELATED WORK

Deep Reinforcement Learning (DRL) has a wide footprint
in literature due to many usages of neural networks in different
computer scientific and engineering problems. However, most
of the previous works such as [20]–[22] require the action
space to be either discrete or continuous. Therefore such works
may fail to provide practical solutions for the real-world use
cases. To deal with such issues, a new learning pattern with
a discrete-continuous hybrid action space has emerged that is
first introduced in [23] and is widely extended in other works,
such as [24]–[26]. These DRL techniques show excellent
ability in handling agent control problems in complicated
environment with high-dimensional state and action spaces.
Compared to [23], the authors in [24] propose a Parameterized
Deep Q-Network (PDQN) for learning behaviours in hybrid
action spaces without approximation or relaxation. In [25],
the authors introduce a new algorithm which separates the
action-parameter inputs and performs multiple passes in a
single Q-network. While both [24] and [25] consider single-
agent decision making, authors in [26] propose a coordinated
approach for multi-agent learning settings based on centralized
training and decentralized execution framework. However,
none of these efforts are specifically designed for mobile edge
computing systems that employ cooperative spectrum sensing
for channel identification.



The application of deep learning in Edge Computing is
becoming increasingly popular. Works such as [27]–[30] are
aimed at optimize long-term performance of edge systems with
respect to the energy preservation. Authors in [27] propose
a post-decision state (PDS) based learning algorithm for the
edge resource management. Their algorithm decomposes the
optimization process into the offline value iteration and the
online reinforcement learning. Authors in [30] establish a
deep reinforcement learning-based online offloading (DROO)
framework to find the binary offloading decisions and the wire-
less resource allocations under time-varying wireless channel
conditions. In [30], the actions are generated based on the
order-preserving quantization method. The authors of [28]
and [29] consider ultra-dense networks where computational
tasks are offloaded to the edge server via different base
stations. They also apply a double deep Q-network (DQN)
to learn the optimal computation offloading policy without a
priori knowledge of network dynamics. However, the above
works only consider data communication using licensed spec-
trum. Thus their algorithms and models are not directly
applicable to MEC systems where mobile devices’ offloading
decisions are governed by such devices’ participation in
spectrum sensing.

Learning-based Cooperative Spectrum Sensing for unli-
censed networks is becoming another popular research focus
as the need for new models for unlicensed communication
keep increasing with FCC releasing more licensed bands for
unlicensed transmission. In fact, as PUs in such licensed bands
come with varied transmission characteristics, it is getting
increasingly difficult to predict PU activities for efficient and
interference free communication by unlicensed SUs. DRL
based techniques provide mechanisms that can successfully
capture the features of channel states without any given prior
knowledge of the PU activities. In related works, authors
in [11] propose a distributed multi-agent sensing network
where each SU collects information from the environment
and decides its own sensing policy. However, they simply
consider sensing reward without taking into account energy
consumption for sensing which is an important factor for both
MECs and secondary systems. In contrast, authors in [12]
and [13] propose learning-based algorithms for individual SU
sensing decision making under the constraint of limited energy.
Although works such as [11]–[13] have taken advantage of
cooperative sensing, none of these works consider the selfish
nature of the SUs in certain environments and neither do they
explore incentive mechanism to motivate SU cooperation.

III. TASK OFFLOADING THROUGH STOCHASTIC
COMMUNICATION

Application use cases that adopt traditional secondary net-
works can only use the licensed spectrum in an opportunistic
manner upon spectrum sensing, reporting, fusing, and final
availability decision making. Such process where SU devices
only get to access available channels after a long and energy
consuming sensing process, would be detrimental for MEC
system adopted by dynamic and emerging use cases. Thus,

we propose a novel paradigm for future secondary mobile
edge systems where the SU devices acquire edge resources
as a compensation of sensing. However energy efficiency
optimization that considers SU device tasks, such as sensing,
computation, and transmission, edge resource availability as
well as resource demands by involved applications is a non-
trivial problem to solve.

In this paper, we assume a time-slotted communication
between SU devices and the edge site for the proposed energy-
aware edge network as shown in Fig. 2. For our system
model, we assume time slots as T ∆

= {1, 2, ...} where each
time slot is of length τ . A time slot is further divided into
channel Sensing Period and Data Transmission/Computation
Period. We assume that the Sensing Period is long enough
so that all channels can be sensed during this period and
communication between the SUs and the edge site is carried
out through dedicated low bandwidth common Control Link.
We consider a system with N SU devices (N ∆

= {1, 2, ..., N})
adopt cooperative spectrum sensing by sharing local spectrum
information with the edge site using the Control Link in order
to opportunistically access a set of unused licensed frequency
channels I ∆

= {1, 2, ..., I} (i.e., becoming the Data Links
shown in Fig. 2) to offload their computations to the edge
site containing edge servers. In our model, the edge server
contains a Fusion Centre (i.e., FC for sensing reward and
spectrum decision management) and a Resource Manager (i.e.,
for CPU allocation and channel assignment) as shown in
Fig. 2. Computational tasks are executed inside Application
Container. The PUs are assumed to be independent of each
other where each PU device occupies only one channel. We
also assumed that the SU devices are cognitive radio enabled
with limited computation capacity [31], [32].

Fig. 2: System model showing sensing, transmission, and computation periods
and internal components of the edge site

In our application model, we assume that different SU de-
vices belong to different stakeholders and thus are focused on
their individual mission-critical applications. Each application
is modeled as a set of identical tasks and a subset of tasks
is published/released at regular intervals. More specifically, at
the beginning of a time slot, each SU device n ∈ N releases
bn number of identical tasks. Each task contains dn bits of
input data and requires ln CPU cycles for computation. Such
computations can be executed locally on the SU devices, or
the data can be transmitted to and processed on the edge
server using the Data Link as shown in Fig. 2. This is nothing



but opportunistically acquired licensed channels through the
cooperating sensing-fusion-decision making process. For sim-
plicity but without any loss of generality, it is assumed that the
transmitted data can be processed only in the next time slot
and unprocessed data will be stored in the task queue. The
notations used for the overall system and application model
are summarized in Table I.

A. Trade-off in Local Sensing

In order to conserve energy, the SU devices are allowed
to sense part of the spectrum band and report their partial
local sensing results to the FC. However, the typical fusion
rule adopted by FCs in cooperative or collaborative sensing
is majority voting [16] that requires all SUs to submit their
complete local sensing results - which might not be viable in
dynamic application use cases.

Remark 1: Thus, we propose a conservative yet flexible ‘K-
out-N’ [33] fusion rule as follows: If any SU device reports
that a channel is busy, the channel is marked as unavailable;
contrarily the channel is marked as available if at least K SU
devices reported the channel as idle and no other SU device
reports that channel is busy.

Recent FCC guidelines [14] reveal potential means and
methods for future secondary spectrum access in bands such
as 6 GHz. According to these guidelines, in WiFi-like small
networks in 6 GHz, distributed SU devices can employ collab-
orative spectrum sensing to obtain local PU activity informa-
tion and fuse that data at a FC for more precise spectrum
availability determination. However, in mission-critical and
dynamic application use cases that rely on secondary access of
licensed spectrum for data transfer, such continuous spectrum
sensing may result in considerable energy consumption that
such networks can ill afford. Besides, energy consumption
for spectrum sensing can outweigh the energy benefits of
offloading computation-intensive jobs to edge server. This

TABLE I: Table of Notations

Symbol Definition

I The set of licensed frequency channels

N The set of SU devices

T Time Slots

τd The transmission/computation period

bn The number of released tasks at the beginning of each time slot

dn The size of task input data

ln The CPU cycles for computation

xi
n(t) The sensing decision on channel i of SU n in time slot t

yi
n(t) The local sensing result on channel i of SU n in time slot t

zi(t) The global sensing result on channel i in time slot t

wi
n(t) The sensing reward of SU n on channel i in time slot t

dn(t) The number of transmitted tasks from SU n to edge in time slot t

cln(t) The number of tasks completed locally of SU n in time slot t

crn(t) The number of tasks completed at edge of SU n in time slot t

f l
n(t) The CPU speed of SU n in time slot t

fr
n(t) The CPU speed allocated to SU n from server in time slot t

Ql
n(t) The local queue length of SU n in time slot t

Qr
n(t) The remote queue length of SU n in time slot t

makes energy-efficient task offloading in a secondary mobile
edge system that operates in ‘sense-and-use’ mode, a non-
trivial problem to solve.

For our work, we assume that all SU devices are inher-
ently selfish because they want to acquire wireless channels
for themselves (i.e., their stakeholders), and therefore, their
willingness to contribute towards sensing varies greatly. In this
paper, we study the energy consumption trade-off between
local spectrum sensing, computation, and transmission with
the following realistic and intuitive considerations:
1) In order to declare a licensed channel available for sec-

ondary usage, the FC needs at least K SU devices to
report the channel as ‘idle’ as part of their local sensing
report (according to Remark 1). Any additional ‘idle’
reporting (by other SU devices) is considered unnecessary
and wastage of the energy by the reporting SU.

2) When only a few SU devices contribute to local sensing,
the number of licensed channels available for the secondary
usage reduces, resulting in SU devices to be unable to
complete their data offloading requirements.

3) It is unfair to force a SU device with little data transmis-
sion/computation requirements to spend significant energy
towards sensing; contrarily, given a choice SU devices
would only perform computation and transmission without
contributing to sensing for the sake of energy saving.

In our work, we aim at developing a distributed spectrum
sensing scheme which allows the SU devices to perform
spectrum sensing intelligently based on their transmission and
computation requirements. Our goal is to find an optimal spec-
trum sensing strategy that can save the energy consumption
of sensing while meeting the task offloading requirements of
SU devices. We assume that all the SU devices use the same
configurations (e.g., sensing power and duration) for individual
channel sensing. We also assume that the task of sensing all
the channels can be completed within the sensing period.

B. Fusion Rules and Sensing Reward

Remark 2: We define xn(t)
∆
= [x1

n(t), x2
n(t), ..., xIn(t)] as

the sensing decision in time slot t by the SU device n, where
xin(t) ∈ {1 (sensed), 0 (skipped)} and i ∈ I. The energy
consumption for spectrum sensing can be stated by

Esn(t) =

I∑
i=1

xin(t) · (τs × ps + εs) (1)

where (τs × ps + εs) indicates the energy spent on collecting
and computing the local sensing result upon received PU
signal samples for a single channel. Specifically, τs is the
sensing time, ps is the sensing power, and εs represents
the energy spent on computing local sensing results (a very
lightweight computation, thereby ignored in the simulation
later in Section VI).

In this paper, we consider the fusion rule that we pro-
posed in Remark 1. The local sensing results from SU
devices are denoted by yn(t)

∆
= [y1

n(t), y2
n(t), ..., yIn(t)] where



yin(t) ∈ {−1 (skipped), 1 (sensed idle), 0 (sensed occupied)}.
As shown in Fig. 3, upon receiving the state vectors y(t)

∆
=

[y1(t),y2(t), ...,yN (t)] from SU devices during the sensing
period, the FC hosted by the edge site applies the ‘K-out-N’
decision rule and determines a global sensing outcome, which
indicates the channel availability for the secondary usage.

Fig. 3: The model of CSS and the reward for sensing. The SU devices who
reported the same channel state as the global spectrum result are rewarded.

We also denote z(t)
∆
= [z1(t), z2(t), ..., zI(t)] as the global

sensing outcome determined by the FC, where zi(t) ∈
{1 (sensed idle), 0 (sensed occupied)}. If the FC determines
that a channel is idle (i.e., yin(t) 6= 0, ∀n ∈ N and
N∑
n=1

yin(t) ≥ K), only the SU devices that had reported the

same sensing scalar are rewarded. The reward mechanism on
individual channels is as follows:

win(t)=

1/
N∑
n=1

yin(t) zi(t) = 1, yin(t) = 1

0 zi(t) = 0

(2)

This incentive mechanism aims to motivate the SU devices
to contribute to the sensing process. The reward function in
Eq. (2) also implies that the SU devices should sense on
channels that are worthy for sensing (i.e, with the value of

P{zi(t) = 1} is high and keeps
N∑
n=1

yin(t) to K). This is

done by evenly distributing fixed revenue to the SU devices
that receive the reward and only rewarding the sensing on
channels that the FC determines to be idle. We propose the
efficiency of sensing for SU devices in terms of reward and
energy consumption that can be stated as:

sensing efficiency =
1

N

N∑
n=1

(( I∑
i=1

win(t)
)
/Esn(t)

)
(3)

The sensing efficiency indicates the amount of rewards ob-
tained from all the channels; on the other hand it also shows
the energy consumption spent on sensing. In order to improve
efficiency, SU devices need to reduce energy consumption
while obtaining higher rewards.

C. Conservative Resource Allocation

We employ a queue system for both the processing on
the SU devices and the edge site. After obtaining the global
sensing results, the edge site first assigns the free channels
in set I to the SU devices (for task offloading) according
to the fusion decision and allocates its computation resources

to process the received data. It is assumed that the channel
allocation follows the sensing reward ordering of the SU
device obtained at the beginning of the current time slot t.
More specifically, if there are less than N channels that are
detected as idle, only the SU devices with higher sensing
reward will get a channel and transmit their data to the edge
servers. We assume the bandwidth of the channel to be B and
the transmission power of the SU device to be pn(t). Thus, the
number of task that can be transmitted within the transmission
period of time slot t is

dn(t) = τd ·
B log2(1 +

pn(t)h2
n

N0
)

dn

In the case where a SU device does not have any access
opportunities in a few time slots, the SU device might need
to perform local computation to reduce the queue length. We
denote the computation speed of the SU devices for their un-
offloaded data as f ln(t). Thus, the number of tasks that can be
locally processed is

cln(t) = τd ·
f ln(t)

ln
(4)

and the local queue length increases as

Qln(t+ 1) = max{Qln(t)− dn(t)− cln(t), 0}+ bn (5)

We propose a conservative resource allocation policy to
guarantee basic service to all the SU devices in the case of
intensive computation resource competition. According to this
policy, at each time slot, the edge site first reserves a part of
edge servers’ computation capacity and performs a baseline
allocation proportional to the current offloaded computation
needs. The rest of the computation resources are allocated
based on sensing rewards that the SU devices received at the
beginning of each time slot. Qrn(t) denotes the remote queue
length for the SU device n. The CPU allocation follows

frn(t) = F ·
(

c1 ·
Qrn(t) · ln

(
N∑

n′=1

Qrn′(t) · ln′)

+ c2 ·
wn(t)
N∑
n=1

wn(t)

)
(6)

where F denotes the total number of CPU cycles that the edge
server can run within one time slot and c1 + c2 = 1 identifies
the amount of computation resources that are reserved for the
baseline allocation. Given frn(t), we can easily calculate the
number of processed tasks generated by the SU device n and
stored in the edge server as

crn(t) =
frn(t)

ln
(7)

Therefore, the remote queue length qn(t) of the SU device
has the following evolution

Qrn(t+ 1) = max{Qrn(t)− crn(t), 0}+ dn(t) (8)

Based on above discussions, the SU device energy compo-
nents thus considered are sensing energy, transmission energy,



and the local computation energy. Thus total energy En(t)
expenditure for device n at time slot t can be represented as

En(t) = Esn(t) + pnτd + κ · τd[f ln(t)]3 (9)

where κ is a energy consumption factor based on chip archi-
tecture [34].

D. Problem Formulation

Remark 3: In order to compute bn tasks within time slot t,
the device can adjust its CPU frequency by

f ln(t) = min{bnln
τ

, f l,maxn } (10)

where f l,maxn denotes the maximum CPU capacity of the SU
device n. This gives us the minimum energy consumption for
local-only computation that can be computed by

Eln(t) = min{κ · (bnln)3

τ2
, κ · (f l,maxn )3 · τ} (11)

Therefore, the energy threshold for a beneficial task offloading
is E′ = E[Eln(t)]; otherwise the SU devices would just choose
local-only computation and consequently will not participate
in the spectrum sensing.

As it is impractical to optimize both energy consumption
and queue length at the same time, in this paper we optimize
the long-term average performance on the weighted objective
function. The weight factor V shows the importance of energy
saving compared to the average queue length. Without any
loss of generality, we define the local computation profile
as f l(t) = [f l1(t), f l2(t), ..., f lN (t)], the transmission power
profile as p(t) = [pl1(t),pl2(t), ...,plN (t)], and the spectrum
sensing decision profile as x(t) = [xl1(t),xl2(t), ...,xlN (t)].
Our optimization problem with weight V can thus be stated
as follows:

min
fl(t),p(t),

x(t)

lim
T→+∞

1

T

T∑
t=1

E
[ N∑
n=1

V · En(t) +Qln(t) +Qrn(t)
]

s.t.
C1 :0 ≤ f ln(t) ≤ f l,maxn , ∀n ∈ N
C2 :0 ≤ pn(t) ≤ pmaxn , ∀n ∈ N
C3 :xin(t) ∈ {0, 1}, ∀i ∈ I, ∀n ∈ N

(P1)
In (P1), the weight V indicates the trade-off between

minimizing the energy consumption and minimizing the queue
length. It is not difficult to identify that (P1) is a chal-
lenging stochastic optimization problem due to the following
characteristics: i) over the time space T , channel availability
fluctuates, making the sensing behavior and the queue length
unpredictable; and ii) the computation resource at SU devices
and the edge site are limited, leading to inferior resource com-
petition. Such time-varying variables add additional challenges
towards decision making.

IV. DEEP MULTI-AGENT REINFORCEMENT LEARNING

In this paper, we consider the proposed stochastic opti-
mization problem (P1) as a discrete Markov decision process
(MDP) and propose a DRL based approach for continuous
decision making. More specifically, we apply a DQN [24]–
[26] architecture to implement our sensing and task offloading
strategy, which is designed to optimize the long-term average
performance stated in problem (P1). With respect to reinforce-
ment learning, we assign a learning agent to each SU device.
The agent has a finite set of states Sn and a finite set of actions
An.

A. Learning agent for SU device

We acknowledge that for individual SU devices, the envi-
ronment is only partially observable by the learning agent,
therefore the system state of an SU device only includes the
local information and resources.

State: The state of SU device n denoted by sn(t) ∈ Sn
records the lengths of the local and the remote queues. It
also contains the selected local CPU frequency f ln(t) and
the transmission power pn(t) as well as the sensing decision
vector xn(t). Additionally, it should store the information
of the resources allocated by the edge server in the current
time slot. Furthermore, the energy consumption En(t) and the
reward wn(t) by taking the current sensing action should also
be considered in the state. Therefore, the state of a SU device
sn(t) can be stated as:

sn(t) = [

Queue︷ ︸︸ ︷
Qln(t), Qrn(t),

Device︷ ︸︸ ︷
f ln(t), pn(t),xn(t),

Resource︷ ︸︸ ︷
frn(t), chn(t)

,

Payoff︷ ︸︸ ︷
wn(t),En(t),Rn(t)] (12)

where chn(t) ∈ {0 (channel acquisition unsuccessful), 1
(channel acquisition successful)}.

Action: The action space of SU device n denoted by an(t) ∈
An is a Discrete-Continuous hybrid action space. For spectrum
sensing decisions xn(t), the SU device may select any index
from channel set I. The selected local CPU frequency f ln(t)
and the transmission power pn(t) are continuous values within
the capacities of the SU devices. On the basis of such obser-
vations, a Parameterized Deep Q-Networks (P-DQN) with two
discrete actions can be used as a possible solution. However,
unlike the examples proposed in [24]–[26] where actions are
mutually exclusive (e.g., an drone cannot fly to right and left
at the same time), updating the channel sensing decisions and
adjusting the CPU and transmission power can occur simul-
taneously. Therefore, the system is just performing a single
action with multiple action parameters. To cope the Discrete-
Continuous hybrid natures of action parameters, we build a
priority based learning sensing policy. More specifically, the
action is defined as:

an(t) = [v1, v2, ..., vI , vI+1, vI+2], ∀n ∈ N



where the action space contains I + 2 action-parameters and
vi ∈ [0, 1]. The first I parameters indicate the sensing priority
of the individual channels. In each time slot, a priority vi(t)
is assigned to each channel and the sensing decision is made
by the following rule:

xin(t) =

{
1 if vi(t) > 0.5

0 otherwise
(13)

The last two action-parameters perform CPU frequency setting
with range vI+1 · [0, f l,maxn ] and transmission power setting
with range vI+2 · [0, pmaxn ] respectively.

System Reward: The reward function Rn(t) implies the
immediate reward received after the transitioning from state
sn(t) to state sn(t + 1) by taking action an(t), which is
implemented as a weighted function:

Rn(t) = −V · En(t)− (Qln(t) +Qrn(t)) (14)

In Eq. (14), −V ·En(t) signifies the penalty in terms of energy
consumption while Qln(t) +Qrn(t) signifies the queue length.
Therefore, minimizing the individual objective functions for
each SU device in problem (P1) is equivalent to maximizing
the SU learning agent’s accumulated discounted reward

max
an(t)∈An

lim
T→+∞

T∑
t=1

γtRn(t), ∀n ∈ N (15)

B. Network Architecture and Algorithm

Fig. 4: The network architecture for the proposed spectrum sensing and task
offloading learning [24].

In order to capture both spatial and temporal correlations
among consecutive time varying environment states of the
proposed stochastic task offloading system, we also add Long
Short-Term Memory (LSTM) element into our network archi-
tecture. It helps to better understand the channel availability
and improve the sensing efficiency. As shown in Fig. 4, our
network architecture follows a standard P-DQN. Our basic
DQN network architecture contains two fully connected layers
with feature sizes 512 and 128, respectively. For LSTM,
the hidden layer has 128 features. We apply the ε-greedy
exploration policy for the learning duration and select 0.01
as the learning rate for both networks (Q-network θQ and
the actor-parameter network θv). A replay memory is used

to store the history transitions. The online learning algorithm
for joint sensing and computing optimization is described in
Algorithm 1. In the initialization phase, we make the SU
devices to randomly sense the channels and only use half
of their maximum CPU and transmission power. Then, the
SU devices continuously interact with the current environment
and makes sensing and computing decisions at the beginning
of each time slot. In the meantime, the network weights are
updated from a random sample mini-batch of past transitions.

Algorithm 1: Online Learning for Joint Sensing and
Computing Optimization

1 Initialize: xi
n(t) = random(0, 1), f l

n = 0.5 · f l,max
n ,

pn = 0.5 · pmax
n

2 for every time slot t do
3 At the beginning of the time slot, each SU device

observes its current state sn(t) ∈ Sn.
4 Input sn(t) to the actor DQN with weight θv and

generate the action-parameters v.
5 Input both sn(t) and v to the Q-network with weight θQ

and compute the Q value.
6 The SU devices update x(t), f l(t), p(t) based on the

chosen actions and start the process of channel sensing
and send local sensing results y(t) to the edge sever.

7 The edge server computes the global sensing results z(t)
and calculates the sensing reward wn(t).

8 The edge server performs conservative resource
allocation as discussed in section III-C.

9 The SU devices observe the new/next state sn(t+ 1)
and store the transition (sn(t), an(t), sn(t+ 1),R(t))
into replay memory.

10 Get a sample mini-batch of transitions from the replay
memory, update DQN weights θQ and θv .

V. BASELINE APPROACH FOR TRANSMISSION POWER AND
COMPUTATION OPTIMIZATION

When the spectrum sensing decisions are given, the re-
maining problem of finding the optimal transmission power
and computation speed of SUs becomes a classical dynamic
programming problem that can be solved using Lyapunov
optimization [18], [19]. However, one of the primary condi-
tions of such optimization based approach is to have complete
knowledge about the features of the underlying mathematical
model which our DRL based approach does not require.
Nevertheless, a Lyapunov optimization based approach can
optimize the following factors: 1) how many task data can
be transmitted to the edge server, 2) how many tasks can
be executed locally. The success of optimizing these factors
would also have a significant impact on the length of local
and remote queues. Thus we use Lyapunov optimization as
baseline and compare the efficacy of our proposed DRL based
approach in finding these two optimal factors against the
baseline.

A. Lyapunov Optimization

In this subsection, we discuss the baseline Lyapunov op-
timization based approach that can find the optimal solutions



for the aforementioned factors. Our objective is to generate the
decision vector f l(t) and p(t) for each time slot and keep a
stable sum of queue length Qn(t) = Qln(t)+Qrn(t). Using this
approach, the DQN networks are applied to learn the behavior
of spectrum sensing that will only generate the sensing vector
x(t). In the evaluation section, we will compare the Lyapunov
optimization results against our proposed DRL based results.

Using Lyapunov optimization based approach, at the very
beginning of each time slot t, a Lyapunov function will be
defined which is a quadratic equation based on Qln(t) and
Qrn(t) that can be expressed as

L
(
Qn(t)

)
=

1

2

(
Qln(t)2 +Qrn(t)2

)
There is also a need to define the Lyapunov drift ∆(Qn(t)) =
E[L

(
Qn(t + 1)

)
− L

(
Qn(t)

)
|Qn(t)] that is used to measure

the difference in function L(Qn(t)) between two adjacent time
slots. The difference between t and t+ 1 can be computed as

L
(
Qn(t+ 1)

)
− L

(
Qn(t)

)
=

1

2

(
Qln(t+ 1)2 −Qln(t)2

)
+

1

2

(
Qrn(t+ 1)2 −Qrn(t)2

)
According to similar analysis given in [18], [19], the Lyapunov
drift can be rewritten to the following inequality with respect
to the queue constraint.

L
(
Qn(t+ 1)

)
− L

(
Qn(t)

)
≤ C −

(
Qrn(t)

(
crn(t)− dn(t)

)
+ Qln(t)

(
dn(t) + cln(t)− bn

))
Where

C =
1

2

((
bn
)2

+
(
dn(t) + cln(t)

)2
+
(
crn(t)

)2
+
(
dn(t)

)2)
B. Per-time Slot Problems

Using Lyapunov optimization method for a given sensing
decision x(t), problem (P1) will be transformed to individual
deterministic per-time slot problems. Since our proposed work
focuses on the reinforcement learning methods, the detailed
analysis of the baseline Lyapunov optimization is beyond
the scope of this paper. Using such approach, the original
problem (P1) can be accomplished by solving the following
per-time slot problem:

min
f l(t),p(t)

N∑
n=1

VL · En(t)−Qrn(t)
(
crn(t)− dn(t)

)
− Qln(t)

(
dn(t) + cln(t)− bn

)
s.t. C2, C3, ∀n ∈ N

(P2)

where VL is the balancing factor that controls the importance
of energy preservation versus the queue stability. Based on
the convex nature of (P2), f l(t) and p(t) can be obtained
separately by using classical convex optimization methods that
can be found in [18], [19]. In Section VI we will compare
the optimality of the solutions achieved by our proposed
DRL based approach against the solutions achieved through
the baseline Lyapunov optimization based approaches. The
objective of such comparison will be to achieve optimality
close to Lyapunov optimization based approaches.

VI. PERFORMANCE RESULTS

We evaluate the performance of the proposed DRL based
task offloading scheme with different system parameters using
a simple yet realistic simulation. Specifically, we analyze our
work to demonstrate: i) the effect of weight factor V (from
Section IV) on controlling the trade-off between the energy
consumption and the queue length, ii) the comparison of our
learning mechanism with the Lyapunov optimization algorithm
proposed in Section V, iii) the impact of fusion rules on
channel sensing, iv) the comparison of our proposed DRL-
based sensing methods to greedy sensing strategies, and v) fi-
nally, the capability on finding the optimal transmission power
and computation speed of SU devices in dynamic systems. In
the simulation, we consider a small-scale network with 8 SU
devices and 12 licensed channel each having a bandwidth of 3
MHz. The key system parameters are summarized in Table II,
which are compatible with the typical CR scenarios proposed
in [33].

TABLE II: Simulation Parameters

Variable Value
Number of SU devices N 8

Transmission / Computation period τd 300 ms
Sensing period τs 10 ms
Sensing power ps 0.1 Watts

Number of channels I 12
Channel bandwidth B 3 MHz

Fig. 5: For each SU device n ∈ N : a) Number of tasks created at the
beginning of time slot. b) The data size of each task. c) The computation
requirement of each task. d) The channel gain between SU device and the
edge server which is simplified by the distances.

A. Parameter Setup

In the simulation, we first construct tasks with heteroge-
neous features for the 8 SU devices. In Fig. 5, we represent
a) the number of released tasks, b) the size of task input
data, c) the CPU requirement of each task and d) the channel
gain of individual SU devices. In Fig. 5(d), the channel gains



are simulated with independent Rayleigh fading with average
power loss set as 10−3 [35]. It is reasonable to speculate that
the SU devices 3, 6 and 7 are potential candidates who have
high intention to offload most of their tasks to edge server
(i.e. high computation demands with considerable lower data
transmission requirements). Therefore, these devices are likely
to spend more effort on spectrum sensing in order to meet their
high resource demands. We will prove this point in subsequent
results.

Fig. 6: The licensed channel occupancy probability for different channels in
the spectrum

In this paper, the simulation environment contains a PU
network using 12 licensed channels. The bandwidth of each
channel is set to 3 MHz. We assume a widely accepted
model where the PU transmission activities are independent
and identically distributed (IID) on each channel [36]. The
SU devices compete for secondary access to these 12 licensed
channels when the PUs are not using them. We show the PU
occupancy probabilities of individual channels used for this
simulation in Fig. 6, which are generated uniformly randomly.
We demonstrate the channel sensing characteristics in terms
of the following two metrics: (a) the frequency of a channel
being sensed within a single time slot and (b) the number of
channels sensed for each SU device within a single time slot.
From Fig. 6 we can observe that the channels 3, 6 and 9 show
considerably low utilization from PU point of view, which
provides a possibility that they might be popular channels for
spectrum sensing by the SU devoces.

B. Effects of Weight Factor V

We first demonstrate how the weight factor V in the
objective function (P1) impacts the system performance in
terms of the average energy consumption and the average task
queue length in a long-term period (10K time slots). For this
experiment, we set K = 1 for the selected fusion rule as
discussed in Remark 1. The results shown in Fig. 7 demon-
strate the mutually exclusive nature of the two performance
metrics. Even though we cannot minimize both the energy
consumption and the queue length simultaneously, we can still
choose the weight that maintains “best” trade-off between the
two. In Fig. 7, the recommended weight is neither close to 1
nor close to 90 as these two boundary regions generate either
high energy consumption or large queue length. In addition, we
found long-tail patterns in Fig. 7 (a) and (b) with the increase
of weight V . Based on this observation, we can argue that the
optimal weight exists near the starting point of the tail (e.g.,

Fig. 7: The impact of the weight factor. (a) The average energy consumption
and (b) the average task queue length against different weight factors.

near 20 to 40). Consequently, we select V = 20 as the ‘near
optimal point’ having energy consumption and queue length
equal to 0.071J and 1.237 respectively. For the rest of the
simulations and comparisons, we keep V = 20 as default.

C. Comparison with Lyapunov Optimization

We compare the performance of our learning-based strategy
against Lyapunov Optimization based approaches with param-
eters V = 20 and K = 1. In order to integrate the Lyapunov
methods, the learning network generates 12 action parameters
for controlling the channel sensing decision-making. We then
compute the optimal CPU frequency and transmission power
at each time slot by solving (P2). Although balance factors
V (for DRL strategy) and VL (for Lyapunov Optimization)
in (P1) and (P2) are generated from two different systems, the
way they control the balance between the energy consumption
and the task queue length remains comparable (i.e. their
characteristics follows similar long-tail patterns). Fig. 8 shows
the variation of energy consumption and queue length of
Lyapunov Optimization based strategy with different VL. As
shown in Fig. 8(a)-(b), the increase of VL results in decreasing
energy consumption whereas increase of the task queue length.

From Fig. 9 we can observe that the Lyapunov Optimization
achieves its optimal solution point (with energy consumption
and queue length equal to 0.07J and 1.174 respectively) at
VL = 175 and the system reward starts to slowly decrease
when VL ≥ 175. The maximum system reward is close to our
scheme (in subsection VI-B). As both algorithms consider the
trade-off between energy consumption and task queue length
while making task offload decisions, we argue that without
any knowledge of a detailed analytical model, our proposed
reinforcement learning-based algorithm still has the ability
to scientifically adjust the CPU frequency and transmission
power of the SU devices according to the changes in energy
consumption and task queue length. In addition, our proposed
reinforcement learning-based algorithm does not have the



Fig. 8: The impact of the weight factor VL for Lyapunov Optimization. (a)
The average energy consumption and (b) the average task queue length against
different weight factors.

requirement to find the optimal weight factor, which is a
challenging problem for online algorithms.

Fig. 9: The system reward of Lyapunov Optimization against reinforcement
learning. Lyapunov Optimization achieves its maximum system reward at
VL = 175.

D. The Impact of K-out-N Rule on Channel Sensing

Fig. 10 highlights the characteristics of our strategies while
jointly considering the channel availability and the sensing
rewards. We keep V = 20 for Fig. 10. The results also show
the relationship between the sensing activities and the chosen
K-out-N fusion rule (from Section III) with different values
of K. In Fig. 10(a), the frequencies of a channel been sensed
within single time slot are 0.28 (K = 1), 0.30 (K = 2) and
0.34 (K = 3) respectively. Similarly in Fig. 10(b) the average
number of channels sensed from SU devices are 3.44 (K = 1),
3.68 (K = 2) and 4.12 (K = 3) respectively. Obviously,
the larger the K, the more spectrum sensing tasks must be
performed.

On the other hand, as we discussed previously that channels
3, 6, 9 are used less frequently by PUs than any other
channels as shown in Fig. 6 – therefore they should be more
attractive to SU devices for gaining sensing reward. However,
the simulation results in Fig. 10(a) do not support such
speculation. The results indicate that there is no significant
correlation between the channel occupancy probability and

Fig. 10: The channel sensing information against different K-out-N rules: (a)
the frequency of a channel been sensed within single time slot, (b) the number
of channels sensed for each SU device within single time slot.

the frequency of that channel been sensed by the SUs. The
maximum standard deviation of such sensing frequency is
less than 10% for both K values presented in Fig. 10(a). The
possible reason of such characteristic might be the fact that
our sensing reward mechanism forces SU devices not to target
the same (popular) channel for sensing. Although there is a
high availability probability for a certain channel in the next
time slot, if too many SU devices report their sensing results
on this channel at the same time, the FC only gives a very
limited sensing reward to a single reporting SU. This leads to
SU devices evenly distributing their sensing interest on every
channel.

Fig. 10(b) shows the number of channels sensed by each
SU device within a single time slot. From Fig. 10(b) we can
observe that the SU devices 3, 6, and 7 sense more channels
than others. As we discussed earlier, this can be explained
by their task characteristics presented in Fig. 5. These three
particular SU devices have significantly higher computation
requirements (bn and ln) and just carry fewer task input data
dn that needs to be transmitted to the edge site, which makes
them ideal candidates for task offloading from energy saving
perspective.

E. Comparison with Greedy Sensing Strategy

We next study the effect of greedy sensing strategy where
the SU devices try to maximize their own benefits by perform-
ing spectrum sensing on all the channels. We demonstrate how
such strategy can be detrimental to the long-term performance
in terms of system reward, sensing efficiency (from Eq. 3) and
sensing characteristics. Fig. 11 shows the comparison of two
scenarios: (a) in the first scenario, we make the SU device
6 (the one with highest computation demands) as the greedy
sensing actor and all other SU devices follow the proposed
learning-based sensing strategy, whereas (b) in second scenario
we assume all the devices use our learning-based strategy.



Fig. 11: The channel sensing information.

Fig. 12: The normalized system reward and sensing efficiency of the sensing
scenarios. (a) and (b): for all SU devices. (c) and (d): for SU device 6 only.

From Fig. 11(a) we can observe that as compared to
our learning based sensing strategy, the greedy SU device
increases the overall sensing frequency from 0.28 to 0.38
while the number of channels sensed by other SU devices (in
Fig. 11(b)) remain the same – which means that the sensing
efficiency is decreased due to more sensing overlapping. In
Fig. 12(a)-(b), we show that the existence of the greedy SU
device compromises the overall system performance. While
the system reward only reduces by 2% in Fig. 12(a), the
average sensing efficiency is significantly decreased (around
26.4%) due the greedy SU that senses and obtains reward
from all the channels. It is evident that a greedy SU brings
more unnecessary competition for resources, which is harmful
towards energy-saving.

Next, we explore how our proposed learning based scheme
can prevent SU devices from becoming greedy and how it
can encourage the SU devices to apply the ‘best-practice’
of learning-based sensing. The results shown in Fig. 12(c)-

(d) demonstrate how our scheme can successfully prevent
SU devices becoming greedy. It turns out that sensing all
the channels does not guarantee an advantage towards task
offloading. Due to the proposed sensing reward mechanism,
the extra energy spent on channel sensing incurs negative
effects on both system reward and sensing efficiency. From
these results, we argue that no SU device would like to follow
the greedy sensing policy as it jeopardises its task offloading
interests. Therefore, we establish that our proposed reward
mechanism is practical for the real-world scenarios.

VII. CONCLUSIONS

In this paper we proposed a deep reinforcement learning
based cooperative sensing strategy for secondary edge systems,
where the devices are controlled by multiple stakeholders
having their own energy saving objectives. In such a scenario,
the proposed strategy incentivizes the SU devices to take
part in cooperative spectrum sensing more actively through
a novel reward based mechanism. Through simulations we
demonstrated that the proposed learning-based mechanism
achieves high energy benefits by capturing the unpredictability
of spectrum availability while enforcing intelligent energy-
aware task offloading. The results validate practicality of our
reward-based strategy for real-world use cases where devices
are controlled by different stakeholders and are only motivated
by their own energy preservation requirements. In future we
want to build a prototype setup to test the effect of such
energy-aware spectrum-sensing and task offloading strategy in
a real edge-computing environment.
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