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Abstract—High Performance Computing (HPC) environments
supporting data-intensive applications need multi-domain net-
work performance measurements from open frameworks such as
perfSONAR. Detected network-wide correlated anomaly events
that impact data throughput performance need to be quickly and
accurately notified along with a root-cause analysis for remedia-
tion. In this paper, we present a novel network anomaly events
detection and diagnosis scheme for network-wide visibility that
improves accuracy of root-cause analysis. We address analysis
limitations in cases where there is absence of complete network
topology information, and when measurement probes are mis-
calibrated leading to erroneous diagnosis. Our proposed scheme
fuses perfSONAR time-series path measurements data from
multiple domains using Principal Component Analysis (PCA) to
transform data for accurate correlated and uncorrelated anomaly
events detection. We quantify the certainty of such detection
using a measurement data sanity checking that involves: (a)
measurement data reputation analysis to qualify the measure-
ment samples, and (b) filter framework to prune potentially
misleading samples. Lastly, using actual perfSONAR one-way
delay measurement traces, we show our proposed scheme’s
effectiveness in diagnosing the root-cause of critical network
performance anomaly events.

Keywords-Multi-domain Network Performance Monitoring,
Anomaly Event Detection, Root-cause Diagnosis Certainty

I. INTRODUCTION

Distributed computing applications are increasingly being
developed in scientific communities in areas such as biology,
geography and high-energy physics. These communities trans-
fer data on a regular basis between computing and collaborator
sites at high-speeds on multi-domain networks that span across
continents. To ensure high data throughputs through effective
network monitoring, there is a rapidly increasing trend to
deploy multi-domain, open measurement frameworks such
as perfSONAR [1]. The perfSONAR framework has been
developed over the span of several years by worldwide-teams
and has over 1400 measurement points all over the world.

However, providing scientists and network operators with
a network-wide performance visibility based on the perf-
SONAR measurement archives within data-intensive science
collaborations such as [2] poses several challenges [3–5].
It requires automated techniques to query, analyze, detect
and diagnose prominent network performance anomaly events
that hinder data transfer performance. The general lack of
network topology information accompanying the multi-domain
measurements data compounds the challenges in root-cause
diagnosis of performance bottlenecks. More specifically, it is
non-trivial to identify and locate network-wide anomaly events
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Fig. 1: perfSONAR dashboard with throughput measurement
notifications for ESnet to European sites

that impact data throughput performance without publicly
accessible topology services for measurement points [6, 7].
The identification and location diagnosis of anomaly events
is particularly challenging in cases with measurement data
spanning multiple network paths.

Fig. 1 for example shows a typical perfSONAR dashboard
with color-coded periodic throughput (‘Reds’ are ≤ 100
Mbps, ‘Yellows’ are < 500 Mbps, and ‘Greens’ are ≥ 500
Mbps) measurement status event notifications for different
paths, specifically between ESnet and several European sites.
Although the dashboard serves the purpose of interesting
events notification, pertinent issues essential to ascertain the
significance of such events remain unanswered, such as: Do
the events in Sets II and III correspond to a common network
anomaly event? If yes, then what are the root-causes of such
anomaly events? Do events in Set III belonging to the same
destination signify anomaly correlation? Do events in Set II
belonging to the same source signify anomaly correlation?

Answering such critical questions for effective troubleshoot-
ing becomes even more challenging as the publicly acces-
sible measurement samples collected from perfSONAR de-
ployments often have measurement mis-calibration or issues
such as invalid measurement data. Examples of issues include
negative one-way delay values due to faulty clock synchro-
nization between measurement servers. Such issues result in
erroneous features [8], or too dense/sparse or irregular (i.e.,
long data collection gaps) measurement sampling frequency
leading to missed anomaly events and exponential anomaly
detection time [9]. Such measurement mis-calibration eventu-
ally manifests in triggering of erroneous detections and useless
diagnosis/notifications.

In this paper, we present a novel scheme that can fuse
time-series of perfSONAR path measurements from multiple
domains with common intermediate hops for: (a) correlated
anomaly event detection, and (b) a simultaneous sampling
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trend analysis for accurate and timely notifications. The
anomaly event detection involves fusion of multiple time-
series to transform perfSONAR measurements onto new axes
through PCA [10] (i.e., principal component analysis), which
obviates the need of complete network topology information.
This transformation extracts common features upon which our
earlier adaptive plateau event detection (APD) scheme [9]
is applied to detect uncorrelated anomaly events (change-
points from statistical norm) at a network-wide level. These
detected network anomalies are then compared against the Q-
statistic threshold to isolate the correlated anomaly events.
This approach leverages the fact that the PCA technique is
best suited to be configured by network operators as a “black-
box” [11, 12] for correlation analysis.

To address the problem of misleading data use within the
anomaly detection analysis, we perform measurement data
sanity checking using an adaptive measurement data Repu-
tation Analysis coupled with a novel Filter Framework. The
Reputation Analysis scheme assigns reputation scores to mea-
surement paths based on domain-specific historical sampling
trends involving factors such as: validity of the measured
data [8], and sampling periodicity [9], that may potentially
cause measurement mis-calibration. The multi-path reputation
scores are then translated into “certainty” of detection quan-
tification which provides a network-wide meta-perspective for
the network operators in a multi-domain environment. The
Filter Framework is used subsequently to apply temporal and
spatial filters to the multi-path measurements for root-cause
identification of uncorrelated anomalies, as well as for pruning
the misleading measurement features in case of “low certainty
of detection” of anomaly events.

Using synthetic data mimicking actual perfSONAR traces,
we compare our scheme with similar anomaly detection
schemes demonstrating the scheme’s effectiveness with high
detection accuracy and low false positive rate. We also imple-
ment the proposed data sanity checking scheme in our Narada
Metrics framework [13] that features several perfSONAR ex-
tensions, and is being used in actual multi-domain enterprises.
We use the Narada Metrics framework to collect both short-
term (one day) and long-term (one month) perfSONAR one-
way delay measurement datasets from United States Depart-
ment of Energy (DOE) lab sites (e.g., FNAL, ORNL) and
perform multiple case studies for performance evaluation of
the proposed scheme. Using these case studies, we demon-
strate that our scheme can fuse multi-domain measurement
data in order to: (a) effectively ascertain correlation among
anomaly events, (b) leverage a source-side vantage point to
diagnose whether an anomaly event location is local or in
an external domain, (c) pin-point potential root-cause loca-
tions for both correlated and uncorrelated anomalies without
complete network topology information, and (d) intelligently
prune potentially misleading features in the measurement data
to increase the certainty of detection.

The remainder paper organization is as follows: Section II
describes the related work. Section III presents background on
plateau detection and the PCA technique. Section IV presents
our PCA-APD-Q-statistic scheme. Section V discusses the
certainty quantification of anomaly events. In Section VI, we
evaluate the accuracy of our proposed scheme and perform
case studies to isolate bottleneck anomaly event locations with
actual measurement traces. Section VII concludes the paper.

II. RELATED WORK

A. Network Anomaly Event Detection Techniques/Tools
To assist network operators in troubleshooting bottle-

necks (e.g., prolonged congestion events or device mis-
configurations) in multi-domain high-speed networks, a num-
ber of smart and effective network monitoring tools based on
statistical measurement data analysis techniques, such as [14–
21] have been developed. Particularly, in [14], the authors
provide a user-level Internet diagnosis tool which is used
for diagnosing network performance problems. A passive
network monitoring system is described in [15] that monitors
traffic between PlanetLab sites to detect anomalous behav-
ior. Further, in [16], the authors propose Information Plane
(iPlane), designed as a service to obtain information about
Internet conditions. Authors in [17] present Crowdsourcing
Event Monitoring (CEM) approach to detect, isolate and
report service-level network events. Many of these analysis
techniques/tools however lack automation provided by our
work, and are not useful in perfSONAR measurement data
context to ascertain anomaly event correlation for network-
wide performance visibility and effective troubleshooting.

B. Topology-dependent Correlated Anomaly Detection
Alternately, there have been works such as [3, 6, 7, 12, 22–

25] that use network topology information for correlated
anomaly event detection to localize bottlenecks. Authors
in [12] use Kalman-filter for anomaly detection and build a
traffic matrix of an enterprise network to overcome link basis
limitations. A root-cause analysis and anomaly localization
tool called Pythia is proposed in [3] that uses perfSONAR
measurements. In [25], a Service-quality Characterization of
Internet-path (SCI) scheme is proposed that relies on delay and
loss measurements collected from vantage points at two ends
of a path. Similarly in [26], use of QoS parameters collected
from vantage points at two ends of network paths for detect-
ing network anomaly events is proposed. Our work closely
relates to NICE (Network-wide Information Correlation and
Exploration) framework proposed in [6] for analyzing anomaly
events through data correlations. In our recent work [7], we
used topology-aware anomaly detection for location diagnosis
of correlated anomaly events. Most of these prior works have
a strict requirement for complete topology information, which
is a well known open research problem as discussed in [27].
Whereas, in this work, we propose a partially topology-
agnostic network-wide anomaly event detection and diagnosis
scheme for perfSONAR deployments. Our work’s novelty is
that we address anomaly event cases lacking publicly available
topology information accompanying measurement data sets to
isolate bottleneck root-cause location.

C. PCA-based Correlated Anomaly Detection
PCA based measurement data projection schemes, such

as [11, 28–30] have recently been proposed by researchers
to detect and diagnose anomalies in the absence of network
topology information. Authors in [11] use PCA technique on
passive measurements for network anomaly detection on a
network link basis. A PCA subspace projection methodology
is proposed in [29] where the authors apply PCA on data that
have already undergone random projection to detect anomaly
events. In our earlier work [30], we used PCA to isolate and di-
agnose the locations of the correlated anomalies in the network
in the absence of complete network topology information. Our
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Fig. 2: Plateau-detector thresholds illustration

work builds upon these earlier works, and extends them in
context of measurement data reputation analysis and filtering
to address cases where misleading data in the measurement
samples collected from perfSONAR archives impact anomaly
detection accuracy.

D. Measurement Data Sanity Checking
Guidelines for measurement best practices and the perils of

using potentially misleading data were first outlined in [8].
Our work on using sanitized measurement data for anomaly
detection is closest to the work by authors in [31], where an
anomaly detection system is developed based on prediction of
upper and lower dynamic thresholds of various time-varying
data trends. Reputation-based trust schemes have long been
used by the scientific community for decision making in
shared environments. Feedback-based reputation management
schemes have been proposed for large open environments in
e-commerce [33], peer to peer (P2P) computing [34], and
wireless systems [35]. Our work is the first in effectively using
reputation-based sanitized measurement data gathering, and
lays the foundation for addressing the reputation management
of measurement points or domains.

III. BACKGROUND

In this section, we first define anomaly events that are
of interest to network operators, and give an overview of
adaptive plateau event detection (APD) that we rely in this
paper for automatic anomaly event notifications. Following
this, we formally introduce the PCA technique which we will
leverage along with APD and Q-statistic in order to establish
correlation between such network-wide anomaly events.

A. Anomaly Events
One of the significant challenges in dealing with perf-

SONAR measurement datasets is to decide which kind of
network events (i.e., ‘Reds’ in Fig. 1) need to be labeled
and notified as anomaly events that may affect data-intensive
application performance bottlenecks. Various traffic related
anomaly events are caused due to IP route/AS path change
events that involve traffic re-routing on backup paths due to
ISP traffic migration for maintenance reasons. These events
manifest in the form of spikes, dips, bursts, persistent vari-
ations and plateau trends in network performance metrics
such as round-trip delay, available bandwidth and packet loss
obtained through end-to-end active measurements. Based on
documented experiences from network operators and data
intensive science application users [4] and based on our own

discussions with other HPC network operators (e.g., ESnet,
Internet2, GEANT), the notification of ‘plateau anomalies’
shown in Fig. 2 are the most worthy to be notified. These
anomaly events are commonly known to impact data transfer
speeds at the application-level on high-speed network paths.

B. Adaptive Plateau Detector

Network operators, when analyzing a measurement time-
series of network performance metrics, typically look for
plateau event trends through visual inspections and seek for
automated notification of such network-wide detected anomaly
events. Variants of plateau anomaly event detectors have been
developed and adopted in large scale monitoring infrastruc-
tures such as NLANR AMP [36] and SLAC IEPM-BW [4],
which are predecessors to the perfSONAR deployments. These
detectors use static configurations of ‘sensitivity’ and ‘trigger
elevation threshold’ parameters to detect that a plateau event
or a ‘change event’ has occurred.

A plateau event is detected if the most recent measurement
sample value crosses the upper or lower thresholds of the
summary (i.e., TSU , TSL) and quarantine (i.e., TQU , TQL)
buffers as determined by the settings of sensitivity and trigger
elevation parameters. The summary buffer is used to maintain
sample history that indicates the normal state (before anomaly
event occurs), and a quarantine buffer is used to store outlier
data samples that are twice the normal state sample values. The
sample counts in above buffers are used to maintain trigger
count values over a pre-configured trigger duration before an
alarm of anomaly event occurrence (indicated by the cross
mark in Fig. 2) is notified. The trigger duration before samples
are marked for impending anomaly states (triangle symbols
shown in Fig. 2) should be chosen long enough to avoid
false alarms due to noise events corresponding to intermittent
spikes, dips, or bursts.

Our earlier adaptive plateau-detector (APD) algorithm [9]
scheme avoids manual calibration of ‘sensitivity’ and ‘trigger
elevation threshold’ parameters and has been shown to be more
accurate than earlier static plateau detection schemes [36] [4]
over diverse profiles of measurement samples on network
paths. Given that we rely on APD in this paper for detecting
anomaly events in the measurements, we will illustrate the
advantages of using APD later in Section VI-A. Specifi-
cally, we show how APD outperforms plateau detectors using
static thresholds (SPD) in detecting uncorrelated anomalies of
smaller magnitudes with much fewer false alarms.

C. Principal Component Analysis and Q-statistic

Root-cause analysis of detected anomaly events at a
network-wide level in the absence of complete network topol-
ogy information is non-trivial as explained in Section I. Es-
tablishing correlation between anomaly events is important to
not only diagnose the detected anomaly event location, but also
to determine whether resolving cause of one event can auto-
resolve multiple other related events in the troubleshooting
process.

We use PCA technique along with a Q-statistic [10, 37] test
on perfSONAR multi-path time series data in order to isolate
correlated anomaly events. The reason to use PCA is because it
is a dimensionality-reduction approach that involves mapping
a set of data points within time-series onto new coordinates.
The new coordinates are called the principal axes or principal
components that help to extract common features in the data
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points of multiple time-series, and thus visually separate the
normal behavior from anomalous behavior.

Let Y be the n×m time-series measurement matrix, which
denotes the time-series of all links and centered to have zero
mean, with n being the number of rows and m being the
number of columns. Thus, each column denotes the time-series
of the i-th link and each row j represents an instance of all
the links. Applying PCA to Y yields a set of m principal
components, {vi}mi=1, where the first principal vector v1 is
given as:

v1 = arg max
‖v‖=1

‖Yv‖ (1)

Where ‖Yv‖ is proportional to the variance of the data
measured along v. Proceeding iteratively, the k-th principal
component vk is given as:

vk = arg max
‖v‖=1

‖(Y −
k−1∑
i=1

Yviv
T
i )v‖ (2)

The first principal component v1 captures the maximum
variance. The next principal component captures the maximum
variance among the remaining orthogonal directions. After
choosing the principal components or axes, the dataset can
be projected onto the new axes. The subspace method that we
use separates principal components into normal and abnormal
principal components. The normal principal components reside
in the normal subspace Sno whereas the abnormal principal
components reside in the abnormal subspace Sab. In the
pioneering PCA work [11], the authors observed that the
normal measurements, i.e., lower k components reside in Sno,
and the abnormal measurements i.e., (n−k) components reside
in Sab. From our analysis of large number of perfSONAR
measurement traces, we found that the correlated anomaly
events always reside in the lower k components or Sno,
subspace and uncorrelated anomaly events always reside in
the (n − k) components or Sab subspace. This finding of
ours is consistent with the findings in [11] in terms of
establishing correlation among measurement traces. Hence,
the observation from our experiments is guiding our decision
to use the subspace method to effectively separate correlated
and uncorrelated anomaly events by selecting the lower k
components.

Now let y = y(t) denote a n-dimensional vector of mea-
surements (for all links) from a single time step t. Detection
of anomalies relies on the decomposition of link measurements
y = y(t) at any step into normal and abnormal components,
y = yno + yab, the yno corresponds to modeled normal mea-
surements (the projections of y onto Sno), and the yab
corresponds to residual measurements (the projections of y
onto Sab), and can be computed as:

yno = PPTy = Cnoy

yab = (I−PPT )y = Caby (3)
where P = [v1,v2,v3, ...,vk] is formed by the first k
principal components which capture the dominant variance in
data. The matrix Cno = PPT represents the linear operator
that performs projection onto normal subspace Sno, and the
Cab represents the projection onto the abnormal subspace Sab.

As described in [11], a volume anomaly event typically
results in a large change to yab; thus, a useful metric for
detecting abnormal measurements pattern is squared prediction
error (SPE):

SPE ≡ ‖yab‖2 = ‖Caby‖2 (4)

We consider network measurements to be normal if SPE ≤
δ2, where δ2 denotes the threshold for the SPE at the 1 − α
confidence level. Such a statistic test for the SPE residual
function is known as Q-statistic, which was developed in [10]
to deal with residuals related to principal component analysis.
We use the Q-statistic to analyze the significance of the
differences among the data sets by capturing the correlated
anomalies in the first k principal components that reside in
the normal measurements subspace Sno.

IV. ANOMALY EVENT DETECTION

In this section, we present our proposed PCA-APD-Q-
statistic based network anomaly event detection and diagnosis.

A. Scheme Overview
In Fig. 3, we show the components and steps in-

volved in our proposed network-wide anomaly event de-
tection and certainty diagnosis scheme. The steps be-
gin with data collection through querying of distributed
measurement archives (accessible at an address e.g.,
curl http://fnal-owamp.es.net:8085/esmond/perfsonar/archive)
by using perfSONAR-compliant web service clients. The site
list of measurement archives (MAs) that are available for query
can be selected using a global lookup service hosted by the
perfSONAR community. This service registers the addresses of
all openly-accessible measurement archives within individual
domains. Upon data collection, the multi-path time-series data
is fed simultaneously to Anomaly Event Detection and Data
Sanity Checking components.

The Data Sanity Checking component performs reputation
analysis over the collected samples. In case of a correlated
anomaly event detection, the root-cause location isolation is
easier, and the reputation of the entire measurement data set
influences the overall certainty of the detection. However,
uncorrelated anomaly events are rather difficult to isolate in
the absence of network topology information as explained in
Section I, and thus requires further processing that involves
passing the multi-path time-series data through the filter frame-
work. Output of the filter framework dictates whether to prune
the potentially misleading data or perform a destination-to-
source conversion to look for correlated anomaly events. In
either case, recursive anomaly detection is performed until
correlated anomaly events are detected and root-cause lo-
cations are isolated. Finally, Anomaly Event Detection and
Data Sanity Checking schemes together enable the ranking of
detected events by certainty of detection in order to provide a
network-wide meta-perspective for effective troubleshooting.

Fig. 3: Schematic diagram of our proposed network-wide
anomaly event detection and certainty diagnosis
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B. PCA-APD-Q-statistic Analysis
Fig. 4 shows the sequence of steps involved in our

PCA-APD-Q-statistic based anomaly detection and diagno-
sis scheme. Through standardized request/response messages,
active measurement time series data relating to end-to-end
performance measurement tools such as OWAMP (one-way
delay as specified in IETF RFC 4656) are downloaded for
any given site (i.e., Source Site A). The downloaded multi-path
time series datasets are in the form of JSON object files, which
are then processed using parsing for applying PCA technique
in the subsequent step.

Fig. 4: PCA-APD scheme components diagram

The output of PCA is the fused reoriented data comprising
of eigen vectors, where the first eigen vector captures maxi-
mum variability and the last is left with minimum variability.
What this translates into in-reality is that - the data projection
using the first eigen vector has variability that is common to
most of datasets and the last eigen vectors have the variability
that is least common in the dataset (e.g., variability present in
only one dataset amongst all). Next, data dimension selection
is performed on the fused reoriented data. For example, if we
are interested only in the common anomalies, we will select
only the first principal component as described in the previous
section. After the data dimension (number of eigen vectors) is
selected, the data is projected using the principal components,
and is passed as input for APD algorithm to detect anomalies.

Although most of the correlated anomalies subspace are
captured in the first, or first and second principal components,
it is likely that the normal subspace is also located in the
lower k-components. In order to accurately capture all of the
anomaly events within measurement time-series, we leverage
our APD scheme on the PCA transformed (or fused reoriented)
measurement data. To further classify the correlated and
uncorrelated anomaly events, we employ the Q-statistic test
described earlier in Section III-C. Moreover, if we find that
the site-of-interest (i.e., Source Site A) is featured in many
or all of the correlated anomaly event paths, we can conclude
that the anomaly event root-cause is local. If otherwise, we can
conclude that the anomaly event root-cause is in an external
domain, and above sequence of diagnosis steps can be applied
to other domains whose measurement data is accessible with
the hope of localizing the root-cause in one of the external
domains.

To substantiate the above rationale for correlated and uncor-
related anomalies, we use synthetic time-series measurements
for study purposes that comprise of 16 traces of one-way

delay measurements collected from perfSONAR archives that
do not have any anomaly events. Into these traces, we inject
5 anomaly events within a common time period window
to create a correlated anomaly event, and also inject 16
uncorrelated anomaly events in other time period windows.

Fig. 5: Correlated and uncorrelated anomaly subspace separa-
tion with PCA application

As shown in Fig. 5, all the correlated anomaly events are
captured in the first principal component, and an uncorrelated
anomaly event is captured in the second principal component.
In repeated studies with different synthetic measurement time-
series, we found that all the correlated anomaly events are
captured mostly in the first principal component, and at worst
in the second principal component in a very few number of
instances.

Fig. 6: Measurements of normal space vector squared mag-
nitude (‖yno‖2, upper), and residual space vector squared
magnitude (‖yab‖2, lower) for the synthetic data

As shown in Fig. 6, we separate the link measurements y
into normal subspace and residual subspace. The lower part
of the figure shows the SPE of y’s projection in the residual
subspace yab, and the upper part shows y’s projection in the
normal subspace yno. On these plots, we have marked the cor-
related anomalies with crosses (x) and uncorrelated anomalies
with circles (o). In the lower part of the figure, it is clear
that the magnitude of the residual vector yab is dominated by
uncorrelated anomalies rather than correlated anomalies. As a
result, it is difficult to discern the correlated and uncorrelated
anomalies in the residual vector yab. However, in the upper
part of the figure, only correlated anomalies along with normal
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Fig. 7: Measurements of normal space vector squared mag-
nitude ‖yno‖2 (P = [v1], upper) and (P = [v1,v2,v3,v4],
lower) for the synthetic data

measurement data are captured in the projection. Thus, the
magnitude of normal measurement data is obviously different
from the correlated anomaly measurement data, which makes
the detection of anomalies much easier to distinguish.

Above observation shows that the normal vector yno is
suitable to detect correlated anomalies at a network-wide level.
However, we still want to find uncorrelated anomalies. In
Fig. 6, only correlated anomalies are captured in the normal
vector. Although residual vector can capture all the correlated
and uncorrelated anomalies, it is difficult to discern them
because only the first principal axis is selected in the Fig. 6
to capture normal traffic and correlated anomalies. Hence,
we need to increase principal axes to capture uncorrelated
anomalies.

In the top-portion of Fig. 7, only correlated anomalies are
captured in the first principal component projection. However,
in the lower plot of Fig. 7, correlated anomalies and some of
the uncorrelated anomalies are captured in the first 4 principal
components projection. The Q-statistics (δ2) are also shown
in these plots. From the lower plot, we found Q-statistic
(δ2) is sensitive to the detected correlated anomalies but not
the uncorrelated anomalies. Based on these characteristics of
correlated and uncorrelated anomalies in the normal subspace,
and the drawbacks of Q-statistic, we apply the APD scheme
to detect anomalies.

The link measurements y’s projection onto normal subspace
in Eqn. (4) can be written as:
SPE ≡ ‖yno‖2 = ‖PPTy‖2, P = [v1,v2,v3, ...,vk] (5)
In APD [9], we use µ±s∗σ as a threshold to define the norm

of network health, where µ denotes the mean of measurements
samples, σ is standard deviation of the measurements samples,
and sensitivity s specifies the magnitude of the plateau change
that may result when an anomaly event on a network path is
to be triggered. Using this APD scheme threshold definition,
we may consider the network measurements to be normal if,

µ− s ∗ σ ≤ SPE ≤ µ+ s ∗ σ (6)
Now if we combine Eqn. (6) with Q-statistic, we formalize

conditions for correlated and uncorrelated anomalies. We say
correlated anomalies have occurred in the network measure-
ments if, {

SPE > µ+ s ∗ σ and SPE > δ2

δ2 < SPE < µ− s ∗ σ (7)

And similarly, we conclude that uncorrelated anomalies
have occurred in the network measurements if,{

SPE < µ+ s ∗ σ and SPE < δ2

δ2 > SPE > µ− s ∗ σ (8)

With the correlated and uncorrelated anomaly detection con-
ditions formalized, we analyze the accuracy of our proposed
anomaly detection scheme in Section VI.

V. DATA SANITY CHECKING

The efficacy of our proposed anomaly detection scheme
relies heavily on the quality of the collected measurement sam-
ples. However, due to mis-calibration of measurement probes
and potentially improper sampling (from the perspective of
a monitoring objective such as rapid and accurate anomaly
detection or accurate network weather forecasting [38]) in
perfSONAR, the samples collected from multiple domains’
measurement archives are not always worthy of analysis. In
this section, we propose a two-pronged approach to sanitize
perfSONAR measurement data: a reputation analysis scheme
for collected samples, and a filter framework to intelligently
prune the potentially misleading samples.

A. Reputation Analysis

In order to ascertain what features in a sample set of
data qualify as ‘good’, we collected a considerable amount
of perfSONAR one-way delay traces for different paths and
different time periods. In any random collection that are
publicly accessible, we observed some measurements exhibit
non-periodic sampling pattern, i.e., these samples are either
too dense or too sparse, and some are invalid due to faulty
clock synchronization between measurement servers or data
corruption (negative one-way delay values). Such improper
sampling ultimately results in erroneous detections and con-
sequently useless diagnosis/notifications (i.e., increased false
alarms) using our proposed anomaly detection scheme [9].
Therefore, in the context of detecting and diagnosing potential
correlated anomaly events within perfSONAR one-way delay
traces, it is of paramount importance that the sample data has
desired nature expected by the monitoring objective in terms
of 2 aspects: Sampling Pattern and Data Validity.

To identify potentially misleading features of measured data,
we propose a reputation-based data sanity checking scheme
which analyzes the measurement samples for sampling pattern,
and collected sample validity. This scheme involves reputation
score evaluation for each measurement path, and “certainty”
quantification of the entire measurement dataset through a
propagation function as shown in Fig. 8. The certainty of
detection strengthens the conclusions drawn about the nature
and location of possible correlated anomaly events output by
our anomaly detection scheme.

1) Effect of sampling pattern: Periodic, random, stratified
random, and adaptive sampling are the most common sampling
patterns in network performance measurements [38] to satisfy
various monitoring objectives. Our APD algorithm is a real-
time detector based on the time series’ measurement data to
detect correlated anomaly events. Thus, our algorithm requires
the measurement data should be continuous and periodic
in terms of the sampling time-intervals [39]. Recall from
Section I that highly dense/sparse or irregular (i.e., long data
collection gaps) can result in missed anomaly events and
exponential anomaly detection time [9].
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Fig. 8: Reputation-based scheme to evaluate the certainty of a
correlated anomaly event detected by PCA-APD-Q-statictic

(a) FNAL<–>WASH One day (b) FNAL<–>WASH One month

(c) ATLA<–>BNL Two weeks (d) DENV<–>BOIS Two weeks

Fig. 9: Measurement sampling time-interval histograms for
one-way delay perfSONAR traces

In order to conduct a deeper investigation on the sampling
patterns of perfSONAR data, we collect perfSONAR one-way
delay measurement data from different DOE lab and ESnet
sites for different time periods. Figs. 9(a) and 9(b) show one
such exemplar sampling time interval histogram for one-way
delay measurements from DOE lab site FNAL to ESnet POP
site WASH. From the figure, it is evident that the majority of
sampling time-intervals are gathered in the one zone (marked
by red curve) which suggest that the majority exhibits expected
characteristic in terms of sampling pattern (i.e., good quality
data) with outliers (marked by a red box) being abnormal.
Similar characteristics were observed for other DOE lab and
ESnet sites for different time periods as shown in Figs. 9(c)
and 9(d). Such a pattern signifies that if a perfSONAR domain
is in adequately calibrated, all the time intervals should exhibit
the majority property.

Fig. 10: K-Means Clustering to partition sampling time-
intervals for separating major and minority clusters in mea-
surement samples

In order to isolate the ‘good’ samples from the ‘not-so-good’
ones, we use the K-Means Clustering algorithm to partition the
sampling time-interval majority and minority clusters. Fig. 10
shows the use of K-Means Clustering algorithm to partition
one month duration of one-way delay measurements for FNAL
↔WASH.

2) Effect of data validity: Measurement data in a few
instances becomes invalid because of faulty clock synchroniza-
tion and/or data corruption. For example, clock synchroniza-
tion problem between measurement servers will cause the one-
way delay values of OWAMP measurements to be negative;
whereas data corruption will cause the value of delay to be
‘NaN’. As discussed earlier, incorporating such invalid data for
anomaly detection analysis can lead to erroneous notifications.
For a measurement data to be valid, the value of delay should
be larger or equal than zero.

3) Reputation and certainty quantification: With sampling
pattern and data validity being the two most important factors
in deciding the quality of perfSONAR one-way delay data, we
propose the reputation of any path i to be defined as:

ri = 1− Ni − nmajorityi

Ni
− Ni − nvalidi

Ni

=
Ni − (Ni − nmajorityi )− (Ni − nvalidi )

Ni
(9)

where Ni denotes the number of measurement samples in path
i, nvalidi denotes the number of valid data samples in path i,
and nmajorityi denotes the number of samples in the majority
zone of path i.

As the reputation score is specific to one measurement
path, we still require a mean to translate the reputations
of each path (ri ∀ i ∈ N ) into a reputation score of the
entire measurement data set. This measurement reputation
score quantifies the certainty of the detection, which inherently
guides a network operator to assess the true severity of the
detected anomaly event. Although the NIST guidelines on
measurement uncertainty quantification are not applicable for
our measurement data reputation analysis, we use the NIST
guidelines for measurement uncertainty propagation [40] in
order to quantify the certainty of detection (Cdetection) from
measurement path reputation scores. As the measurement of
different source-destination pairs are uncorrelated, i.e., there
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are M mutually exclusive measurement observations, the
corresponding certainty of detection is given by:

Cdetection =
M∑
i=1

r2i (10)

where M is the total number of measurement paths. The above
equation ensures positive and negative certainty of detection;
thus clearly distinguishing the High and Low certainty val-
ues. Also, Cdetection monotonically increases for increasing
number of paths with higher reputation scores and vice versa.
B. Filter Framework

Unlike correlated anomaly events, uncorrelated events being
manifestations of network related faults at an external domain
are harder to localize in the absence of complete network
topology information. In order to investigate root-cause lo-
cations of such uncorrelated anomaly events without topology
information, we propose a novel “Filter Framework” to which
we pass the multi-path time-series measurement data through
a series of filters. A collection of temporal and spatial filters
are applied on the time-series data depending on the relative
certainty of uncorrelated anomaly detection and a recursive
PCA-APD-Q-statistic analysis is applied on the filter output.

1) Destination to source conversion for high certainty
uncorrelated anomaly events: When uncorrelated anomaly
events are detected with high certainty, we apply temporal
filters on the time-series data to find the paths with uncorre-
lated anomaly event timestamp. The temporal filters consists
of two parts: filtration and measurements transformation. First,
we transform all the time-series measurements into a matrix
whose columns list the measurements information such as
timestamp, measurement value, and detection results. Each
measurement path is transformed into a matrix resulting multi-
path measurements generating matrices. Next, linear search is
performed on each matrix using the timestamp as the index
to select the row having an anomaly event around the same
time window. The output of the filters are the individual paths
suspected to be the responsible uncorrelated event path.

Upon filtering the paths, a new set of measurement data
are collected for the same time period as the original, with
the destinations of each path now being the new sources. If
correlated anomaly events are detected with high certainty
upon analysis of the new samples using our scheme, we
can localize the original uncorrelated anomaly events at the
respective destination. Otherwise, the original uncorrelated
anomaly events were caused due to some abnormal network
behavior at one or many points along the paths other than the
sources and destinations.

2) Pruning misleading data for low certainty uncorrelated
anomaly events: If uncorrelated anomaly events are detected
with low certainty, we argue that the outcome of the anal-
ysis can be dubious due to potentially untrustworthy (low
reputation) samples and the very existence of uncorrelated
anomaly events maybe in question. Thus, in such cases, we
apply spatial filters to detect and intelligently prune potentially
misleading samples, and re-analyze the new trimmed sample
set for anomaly events.

The spatial filtration and the subsequent pruning are based
on the reputation analysis of measurement data discussed in
Section V-A. In order to ascertain what reputation is below-
par and whether reputation is source-specific, we collect perf-
SONAR measurement archives from various DOE sites (e.g.,
FNAL, KANS, HOUS) for different time periods to analyze

Fig. 11: One-way delay measurement sample reputation of
HOUS and FNAL to other sites showing normal distribution

their historic distribution pattern. Jarque-Bera test [41] on their
reputation distribution reveals that for every DOE source site,
the measurements’ reputation unanimously follows normal
distribution. In Fig. 11, we show two exemplar measurement
data reputation histograms of ESnet sites HOUS and FNAL
to other sites for different time periods following a normal
distribution.

Pruning misleading data can be tricky as single-dimension
reputation-centric pruning may lead to excessive thinning of
measurement samples, i.e., we are left with too few samples
to analyze effectively. Thus, we take a multi-dimensional
approach of pruning based on both reputation and sample
population. Depending on the size of the population we might
want to keep at least K% of the entire sample population;
if the population is big, value of K can be smaller and vice
versa. As any sample population follows normal distribution
(N(µ, δ2) with µ being the mean and δ being the standard
deviation), we can calculate the baseline reputation x for
keeping K% of the entire sample population with the relation
P (X ≥ x) = K/100 and Z score formula Z = x−µ,

δ . Thus,
any sample with reputation less than baseline x is pruned and
the new sample set is re-analyzed for anomaly events. For
example, in case of a relatively low number of total available
samples for detection and diagnosis, the network operator may
decide to keep at least 80% (K = 80) of the entire sample
population, even if some samples are not good enough. The
reasoning might be that for very small sample size, it is more
prudent to prune a few worst samples rather than ending up
with very few samples for actual detection. In such a case, the
baseline reputation x is calculated from normal distribution
curve with the relation P (X ≥ x) = 0.8.

In another scenario with a very high number of samples,
the network operator can be more ruthless about the quality
of the collected samples and may decide to keep only the best
30% (K = 30) of the entire sample population for effective
detection and diagnosis. In such a case, the baseline reputation
x can be similarly calculated from normal distribution curve
with the relation P (X ≥ x) = 0.3.

3) Implementation of our Proposed Scheme: We demon-
strate the implementation of the proposed scheme in our
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Narada Metrics [13] framework for actual perfSONAR one-
way delay measurements. Narada Metrics features perf-
SONAR extensions that can analyze network performance via
monitoring-objective directed sampling, and generates perfor-
mance trend reports and notifies anomaly events to communi-
ties subscribed to measurement archives in perfSONAR. Be-
fore this work, Narada Metrics used just the APD scheme for
path-level detection of uncorrelated anomaly events amongst
collected measurements over a specified user time range. We
extend the Narada Metrics path-level analysis in this work
to a network-wide level by adding PCA and temporal/spatial
filters. Fig. 12 shows Narada Metrics performance plot of
anomaly events with temporal correlation between two traces
of one-way delay measurements. For each trace, we apply
our APD scheme to detect anomaly events, which are shown
with annotations for network operators to perform further drill-
down analysis.

Fig. 12: Narada Metrics temporally correlated anomaly event
notification

Fig. 13 shows how the paths responsible for uncorrelated
anomaly events are filtered using the PCA anomaly event
timestamp. As shown in “Measurements Data Description”
of Fig. 13, we collect 5 perfSONAR one-way delay mea-
surements traces and upon PCA-APD-Q-statistic analysis, the
uncorrelated anomaly event timestamps are calculated as 2015-
04-21T18:40:00+00:00 and 2015-04-21T15:20:00+00:00.The
temporal filtration function uses these timestamps as inputs
to filter the traces responsible for the anomaly events as
the “Filtration Results”. We implement spatial filters in our
Narada Metrics framework as shown in the Fig. 14. For
this feature, we collected thousands of measurement traces
as training dataset to generate the Normal distribution of
measurement data reputations. As shown in the illustration,
a network operator can prune below-par samples in terms of
measurement paths by making sure that at least a desired
percentage (e.g., 80%) of the entire dataset is retained. The
algorithm computes the reputation baseline according to the
Normal distribution as shown in “Reputation baseline”. The
output of the filtration processes are the paths to be eliminated
as shown in the “Filtration Results” window.

VI. EVALUATION AND RESULTS

A. Anomaly Detection and Isolation with Synthetic data
To demonstrate the PCA-APD-Q-statistic scheme’s accu-

racy of detection and isolation, we plot the anomaly detection
performance of the existing PCA-APD [7], PCA-SPD [36],
and PCA-Q-statistic [11, 12] (without APD) schemes with
different datasets and different number of correlated and

Fig. 13: Narada Metrics Temporal Filter implementation

Fig. 14: Narada Metrics Spatial Filter implementation

uncorrelated anomaly events. Recall that the Q-statistic is a
statistic test to detect threshold-crossing samples. To adapt
the Q-statistic into a plateau detector, we look for 7 (same
trigger count in APD and SPD) consecutive threshold-crossing
to classify it as a plateau event.

1) Evaluation methodology: For this, we generate synthetic
trace data described earlier in Section IV-B. We randomly
generate the one week dataset, and inject different number of
correlated and uncorrelated anomaly events into the dataset to
compare the detection accuracy. The synthetic data is carefully
generated to closely mimic the actual perfSONAR one-way
delay measurement traces, as shown in the Fig. 15.

In order to inject correlated anomaly events, we first gener-
ate 6 traces and then inject anomaly events in those traces
at the same time. We also inject events at random times
as uncorrelated anomaly events. The percentage of anomaly
events in each trace (ρanomaly) vary from 0.1%-1% of the
total sample population for each trace. The magnitudes of
anomaly events (rmagnitude) vary from 10% - 60% over normal
measurements with higher magnitudes causing sharper spikes.

2) Evaluation metrics: We evaluate the anomaly event
detection accuracy of our PCA-APD scheme and compare
it with PCA-SPD and PCA-Q-statistic schemes using three
well known detection evaluation metrics, viz., Accuracy, False
Positive Rate (FPR), and False Negative Rate (FNR). These
metrics are defined as follows:

Accuracy =

∑
True Positives +

∑
True Negatives∑

Anomaly Events

FPR =

∑
False Positives∑

Anomaly Events

FNR =

∑
False Negatives∑
Anomaly Events
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Fig. 15: Data sample comparison between real data and
synthetic data

(a) Accuracy vs. raccuracy (b) Accuracy vs. ρanomaly

Fig. 16: Detection accuracy comparison

3) Anomaly detection evaluation results: In Figs. 16(a)
and 16(b), we compare the accuracy of the schemes. In
Fig. 16(a), we show the nature of detection accuracy with
rmagnitude. We observe, APD and SPD with high sensitivity
(s=5), exhibit 100% detection accuracy. However, a less sen-
sitive SPD (s=1) suffers from poor accuracy due to erroneous
detection of especially uncorrelated anomaly events that are
difficult to detect. In Fig. 16(b), we compare the scheme’s
accuracy against ρanomaly. We observe that APD performs
robustly against high-density of anomaly events in the samples.
Both SPD and Q-statistic suffer from erroneous detection of
uncorrelated anomaly events, whose number increases with
higher ρanomaly.

(a) FPR vs. ρanomaly (b) FNR vs. ρanomaly

Fig. 17: False alarm rate comparison

In Fig. 17(a), we compare the scheme’s performances in
terms of FPR against ρanomaly. We observe that the APD
and Q-statistic do not react to anomaly density, however the
performance of SPD (s=2) rapidly deteriorates due to static
threshold settings, thus causing more false alarms of anomaly
events. In the Fig. 17(b), we can see that SPD performs the
best for the default over-sensitivity of detection. The Q-statistic
misses all the uncorrelated anomaly events and APD exhibits

few false alarms at a higher anomaly density.

Fig. 18: Receiver operating characteristic comparison

A meta-perspective of the scheme’s relative performances
are shown in Fig. 18 through a Receiver Operating Characteris-
tic (ROC) plot. The ROC plot indicates the True Positive Rate
(TPR) performance of a scheme against FPR with performance
curve above the 45◦ denoting better performance. We see
that our PCA-APD scheme clearly outperforms the other two
schemes with a higher accuracy rate than false alarm rate
indicating that the PCA-APD is the best among the contending
three schemes of anomaly detection.

4) Anomaly isolation evaluation results: Next, we analyze
the performance of our proposed PCA-APD-Q-statistic in
isolating correlated and uncorrelated anomaly events. In the
Section IV-B, we explained how Q-statistic is a threshold to
discern the correlated and uncorrelated anomaly events, where
the anomaly events above the threshold are correlated anomaly
events, and below are uncorrelated. However, we observed that
the size of the measurement dataset plays an important role in
the relative performance of Q-statistic.

In Fig. 19(a), we show how the Q-statistic successfully
isolates correlated and uncorrelated anomaly events in a one
week synthetic data set with 5 correlated and 2 uncorrelated
anomaly events injected. However, the same 7 anomalies for a
two weeks long dataset are not successfully distinguished with
both the uncorrelated anomaly events being detected wrongly
as correlated, as shown in the Fig. 19(b). The performance
improves again upon injecting more correlated anomaly events
in the dataset, with 100% accuracy reached when 3 more
correlated anomaly events are injected (i.e., total 8 correlated
and 2 uncorrelated), as shown in the Fig. 19(c). Similar
characteristics are observed in month long data and higher.
The reason behind such characteristics is the dynamic trigger
demotion of Q-statistic threshold by predominant uncorrelated
anomaly events in the dataset since the magnitude of the
uncorrelated anomaly events are much smaller in the data
projection. With more correlated anomaly events in the dataset,
such effects are negated and the Q-statistic performs better.

In order to gauge the accuracy of isolation in an unknown
data set, the proximity of a correlated anomaly event in
higher principal components to the Q-statistic threshold may
prove to be more useful. To this end, we conducted rigorous
experiments with synthetic datasets of different sizes, and
concluded that any correlated anomaly detected within the
range of 0 - 2×105 from the Q-statistic threshold in second
principal component data projection, called the ‘Grey zone’
is inconclusive and may need further investigation with artifi-
cially injected correlated anomaly events in the dataset.

5) Detection and isolation evaluation summary: The de-
tection accuracy evaluation showcases the improved accuracy
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(a) Success with one week data (b) Failure with two weeks data (c) Success with two weeks data

Fig. 19: Accuracy of Q-statistic to successfully isolate correlated and uncorrelated anomaly events for different dataset sizes

of using our proposed PCA-APD-Q-statistics anomaly event
detection technique over existing schemes in the absence
of complete network topology information. Moreover, our
proposed scheme also result in lower false alarms rates over
existing schemes for different densities of anomaly events in
the measurement traces. In anomaly isolation evaluation, we
presented only a small subset of total number of experiments
performed with synthetic data. The results overwhelmingly
demonstrate how our proposed scheme successfully isolates
correlated events from uncorrelated events. The results also
help us generate bounds on the relative ratio of correlated and
uncorrelated anomaly events for pertinent isolation.
B. Case Studies with actual perfSONAR Data

In this section, we validate the use of our proposed anomaly
detection and certainty diagnosis scheme to analyze correlated
and uncorrelated anomaly events at the network-wide level
using source-site information within actual perfSONAR traces.
The datasets in the following case studies consist of plateau
anomalies such as persistent increase and other anomaly
events such as intermittent bursts and dips. We consciously
ignore intermittent burst and dip events because these types
of anomalies are generally caused by user behavior, and are
not of interest to network operators for routine monitoring
and bottleneck troubleshooting. All of the actual perfSONAR
traces correspond to one-way delay measurements collected
between DOE lab sites such as FNAL (Fermi National Accel-
erator Laboratory), SLAC (SLAC National Accelerator Labo-
ratory), ORNL (Oak Ridge National Laboratory), and ESnet
100G hubs ATLA (Atlanta), STAR (StarLight), and SUNN
(Sunnyvale).

We perform a select set of case studies using both short-term
and long-term traces to demonstrate different functionalities
of our proposed scheme, such as: (i) anomaly detection,
(ii) anomaly correlation identification, (iii) anomaly detection
certainty evaluation, (iv) diagnosing potential uncorrelated
anomaly location through destination to source conversion,
and (v) effect of pruning misleading samples to increase
detection certainty. The purpose of collecting samples for
different time periods and time lengths below is to demonstrate
the effectiveness of our scheme for both short-term and
long-term measurement objectives using different sample size
populations.

1) Case Study I: Location isolation with one month data:
As discussed in Section IV, the PCA-APD-Q-statistic scheme
can accurately detect correlated and uncorrelated anomaly
events with low false alarm rates, and PCA-with-Q-statistic
scheme can completely accurately detect correlated anomaly

events (however, it misses all the uncorrelated anomaly
events), we leverage the Q-statistic within our PCA-APD
scheme as a sure way to accurately identify all the correlated
anomaly events. To illustrate with further evidence, we used
the actual perfSONAR one-month long traces from ESnet site
ATLA to 6 other DOE lab sites as shown in Table I. Fig. 20(a)
shows one anomaly that is detected in the actual perfSONAR
traces by the PCA-APD-Q-statistic scheme using the first
principal component. If we assume all correlated anomalies are
captured in the first principal component, and the uncorrelated
anomalies are captured in the rest of principal components,
we may mis-identify correlated anomaly events in certain
situations. Consequently, as shown in Fig. 20(b), our scheme
identifies the anomaly above the Q-statistic as a correlated
anomaly event with a high certainty of detection 0.9979
showing high confidence on the collected samples. From
the above analysis, we can conclude a correlated anomaly
occurred in a local domain (i.e., within ATLA) at 22:29:11-
22:38:34 time period. In order to validate this detection, we
checked each of the traces using just the APD scheme to detect
anomaly events in each trace. We found six traces to have the
anomaly events at the same time windows.

The Case Study I results show how a network operator can
use the PCA-APD-Q-statistic scheme to detect and analyze the
correlation among anomaly events without having complete
topology information.

TABLE I: Case Study I perfSONAR traces description

Source ↔ Destination Time Range (Start - End)
atla-owamp.es.net↔ bois-owamp.es.net 2014-10-01 00:00:55 -

2014-10-30 23:59:43
atla-owamp.es.net↔ chic-owamp.es.net 2014-10-01 00:00:30 -

2014-10-30 23:59:04
atla-owamp.es.net↔ fnal-owamp.es.net 2014-10-01 00:01:00 -

2014-10-30 23:59:52
atla-owamp.es.net↔ hous-owamp.es.net 2014-10-01 00:00:48 -

2014-10-30 23:59:52
atla-owamp.es.net↔ nersc-owamp.es.net 2014-10-01 00:00:44 -

2014-10-30 23:59:33
atla-owamp.es.net↔ wash-owamp.es.net 2014-10-01 00:00:16 -

2014-10-30 23:59:38

2) Case Study II: Certainty diagnosis with one month data:
In order to ensure that the accuracy of location isolation using
the proposed scheme also holds for other paths, we collect one
month measurements from ESnet site STAR to 8 DOE lab sites
as shown in Table II. Upon PCA-APD-Q-statistic analysis and
data sanity checking, we detected 3 correlated anomaly events
(as shown in the Fig. 19(c)), however with low certainty of
detection, 0.4669. As we already established that source-side
faults lead to correlation, local domain (i.e., STAR) is most
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(a) Anomaly event detected by PCA-APD for
one month ATLA traces

(b) High certainty correlated anomaly event
detected by PCA-APD-Q-statistic for the same
one month ATLA traces

(c) Low certainty correlated anomaly event de-
tected by PCA-APD-Q-statistic for two weeks
STAR traces

Fig. 20: Case Study I and II: Location Isolation and Certainty Diagnosis

likely to be responsible for the anomaly events, albeit with
low detection certainty.

Thus, Case Study II results show how a network operator
can handle scenarios where the measurement samples with
misleading features can lead to low certainty of detection. For
e.g., given the Case Study II certainty of detection being low,
the network operator can prioritize fixing Case Study I issues
over Case Study II issues when troubleshooting bottlenecks.

TABLE II: Case Study II perfSONAR traces description

Source ↔ Destination Time Range (Start - End)
star-owamp.es.net↔ bois-owamp.es.net 2014-10-01 00:00:55 -

2014-10-30 23:56:35
star-owamp.es.net↔ elpa-owamp.es.net 2014-10-01 00:03:00 -

2014-10-30 23:59:36
star-owamp.es.net↔ ga-owamp.es.net 2014-10-01 00:00:56 -

2014-10-30 23:59:31
star-owamp.es.net↔ kans-owamp.es.net 2014-10-01 00:03:00 -

2014-10-30 23:58:36
star-owamp.es.net↔ llnl-owamp.es.net 2014-10-01 00:00:20 -

2014-10-30 23:59:47
star-owamp.es.net↔ sdsc-owamp.es.net 2014-10-01 00:05:00 -

2014-10-30 23:56:35
star-owamp.es.net↔ sunn-owamp.es.net 2014-10-01 00:00:25 -

2014-10-30 23:55:35
star-owamp.es.net↔ wash-owamp.es.net 2014-10-01 00:00:57 -

2014-10-30 23:58:36

3) Case Study III: Root cause diagnosis of low certainty
uncorrelated anomaly event with one month data: We already
discussed that detected uncorrelated anomaly events in most
cases are a result of faults outside the local domain. However,
in a measurement setup with multiple paths with high topologi-
cal correlation (i.e., common hops), such uncorrelated anomaly
events on individual paths at different timestamps can be iso-
lated to be manifestations of faults at a destination domain. In
the absence of network topology information, destination-to-
source transformation of the path having uncorrelated anomaly
event and subsequent measurement data collection for the
same time period can lead to accurate location diagnosis.
To test this rationale, we collect month-long measurements
from DOE lab site FNAL to 16 other DOE lab and ESnet
sites (as shown Table III) with high topological correlation
among the paths. When we applied our PCA-APD-Q-statistic
anomaly detection scheme and sanity checking, we detected
an uncorrelated anomaly event with high certainty as shown
in the Fig. 21(a). Upon applying filters, we found that the
anomaly occurred at around 2014-10-29 05:46:53 on the path
FNAL to SLAC in Table III.

Thus, with the expectation to find a correlated anomaly
event with high certainty around the same time, we collected
perfSONAR data with SLAC as source to 6 other DOE sites
as shown in Table IV. Upon analysis, we detected a correlated
anomaly event with high certainty as shown in the Fig. 21(b)
occurring at around 2014-10-29 05:40:24, thus validating our
original claim of detecting correlation. The Case Study III
results help a network operator to successfully use our pro-
posed temporal filter (for destination to source conversion) in
diagnosing and isolating uncorrelated anomaly events during
root-cause analysis, which otherwise would be challenging in
practice without complete topology information.

(a) High certainty uncorrelated anomaly
event detected for one month FNAL traces

(b) High certainty correlated anomaly
event detected for SLAC at same times-
tamp

Fig. 21: Case Study III: Destination to Source Conversion

4) Case Study IV: Pruning misleading measurement sam-
ples with one week data: To validate the claim of pruning
misleading data can improve detection accuracy, we collected
short term (one week) perfSONAR samples from ORNL to 6
other DOE sites as shown in Table V. The PCA-APD analysis
fails to find any anomaly events as shown in the Fig. 22(a).
However, the certainty of detection was 0.83 which was less
than the historical average of ORNL specific data.

To avoid excessive thinning of measurement samples before
pruning the ill-reputed samples, we analyzed the historical
ORNL measurements data and estimated with Z score formula
(discussed in Section V-B2) to prune samples below 0.8798
(minimum reputation of 80% sample population). Upon fil-
tering, we eliminated the trace from ORNL to SNLA (shown
in red) with reputation 0.07 that was impacting the detection
outcome and executed recursive PCA-APD-Q-statistic on the
new sample set. Upon analysis, we found an uncorrelated
anomaly event (as shown in Fig. 22(b)), undetected previously.
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(a) No anomaly event detected with low for
one-week ORNL traces

(b) Uncorrelated anomaly event detected for
the same one-week ORNL traces after pruning
misleading samples

(c) High certainty correlated anomaly event
detected for SUNN traces at same timestamp
upon destination to source conversion

Fig. 22: Case Study IV: Pruning Misleading Measurement Samples

TABLE III: Case Study III perfSONAR traces description with
FNAL as source

Source ↔ Destination Time Range (Start - End)
fnal-owamp.es.net↔ bois-owamp.es.net 2014-10-01 00:00:31 -

2014-10-30 23:59:47
fnal-owamp.es.net↔ ga-owamp.es.net 2014-10-01 00:00:08 -

2014-10-30 23:59:45
fnal-owamp.es.net↔ hous-owamp.es.net 2014-10-01 00:00:04 -

2014-10-30 23:59:58
fnal-owamp.es.net↔ lasv-owamp.es.net 2014-10-01 00:00:50 -

2014-10-30 23:59:33
fnal-owamp.es.net↔ lbl-owamp.es.net 2014-10-01 00:00:29 -

2014-10-30 23:59:00
fnal-owamp.es.net↔ nersc-owamp.es.net 2014-10-01 00:00:25 -

2014-10-30 23:59:00
fnal-owamp.es.net↔ newy-owamp.es.net 2014-10-01 00:00:13 -

2014-10-30 23:59:58
fnal-owamp.es.net↔ ornl-owamp.es.net 2014-10-01 00:00:36 -

2014-10-30 23:59:22
fnal-owamp.es.net↔ pnwg-owamp.es.net 2014-10-01 00:00:32 -

2014-10-30 23:59:52
fnal-owamp.es.net↔ pppl-owamp.es.net 2014-10-01 00:00:01-

2014-10-30 23:59:40
fnal-owamp.es.net↔ sacr-owamp.es.net 2014-10-01 00:00:01 -

2014-10-30 23:59:31
fnal-owamp.es.net↔ sdsc-owamp.es.net 2014-10-01 00:00:21 -

2014-10-30 23:59:37
fnal-owamp.es.net↔ slac-owamp.es.net 2014-10-01 00:00:57 -

2014-10-30 23:59:51
fnal-owamp.es.net↔ snll-owamp.es.net 2014-10-01 00:00:12 -

2014-10-30 23:59:05
fnal-owamp.es.net↔ sunn-owamp.es.net 2014-10-01 00:00:05 -

2014-10-30 23:59:34
fnal-owamp.es.net↔ wash-owamp.es.net 2014-10-01 00:00:08 -

2014-10-30 23:59:49

TABLE IV: Case Study III perfSONAR traces description with
SLAC as source

Source ↔ Destination Time Range (Start - End)
slac-owamp.es.net↔ bois-owamp.es.net 2014-10-01 00:00:45 -

2014-10-30 23:59:35
slac-owamp.es.net↔ elpa-owamp.es.net 2014-10-01 00:00:47 -

2014-10-30 23:59:51
slac-owamp.es.net↔ kans-owamp.es.net 2014-10-01 00:00:07 -

2014-10-30 23:59:55
slac-owamp.es.net↔ pnwg-owamp.es.net 2014-10-01 00:00:40 -

2014-10-30 23:59:37
slac-owamp.es.net↔ star-owamp.es.net 2014-10-01 00:00:17 -

2014-10-30 23:59:57
slac-owamp.es.net↔ wash-owamp.es.net 2014-10-01 00:00:32 -

2014-10-30 23:59:58

We apply similar destination-to-source conversion to that of
Case Study III to collect new measurement data (as shown
in Table VI) for the path responsible for the uncorrelated
anomaly event (SUNN). As expected, our analysis proved the
existence of a correlated anomaly event with high certainty (as

shown in Fig. 22(c)) around the same time period. Through
Case Study IV, we established that pruning misleading data
using our proposed spatial filter can help a network operator
to obtain higher detection certainty for further analysis on new
trimmed sample sets. This in turn can reveal to new and more
interesting features corresponding to anomaly events.

TABLE V: Case Study IV perfSONAR traces description with
ORNL as source

Source ↔ Destination Time Range (Start - End)
ornl-owamp.es.net↔ slac-owamp.es.net 2015-01-01 00:00:01 -

2015-01-07 00:00:00
ornl-owamp.es.net↔ snla-owamp.es.net 2015-01-01 00:00:14 -

2015-01-06 23:59:59
ornl-owamp.es.net↔ srs-owamp.es.net 2015-01-01 00:00:31 -

2015-01-06 23:59:41
ornl-owamp.es.net↔ star-owamp.es.net 2015-01-01 00:00:00 -

2015-01-06 23:59:18
ornl-owamp.es.net↔ sunn-owamp.es.net 2015-01-01 00:00:50 -

2015-01-06 23:59:31
ornl-owamp.es.net↔ wash-owamp.es.net 2015-01-01 00:00:04 -

2015-01-06 23:59:33

TABLE VI: Case Study IV perfSONAR traces description with
SUNN as source

Source ↔ Destination Time Range (Start - End)
sunn-owamp.es.net↔ bois-owamp.es.net 2015-01-01 00:00:09 -

2015-01-06 23:59:01
sunn-owamp.es.net↔ elpa-owamp.es.net 2015-01-01 00:00:34 -

2015-01-06 23:59:53
sunn-owamp.es.net↔ kans-owamp.es.net 2015-01-01 00:00:03 -

2015-01-06 23:59:04
sunn-owamp.es.net↔ pnwg-owamp.es.net 2015-01-01 00:00:49 -

2015-01-06 23:59:33
sunn-owamp.es.net↔ sdsc-owamp.es.net 2015-01-01 00:00:51 -

2015-01-06 23:59:15
sunn-owamp.es.net↔ wash-owamp.es.net 2015-01-01 00:00:37 -

2015-01-06 23:59:42

VII. CONCLUSION

In this paper, we presented a novel PCA-based network-
wide correlated anomaly detection scheme that: (i) uses prin-
cipal component analysis to capture the maximum variance
in a given multiple path measurement time-series, (ii) applies
adaptive plateau detector (APD) to detect anomaly events with
fused data transformation by PCA, (iii) leverages Q-statistic
event correlation analysis in order to accurately filter out
correlated and uncorrelated anomaly events, and (iv) quantifies
certainty of such detection using an adaptive reputation-based
data sanity checking that accounts for factors such as sampling
pattern, sampling frequency, and sample validity.
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With the strength of our prior work in developing APD’s ac-
curate uncorrelated anomaly detection algorithm, our proposed
PCA-APD-Q-statistic scheme in this paper has the unique
ability to detect both correlated and uncorrelated anomalies
with high accuracy and low false alarms, in a timely manner.
With event correlation analysis, our scheme is suitable for
source-side anomaly localization to help network operators to
diagnose the root-cause of bottlenecks, even when network
topology information is not completely available. The pro-
posed scheme is able to filter our potential misleading data
to associate a level of certainty for each such detection and
diagnosis claims.

We implemented our novel scheme in the form of perf-
SONAR extensions and performed extensive validation exper-
iments with both synthetic trace data and actual perfSONAR
trace data collected from DOE lab and ESnet hub sites.
Specifically, we presented four case studies that validate the
utility of our PCA-APD-Q-statistic and data sanity checking
schemes. Our work in this paper can help network operators
using perfSONAR dashboard, and scientists of data-intensive
applications to isolate and diagnose bottlenecks with a degree
of certainty. Further, it can foster effective troubleshooting in
the context of root-cause analysis of correlated network-wide
anomaly events from a meta-perspective.
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