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Abstract—Cloud based incidence response systems suffer from
lack of network connectivity to offload compute intensive mission-
critical applications to remote cloud. Thus, the next-generation
incidence response solutions are becoming more edge-cloud
based where computational resources are available closer to the
disaster site. However, frequent and dynamic unpredictabilities
or fluctuations generated in such edge-cloud deployments (e.g.,
using wireless spectrum in unlicensed manner) adversely impact
the performance of mission-critical, real-time applications which
often demand strict performance guarantees. Such fluctuations
cause severe performance degradations to mission-critical appli-
cations that use such channels. In this paper, we propose an
intelligent yet lightweight application task assignment (end-user
device to edge-cloud) and application migration scheme (between
edge-cloud resources) that can help mission-critical applications
avoid impending fluctuations and improve system resilience. The
proposed scheme implements Largest Bandwidth Largest Job-
First Fit (LBLJ-FF) algorithm as a Unified Resource Broker
(URB) service that optimizes transmission cost and migration
overhead. The algorithm is light-weight and fast converging in
reacting to sudden fluctuations. We demonstrate the performance
of the proposed scheme through a realistic simulation that uses
real fluctuation dataset. The results demonstrate the existence
of an optimal trade-off point between transmission cost and
migration overhead optimizations. The results also show the
resilience of the proposed algorithm in improving job completion
rate when the edge-cloud system is under intense fluctuation.

Index Terms—Disaster response; edge-cloud; task assignment;
application migration; unified resource broker.

I. INTRODUCTION

In the wake of large-scale natural/man-made disasters, rapid
situational awareness would help first responders to be more
effective and efficient. In recent times, edge-cloud (i.e., mobile
edge, fog, cloudlet) infrastructure based disaster incidence
response deployments are being proposed over cloud-based
deployments as unlike cloud, edge-cloud resources are avail-
able closer to the disaster site. Fig. 1 illustrates an exemplary
edge-cloud based disaster incidence response scenario. Based
on the mission objectives, raw sensory data are generated from
end devices (e.g., humanoids, drones) that often require remote
data processing and analysis (e.g., image and video processing)
as the devices lack sufficient compute and storage resources.
Thus, the sensory data is offloaded via wireless network to
edge-cloud nodes hosted by multi-utility vehicles (MUVs) for
processing where sufficient compute cores are available. If one
such edge-cloud node does not possess sufficient compute re-
sources to process the data, data is offloaded to other nodes in
the pool to ensure successful processing. Finally, the processed
data is fed back to first responders’ handheld devices (e.g.,
laptops, tablets) to initiate, modify, and suspend incidence
response operations based on the intelligence acquired from
the processed data.

The success of incidence response missions and involved
operations thus depends on the timely transfer and processing
of the data applications which in turn depends on efficient

Fig. 1: An exemplary Edge-cloud deployment for next-generation disaster
incidence response

network and compute resource provisioning by the edge-cloud
system. However, edge-cloud resource provisioning in a large-
scale disaster incidence response scenario is more challenging
than cloud/edge resource management for other use cases.
Firstly, data applications for large-scale disaster incidence
response are unique due to their real-time and mission-critical
nature. Secondly, inherent system unpredictabilities or fluctua-
tions during disaster incidence response adversely impact the
performance of mission-critical applications and make them
vulnerable to faults. Finally, due to limited availability of edge-
cloud nodes and compute cores within, traditional ‘replications
and redundancy’ based cloud fault tolerance mechanisms
cannot be applied to disaster response systems.

For example, edge-cloud systems use cognitive radio de-
vices to utilize licensed wireless spectrum in an opportunistic
manner [1] for data transfer between edge-cloud nodes and
end-devices when wireless infrastructure (e.g., wifi, LTE) are
partially or completely destroyed by the disaster [2], [3].
For such unlicensed access, the disaster response applications
are assigned wireless channels currently unused by licensed
transmission for data-transfer from end-devices to edge-cloud
nodes. However, due to the temporal unpredictability of li-
censed transmission, the availability of channels for such
mission-critical applications frequently change, thus making
them vulnerable to performance degradation. At the same time,
due to the limited availability of edge cloud nodes and wireless
spectrum at such nodes, provisioning on-demand network
and compute resources for reliable application performance
without compromising system overhead is challenging.

In this paper, we propose an intelligent network and com-
pute resource provision scheme that improves disaster re-
sponse edge-cloud system resilience induced by unlicensed
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spectrum access without compromising system overhead. We
achieve this by borrowing strategies and best practices from
cyber security which deals with volume cyber attacks, such
as Distributed Denial of Service (DDoS) [4]. We divide the
overall network and compute resource provisioning problem
into sub-problems and propose: a global application task
assignment technique to edge-cloud nodes, and a local job
scheduling technique to compute cores within the edge-cloud
nodes. We characterize the impact of unlicensed spectrum
access induced fluctuations on applications’ health and pro-
pose a prediction model to estimate such fluctuations’ arrival
caused by licensed transmission. Our proposed global assign-
ment technique uses this prediction information to allocate
wireless channels to incoming application tasks as well as, to
proactively migrate run-time application tasks to other nodes in
case of an impending fluctuation to a channel associated with a
node. Our scheme also uses well known partitioned multipro-
cessor scheduling techniques for local job scheduling within
edge-cloud nodes. The proposed scheme adaptively balances
data transmission cost and migration overhead optimizations
while maintaining an almost 100% job completion rate. The
proposed scheme implements Largest Bandwidth Largest Job-
First Fit (LBLJ-FF) algorithm as a Unified Resource Broker
(URB) service that is light-weight and fast converging which
are essential properties of resource management in a disaster
incidence response scenario.

We evaluate the performance of the overall scheme using
a realistic simulation that uses real dataset for unlicensed
spectrum access based fluctuation information. The results
demonstrate the existence of an optimal trade-off point called
balance factor that balances mutually diverging optimizations
for transmission cost and migration overhead. The results show
the benefits of using fluctuation prediction driven migration in
improving system resilience and yet maintaining a very high
completion rate. Finally, we show how the proposed LBLJ-
FF algorithm better balances transmission cost and migration
overhead than other genetic algorithm and random global
assignment based techniques commonly used for edge-cloud
based resource provisioning.

The rest of the paper is organized as follows. Section II
discusses the background and problem motivation. Section III
presents the related work. Section IV discusses system model.
Section V proposes the global assignment and migration
strategy. Section VI presents simulation results. Section VII
concludes the paper.

II. BACKGROUND AND MOTIVATING EXAMPLE

In this section, we discuss how edge-cloud resource man-
agement in a large-scale disaster scenario is unique in terms
of mission-critical applications and fluctuations induced by
unlicensed access.

A. Resource Management Challenges
Upon interacting with the Fire Department of New York

City Office of Emergency Operations and investigating the
case files of large scale disasters (e.g., 2011 Joplin tor-
nado, 2012 hurricane Sandy in New York, and 2015 Nepal
earthquake) [2], [3], we argue that the edge-cloud resource
management for disaster response are different from edge-
cloud deployments for other use cases due to the following
reasons:
• The end-to-end applications generated for large-scale disas-

ter incidence response are unique due to their: a) dynamic

nature and properties, b) strict performance and energy
requirements, c) real-time mission-critical characteristics.
Thus, depending on the unique application requirements,
on-demand compute and network resources need to be
allocated.

• Incidence response for large-scale disaster scenarios is also
unique due to frequent occurrence of system faults, unpre-
dictabilities or fluctuations that need constant monitoring.
At the same time, such fluctuations need to be dynamically
addressed in order to prevent them from adversely impacting
the performance of mission-critical applications.

B. Mission-critical Disaster Response Applications
Based on our initial discussions with the Fire Department

of New York’s (FDNY) Office of Emergency Operations,
we realized that incidence response applications and involved
data-flows are unique in terms of their nature, characteristics,
and performance requirements. Here we outline FDNY’s fu-
ture fire rescue operations for multi-storied buildings using
drones and explain how video processing applications from
such operations can evolve during a large scale disaster. In this
operation, the fire rescue personnel will use drones attached
with 1080p at 25 FPS smartphone cameras to capture videos
of the incident scene. This raw video will be sent to the central
FDNY video processing server using AT&T and Verizon
LTE networks for 3D reconstruction. The processed data will
be uploaded to Amazon Web Services (AWS) that can be
downloaded by ground first responders at the ground level of
the disaster scene through apps on their compatible handheld
devices. The entire end-to-end data-flow is real time, i.e., each
video frame from collection to consumption has strict deadline.
In a large-scale disaster, the applications are recurrent and
mission-critical.

C. Unlicensed Access Induced Fluctuations
In a large-scale disaster scenario with limited or no LTE

connectivity, sending data to a remote AWS data center
for processing will be impossible. In such a scenario, first
responder personnel have to rely on local edge-cloud nodes
(hosted in MUVs) for live video processing and cognitive radio
based devices to use vacant LTE bands for data transfer to such
nodes. Therefore, the success of such fire rescue operations
during a large scale disaster will depend on the edge-cloud
system’s ability to ensure compute cores for the application
data processing and unlicensed wireless channel allocation for
transferring the data to the compute location.

However, provisioning resources becomes even more chal-
lenging as large-scale disaster environments are fraught with
unpredictable changes or fluctuations. One of the major fluctu-
ations arise from disaster incidence response systems’ oppor-
tunistic/unlicensed use of licensed spectrum by cognitive radio
devices to network resources (i.e, wireless channels) [1]. For
unlicensed access, regulation imposed by the FCC mandates
that if such access interferes with licensed transmission on any
spectrum channel, the former needs to suspend transmission
immediately. Now the nature of licensed transmission being
unpredictable [5], [6], mission critical applications that use
cognitive radio based unlicensed access become vulnerable.

Fig. 2 shows the simulation results of the impact of such
fluctuations on end-to-end data rates of applications that use
unlicensed access for data transfer. We use publicly available
data from RWTH Mobnets [7] dataset that records temporal
spectrum usage pattern of licensed devices on different bands.
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Fig. 2: Unpredictability of spectrum usage by licensed transmitters on a
band and its impact on application’s data rate (1 sweep = 1.8s)

Fig. 2 shows the unpredictability of power spectral density
(PSD) of licensed usage over time for a particular spectrum
band. The figure also shows application’s data rate fluctuation
caused by such unpredictability when the application uses the
same band for data transfer.

III. RELATED WORK

The related work can be broadly divided into two categories:
Mobile edge computing applied for disaster response and ser-
vice migration and job scheduling for mobile edge computing.

Mobile Edge Computing (MEC) based wide-area analytic
solutions have been recently proposed for offloading compu-
tationally heavy tasks to mobile edge nodes to reduce device
energy consumption. Among these, [8], [9] are notable for
exploring resource allocation methods for heterogeneous and
computation-heavy tasks, such as image and video processing.
LAVEA [8] proposes task offloading to edge nodes driven by
local and remote execution time and network transmission
delay. An energy-efficient offloading framework has been
studied in [9] where each task is either local-only or offload-
able. However, both papers address whether tasks should be
executed remotely or locally without considering heterogeneity
of edge cloud nodes and service migration caused by such
heterogeneity. Works such as [10], [11], [12], [13], [14]
propose wide-area analytics for emergency operations using
edge resources. However, these mainly focus on edge vs. cloud
computation under mostly static environments and may not be
extended for disaster response operations due to mostly real-
time data-flow requirements and presence of fluctuations.

In order to counter the dynamism of a system environment,
service migration methods in MEC have been proposed. Most
of the notable works in this category [15], [16] study Markov
Decision Process (MDP) based dynamic service migration.
SEGUE [17] proposes a QoS-aware service migration that
uses MDP to solve the “when” and “where” of service
migration problem. Authors in [18] propose a novel mobility-
aware online service placement framework that uses long-term
cost budget constraint to control decisions. Whereas, authors
in [19] propose a multi-component application placement and
component migration technique in MEC suing a heuristics
algorithm. However, none of these works consider realistic
computational constraints caused by resource provisioning and
scheduling in highly dynamic environment and may fail when
deployed under high-load systems. Although, sporadic task
scheduling especially on multiprocessors [20], [21] has been
extensively studied with proven efficiency, most of these were
proposed before the advent of MEC. Thus, such works fail to
reproduce promising results when put under highly dynamic
environment with frequent system fluctuations.

IV. SYSTEM MODEL

In this section, we discuss the architecture of the proposed
edge computing framework along with system, application and
fluctuation model. Let K = {1, 2, 3, ...,K} denote the set of
edge-cloud nodes that are equipped with M identical compute
cores M = {1, 2, 3, ...,M}. They provide remote processing
resource to a set of end-user nodes N = {1, 2, 3, ..., N}
(handheld devices of first responders, drones, robots etc.)
which do not have sufficient processing capabilities. The entire
system is managed by a URB whose job is to assign user
applications to edge-cloud nodes for remote execution. In the
absence of wireless infrastructure, such information exchange
is achieved by utilizing predefined control channels. The end-
devices offloads data to edge-cloud locations selected by the
URB using unlicensed spectrum assigned by the URB. We
define assignment Oπ produced by policy π as a combination
function:

Oπ(G,L) : K ×N ×M→ {0, 1} (1)

where G is global assignment (i.e., application to edge-cloud
node mapping) and L is local scheduling (i.e., individual
application jobs to core within the edge-cloud node). A single
element on,k,m inside the matrix Oπ is set to 1 if the user
application τn is executed on core m within edge-cloud node
k; otherwise on,k,m = 0.

A. Application Model
Due to the real-time and recurrent nature of disaster re-

sponse applications, we use Sporadic Task Model [20] to
model compute-intensive applications that are repetitive and
have strict yet similar deadlines. In this paper, a user ap-
plication is described as a task τn which contains a set of
recurrent jobs (e.g., a video is divided into multiple frames
and each job is is processing one frame). Each task is
represented as the tuple (En,Wn, Tn, Dn) which is called the
task profile, where En denotes the worst-case job execution
time, Wn denotes job data size, Tn denotes minimum interval
between recurrent jobs, and Dn denotes the minimal latency
requirement (deadline) of each job. For the rest of the paper,
task and application will be used inter-changeably.

B. Edge-cloud Node
In this model, edge-cloud nodes are equipped with a M -

core computing platform that can run M jobs at a time (i.e.
same type of MUVs are equipped with M identical computing
resources). For disaster response, we assume that end-devices
and edge-cloud nodes (mounted on MUVs with mobile base
stations) use unlicensed channels for data transmission when
license transmission is absent on those channels. In this
paper, we use Orthogonal Frequency Division Multiple Access
(OFDMA) communication scheme. Specifically, each edge-
cloud node is pre-allocated with a channel of fixed bandwidth
B that can be equally divided into multiple orthogonal sub-
channels. The coordination between the end-devices and edge-
cloud nodes for channel decision is configured by other
OFDMA-based Dynamic Spectrum Access (DSA) models [22]
that is beyond the scope of this paper. Thus, given such
coordination, the objective of the global assignment is to min-
imize the transmission cost of using unlicensed sub-channels
for application data transfer between end-user and edge-cloud
node pair. However, only a few sub-channels are available
at any instance based on the status of licensed transmission
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on those sub-channels at that instance. We define θt,k as the
number of available sub-channels at any time instance t at an
edge-cloud node k where,

b×

θt,k︷ ︸︸ ︷∑
f∈Fk

γt,k,f︸ ︷︷ ︸
availability indicator

≤ B (2)

Here Fk denotes the set of such sub-channels and b denote
the bandwidth of each sub-channel. To simplify the model,
we assume that the transmission power of end-devices and
the channel gain over sub-channels are the same. We also
apply the concept of channel aggregation where generated
tasks are allocated a collection of sub-channels (during global
assignment) that are associated with one edge-cloud node and
at the same time are not being used by licensed transmission.
This, the aggregated data rate for individual end-device is
defined as,

Rt,k =
θt,k∑K

k=1

∑M
m=1 on,k,m

× b log2(1 + SNR) (3)

Evidently, with the arrival of licensed transmission, Rt,k will
decrease. This will trigger the URB to de-allocate the unavail-
able sub-channels and allocate new sub-channels to the end-
device either associated with the same edge-node or a different
edge-node resulting in migration. We allow edge-cloud nodes
to suspend a run-time task when network bandwidth and/or
computing resource become scarce. Details of the transmission
cost optimization will be discussed in Section V.

C. Local Scheduling
Local scheduling of jobs to compute cores with an edge-

cloud node follows Partitioned Multiprocessor Scheduling al-
gorithm proposed in [20] and [21] that has proved to be one of
the most efficient algorithms to solve sporadic task scheduling
problems. Applying this algorithm, we assign each job of a
task to a compute core (within an edge-cloud node) and ensure
that all the following jobs belonging to the same task can be
finished by the same core before each job’s deadline. When
the job scheduling fails, the global assignment is considered
as invalid and a new assignment of the task/application to an
edge-cloud node will be required. This partitioning between
global assignment and local scheduling allows us to reduce
the problem size from |(K ×M)N | to |KN |. In general, task
utilization un = En/Tn is widely used for job scheduling
with implicit-deadline model (i.e., Tn = Dn) that follows
the constraint

∑N
n=1 un ≤ 1. However, Fig. 3 illustrates that

due to the uncertainty of data transmission with unlicensed
channels, recurrent tasks in remote execution will have ar-
bitrary remaining completion time D∗n (called dynamic task
profile). Thus, we use an alternative approach to use task
density λn = En/min(Tn, D

∗
n) as a scheduling measure used

in [20]. Using this approach, the value of dynamic task profile
can be modeled as,

D∗n = Dn −Wn/Rt,k −max(0,Wn/Rt,k − Tn) (4)

where Wn/Rt,k is the data transfer time between end-device
and edge-cloud node.

D. Spectrum Fluctuation and Prediction Model
In order to fairly study the impact of unlicensed spec-

trum usage induced uncertainty or fluctuations, we assume

Fig. 3: Example of sporadic task in remote execution where Tn = Dn = 1s
that shows the delay (200ms and 300ms) in data transfer caused by channel
uncertainty

the queue buffers in all edge-cloud nodes to be infinitely
large and the computing capacity of each core to be the
same. Furthermore, we assume that inter-edge communication
utilizes reserved high bandwidth wired connectivity to transmit
and receive data. This allows us to focus on uplink spectrum
channels between end-devices and edge-cloud nodes, and we
can treat inter-edge communication costs as invariants.

Fig. 4: Job completion rate when system orchestration do not address
spectrum fluctuation for uplink data transmission

For typical sporadic task running locally, task profiles are
static. However, the time cost of data transmission between
end-user node and edge-cloud node using unlicensed spectrum
must be considered in remote execution. Fig. 4 illustrates
that the transmission delays caused by spectrum fluctuations
varies over time and if not addressed, can heavily impact the
task/job completion rate that in turn can cause considerable
end-user experience degradation. Therefore, precise dynamic
task profiles guarantee the success of job execution. However,
it is impractical to build functions for θt,k in uncertain
environments and subsequently to get data transfer rate and
dynamic task profile. In order to make more accurate task
profiles, the “Spectrum Prediction” model [23] is introduced
to predict the number of available unlicensed sub-channels of
a given bandwidth in near feature. Task profiles are updated
after every prediction instance based on predicted θt,k. Then,
the URB starts a future validation process for the current
assignment by checking the accumulated task density and
gathering the information of local job scheduling at each
edge-cloud node. In our model, a valid assignment is the one
where all local job scheduling in all edge-cloud nodes succeed;
otherwise, there exists some future validation failures among
computing resources. Fig. 5 shows the proposed URB design
and assignment process.

V. GLOBAL ASSIGNMENT AND MIGRATION STRATEGY

The failure of future validation and the discovery of better
assignments will trigger the URB to select a new global
assignment and we denote such reassignment as task migra-
tions. This is similar to how applications are migrated among
virtual machines in a cloud environment when targeted by
a DDoS attack. However, similar to defense against DDoS
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Fig. 5: Application to compute core assignment within edge-cloud nodes
through URB

in cloud environments, task migrations that are too frequent
can add to substantial management cost to the system. At
the same time, frequent migrations will adversely impact the
short term performance that might be detrimental for involved
task and job success. Whereas, the alternate approach of
too infrequent migrations may leave the task vulnerable to
impending spectrum fluctuations. Thus, there is a need for
migration optimization.

A. Assignment and Migration Process

In our model, a policy π of task assignment is selected by
the URB when it receives a collection of applications/tasks
{τ1, τ2, ...τN} through “Task Config. Analyzer” component
described in Fig. 5. For the global task assignment process,
the URB collects the static task profile of applications and
gathers the statistical analysis of spectrum usage at each edge-
cloud node from “Spectrum Prediction” component. Using the
predicted value of θt,k, the URB estimates the data transfer rate
and generates dynamic task profile using equations Eqs. (3)
and (4). Next, the URB calculates task density λn to test
future validation and try to find better assignments. Both are
performed by “Task Assignment & Migration” component
within the URB (as shown in Fig. 5). Whenever a migration
decision is made, notifications of new assignment informa-
tion are sent to involved end-user devices and edge-cloud
nodes through control channels. All entities that receive the
notification initiate task migration. Such migrations also use
high bandwidth dedicated proprietary network between edge-
cloud nodes to transfer intermediate data and task run-time
information. Such management operations lead to proprietary
network resource consumption and delays which in this paper
are defined as migration overhead.

B. Transmission Cost and Migration Overhead Optimization

In this paper, we propose a migration strategy that is carried
out by the optimizations of transmission cost and migration
overhead. Given a task migration that involves two consecutive
assignments Ot and Ot+1, the transmission improvement can
be measured as follows,

IP (Ot, Ot+1) =
1

N

N∑
n=1

∆T

Tn
· [TF (Ot)︸ ︷︷ ︸

old

−TF (Ot+1)︸ ︷︷ ︸
new

] (5)

where
∑N
n=1 ∆T/Tn is the estimated number of jobs released

during a prediction window and TF (·) is the sum of trans-

mission cost per job per task that is represented as,

TF (Ot) =

N∑
n=1

K∑
k=1

M∑
m=1

otn,k,m ·
Wn

Rt,k
(6)

The corresponding migration overhead can be formulated as,

RF (Ot, Ot+1) =

N∑
n=1

K∑
k=1

M∑
m=1

(otn,k,m ⊕ ot+1
n,k,m) · rf (7)

where rf is a constant value that estimates the inter-edge
communication cost for task migration. We define the score
function of Ot+1 as follows,

S(Ot+1) = α IP (Ot, Ot+1)︸ ︷︷ ︸
improvement

−(1− α)RF (Ot, Ot+1)︸ ︷︷ ︸
migration cost

(8)

where balance factor α (0 ≤ α ≤ 1) denotes the balance
between transmission cost and migration overhead. This bal-
ance factor α characterizes the trade-off between too frequent
and too infrequent migrations discussed earlier. Based on the
proposed score function, the best assignment Ot+1 for task
migration is the one with highest score S(Ot+1) as it max-
imizes transmission improvement and minimizes migration
overhead, yet satisfies the job scheduling constraints discussed
in Section IV-C. In the case of the highest S(Ot+1) <= 0,
our strategy only allows migrations in the event of future
validation failures. Thus, the overall optimization problem can
be represented as,

Maximize
ot+1
n,k,m

S(Ot+1)

subject to
K∑
k=1

M∑
m=1

ot+1
n,k,m = 1, n ∈ N ,

N∑
n=1

ot+1
n,k,m ·

En
min(Tn, D∗n)

≤ 1

, k ∈ K,m ∈M

(9)

The first constraint in Eq. (9) indicates that application is
only assigned to one edge-cloud node and running on one
computing core. The second constraint guarantees the success
of local job scheduling.

C. Heuristic Algorithm
Inspired by Multiple Knapsack Problem (MKP) [25], a NP-

hard combinatorial optimization problem, we consider edge-
cloud nodes as K knapsacks that have the same capacity
(measured by M compute cores) and treat tasks as a set of
N items. Each item has a weight w (task density). The value
(score function) defines the benefits of service migration where
the highest positive score indicates the best migration solution.
Compared to traditional MKP, we have strict constraints and
the way we calculate the weight and the score of each
combination change dynamically. In addition, in this work
we consider a time series for spectrum fluctuations where
repeated search for best solution is necessary. Thus, to reduce
the computation complexity and decision response in disaster
scenarios, we introduce a lightweight heuristic approach to
generate high quality solutions for the proposed optimization
problem.

In Eq. 6, the transmission cost is strongly correlated with
job data size and the allocated fair bandwidth. Inspired by this
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Algorithm 1: Pseudocode for LBLJ-FF
Input: sorted edge nodes K, sorted user tasks N
Output: Ot+1

1 total load← sum(N.job size)
2 total bandwidth← sum(K.bandwidth)
3 for each k ∈ K do
4 k.workload← total load · k.bandwidth

total bandwidth

5 unassigned← N
6 equal load← True
7 while unassigned 6= empty do
8 saturate← True
9 for each k ∈ K do

10 for each n ∈ unassigned do
11 add n to k′s service list
12 m← EDF-FF(n, k)
13 if m ≥ 0 and (k.workload ≥ n.job size or

not equal load) then
14 ot+1

n,k,m ← 1
15 remove n from unassigned
16 k.workload← k.workload− n.job size
17 saturate← False
18 if not equal load then
19 break
20 else
21 ot+1

n,k,m ← 0
22 remove n from k′s service list

23 if not equal load and saturate then
24 break
25 else
26 equal load← False

27 compute score of Ot+1 based on Eq. (8)
28 if score > 0 or Ot not valid then
29 return Ot+1

30 return Ot

observation, we propose the hypothesis that equal-load task
assignment based on job size provides an overall transmission
cost that is close to optimal assignment if the jobs with large
data size are assigned to edge-cloud nodes that have large
available bandwidth. Based on this, we choose well-known
Earliest Deadline First-First Fit (EDF-FF) algorithm [20] for
job scheduling and propose a lightweight Largest Bandwidth
Largest Job-First Fit (LBLJ-FF) Algorithm 1 for global as-
signment and migration. We introduce the concept of equal-
load when each edge-cloud node gets the amount of workload
proportional to their bandwidth as long as their local job
scheduling do not fail. In this algorithm, edge-cloud nodes
and tasks are sorted in non-increasing order by bandwidth
and job size, respectively. The higher positions in the list will
be considered and paired first. The algorithm performs equal-
load assignment that follows an equal-load strategy where each
edge-cloud node are assigned tasks from the sorted list until
it reaches its maximum workload or its local job scheduling
fails. The algorithm also performs constraint assignment that
removes the equal-load limitation, but only allows edge-cloud
nodes to select one unassigned task for each iteration until
all local job schedules are saturated (i.e., density = 1). The
remaining unassigned tasks are forced to wait for the next
assignment turn.

VI. RESULTS

In this section, we evaluate the performance of the proposed
migration scheme through a realistic simulation environment.
We design disaster response applications generated at end-
devices that are assigned unlicensed wireless channels for
data transfer to edge-cloud nodes. The behavior of spectrum
fluctuations induced by licensed transmission is modeled
from RWTH Mobnets [7] dataset. To measure the maximum
bandwidth for unlicensed usage by the applications, we use
ON-OFF licensed occupancy model [24]. This model allows
us to convert raw power spectral density (psd) values of
licensed transmission on a channel into availability scalar (0
for available or 1 for busy) for unlicensed access by comparing
the psd values against a predefined decision threshold δ. The
simulation parameters are described in Table I.

TABLE I: Simulation Parameters

Name Value

spectrum span 20MHz – 1500 MHz
power spectral density threshold δ -107 dbm/200Khz

max bandwidth B 40 – 60 MHz
bandwidth of sub-channel b 200 KHz

SNR 0.68
prediction window ∆T 30 s

result time step 300 s
test duration 3000 s
job size Wn 3 – 6 MB

job execution En 500 – 1000 ms
job interval Tn 3 – 8 s

job deadline Dn 3 – 8 s
number of edge-cloud nodes K 10

migration overhead / per task rf 100 – 2000 ms
number of cores per edge-cloud node M 2

number of applications N 30 – 120
number of runs 50

A. Trade-off Analysis
To study the trade-off between migration overhead and

transmission cost and evaluate optimal α, we define migration-
to-transmission ratio r = rf/tf where rf is the migration cost
per task and tf is the estimated average transmission cost per
job. We identify optimal α by characterizing these two metrics
against α for different values of r. For a constant r, an α value
is optimal if for any α greater than the optimal value, there
is a sudden or significant increase in the growth of migration
overhead and at the same point the transmission cost per job
starts to slowly improved.

Fig. 6 shows the ideal α for different balance factor r.
One of the two special cases, α = 0 indicates that after the
first assignment, no service migration will be triggered until
future validation fails. This leads to high transmission cost and
increases job failure probability. Whereas, for the case with
α = 1, greedy task migration will try to minimize transmission
cost, however frequent migration will cause the overhead to
explode. Fig. 6 shows the existence of optimal α somewhere
in between these two extreme cases which is a function of
migration-to-transmission ratio r.

B. Job Completion Rate
To fairly evaluate how global assignments impact job exe-

cution, we define application workload = N
K and observe the
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Fig. 6: Migration overhead and average transmission cost per job characteristics against α for different r values showing existence of optimal α in each
case

changes in job completion rates for different workloads. The
job completion rate is calculated as the ratio of number of jobs
processed and number of jobs released for all tasks.

Fig. 7: Time steps of job completion rate for r = 0.75 and workload= 8

Fig. 8: Migration overhead characteristics against α under different policies
for r = 0.75 and workload= 8

Fig. 7 and 8 show the time steps of job completion rate and
migration overhead characteristics against α under different
policies, both for r = 0.75 and workload= 8. Being consistent
with Fig. 6, the results show that the closer α is to 0, lower
is the migration frequency and higher is the failure rate.
We presents two types of migration costs; the first type of
migration is triggered by new assignments with score > 0 and
the second type is forced migration caused by future validation
failures. This figure confirms the optimal α to be 0.6 (with
r = 0.75) as it achieves a higher completion rate that is close
to greedy task migration policy and a relatively low migration
overhead.

Application task execution for disaster incident response
has very strict completion rate requirement, and failure to
complete even a single job can lead to serious consequences.
Therefore, our approach is designed to achieve near 100%
completion rates for tasks that are assigned to edge-cloud
nodes. Fig. 9 shows how that is achieved by dynamic task
profile and validation of job scheduling. Compared to static
task profiles, dynamic task profiles can avoid certain amount
of unnecessary migrations and keep 100% completion rate by
providing accurate task density as shown in the figure. This
proves the accuracy of our model and verifies the correctness
of the formulation where we used updated task density as an
input to the LBLJ-FF algorithm.

Fig. 9: (A) Time steps of job completion rate of all tasks that are assigned
for different task profiles, (B) Migration overhead characteristics of all tasks
that are assigned for different task profiles

C. Performance Comparison
Next, we compare the performance of our proposed LBLJ-

FF algorithm against other heuristics based approaches, such
as genetic algorithm (GA) and random global assignment
(RND) strategy. GA approach uses Eq. (8) as its fitness func-
tion and also applies our migration strategy. Whereas, RND
approach only enables local job scheduling and randomly
selects global assignments when future validation fails.

As RND is not subjected to any constraints, the success of
local job scheduling cannot be guaranteed which can result
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Fig. 10: Job completion rate comparison against different workloads

in very low job completion rate when workload increases.
Compared to RND, the proposed LBLJ-FF scheme provides
intelligence to task migration and is superior to RND strategy
in all cases as shown in Fig. 10. At a workload = 8, the
improvement rate is the maximum at 25%. At the same
time, Fig. 11 shows that the RND strategy has a significantly
high transmission cost caused by uncertainty of spectrum
fluctuations that leads to many unnecessary migrations. While
by setting α to 0.6, LBLJ-FF and GA strategies generate very
little migration overhead while achieving transmission cost
that is close to the best case scenario (i.e., with α = 1).
Our lightweight LBLJ-FF algorithm makes it easier to achieve
the same overall performance compared to GA that requires
extensive computations for its mutation, crossover and fitness
functions, thus proving to be a better choice for disaster
incidence response edge-cloud system.

Fig. 11: (A) Average data transmission cost per job under different policies,
(B) Migration overhead characteristics against α under different policies

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we explored how migrations can help disaster
response edge-cloud systems to be resilient against spectrum
fluctuations. We showed how our proposed scheme with global
assignment and local scheduling techniques tried to strike a
balance between too frequent and too infrequent migrations
guided by optimizations. Simulation results showed that our
scheme can significantly improve overall job completion rate,
yet strike a balance between transmission cost and migration
overhead, creating a highly adaptive resource provisioning
method.

The ideas and results presented in this paper are elements
towards proposing a wider paradigm shift about how edge-
cloud resources should be managed in disaster incidence
response scenarios. We will build upon the ideas proposed
in this paper to develop broader URB services that will
implement robust resource orchestration policy algorithms that
can optimize system utility within a finite time horizon under

a fluctuating environment unlike traditional long-term cloud
system performance with steady-state analysis. The outcomes
of our proposed research will benefit: disaster management
efforts by the first responders; incident response management
planning and policy makers; cloud, cyber-infrastructure, net-
work management, and future Internet research communities.
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