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Abstract—In order to plan rapid response during disasters,
first responder agencies often adopt ‘bring your own device’
(BYOD) model with inexpensive mobile edge devices (e.g., drones,
robots, tablets) for complex video analytics applications, e.g.,
3D reconstruction of a disaster scene. Unlike simpler video
applications, widely used Multi-view Stereo (MVS) based 3D
reconstruction applications (e.g., openMVG/openMVS) are ex-
ceedingly time consuming, especially when run on such com-
putationally constrained mobile edge devices. Additionally, re-
ducing the reconstruction latency of such inherently sequential
algorithms is challenging as unintelligent, application-agnostic
strategies can drastically degrade the reconstruction (i.e., ap-
plication outcome) quality making them useless. In this paper,
we aim to design a latency optimized MVS algorithm pipeline,
with the objective to best balance the end-to-end latency and
reconstruction quality by running the pipeline on a collaborative
mobile edge environment. The overall optimization approach is
two-pronged where: (a) application optimizations introduce data-
level parallelism by splitting the pipeline into high frequency
and low frequency reconstruction components and (b) system
optimizations incorporate task-level parallelism to the pipelines
by running them opportunistically on available resources with
online quality control in order to balance both latency and
quality. Our evaluation on a hardware testbed using publicly
available datasets shows upto ∼ 54% reduction in latency with
negligible loss (∼ 4− 7%) in reconstruction quality.

Index Terms—Mobile edge computing, 3D reconstruction,
latency optimization, quality satisfaction, data-level parallelism,
task-level parallelism

I. INTRODUCTION

Mobile Edge computing (MEC) in recent times has become
an important vehicle and enabler for latency-sensitive video
analytics, especially for use cases such as disaster/emergency
response [1], [2]. During disaster response, first responders
can use low cost edge devices (e.g., drones, robots, tablets),
albeit limited in their computation (e.g., CPU, GPU) capacity
for video analytics applications used for rapid situational
awareness. Such ‘bring your own device’ (BYOD) based MEC
model brings compute resources closer to the disaster site
when performing computation at distant cloud data centers
often becomes expensive and impractical. Most of the exist-
ing research and adoption of MEC for video analytics have
involved simpler applications such as, object detection, object
recognition etc [2]. Here the traditional resource management
based latency optimization does not severely impact the ana-
lytics outcome due to such applications’ simpler algorithmic
structures. However, the same can not be said for more
complex applications, such as 3D reconstruction that are being
increasingly used for disaster response. Fig. 1 illustrates a
MEC based disaster response where video data obtained from
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Fig. 1: 3D reconstruction use case for areal reconstructed view of an outdoor
scene using edge devices

multiple camera-enabled drones are used to reconstruct the
view of an outdoor scene used for surveillance purposes. Here
the live video data collected from the cameras is processed
within these edge devices in a collaborative manner and the
processed 3D reconstructed scene is viewed by a user through
an augmented reality (AR) headset. Traditionally, such 3D
reconstruction is achieved by forming geometric relations
of the image pixels named epipolar constraints. Many such
photogrammetric algorithms, such as Structure from Motion
(SfM), compute image features and matchings across views
from a set of unordered 2D images [3]. Specifically, SfM is
used to generate a sparse 3D point cloud, which is then inten-
sified and textured by Multi-view Stereo (MVS) methods [4].

Latency issues of 3D reconstruction: Unlike, simpler
visual computing applications, SfM+MVS pipeline based 3D
reconstruction methods, such as widely used openMVG/open-
MVS [3], [4] are extremely computation-intensive and thereby
time-consuming even when performed within an edge envi-
ronment. This is especially true for reconstructing large real-
world scenes (mostly used during response for a emergency
scene) that typically need ≥ 3 high-resolution cameras to
capture the target scene from different angles. This is due
to the fact that such pipelines are traditionally designed to
focus on the reconstruction accuracy and not the processing
timeline. However, such high latency of reconstructing a 3D
scene is counterproductive for disaster response as many
involved missions such as area surveillance and reconnaissance



multiple such compute-intensive applications run in sequence.
In many of these missions, latency-sensitive applications such
as AR/VR/MR, that run after the SfM+MVS based 3D recon-
struction pipeline rely on the fast (≤ 10 s) and high quality
reconstruction outcome for the success of the underlying
missions (as shown in Fig. 1). Thus, there is a need to
optimize such edge-supported 3D reconstruction pipeline’s
latency without compromising the quality of the reconstruction
outcome.

Challenges in balancing latency and quality: How-
ever, balancing the trade-off between latency and quality in
resource-constrained edge devices is non-trivial as unintelli-
gent application-agnostic quick-fixes can introduce additional
challenges. For example:

• One possible approach to reduce the 3D reconstruction
computation latency running on resource-constrained envi-
ronments is to separate the dynamic but relatively smaller
part (i.e., foreground) of the scene from the static but
larger part (i.e., background) and frequently update this
foreground to merge it with the less frequent background.
However, this is challenging because the SfM pipelines
always perform a bundle adjustment optimization, which has
an inherent randomness that causes the results to fluctuate so
that the foreground and background are located on different
coordinate systems affecting the quality of the merged 3D
model. Thus there needs to be intelligent application-side
optimizations that are tailor made for the reconstruction
pipeline.

• Another way to reduce the latency is to minimize data
resolution and use a subset of cameras (i.e., video streams)
in order to bring down the total data size for processing.
However, on the flip side, unintelligent resolution degra-
dation and camera selection can drastically reduce the 3D
reconstruction quality, often rendering it useless. Thus, there
is a need for intelligent edge system-side optimization that
can balance the pipeline latency and reconstruction quality
based on MEC resource availability.

• Finally, one of the important prerequisites for such delicate
balancing act is the ability to efficiently (in terms of time)
and effectively measure reconstruction quality. Quality eval-
uation needs to be time-efficient so that it can run in parallel
to the reconstruction pipeline without eating into the latency
savings from application- and system-side optimizations.
This in turn makes effective quality evaluation tricky as
most state-of-art evaluation techniques [5]–[7] assume the
availability of ground truth which might not be practical
when such evaluations need to be lightweight and quick.
Contrarily, the absence of ground truth makes the systematic
evaluation of 3D reconstruction challenging.

Thus overall, in order to effectively perform latency optimiza-
tions that do not impact the reconstruction quality, it is of
paramount importance that such optimizations are customized
towards the 3D reconstruction task pipeline and the underlying
algorithms.

Our contributions: In order to address the aforementioned
challenges, we propose a latency optimized multi-view 3D
reconstruction framework running on a collaborative MEC

environment for disaster response that aims to balance the
processing time and reconstruction quality. Particularly:
• In order to reduce processing complexity and thereby la-

tency we introduce data-level parallelism by modifying
the SfM+MVS pipeline to create separate pipelines for
high frequency foreground reconstruction and low frequency
background reconstruction. Through this, we avoided the
redundant computation of the static part of the data and
ensure MEC resource and time saving.

• We propose a lightweight MEC system optimization algo-
rithm that can select the best configuration of reconstruction
latency and quality (that satisfies user expectations) based
on resource availability by adjusting the frames’ resolution
and selection of cameras.

• As part of the MEC system-side optimizations, we propose
a novel and lightweight camera selection algorithm in order
to select an optimal set of cameras that best covers the
target scene. In addition, the proposed algorithm can return
a different set based on the desired number of cameras for
optimization.

• We also propose an online reconstruction quality evaluation
model that along with optimal configuration selection, and
camera selection algorithms run in parallel to the optimized
SfM+MVS pipeline as part of a novel inter-edge collabora-
tion architecture implementing task-level parallelism.

• We evaluate the performance of our optimized framework
on a hardware testbed with publicly available Dance1 and
Odzemok from CVSSP-3D Project Sample Datasets [8]. Our
results show that the proposed optimized framework can
save the end-to-end processing time by 54% for data sets
Dance1 and Odzemok. We also conclude that the quality
degradation caused by such parallelism is 4−7%. The results
demonstrate high adaptability and efficiency in optimizing
the system objective. The proposed online algorithm can
successfully handle different user requirements during a
disaster response mission based on the availability of the
MEC resources.
Paper organization: In rest of the paper, Section II

discusses the related work and background on 3D reconstruc-
tion technique and openMVG/openMVS pipeline. Section III
presents the system model and benchmarking experiments.
Section IV discusses the application and system optimizations.
Section V presents the evaluation method and experimental
results. Section VI concludes the paper.

II. RELATED WORK

Accelerated 3D reconstruction: There are a few methods
that attempted to optimize the latency of the aforementioned
3D reconstruction pipeline. Authors in [9] sort the images
based on the spatial orders of the cameras ensuring large
overlaps between two subsequent images of the ordered set.
This helps to reduce the computation cost in the feature
matching step. In [10], the authors optimize the densify point
cloud step with a quasi-dense feature matching approach and
achieved 9% improvement in latency. Authors in [11] group
the sparse 3D points into different clusters and processes each
cluster separately for dense textured mesh generation. This
helps them to reduce around 13% of the total processing time.



Fig. 2: Disaster response system model of collaborative MEC architecture for
multi-view 3D reconstruction pipelines

Compared to these, our work intelligently divides the data into
foreground and background regions to significantly reduce the
processing time.

Video analytics: The performance (e.g., accuracy) of video
analytics depends on the joint impact of various configurations.
In [12], the authors propose a framework for both configu-
ration adaptation and bandwidth allocation of edge-assisted
video analytics. Authors in [13] jointly consider the interac-
tion between accuracy, video quality, battery constraints, and
network parameters to find an optimal offloading strategy.
VideoStrom [14] optimizes query scheduling by exploring
utility-based resource management in terms of query accuracy
and delay; while VideoEdge [15] extends the problem to query
placement across a hierarchy of clusters. Nevertheless, none of
those works can be applied to the multi-view 3D reconstruction
applications which is our focus in this paper.

III. SYSTEM MODEL AND EVIDENCE ANALYSIS

A. System Model and Objectives

Fig. 2 shows the disaster response system model of our
proposed collaborative MEC architecture implementing the
openMVG/openMVS pipeline for end-to-end 3D reconstruc-
tion. Our system includes: 1) a group of synchronous video se-
quences of a scene offloaded by camera enabled edge devices,
2) a front-end edge device/node where the uploaded frames are
initially stored and the main 3D reconstruction procedures are
undergoing, 3) a back-end edge device/node (helper) which
is executing the pipeline in parallel. The edge nodes are
connected to each other through point to point wireless or
wired link similar to typical real-world setups. In this paper,
a video analytics task is defined as reconstructing a dense
point cloud from the images captured at the same timestamp.
We denote I = {1, 2, 3...I} as the set of reconstruction tasks
for all the timestamps in offloaded videos. We assume that
the user has an end-to-end processing deadline requirement
and requires the best possible reconstruction quality, both
calculated as an average of multiple frames. Based on such
real-world use case assumptions, the objective of the MEC
system is to maximize the average reconstruction quality while
meeting the average processing deadline.

B. Problem Evidence Analysis

Here, we use qualitative and quantitative experimental re-
sults to demonstrate the effects of frame resolution and the

number of cameras on 3D reconstruction pipeline latency
and quality in order to motivate the need for intelligent
application- and system-side optimizations. We use publicly
available Dance1 [8] dataset (7 synchronous video sequences
from static cameras) on a Dell desktop with Intel i7 @2.9GHz
processor with 16GB RAM for the benchmarking experiments.
The desktop used to some extent mimic the CPU capacity of
a low-cost edge device.

Quantitative results: Here we investigate the effects of
simple and ‘quick fix’ optimization strategies on process-
ing latency. Table I demonstrates how openMVG/openMVS
pipeline latency can be reduced by varying camera resolution
and number of cameras for reconstruction. The table compares
the latency of ideal configuration that includes all camera data
with original resolution (scale = 1) against resolution compro-
mised reconstructions. We observe that both the processing
latency and the number of reconstructed vertices decrease as
resolution decreases. This is because with lower resolutions,
the images lose part of pixels during resizing. Table I also
shows the impact of number of cameras and selection of
cameras for reconstruction. In particular, we show the process-
ing time comparison when we randomly remove camera #0
and camera #2 without altering the original resolution. The
results demonstrate that the degree of such effect varies from
camera to camera based on their orientation and coverage.
For example, the effect of removing camera #2 is greater
than removing camera #0 in terms of number of reconstructed
vertices.

Qualitative results: The qualitative analysis shows that the
aforementioned latency minimizing ‘quick fixes’ can adversely
impact the quality of reconstructed 3D scene. Fig. 3(a) shows
the golden results i.e., reconstruction with original resolution
and all camera images. Whereas Fig. 3(b) also uses all images
but resizes images to scale 0.6 (i.e., 60% of the original
resolution). Fig. 3(c) instead shows the reconstructed scene
with original resolution images from all cameras but without
images from camera #2. Visually, we can see that with
lower resolution, the reconstructed scene is not as smooth
and delicate as the golden result (highlighted in Fig. 3(b)).
Similarly when using fewer images (i.e., without images from
camera #2), the reconstructed scene is not as complete as the
golden result (highlighted in Fig. 3(c)). The quantitative and
qualitative results together motivate the need for intelligent
optimizations towards meaningful reduction in reconstruction
latency without significantly degrading quality.

IV. OPTIMIZATION METHODOLOGY

This section will discuss the overall optimization problem
from two angles. First, we propose application-side optimiza-
tions involving background subtraction to reduce the pro-
cessing time by removing repeated background information.
Next, based on the application-side optimization outcome, we
formulate a system optimization problem to address the trade-
off between reconstruction quality and latency. This helps to
find the optimal image resolution and the selection of cameras.

A. Application-side Optimizations
In this paper, we propose a parallelized pipeline on open-

MVG/openMVS platforms by segmenting a scene into fore-



TABLE I: Processing latency and quality of openMVG/openMVS pipeline with varying camera resolution and camera selection

Metrics Scale = 1,
all cameras

Scale = 0.8,
all cameras

Scale = 0.6,
all cameras

Scale = 1,
sans camera #0

Scale = 1,
sans camera #2

Total latency 26.17 s. 16.07 s 9.1 s. 20.98 s. 19.83 s.
Number of Vertices 277,790 173.139 103,493 238,821 206,513

(a) With scale=1, all cameras (b) With scale=0.6, all cameras (c) Without scale=1, sans camera #2

Fig. 3: Qualitative analysis of openMVG/openMVS pipeline with varying camera resolution and selection

Fig. 4: An overview of application implementation that runs parallel MVS
pipelines for the foreground and background 3D reconstruction.

ground (dynamic part) and background sections that can
be later exploited by system-side optimizations through the
collaborative MEC environment. This is achieved by the sub-
tasks described below and illustrated as flowchart in Fig. 4.

Background subtraction: We use openCV Background
Subtractor to learn and subtract the static background model
of a scene to identify the moving or dynamic regions. Since a
scene can contain multiple moving objects, we used k-means
clustering [16] with optimum cluster numbers to group the
dynamic regions into clusters. Each of the clusters suggests
a moving object. This helps us to create separate foreground
masks (contiguous dynamic regions in the background sub-
tracted binary image) when moving objects are spatially apart,
thus reducing the foreground area to be 3D reconstructed.

Sparse point-cloud split: Since openMVS requires a lot
of computation to generate the dense point cloud [4], our
optimized pipeline uses foreground masks (obtained from
background subtraction) to group the sparse 3D points (ob-

tained from openMVG) into the foreground and background
sets. This separation enables running openMVS pipeline sep-
arately and concurrently for foreground and background 3D
reconstruction.

Merge foreground and background: Once the background
and foreground 3D reconstruction results of consistent scale,
translation, and rotation are stored in .ply files with the basic
information of the 3D model such as, the number of 3D points
and their locations and the color information of each point,
we generate the full 3D map of the scene by combining the
information stored in the .ply files.
B. System-side Optimizations

For system optimizations, we propose an online optimiza-
tion framework to address the trade-off between quality and
processing time by choosing optimal reconstruction configu-
rations. This framework exploits the collaborative MEC envi-
ronment to achieve task level parallelism.

Problem formulation: We define N = {1, 2, 3, ..N} to
be the set of cameras (i.e., edge devices for video capture),
where N ≥ 3. We create a binary camera-selection indicator
on,∀n ∈ N i.e., on = 0 indicates that the image from camera-
n will be ignored by the pipeline; otherwise on = 1. We also
denote ∆t as the user’s (i.e., reconstruction task’s) deadline
requirement. Based on the problem evidence analyses, we
know that both the quality Q and the processing latency/time
T are functions of camera/image resolution r ∈ [rmin, rmax]
and camera subset N ′ ⊆ N , i.e., Q(r,N ′) and T (r,N ′). With
such settings, our optimization problem can be stated as:

max
r,o

Q(r,N ′)

s.t. C1: r ∈ [rmin, rmax]

C2: on ∈ {0, 1}, ∀n ∈ [1, N ]

C3:
N∑

n=1

on ≥ 3, ∀n ∈ [1, N ]

C4: T (r,N ′) ≤ ∆t

(P1)

where constraints C1 and C2 restrict the selection of camera
resolution and number respectively, C3 specifies that the
number of cameras should be at least 3 (required by open-
MVG [3]), and C4 specifies that the processing time needs to



satisfy the user’s deadline requirement ∆t. Problem P1 is non-
trivial to solve as: 1) Firstly, it is time-consuming to create
accurate mathematical models (such as by taking massive
measurements [12]) for quality Q(r,N ′) and processing time
T (r,N ′) and 2) Secondly, the camera indicators are binary
variables and the number of camera subset is very large (i.e.,
O(2N )). Therefore, computing all the solutions in this massive
configuration space at run-time will be counterproductive.

Camera selection algorithm: In order to reduce the com-
plexity of (P1), we propose a camera selection algorithm
to select the N ′ most useful cameras. However, the camera
selection scheme with 3D reconstruction is quite different
from the typical maximal coverage problems [17] as in 3D
reconstruction, the reconstructed points must be covered by
at least two cameras. In this algorithm, the 3D points and
their corresponding cameras are first extracted from the SfM
pipeline. With these, our objective is to choose the cameras
that will result in the maximum number of 3D points that
are covered by at least two cameras. The most trivial way
to do this is to implement a brute force technique; however,
that will cause the running time to grow exponentially with
the increase in number of cameras. Therefore, we develop the
following optimization problem:

max

P∑
k=1

pk

s.t. C1:
N∑

n=1

on = N ′

C2: Mkn = cnAkn, ∀n ∈ [1, N ], ∀k ∈ [1,P]

C3:
N∑

n=1

Mkn ≥ 2pk, ∀k ∈ [1,P]

(P2)

In (P2), we assume that there are a total of P 3D points and N
cameras and out of them N ′ cameras are chosen. pk is a binary
variable which is 1 if 3D point-k is covered by at least two
chosen cameras and 0 otherwise. Thus the objective function
is to maximize the points that are covered by at least two
cameras. The constraint C1 states that a total of N ′ cameras
are chosen. Also, we assume that Akn is a known binary
variable that is 1 if point-k is covered by camera-n and 0
otherwise; and Mkn is a binary variable that is 1 if (a) point-
k is covered by camera-n, and (b) camera-n is chosen, which
is ensured by constraint C2. Constraint C3 ensures that point-
k is covered by at least two chosen cameras. We use Gurobi
solverto solve (P2). As the number of 3D points is pretty large
in a complex image, we first choose a small fraction of key
points using k-means algorithm, and apply (P2) with these
key-point subset to choose the most useful cameras.

Transformation of P1 and solution: After solving (P2),
we create a mapping function π(N ′) : N ′ → N ′ that specifies
the unique mapping between the number of cameras and the
selection of camera subset, i.e., given the number of cameras
N ′, the selection of N ′ is fixed. This function greatly reduces

Algorithm 1: Online Bi-section search algorithm
1 Initialization: Set N ′ = N , rmin = 0.3, rmax = 1.0, r∗ = 1.0;
2 Run the first task with (r∗,N ), solve P2 and initial

π(N ′) : N ′ → N ′;
3 r = rmin, solutions = [];
4 optimization = True;
5 for each upcoming task i ∈ I do
6 Observe T (r, π(N ′)), Q(r, π(N ′))
7 if not optimization then
8 do minor-adjustment ; // see section IV-B
9 continue

10 if T (r, π(N ′)) ≤ ∆t then
11 rmin = r; r∗ = r;
12 solutions ← [Q(r, π(N ′))] ; // stores the

current optimal configurations
13 else
14 rmax = r;

15 if rmax − rmin ≤ τ then
16 rmin = r∗; rmax = 1.0; r = rmin; N ′ = N ′ − 1;

// another level of search
17 if N ′ < 3 then
18 r∗, N ′∗ = argmax(Q(r, π(N ′))) in solutions
19 optimization = False;

20 else
21 r = (rmax + rmin)/2

the domain size of (P1). Therefore, (P1) transforms to:

max
r,N ′

Q(r, π(N ′))

s.t. C1: r ∈ [rmin, rmax]

C2: N ′ ∈ [3, N ]

C3: T (r, π(N ′)) ≤ ∆t

(P3)

In (P3), Q(r, π(N ′)) and T (r, π(N ′)) are still unknown to the
MEC system. However, by fixing one of the two parameters
(e.g., Q(r|π(N ′)), T (r|π(N ′)) and Q(π(N ′)|r), T (π(N ′)|r)),
we can easily get that the quality and the processing time are
monotonic functions of both r and N ′. Therefore, the problem
can be effectively solved by a two-dimensional Bi-section
algorithm. The algorithm is driven by online observations that
is described in Algorithm 1.

In Algorithm 1, we perform multiple Bi-section searches;
the goal of each Bi-section is to find the optimal resolution r∗

for a given camera subset π(N ′). We assume the minimum
resolution rmin to be 0.3. The algorithm starts with a default
configuration (r = rmin, π(N

′ = N)) (lines 3-4). For
each upcoming task, the MEC system first runs the pipeline
and observes the processing time T (r, π(N ′)) and quality
Q(r, π(N ′)) (line 6). In lines 10-21, the algorithm compares
the current processing time to the deadline ∆t and performs
Bi-section search on the resolution for the current camera
subset π(N ′). In the meantime, it stores the current optimal
configurations (r∗, π(N ′)) and the corresponding quality into
solutions vector (line 12). In lines 15-16, when the search
on current camera subset be finished, the algorithm resets the
rmin to the current optimal resolution r∗. Next it goes into
the next Bi-section search on camera subset π(N ′ = N ′ − 1).
This process terminates when N ′ < 3 or rmax − rmin ≤ τ ,
where τ is a constant which is assumed to be 0.01.



We also add the following functions to further reduce the
time complexity during the configuration exploration.
1) Baseline check: If T (rmin|π(N ′

i)) > ∆t, stop Bi-section
search on N ′

i and go to N ′
i − 1. This means that the

processing of the lowest resolution has exceeded the dead-
line and there is no need to further explore N ′

i , i.e.,
T (r′|π(N ′

i)) > T (rmin|π(N ′
i)), ∀r′ > rmin.

2) Given N ′
i < N ′

j , if there exists a feasible solution (r∗j , N
′
j)

and Q(rmax|π(N ′
i)) ≤ Q(r∗j |π(N ′

j)), terminate optimiza-
tion. The reason being Q(rmax|π(N ′

k)) ≤ Q(r∗j |π(N ′
j)),

∀N ′
k < N ′

j .
3) Given T (r|π(N ′

i)) > ∆t, if there exists a feasible solu-
tion (r∗j , N

′
j) and Q(r|π(N ′

i)) ≤ Q(r∗j |π(N ′
j)), stop Bi-

section search on N ′
i and go to N ′

i − 1. The reason being
Q(r′|π(N ′

i)) ≤ Q(r∗j |π(N ′
j)), ∀r′ < r.

Minor-adjustment procedure: We add a minor-adjustment
procedure (line 8 in Algorithm 1) to solve the problem of
processing time fluctuation between consecutive tasks and
facilitate the average processing time to converge to ∆t. At a
given timestamp I ′ ≤ I , the adjustment rule follows:

r∗=


r∗ + τ 1

I′

I′∑
i=0

Ti(r
∗) < ∆t & Ti(r

∗) < ∆t

r∗ − τ 1
I′

I′∑
i=0

Ti(r
∗) > ∆t & Ti(r

∗) > ∆t

r∗ otherwise

(1)

Based on the difference between current average processing
time and deadline, we slightly decrease or increase r∗ by τ
(e.g., 0.02).

Background update strategy: As explained in Sec-
tion IV-A, the application-side optimization through back-
ground subtraction updates the foreground frequently and
therefore is reconstructed for each task. However, the back-
ground reconstruction is significantly more time consuming
and computationally intensive. Thus, a continuous background
reconstruction in parallel to foreground is only going to
lengthen the overall processing time. Contrarily, the polar
opposite method of performing the background reconstruction
only once during the entire reconstruction lifecycle can benefit
processing latency; however, might significantly degrade the
reconstruction quality. To address this issue, we let the front-
end node of the collaborative MEC environment to continu-
ously reconstruct the foreground and the back-end edge node
to opportunistically perform background reconstruction only
during its idle time (denoted by ∆a as shown in Fig 5). The
newly reconstructed background result will be actively pushed
to the front-end node.

Overall system implementation: The resulting opti-
mized framework implementation with all application-side
and system-side optimization steps on the collaborative MEC
environment is illustrated in Fig. 5. First, the front-end node
performs “SfM Pipeline” with optimized configurations, while
the back-end node simultaneously executes “Background Sub-
traction” and sends the foreground masks to the front-end
node. Once it gets the foreground masks, the front-end node
starts “Sparse Point-cloud Split” and “MVS pipeline FG” to
create the dense foreground point-cloud, and then merges it

Fig. 5: An overview of the collaborative MEC environment running the
optimized pipeline

with the existing background point-cloud. During the same
time, the back-end node performs the “SfM pipeline” with
golden configurations, and the result is sent to the front-end
node for “Online Evaluation & Optimization” (we discuss
online evaluation in detail in Section V-A). Beyond that, the
back-end node uses spare time to reconstruct the background
until the next task arrives as explained in Section IV-A. The
processing latency of the proposed pipeline depends on the
length of its ‘critical path’, which is the time elapsed between
component 1 and component 3.

V. SYSTEM EVALUATION AND RESULTS

In this section, we evaluate the performance of the proposed
optimized framework and validate our online quality evalua-
tion method through experiments on a hardware edge testbed
with real datasets. The hardware MEC testbed mostly mimics
the system model from Fig. 2 and consists of a front-end
node (Dell desktop equipped with Intel i7-10700F @2.9GHz,
16GB RAM) and a back-end node (Dell desktop equipped
with Intel i7-10700k @3.8GHz, 32GB RAM). These mimic
low cost edge devices with no GPU capability. The two nodes
are connected via 10 Gbps Ethernet cable mimicking point to
point connectivity between the nodes. The video datasets used
for the evaluations are Dance1 and Odzemok [8].

A. Evaluation Method

For offline qualitative evaluation, i.e., to test the performance
of our optimized pipeline (without the concern of evaluation
latency), we use the metric proposed in [18]. In this method,
the quality is measured in terms of precision (P ), recall (R),
and F-score (F ) - where P measures how close a 3D point
cloud is to the ground truth, R measures the completeness of
the reconstruction, and F is a function of P and R, i.e. ,

F =
2PR

(P +R)

In this paper, we select distance threshold d = 0.01 mm,
0.02 mm to determine whether a point from the reconstructed
point cloud and a point from the ground truth are close
enough. However, due to the lack of ground truth, we run



TABLE II: Foreground F-score comparison between online and offline evaluations
F-score Scale=0.95 Scale=0.90 Scale=0.85 Scale=0.80 Scale=0.75 Scale=0.70

After openMVG (online evaluation) 0.911 0.888 0.873 0.864 0.855 0.819
After openMVS (offline evaluation) 0.873 0.851 0.836 0.817 0.797 0.770

Fig. 6: Task processing time deadline satisfaction

Fig. 7: Resolution adaptation.

the original openMVG/openMVS pipeline to reconstruct a 3D
model with the best configuration (i.e., original resolution at
scale=1 and with all cameras). This golden result (as explained
in Section III) is our best estimate of the ground truth and thus
is used to calculate the F-score of the reconstructed outcome
of our optimized pipeline.

B. Validity of Online/Run-time Quality Evaluation

One of the trickiest aspects of our optimized pipeline is to
measure the quality Q(r, π(N ′)) of 3D reconstruction online,
i.e., in runtime and use this outcome to ascertain optimal
configurations for next task. In order to achieve this, we
perform the evaluation on the foreground sparse point cloud
obtained from openMVG’s SfM pipeline instead of the mesh
from openMVS (as shown in Fig. 5) due to the fact that:
i) the former is the foundation of the latter; ii) openMVS
steps often take more time; and iii) the foreground is more
important and always changing. Whereas, for the offline qual-
itative evaluations explained in Section V-A, we take the more
traditional approach of comparing the foreground mesh from
openMVS against the foreground from golden result. In order
to establish the validity of the proposed online evaluation by
establishing positive correlation between the online and offline
evaluations, we compare the F-scores values of foreground
after openMVG’s SfM against foreground after openMVS in
Table II. The results show that for both cases F-scores decrease
as resolution decreases. Furthermore, their decreasing trends
are also comparable. Therefore, we believe that our proposed
online evaluation is a valid methodology that successfully
reflects the quality of the 3D reconstruction of our optimized
pipeline.

Fig. 8: F-score (foreground only).

C. Optimization Evaluation

Given a processing deadline ∆t, here we evaluate the
outcome of the online optimization and background update
strategy in terms of average task processing time and re-
construction quality Q(r, π(N ′)) (using F-score). Taking into
account that the processing time T (r, π(N ′)) of the pipeline
can vary according to the content of the input images, we
accept a small margin of error during the configuration search-
ing steps (based on experimental results, the margin is set to
1s). Specifically, a configuration is considered as acceptable if
0 < |∆t − T (r, π(N ′))| ≤ 1. In this evaluation, the deadlines
∆t of test cases are 5.0s, 7.5s and 10.0s, respectively.

Fig. 6 shows the processing time of individual tasks at
different timestamps. Driven by the minor-adjustment pro-
cedure that we proposed in subsection IV-B, we notice that
the processing time gradually converges to the pre-defined
deadline ∆t after the optimal configuration is found. The
results of optimal configuration search (Alg. 1) and subsequent
resolution adaptation (minor-adjustment procedure) are shown
in Fig. 7. As the system takes more configuration search steps
to find the optimal number of cameras for tasks with shorter
deadline, the figure demonstrates that the image resolution
of tasks with longer deadline (e.g., ∆t = 7.5s and ∆t =
10.0s) converges faster than tasks with shorter deadline (e.g.,
∆t = 5.0s). Fig. 8 shows the quality distribution Q(r, π(N ′))
(in terms of F-scores) of the foreground. After some initial
randomness while the online optimization algorithm is still
running, the F-score values of foreground sparse 3D point-
cloud start to converge once the minor adjustment procedure
starts to work. Such convergence behavior of F-score under
different task deadlines is similar to resolution adaptation (as
shown in Fig. 7). The overall statistical outcome in terms
of chosen configuration along with average processing time,
average F-score, background update and number of search
steps are presented in Table III.

While evaluating the performance of the background update
strategy discussed in Section IV-B, we observe that for datasets
such as Dance1, the system only needs to create a background
model once as the background scene remains unchanged.
However, for real-world scenarios where background scene
may change frequently, it is beneficial to use up-to-date
background model. Upon monitoring the speed of background



TABLE III: Online optimization with different deadlines - Dance1

Info Deadline
(∆t = 5s)

Deadline
(∆t = 7.5s)

Deadline
(∆t = 10s)

Avg. Resolution Scale 0.74 0.76 0.90
# Cameras 4 7 7

Avg. Processing Time 5.28 s 7.49 s 9.98 s
Avg. F-score of FG 0.51 0.74 0.83
# Reconstructed BG
Dense Point Clouds 22 36 54

# Configuration Search
Steps 27 12 1

TABLE IV: Quality comparison between original and optimized pipeline
F-score Threshold d = 0.01 Threshold d = 0.02

Optimal
Dance1

avg F-score = 0.930
std = 0.026

avg F-score = 0.961
(std = 0.019)

Optimal
Odzemok

avg F-score = 0.946
(std = 0.012)

avg F-score = 0.967
(std = 0.011)

update for dataset Dance1 (with different processing dead-
lines), we observe that the back-end node can generate a new
background point cloud around 20− 25s without interrupting
the foreground reconstruction. Moreover, the background up-
date frequency of tasks with larger deadline is much higher
than tasks with shorter deadline. For example, the number
pushed background dense point clouds are 22, 36 and 54 when
the task deadline is set to ∆t = 5s, ∆t = 7.5s and ∆t = 10s,
respectively. This can be explained by Fig. 5 i.e., larger
deadline ∆t leads to larger ∆α. In other words, while the
front-end node is busy running foreground reconstruction with
some high configurations, the back-end edge node has more
idle time to perform background reconstruction. The above
results indicate that the proposed online algorithm (Algo. 1)
and optimized pipeline (Fig. 5) can effectively balance the
trade-off between latency and quality.

D. Quality and Latency Evaluation
Finally, we compare the quality and latency results of our

optimized pipeline against the golden results of the original
pipeline for both the datasets. For the quality comparisons,
we run both pipelines with the same input images and com-
pute F-score - when construct with original resolution and
all camera data. The F-score for the optimized pipeline is
calculated by assuming the golden results (i.e., from original
pipeline) as ground truth. Table IV shows the average F-scores
and standard deviation for each of the datasets. Overall, we
can conclude that reconstruction quality from our optimal
pipeline are within 4 − 7% of the peak quality (from Ta-
ble IV) which is negligible for successful operation of other
AR/VR/MR applications that typically run after reconstruction
pipeline. However, when we compare the latency results of
our optimized pipeline against original pipeline (as shown in
Table V), we see that the average improvement for datasets
Dance1 and Odzemok is around 54% (we notice that such
improvements depend on the number of pixels contained in
the foreground areas). Inferring from all the results, we argue
that our proposed pipeline (as shown in Fig. 4 and Fig. 5) can
significantly lower down the processing latency at the cost of
very limited quality degradation. Therefore, such improvement
can greatly help latency-sensitive applications whose quick
turnaround time and high quality results drive the success of
the underlying disaster response mission.

TABLE V: Latency comparison between original and optimized pipelines

Step Original
Dance1

Optimal
Dance1

Original
Odzemok

Optimal
Odzemok

SfM Pipeline
(optimized cfgs) - 2.94 s - 3.01 s

MVS Pipeline
of FG - 8.78 s - 5.67 s

Others (Split, Merge) - 0.26 s - 0.21 s

Total Time 26.17 s 11.98 s
(54.22%) 19.43 s 8.89 s

(54.25%)

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we developed a collaborative MEC architec-
ture for disaster response based on an optimized framework
that balances the trade-off between 3D reconstruction process-
ing latency and quality. By exploiting the data and task level
parallelism, our optimized edge-supported framework achieves
a significant reduction in end-to-end latency, with negligible
loss in reconstruction quality. In the future, we would like to
extend this work on multiple fronts. One of the key limitations
of our work is that the overall latency is still in tens of seconds
when implemented on low cost compute devices. However,
such latencies might not be acceptable for some real-world use
cases (also restricted by use of limited CPU/GPU resources)
that require real-time (i.e., < 100 ms) response. Therefore, one
of our future research directions is to reduce the end-to-end
latency even further using algorithmic optimization that uses
deep learning based methods and models.
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