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ABSTRACT
In energy-aware mobile edge computing systems, offloading real-
time application tasks to remote edge nodes may become counter-
productive as frequent fluctuations in wireless channels that are
used for task offloading cause overall task execution time to increase.
In this paper, we propose an adaptive task offloading algorithm
to optimize and balance energy consumption at end-devices and
overall task execution time.

CCS CONCEPTS
•Networks→Cloud computing;Networkmanagement; •Human-
centered computing→Mobile computing; •Hardware→Wire-
less devices.
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1 INTRODUCTION
With real-time mobile applications becoming increasingly compute-
intensive for many mission-critical use cases, the energy capacity
of embedded mobile end-devices are proving to be insufficient to
handle all in-device computation. Mobile edge computing (MEC) [1,
2] allows mobile devices to offload some or all of such real-time
and compute-intensive tasks to edge nodes. The advantage of MEC
is that it brings cloud-scale compute resources closer to the mobile
devices. Thus ideally, in order to preserve the limited energy of
mobile devices, all computing tasks should be offloaded to edge
nodes.

In many mission-critical use-cases [3], such offloading often
uses wireless channels/spectrum for data transfer between mobile
devices and edge nodes. However, inherent fluctuations of wireless
channel quality caused by phenomenons such as, interference, path
loss, shadowing, and fading result in varying data rate. This in turn
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Figure 1: Task partitioning and offloading model

adds to the data offloading latency that eventually increases the
overall task execution time of mission-critical real-time applications.
Thus in energy-aware task offloading MEC, task execution time
costs may outweigh the energy preservation benefits of remote
computation, which is inconsistent with the motivation to offload
tasks.

In this paper, we study the trade-off between task execution time
and energy consumption at end-users under varying wireless chan-
nel conditions for soft real-time applications and involved tasks.
We aim to find the optimal job partition between local (at mobile
end-devices) verses remote edge nodes (as shown in Fig. 1) and op-
timal task assignment in terms of edge node selection that balances
energy consumption and task execution time. We propose a Genetic
Algorithm (GA) with constrained mutation for optimal job parti-
tioning. We design a two-sided matching game for task assignment
optimization and propose an Edge-Proposing Deferred Acceptance
(EPDA) algorithm to solve the preference based matching game.
Using simulation, we show how the GA and EPDA optimize and
balance energy consumption and task execution time.

2 SYSTEM MODEL AND PROBLEM
FORMULATION

2.1 Application Model
In our application model, a mobile application is represented as task
τn with a Sporadic Directed Acyclic Graph (DAG) [4]Gn = (Vn ,En ).
Vertices set Vn denotesMn sequential jobs executing task τn . Each
DAG-job vmn = (αmn ,ωmn , βmn ) ∈ Vn has: i) computation require-
ment denoted byωm,n (i.e., the number of CPU cycles) and ii) input
and output data denoted by αmn and βmn (i.e., in bits) respectively.
As shown in Fig. 1, each DAG is partitioned into two groups (local-
only and remote-only) to achieve specific cost optimization. Edges
describe the inter-job communication between jobsm andm + 1
with βmn = αm+1n . The minimum release period and deadline for
task n are denoted by Tn and Dn respectively.
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2.2 Transmission Model
For our application data transmission (from end-devices to edge
nodes) model, we assume that every edge node has an Orthogonal
Frequency Division Multiple Access (OFDMA) wireless channel
of fixed bandwidth Bk that can be equally divided into multiple
orthogonal sub-channels and the node can allocate each such sub-
channel to a data transmission from end-devies to that node [5, 6].
Given a fixed bandwidth Bk , the data rate is computed as rup (n,k) =
φkBk log2(1 + pnh2n,k/φkN0) where φk = 1/

∑N
n=1 on,k is the fair

bandwidth allocation coefficient, pn is the device transmission
power, hn,k is the channel gain, and N0 is the white Gaussian
noise. Although Bk is fixed, the value of rup (n,k) may vary based
on channel and environment characteristics, such as, interference,
path loss, shadowing, and fading. Thus, the data offloading/trans-
mission time of each task tn (m∗n ) = βm

∗

n /rup (n,k) and the energy
consumption at mobile device in doing so εd (m∗n ) = tn (m

∗
n )pn can

also fluctuate making the task offloading counter-productive.

2.3 Computation Model
In our model, we define K = {1, 2, ...,K} and N = {1, 2, ...,N } as
the sets of edge nodes and end-devices (tasks) respectively. Every
edge node and end-device have processing speeds denoted by f

edдe
k

and f localn respectively (i.e., in CPU cycles). We apply the compu-
tation model where the job scheduling follows well-known Earliest
Deadline First (EDF) algorithm [7, 8]. For EDF, the task density must
be no greater than 1 to ensure successful execution of all subsequent
jobs. The task densities at mobile device and edge node are denoted
as λlocaln and λedдek =

∑N
n=1 on,kλ

r emote
n respectively. Here on,k ∈

{0, 1} is the binary variable for the assignment of taskn to edge node
k where on,k = 1 denotes successful assignment and on,k = 0 other-
wise. We denote the functionw(x) =

∑x
m=1 ω

m
n as the accumulated

computation from first to job x . The task density and accumulated
computation follows the relation λ = w(·)/(f ×min(T ,D)). The
overall computation time and energy consumption thus can be
expressed as cn (m∗n ) = w(m∗n )/f

local
n + (w(Mn ) −w(m

∗
n ))/f

edдe
k

and εc (m∗n ) = κ ×w(m∗n ) × (f localn )2 where κ is a constant related
to the chip architecture [5, 6].

2.4 Problem Formulation
For this paper, the two problems that we aim to solve in terms
of cost optimization are: 1 DAG-jobs partition and 2 Task as-
signment. For DAG-jobs partition, each task has a decision tuple
< m∗n ,On > where m∗n denotes the DAG-job partition (i.e., of-
floadingw(Mn ) −w(m

∗
n ) amount of computations to the edge) and

On = {on,k } is the binary vector for task assignment that follows
the constraint

∑K
k=1 on,k = 1 (each task is assigned to only one edge

node). In this paper, we assume that the first job is lightweight and
is always executed locally (i.e., simple I/O pre-possessing). Whereas,
the motivation of task offloading is to reduce the overall energy
consumption that can be expressed as ε(m∗n ) = εd (m

∗
n ) + εc (m

∗
n )

and to satisfy (i.e., reduce) the execution time constraint denoted
by Ln (m

∗
n ) = tn (m

∗
n ) + cn (m

∗
n ). We define the satisfaction of task

offloading for individual task as,

ζn,k = (1 − γ )(1 −
Ln (m

∗
n )

Dn
)︸                    ︷︷                    ︸

time reduction

+ γ (1 −
ε(m∗n )

εc (Mn )
)︸            ︷︷            ︸

energy reduction

(1)

and we aim to maximize the overall satisfaction of all tasks under
limited network resources (i.e., bandwidth and computation). There-
fore, our joint DAG-jobs partition and task assignment optimization
problem can be stated as:

Maximize
m∗n ,on,K

N∑
n=1

K∑
k=1

on,k ζn,k

subject to
K∑
k=1

on,k = 1, n ∈ N

λlocaln ≤ 1, n ∈ N

λedдek ≤ 1, k ∈ K
on,k ∈ {0, 1}, n ∈ N, k ∈ K

1 ≤ m∗n ≤ Mn, n ∈ N

(2)

where 0 ≤ γ ≤ 1 characterizes the trade-off between energy con-
sumption and execution time (i.e., γn = 1 denoting energy-driven
task offloading policy).

3 BASELINE APPROACH
Here we introduce a heuristic approach to solve the proposed opti-
mization problem. To reduce the problem size, we define χn as the
set of feasible candidates that satisfies the following two constraints:
βmn ≤ β1n and λlocaln ≤ 1 (m ∈ χn ). These constrains signify that
if β1n is the smallest data size of inter-job communication, then
χn = {1}. The partition is solved by a Genetic Algorithm (GA)
with constrained mutation range of partition candidates {χn }N .
We apply a two-sided matching game (many-to-one) to perform
task-to-edge matching. In the matching game, every edge node k
has a certain capacity ck and a strict preference ≻k over N . Also,
every task n has strict preference ≻n over K . We propose an Edge-
Proposing Deferred Acceptance (EPDA) algorithm (Algo. 1) to solve
the preference based matching game.

3.1 Adaptive Offloading Preference
For EPDA algorithm, we use an adaptive preference function for
task offloading decision. The preference ≻n over K follows the
order of satisfaction of task offloading ζn,k . The preference ≻k
over N is simply based on wireless channel quality ζk,n = hn,k .
Both preference lists are established in a non-decreasing order
of ζn,k or ζk,n . Based on this, our EPDA algorithm chooses s =∑N
n=1

∑K
k=1 µ(n,k)ζn,k as the fitness functionwherematching µ(n,k)

equals on,k .

3.2 Load Balancing
On the other hand, the optimization problem solution should avoid
any network traffic and computational congestion that could have
a significant negative impact to the overall performance. In order
to achieve this, EPDA sets the capacity ck = λ

edдe
k and follows the

concept of equal load measured by task density, i.e., each edge node
gets a workload proportional to its capacity (e.g., bandwidth and
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CPU cycle(s)). In EPDA, if assigning a task to an edge node k does
not result in a λedдek ≥ 1, the task is considered acceptable for that
node.

Algorithm 1: Edge-Proposing Deferred Acceptance
1 Initialize temporary matching µ to be empty
2 Initialize the setU = {k} ∀ λ

edдe
k < 1, k ∈ K

3 Calculate ζn,k ,ζk,n and build preference lists ≻n and ≻k ,
n ∈ N and k ∈ K

4 while there exists k ∈ U that still has acceptable tasks to
propose do

5 k proposes to its favorite acceptable tasks among those it
has yet to propose to.

6 µ(n) ←Match/re-match task n’s most favorite edge node
among the ones which proposed to it.

7 Modify preference lists ≻n based on updated ζn,k caused
by matched pairs (i.e. φk ), n ∈ N .

8 Calculate fitness score s for µ and feed to GA.
9 return score s

4 PRELIMINARY RESULTS
Weevaluate the performance of the proposed task offloading scheme
using a simple yet realistic simulation. The system and network
parameters are shown in Table 1 and are modeled based on [6].
The results in Fig. 2 show the efficiency of task offloading against
different schemes. Compared to schemes like 1-RND (random as-
signment) and 1-EPDA which offload the entire DAG-jobs to edge
nodes (i.e.,m∗n = 1), our scheme GA-EPDA selects a combination
of DAG-jobs partition and task assignment based on highest fitness
scores and achieves higher performance. In addition, GA-EPDA can
characterize the trade-off between energy consumption and execu-
tion time as shown in load-unbalanced results (Fig. 2 (B) and (C)).
It also shows that γ should be set close to zero (denoting execution
time-driven policy) when there exist failed tasks.

Table 1: Simulation Parameters

Name Value Name Value

K 10 N 20 – 40

f localn 0.5 – 1.5 GHz κ 10−28 J/cycle

f
edдe
k 10 – 20 GHz Bk 50 – 100 MHz

Mn 3 – 6 stages α , β 50 – 1000 KB

ω 5 – 250 cycles/bit Tn ,Dn 300 – 1000 ms
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