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Abstract—Real-time visual computing applications running
Deep Neural Networks (DNN) are becoming popular for mission-
critical use cases such as, disaster response, tactical scenarios,
and medical triage that require establishing ad-hoc edge envi-
ronments. However, strict latency deadlines of such applications
require real-time processing of pre-trained DNN layers (i.e., DNN
inference) involving image/video data which is highly challenging
to achieve under such resource- constrained edge environments.
In this paper, we address the trade-off between end-to-end latency
of DNN inference and IoT devices’ energy consumption by
proposing ‘EFFECT-DNN’, an energy efficient edge computing
framework. The EFFECT-DNN framework aims to strike such
balance by employing a collaborative DNN partitioning and task
offloading strategy. Such strategy also involves resource allocation
from IoT devices and edge servers to satisfy DNN inference
deadline requirement even when the network bandwidth is on
the lower end, which is often the case for critical use cases.
The underlying optimization is formulated as a dynamic Mixed-
Integer Nonlinear Programming (MINLP) problem is decoupled
and solved by convex optimization and a game-like heuristic
algorithm. We evaluate the performance of EFFECT-DNN frame-
work on a hardware testbed and using extensive simulations
with real-world DNNs. The results demonstrate that the proposed
framework can ensure DNN inference deadline satisfaction with
significant (∼ 20-30%) device energy savings.

Index Terms—Deep neural networks, edge computing, task
partitioning and offloading, resource allocation, energy efficiency.

I. INTRODUCTION

Due to the proliferation of camera-enabled IoT devices over
the past two decades, real-time visual computing has become
popular, especially for mission-critical use cases that deploy
ad-hoc edge computing environments. Such environments typ-
ically comprise of energy-constrained IoT devices, moderately
powerful edge servers, wireless connectivity (often cellular
4G/5G) for data transfer between the devices and edge servers,
and sometimes connectivity to distant cloud data centers. The
key component for such visual computing applications are
Deep Neural Networks (DNNs) that are pre-trained offline in
cloud data centers with real-time/online inference within the
edge environment during missions. The inherent complexity
of the DNNs makes the computation for such inference time-
consuming and energy-draining. Thus, on-device (i.e., local-
only) computation of the entire DNN inference process (i.e.,
all DNN layers) is not always feasible as it would result in
longer latency and violation of real-time latency requirements.
At the same time such intensive computation might severely
drain the energy-constrained IoT devices. Alternatively, of-
floading all DNN layers to the edge server for computation
(i.e., remote-only) means sending all the DNN input images
to the edge servers over low data rate uplink 4G/5G cellular
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Fig. 1: An exemplary objection detection and classification related DNN
partitioning scenario between drones and edge server for fire rescue use case

connections that are commonly used for such ad-hoc edge
systems. As such images are often considerable in their sizes,
the remote only strategy might also lead to latency violation
due to high transmission time of data upload.

One common sense strategy to perform such DNN inference
in a balanced manner is to implement partial task offloading
between devices and edge servers, viz., DNN partitioning. In
DNN partitioning, all DNN layers upto and including a certain
cut point layer are processed at the IoT device. Next, the
intermediate results generated by the cut point layer and the
cut point layer information are sent to the edge server where
DNN inference continues from the layer after the cut point.
Under most naive approaches to balance end-to-end inference
latency and device energy preservation, the number of DNN
layers computed at the IoT device will depend on the device’s
available energy, i.e., devices with higher available energy will
compute more layers. Fig. 1 demonstrates one exemplary fire
rescue use case where a typical DNN inference for object
detection and classification is partitioned between drones and
a nearby edge server. The figure shows that one of the drones
(with higher available energy) is computing all or part of the
DNN layers and sending the processed data to the edge server
over LTE links. Whereas, the other drone with lower available
energy decides to offload all DNN layers to the edge servers.
However, finding the optimal cut point layer for such DNN
partitioning is not that straightforward.

Typically, DNNs for visual computing vary in terms of the
number of layers, computational complexity of each layer,
and the size of the output data after each layer. Thus, for
any cut point layer, the transmission energy consumption (by
the device) for offloading the output data after the cut point
layer is a function of the size of that data. Cut points where
the output data size is larger would result in considerable
energy consumption and latency resulting in longer end-to-
end latency. This problem is even more pronounced (i.e.,
considerably more energy expenditure and longer latency)
for low data rate scenarios which is often the case for
cellular uplink connections used under mission critical use



cases. Thus, the choice of optimal cut point layer is of
paramount importance in order to strike a balance between
devices’ energy consumption and end-to-end DNN inference
latency. At the same time, computation resource allocation
and bandwidth allocation between the device and the edge
server also considerably impact the device energy expenditure,
as well as end-to-end inference latency. Therefore, optimal
DNN partitioning that seeks to compute such trade-off must
be cognizant of the resource availability of the IoT device and
the edge server, and the available cellular network bandwidth
between the devices and the edge server.

In this paper, we strike the aforementioned balance
by proposing EFFECT-DNN, an Energy-eFFicient Edge
CompuTing framework for real-time DNN inference. The
EFFECT-DNN framework balances the energy expenditure
of IoT devices running heterogeneous DNNs and the end-
to-end inference latency of such DNNs by: i) optimizing
DNN partitioning, i.e., computing the optimal cut points of
each DNN and ii) optimizing compute resource allocation
at IoT devices and the edge server, and network resource
allocation between the devices and edge server. The DNN
partitioning, along with computation and network resource
allocations are formulated as a long-term optimization problem
that aims to minimize the long-term average device energy
consumption and to satisfy the long-term average end-to-end
latency requirement of DNN inference. The joint optimization
problem to select the cut point and resource allocation is
formulated as a complex dynamic Mixed-Integer Nonlinear
Programming (MINLP) problem. We apply Lyapunov opti-
mization by creating a virtual queue to express the long-term
end-to-end latency requirements, followed by decoupling the
resource allocation and cut point selection problems in run-
time. The resource allocation problem is solved using convex
optimization and a game-like heuristic algorithm is proposed
for cut point selection based on observations made under
extensive benchmarking experiments.

We evaluate the performance of the proposed EFFECT-DNN
framework with three of the most popular visual computing
DNNs, viz., AlexNet [1], VGG [2], and ResNet [3] using
both hardware edge testbed based experiments and extensive
simulations. Edge testbed based results demonstrate that under
very low to barely acceptable data rate conditions between
the devices and edge servers, EFFECT-DNN can jointly im-
prove the end-to-end latency of DNN inference and energy
preservation of IoT devices by 20.7% and 9.2% respectively.
We further evaluate the impact of resource availability and
number of IoT devices on DNN partitioning decisions through
simulations. The results demonstrate that DNNs like AlexNet
are more likely to choose partial offloading by enabling DNN
partitioning, while others, such as ResNet and VGG prefer
remote-only inference strategy due to their layer structures. In
addition, the simulation results show that under moderate to
high data rate conditions, EFFECT-DNN can achieve upto 41%
of latency reduction and upto 32.5% improvement on device
energy savings. Overall, such results validate the benefits
of EFFECT-DNN framework in balancing energy efficiency
and inference latency by optimizing DNN partitioning and
resource allocation.

The remainder of this paper is organized as follows. Sec-
tion II discusses the related work. Section III introduces
problem evidence analysis. Section IV proposes our system
model and formulates the problem. Section V discusses the
solution strategy and algorithms. Section VI discusses testbed
and simulation results. Section VII concludes the paper.

II. RELATED WORKS

Task offloading as a solution for end-to-end latency mini-
mization is popular within edge environments. Task offloading
is first formulated as a deterministic problem that decides
between local-only and remote-only computation plans [4],
[5], [6]. Authors in [7] deploy a similar approach for task-
offloading between edge servers and the cloud. Task offloading
can also be formulated as a computing while transmitting prob-
lem (i.e., partial task offloading) that considers IoT devices
as computational units [8], [9]. Expressing tasks as directed
acyclic graphs (DAG) for computation resource allocation is
another approach being adopted in the recent literature [10],
[11], [12]. In this approach, the task components can be
placed across the edge servers with some works, such as
EFFECT [13] extend this to a more complex environment with
multiple edge servers and multi-stage computations.

Partitioning of DNN layers is conceptually similar to task
offloading of sequential DAGs as most of the popular DNN
models consist of a sequence of layers with each layer trig-
gering the next layer. Due to the variations in data size and
computational requirements of each layer, the choice of cut
point affects the end-to-end latency and energy consumption
of IoT devices. There is extensive work in the literature for
such cut-point prediction. A combination of regression models
for predicting layer-wise performance and dynamic cut-points
are proposed in [14], [15]. SPINN [16] uses the ratio between
actual time and offline latency estimation to create a 2-staged
linear model which predicts inference latency. MoDNN [17]
partitions the DNN in layers and then maps different parts of
a layer onto mobile devices to accelerate the computations. A
scalable partitioning of convolutional layers along with a novel
work scheduling are proposed in [18] to minimize memory
footprint and reduce overall execution latency.

As an alternative to partitioning, a different approach of
DNN compression is being proposed in recent times. Here, two
dedicated DNN models with different accuracy levels are con-
sidered; a heavy-weight high accuracy DNN for servers and
a compressed light-weight version for resource-constrained
devices. A joint offloading and resource management problem
is typically solved to decide between the version with sub-
sequent resource allocation. Task-specific applications cache
the compressed DNNs in the IoT devices and store the heavy-
weight model in the servers [19][20]. However, in applications
with a variety of tasks, an extra DNN placement step may be
required to ensure that the light-weight DNN is available in
the IoT device [21]. Authors in [22] categorize the DNN com-
pression techniques into 4 major groups with different extents
of accuracy compromises, viz., network pruning, sparse rep-
resentation, bits precision, and knowledge distillation. Unlike
these works, we focus on applications that cannot tolerate the
accuracy compromise.

More recent frameworks brought the importance of re-
source allocation under constrained environments, such as
edge into attention.Authors in [23] apply an iterative alternat-
ing optimization algorithm in a realistic multi-user resource-
constrained environment. An optimization-based joint self-
adaptive DNN partitioning and cost-aware resource allocation
is proposed in [24]. In [25], authors pair a multi-exit DNN
inference acceleration framework with a Deep Reinforcement
Learning (DRL) based policy to make joint decisions about
DNN partitioning and resource allocation. However, to the best
of our knowledge, the energy constraints of IoT devices have
not been taken into account in such works.

2



Fig. 2: Layer-wise data size and inference time for AlexNet

Fig. 3: Layer-wise data size and inference time of ResNet

III. PROBLEM EVIDENCE ANALYSIS

In order to capture the layer-specific characteristics of real-
world DNN inference and data transmission, we perform
benchmarking experiments on popular DNNs. The experi-
ments are performed on a hardware device-server testbed with
NVIDIA Jetson TX2’s mimicking computationally-capable
IoT devices and a Dell PoweEdge desktop with 16 cores and
CPU frequency 3.2 GHz mimicking the edge server. It is to
be noted that NVIDIA Jetson TX2 is a fast embedded AI
computing device that is the most power-efficient among its
similar models. Similar measurements with a less powerful
computing device will only increase the end-to-end latency
and energy consumption. for the experiments, we select and
analyze three well-known neural networks, viz., AlexNet [1],
ResNet [3], and VGG [2]. These neural networks are widely
used in mission-critical emergency response and public safety
use cases for applications, such as object detection, image
recognition, and image classification and thus are good rep-
resentatives for real-time DNN inference. We also extend the
such experiments on collaborative DNN inference to ascertain
the potential benefits of DNN petitioning. Here, by collab-
orative inference, we mean the IoT device and edge server
computing parts of the DNN layers in a collaborative manner.

A. Layer Characteristics
Before measuring the characteristics of individual DNN

layers, we integrate lightweight layers (e.g., activation func-
tion) with their adjacent layers (e.g., convolutional) which are
compute-intensive. By doing such integration, we can reduce
the number of layers and thus the complexity of the optimiza-
tion problem (later proposed in Section IV). The results of
output data size and computation latency of each layer when
running the DNN on IoT devices (i.e., NVIDIA TX2) are
shown in Figs. 2, 3, and 4 respectively for different DNNs.
The results offer certain useful insights on layer specific DNN
characteristics. First, different DNNs have different number
of layers with the output data size and inference time of

Fig. 4: Layer-wise data size and inference time of VGG

each layer varying greatly. Capturing such layer differences is
important for deciding how many layers should be executed
locally for latency and energy consumption minimization.
Secondly, for the purpose of reducing transmission cost (in
terms of time, energy, or both), the DNNs can have fixed
number of options for layer partitioning. As shown in Fig. 2,
AlexNet can have considerable reduction in output data after
the execution of layers 3, 5, and 8. Considering that the
local computation cost of layers before such layers is very
limited, AlexNet is a potential candidate to obtain benefit from
DNN partitioning. However, for ResNet and VGG, the output
data is not reduced until the 13th layer (shown in Figs. 3
and 4) respectively. Thus, we can surmise that in most cases,
IoT devices running VGG and ResNet will be unwilling to
execute any of the layers locally as the local computation
cost of its first 13 layers is very high. Therefore, they will
require considerable network and computational resources at
the server-side.

B. Potential Benefits of DNN Partitioning
Here, we seek to examine the potential improvement in the

end-to-end latency and energy consumption of collaborative
DNN inference enabled by layer partitioning. As mentioned
before, the layers are divided into local-layers and remote-
layers based on a given partition location, called cut point.
Through these experiments, we intend to observe how the data
rate obtained by IoT devices affects such collaborations. In
these measurements, upload data rates between the devices and
server are tuned to 8 Mbps and 20 Mbps, simulating different
network scenarios, e.g., low data rate LTE connectivity and
acceptable data rate WiFi connectivity.

Figure 5 shows the end-to-end latency and energy consump-
tion of an IoT device running the AlexNet using different cut
points. In Fig. 5(a) and Fig. 5(b), the best cut points in terms of
end-to-end latency are layers 8 and 3, respectively. However,
Fig. 5(c) and Fig. 5(d) show that if energy consumption is the
concern, then the optimal cut points are probably layers 3 and
1 (for data rates 8 Mbps and 20 Mbps respectively). However,
for both ResNet and VGG, the computational requirements are
much higher than AlexNet, especially for VGG. Based on the
results shown in Fig. 6, all layers of ResNet should be executed
either locally (Fig. 6(a)) or remotely (Fig. 6(b-d)). While VGG
layers should be executed fully remotely in all cases, both
in terms of end-to-end latency and energy consumption (as
shown in Fig 7). From these observations, we argue that
for energy-constrained IoT devices running latency-sensitive
applications, there is often a trade-off between end-to-end
latency and energy consumption. Additionally, although the
cut point selection great impacts the end-to-end latency and
energy consumption, such selection should also be cognizant
of availability of resources in order to be practical.
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Fig. 5: The end-to-end latency and energy consumption of AlexNet running collaboratively between TX2 and edge server
under a given cut point.

Fig. 6: The end-to-end latency and energy consumption of ResNet running collaboratively between TX2 and edge server under
a given cut point.

Fig. 7: The end-to-end latency and energy consumption of VGG running collaboratively between TX2 and edge server under
a given cut point.

IV. SYSTEM MODEL AND PROBLEM FORMULATION

Here, we describe the system model for our edge-native and
real-time DNN inference, along with optimization problem
formulation for cut point selection and resource allocation.
First, we define M = {1, 2, ...,M} as a set of M IoT
devices with each device m running a specific type of DNN
(let us call it type m). The DNN of type m consists of a
set of Im layers, denoted by Im = {1, 2, ..., Im} with the
first layer being the input. We assume that the DNN (or the
related application) requested by m-th IoT device has a strict
performance requirement, i.e., its end-to-end inference latency
can not be greater than τm (measured in seconds for our
analysis). As explained earlier, for our model, the DNN layers
are divided into local-layers and remote-layer under a given
cut point, and the two set of layers are executed sequentially
by the IoT device and edge server respectively. Figure 8
describes EFFECT-DNN framework’s proposed collaborative
DNN inference model where parts of the DNN within the
blue and red boxes signify layers computed in-device and at
edge server respectively. In order to accommodate multiple
heterogeneous IoT devices in terms of the DNN models
being run on them and device resource capacity, the overall
resource provisioning for DNN model computation should
be optimized. The resource provisioning is in terms of on-
demand: i) computation resource allocation from the devices

to execute local layers, ii) network resource allocation for
transmission of intermediate data generated by local-layers,
and iii) computation resource allocation from the edge server
for execution of remote-layers.

Fig. 8: EFFECT-DNN system architecture with collaborative
DNN inference
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A. DNN Model
For each DNN, we denote the size of output data of layer

i ∈ Im as dm,i (measured in bits) and the computational
complexity of that layer as xm,i (measured in terms of the
number of CPU cycles or simply the CPU time). As layers
before a given cut point (i.e., layers 1 to i) are executed locally
on IoT devices (i.e., local-layers)) and layers after (i.e., layers i
to Im) are executed remotely on the edge server (i.e., remote-
layers), the accumulated computational complexity of local-
layers and remote-layers are defined as:

XIoT
m,i =

i∑
j=1

xm,j , X
Edge
m,i =

Im∑
j=i+1

xm,j

Important to mention that there exist two extreme cases
where the layers are executed either entirely on IoT device
or entirely on the edge server, called local-only and remote-
only strategies respectively. Correspondingly, i = 1 refers
to remote-only inference and i = Im refers to local-only
inference. Given Im possible cut points on the DNN, we define
pm,i =< XIoT

m,i , dm,i, X
Edge
m,i > as the DNN execution profile

for the collaborative inference of the m-th IoT device selecting
cut point i with Pm = {pm,i|i ∈ Im} being the set of available
execution profiles. Intuitively, the IoT devices should select the
cut point that minimizes their transmission cost compared to
remote-only inference, i.e., argmaxi(dm,1 − dm,i). However,
in practice, they also need to pay attention to the cost of the
local-layers (local latency and energy consumption). There-
fore, an optimal cut point is the outcome of the ideal trade-off
between the local and transmission costs.

In this work, we allow the IoT devices (i.e., applications
running on them) to select the optimal cut point based on
their own requirements. Let us denote om,i ∈ {0, 1} as the
profile selection indicator. If om,i = 1, profile pm,i is chosen;
otherwise om,i = 0. Since each IoT device can only choose
one profile, we have the following constraint

Im∑
i=1

om,i = 1, ∀m ∈M (1)

B. Communication Model
We assume that IoT devices are connected to the edge

server using access point (AP) or base stations (BS) depending
on the type of wireless communication. The AP has a fixed
amount of network resources, denoted by B. In this paper,
we do not limit the format of resources and thus B can
be manifested through either bandwidth (measured in MHz),
or number of channels/sub-channels, or simply point to the
data rate (in Mbps). Irrespective of such manifestation, in our
model the network resource can be partitioned and allocated
to IoT devices. We define bm as the ratio of network resource
allocated to the m-th IoT device with the constraint:

M∑
m=1

bm = 1 (2)

Due to the heterogeneity in channel noise, signal fading,
transmission power, and other radio resource characteristics,
our model acknowledges the reality that different IoT devices
can have different network delay between the device and the
edge server even when the devices are allocated the same
amount of network resources. For a given DNN execution

profile pm,i =< XIoT
m,i , dm,i, X

Edge
m,i >, the network delay is

modeled as a function of bm and data size dm,i, such that,

TData
m,i =

dm,i

αmbm,i ×B

where αm is a coefficient related to channel noise and the
transmit power of IoT devices. The energy consumption
caused by data transmission can be computed as:

EData
m,i = βm,i × TData

m,i

where βm,i is the transmission power used in the transmission
period. The transmission power may vary based on the edge
system’s adoption of the underlying communication technolo-
gies, such as LTE and WiFi.

C. Local Computation Model

In our model, we do not limit the format of IoT devices’
computation resources, as the implementation of computation
resource allocation can be manifested in different ways, such
as, CPU frequency allocation [13], or CPU core alloca-
tion [23], or GPU time allocation [26]. As the IoT devices
perform the computation of local-layers (i.e., from layer 1
to im), the local computation time with f IoT

m ∈ (0, F IoT
m ]

being the available CPU speed (i.e., CPU cycles per second)
of device m, can be expressed as:

T IoT
m,i =

XIoT
m,i

f IoT
m

(3)

Fig. 9: Power consumption characteristics of Jetson TX2

Typically for IoT devices, the energy consumption is closely
related to their computation speed. In general, energy con-
sumption increases with CPU frequency and the magnitude of
such increase may vary between different types of IoT devices.
As an exemplary scenario, in Fig. 9, we show the power con-
sumption characteristics of NVIDIA Jetson TX2 (in Watts or
Joules/s) when it executes the DNN and when it remains idle
albeit being power on. With these two power characteristics,
we can compute the power consumption that is caused by
only the inference part (shown in blue in Fig. 9). For TX2,
the inference-only power consumption characteristics thus can
be fitted to ϵm,i = κ(f IoT

m )2, where κ is a constant related to
the chip architecture. Consequently, the actual energy spent by
IoT computation can be computed as:

EIoT
m,i = ϵm,i × T IoT

m,i

where EIoT
m,i is measured in Joules.
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D. Server Computation Model
We assume that the edge server has a fixed amount of com-

putational resources, denoted by C. Similar to the case of IoT
devices, our model is agnostic of edge server’s computation
resource format. We define cm as the ratio of computational
resources that is allocated to the IoT device m. Thus, compu-
tational resource allocation follows this constraint:

M∑
m=1

cm = 1 (4)

Therefore, the server computation time is computed by:

TEdge
m,i =

XEdge
m,i

cm × C
(5)

It is important to mention that in our work we assume the
edge servers to be connected to continuous power source and
thus server’s energy consumption is ignored for the resource
allocation optimization problem.

E. Problem Formulation
Since real-world DNN inference and data transfer can gen-

erate some randomness in the end-to-end latency and devices’
energy consumption, we formulate a long-term optimization
problem that aims to minimize the long-term average energy
consumption of all connected IoT devices in the service area
and to ensure that the long-term average end-to-end latency
is no greater than threshold τm. We define time epochs as
T = {1, 2, ..., T} and add symbol t as one of the subscripts
of the previously introduced parameters to denote their actual
value at a certain time epoch. With such model parameters
and assumptions, the end-to-end latency of m-th IoT device
in epoch t can be expressed as:

Lm,t =

Im∑
i=1

om,i,t × (T IoT
m,i,t + TData

m,i,t + TEdge
m,i,t ) (6)

and the average energy consumption of all IoT devices as:

Et =
1

M

M∑
m=1

Im∑
i=1

om,i,t × (EData
m,i,t + EIoT

m,i,t) (7)

Thus, the proposed problem is stated as follows:

min
c,b,o,fIoT

1

T

T∑
t=1

Et

s.t. C1:
M∑

m=1

bm,t = 1

C2:
M∑

m=1

cm,t = 1

C3:
Im∑
i=1

om,i,t = 1, ∀m ∈M

C4: f IoT
m,t ∈ (0, F IoT

m ]

C5:
1

T

T∑
t=1

Lm,t ≤ τm,∀m ∈M

C6: om,i,t ∈ {0, 1} (P1)

V. SOLUTION STRATEGY

Problem (P1) is a dynamic Mixed-Integer Nonlinear Pro-
gramming (MINLP) problem which is NP-hard. In this paper,
we first use Lyapunov optimization to address the dynamic
nature of problem (P1). Afterwards, we apply decomposition
that decouples the problem of cut point selection (i.e., integer
variable selection) from the problem of resource allocation
(i.e., continuous variable selection). The solution to prob-
lem (P1) is obtained by alternatively solving the two individual
sub-problems.

A. Lyapunov optimization
For the Lyapunov optimization, we create a virtual queue

to alternatively express long-term constraint C5 and the long-
term objective function of P1. Since during T optimization
epochs, the long-term average end-to-end latency is no greater
than threshold τm, we consider τm as the expected departure
and arrival (i.e., virtual) in each epoch. Based on the difference
between these two, a virtual queue is constructed. We define
Qm,t ≥ 0 as the length of the virtual queue at epoch t,
therefore, the queue dynamics is given by:

Qm,t+1 =

[
Qm,t + (Lm,t − τm)

]+

(8)

Based on the evolution of the virtual queue, the queue
length increases if the current end-to-end latency is greater
than threshold τm; otherwise, the queue decreases. Therefore,
the queue length specifies the distance to the latency τm,
which indicates how strictly the long-term constraint C5 in
problem P1 is satisfied. Now, an equivalent expression for C5
is needed to shorten and stabilize the virtual queue for each
IoT device.

In order to stabilize the queue, we need to find a policy
that can balance the stability of the queue and the energy con-
sumption of IoT devices. We introduce the quadratic Lyapunov
function and the Lyapunov drift function as:

L(Qm,t) =
1

2
(Qm,t)

2

and

∆(Qm,t) = E
[
L
(
Qm,t+1

)
− L

(
Qm,t

)
|Qm,t

]
where ∆(Qt) measures the difference in L(·) between two
adjacent epochs, i.e., t and t+1. Subsequently, such difference
can be computed as:

L
(
Qm,t+1

)
− L

(
Qm,t

)
=

1

2
(Qm,t+1)

2 − 1

2
(Qm,t)

2

≤ C +Qm,t ×
(
Lm,t − τm

)

where C = 1
2

(
Lm,t

)2

+ 1
2

(
τm

)2

and therefore:

∆(Qm,t) ≤ C + E
[
Qm,t ×

(
Lm,t − τm

)
|Qm,t

]

where C is bounded to
(
Lm,t

)2

.

Thus, problem (P1) is transformed into multiple determin-
istic and identical per-epoch problems that opportunistically
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minimize expected values. This transformed problem can be
stated as:

min
c,b,o,fIoT

V × Et +
1

M

M∑
m=1

Qm,t ×
(
Lm,t − τm

)

s.t. C1:
M∑

m=1

bm,t = 1

C2:
M∑

m=1

cm,t = 1

C3:
Im∑
i=1

om,i,t = 1

C4: f IoT
m,t ∈ (0, F IoT

m ]

C5: om,i,t ∈ {0, 1} (P2)

where V is a factor that balances the trade-off be-
tween energy consumption and end-to-end latency e.g.,
([O(1/V ), O(V )]) [9]. The value of V needs to be properly
selected based on the system objective/preference (i.e., energy-
sensitivity, latency-sensitivity, or a combination of the two).
However, problem (P2) is still non-trivial to solve because of
its MINLP nature. It is well known that solving such NP-hard
problems with closed-form expressions is very challenging. To
solve problem (P2) efficiently, we decompose problem (P1)
into two sub-problems: ‘Resource allocation’ and ‘Cut point
selection’, respectively. The descriptions of the two sub-
problems are stated as follows:

1) Resource allocation: For a given set of selected execution
profiles i.e., om,i,t, ∀m ∈ M, the resource allocation
problem is reduced to a convex optimization problem,
which is solved by a Lagrangian method.

2) Cut point selection: When resource allocation strategies
are given, the selection of cut point (i.e., execution
profile) is a 0-1 integer linear programming problem. In
this paper, a heuristic algorithm is proposed to solve the
selection of cut point.

B. Resource Allocation

Once the execution profile om,i,t is selected, problem (P2)
is reduced to the following resource allocation problem:

min
c,b,fIoT

V × Et +
1

M

M∑
m=1

Qm,t ×
(
Lm,t − τm

)

s.t. C1:
M∑

m=1

bm,t = 1

C2:
M∑

m=1

cm,t = 1

C4: f IoT
m,t ∈ (0, F IoT

m ] (P3)

We first seek to prove that problem (P3) is strictly convex
w.r.t resource variables (i.e., cm,t, bm,t, f

IoT
m,t ). To this end,

we define the following Lagrange function of problem (P3):

L = V × 1

M

M∑
m=1

(EData
m,i,t + EIoT

m,i,t)

+
1

M

M∑
m=1

Qm,t ×
(
Lm,t − τm

)

+wb × (

M∑
m=1

bm,t −B)

+wc × (

M∑
m=1

cm,t − C)

(9)

where variables wb and wc are Lagrangian multiplier that are
associated with network and computational resource allocation
constraints, respectively. With the help of L, the following
optimal allocation strategies are derived.

1) Edge Server Computational Resource Allocation: For
edge server’s computational resource allocation cm,t, we have:

▽L2

▽cm,tcn,t
=

{
1
M ×Qm,t ×

XEdge
m,i

C × 2
(cm,t)3

m = n

0 m ̸= n

Here, the Hessian matrix H = ( ▽L2

▽cm,tcn,t
)M×M is symmet-

ric and positive definite [27], making problem (P3) strictly
convex w.r.t variable cm,t. Based on KKT conditions [13],
the optimal computational resource allocation c∗m,t can be
obtained by solving the following expression:

▽L
▽cm,t

= − 1

M
×Qm,t ×

XEdge
m,i

C
× 1

(cm,t)2
+ wc = 0

The optimal c∗m,t is:

c∗m,t =

[ 1
M ×Qm,t ×XEdge

m,i

C × wc

] 1
2

Since
M∑

m=1
cm,t = 1 and wc is a shared variable among all

IoT devices, we have:

c∗m,t

c∗n,t
=

[
Qm,t ×XEdge

m,i

Qn,t ×XEdge
n,i

] 1
2

(10)

which signifies that the allocation of computational resources
can only be determined by the computation requirement of
remote-layers and the current queue length. More specifically,
c∗m,t is proportional to the square root of the product of these
two parameters. Therefore, we can express:

c∗m,t =


√

Qm,t×XEdge
m,i

M∑
n=1

√
Qn,t×XEdge

n,i

1 ≤ i < Im

0 i = Im

(11)

2) Device-Edge Network Resource Allocation: Similarly,
for network resource allocation bm,t between the IoT device
and edge server, we have:

▽L2

▽bm,tbn,t
=

{
1
M ×

dm,i

αm
× 2

(bm,t)3
× (Qm,t + V βm,i) m = n

0 m ̸= n

Since this Hessian matrix H = ( ▽L2

▽bm,tbn,t
)M×M is also

symmetric and positive definite, problem (P3) is also strictly
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convex w.r.t allocated network resource ratio bm,t. Similar to
the previous analysis, the optimal network resource allocation
b∗m,t can be obtained (based on the KKT condition) by solving
the following expression:

▽L
▽bm,t

= − 1

M
× dm,i

αm × (bm,t)2
× (Qm,t + V βm,i) +wb = 0

with optimal b∗m,t being:

b∗m,t =

[
1

M
× dm,i × (Qm,t + V βm,i)

αm × wb

] 1
2

Since
M∑

m=1
bm,t = 1 and wc is a shared variable among

all IoT devices, the allocation of network resource ratio is
determined by the data transmission requirement dm,i, current
queue length Qm,t, power consumption βm,i, and the network
coefficient am of IoT devices. Therefore, we can express:

b∗m,t =


√

1
αm

×dm,i×(Qm,t+V βm,i)

M∑
n=1

√
1

αn
×dn,i×(Qn,t+V βn,i)

1 ≤ i < Im

0 i = Im

(12)

3) Local Computation Resource Allocation: When IoT
device m selects om,Im,t = 1 (local-only inference), it should
use a computation speed that would just meet its end-to-
end latency requirement due to the underlying objective of
energy saving. In this case, the optimal computation speed
(as a manifestation of compute resource) which is also the
minimum computation speed can be expressed as:

f IoT
m,t

∗
= min{

XIoT
m,i

τm
, F IoT

m }

Therefore, the entire DNN can be executed locally if and
only if the computation requirement of the entire DNN satisfies
XIoT

m,i ≤ F IoT
m ×τm. Based on aforementioned discussions, the

minimum energy consumption w.r.t. the end-to-end latency
constraint (C5) can be computed by:

Em,Im,t
∗ = κ× (

XIoT
m,i

2

τm
) (13)

For this analysis, Eq. (13) gives the baseline for energy
consumption, i.e., the IoT device would like to select om,i,t =
1 and i < Im (remote-only or DNN partition) if and only if
its energy consumption can be less than Em,Im,t

∗ or the it
cannot finish executing the entire DNN within τm amount of
time even using its maximum computation speed. In the latter
case, its energy consumption would inevitably be greater than
the baseline Em,Im,t

∗. As for the optimal computation speed
with DNN partitioning decisions (om,i,t = 1 and 1 < i < Im),
we have:

▽L2

▽f IoT
m,t f

IoT
n,t

=

{
1
M ×Qm,t ×XIoT

m,i × 2
(fIoT

m,t )
3 m = n

0 m ̸= n

Since this Hessian matrix H = ( ▽L2

▽fIoT
m,t f

IoT
n,t

)M×M is sym-
metric and positive definite, problem (P3) is also strictly
convex w.r.t. local computation speed f IoT

m,t . The optimal
f IoT
m,t

∗ can be obtain at ▽L
▽fIoT

m,t
= 0, which is stated as:

▽

▽f IoT
m,t

= −Qm,t ×XIoT
m,i ×

1

(f IoT
m,t )

2
+ V κXIoT

m,i = 0 (14)

Algorithm 1: Cut Point Selection Algorithm
1 Initial a set of execution profiles:
2 O(t = 0) = {om,Im,t=0 = 1, om,i,t=0 = 0|∀m ∈
M,∀i ∈ Im\{Im}}

3 while t ∈ T do
4 Randomly select an IoT device m ∈M
5 for i ∈ Im do
6 Set om,i,t = 1, and om,j,t = 0,∀j ∈ Im\{i}
7 Update resource allocation based on Eq. (11),

Eq. (12) and Eq. (15)
8 Compute utility Um,i,t

9 i = argmaxi∈Im
Um,i,t

10 Update O(t):
11 set om,i,t = 1 , and om,j,t = 0,∀j ∈ Im\{i}
12 Update resource allocation based on Eq. (11),

Eq. (12) and Eq. (15)
13 Run DNN inference and observe end-to-end

latency Lm,t,∀m ∈M
14 Update queue length based on Eq. (8)
15 t← t+ 1

By solving Eq. (14), we get:

f IoT
m,t

∗
=


min{

[
Qm,t

V κ

] 1
2

, F IoT
m } 1 < i < Im

0 i = 1

min{X
IoT
m,i

τm
, F IoT

m } i = Im

(15)

C. Cut Point Selection

Once the optimal resource allocation strategies are obtained
for a given set of selected execution profiles, we next aim
to address the problem of cut point selection that determines
the execution profile. Since (P1) is a long-term optimization
problem, the solution should be adapted based on observation.
Moreover, the solution needs to be generated quickly so that
the execution of actual DNN inference can commence. Based
on these two requirements, we propose a heuristic algorithm
to solve the selection of cut point during the run time. The
proposed algorithm is explained in Alg. (1).

In Algo. 1, we first initialize a set of execution profiles
O(t = 0), where all IoT devices select local-only inference
strategy, i.e., i = Im (line 2). Afterward, for each optimization
epoch, we randomly select an IoT device m ∈ M (Line 4).
Then, by fixing the cut points of other IoT devices, we let this
IoT device select its cut point that maximizes its utility Um,i,t

(Line 5-9). Finally, with the updated set of execution profiles
O(t), the edge server performs resource allocation based on
Eq. (11), Eq. (12), and Eq. (15) when all DNN inferences
start executing using the allocated resources. Based on the
observed end-to-end latency Lm,t,∀m ∈M, the queue length
of IoT devices is updated according to Eq. (8) (Line 10-14).
This process of cut point selection is motivated by game-based
solutions proposed in [28], [29], and the utility function (line
8) is defined as follows:

Um,i,t = −
(
V × Et +

1

M

M∑
m=1

Qm,t ×
(
Lm,t − τm

))
which reflects the objective function problem (P2).
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Fig. 10: Hardware testbed setup for EFFECT-DNN evaluation

VI. EVALUATION

In this section, we discuss EFFECT-DNN’s performance
using both hardware testbed based experimental evaluation and
simulation evaluation.

A. Testbed Setup and Experimental Results
The overall hardware testbed setup for the experimental

evaluation is shown in Fig. 10. For this experiment, we have
3 NVIDIA Jetson TX2 devices (viz., ‘Aruna Ali’, ‘Valentina
Tereshkova’, and ‘Malala Yousafzai’) mimicking IoT devices
and 1 Dell Poweredge desktop with 16 cores and CPU fre-
quency 3.2 GHz (viz., ‘Grace Hopper’) mimicking edge server.
A TP-link router is used to create the network connections.
Specifically, ‘Grace’ is connected to the router via high speed
Ethernet cable, while the TX2s are wirelessly connected to
the router. Due to the high speed connectivity between ‘Grace’
and the router, the network delay between them is ignored and
only wireless delay for the TX2s are considered. To implement
network resource allocation, we utilize Wondershaper [30] to
tune the data rate between each TX2 and ‘Grace’. On ‘Grace’,
we implement the controller that runs Algo. (1) and deploys
a DNN executor for ‘Aruna’, ‘Valentina’, and ‘Malala’. In
this experiment, we consider CPU cores as manifestation of
computational resources, i.e., based on the value of cm,t, a
discrete and non-overlapping set of CPU cores are assigned
to the corresponding DNN executor. To configure EFFECT-
DNN online resource allocation, we use taskset [31] to set
and retrieve the CPU affinity of a running executor. In each
optimization epoch (starting with t = 0), we let the TX2s (i.e.,
their executors) run a specified DNN collaboratively 20 times
based on selected cut point (given by Algo. (1)). In particular,
‘Aruna’ runs AlexNet (with τ = 400 ms), ‘Valentina’ runs
ResNet (with τ = 600 ms), and ‘Malala’ runs VGG (with
τ = 750 ms). At the same time, we collect the energy
consumption and end-to-end latency of the TX2s during this
period, which in turn is sent to the controller to update
the resource allocation and cut point selection for the next
optimization epoch (i.e., t+1). We evaluate and compare the
EFFECT-DNN’s partitioning strategy’s performance (denoted
by P ) against remote-only based inference (denoted by R)
under different network resource availability conditions.

Fig. 11: Energy consumption and end-to-end latency of IoT
devices with acceptable data rate (24 Mbps)

Fig. 12: Energy consumption and end-to-end latency of IoT
devices with low data rate (12 Mbps)

i) Under low data rate (24 Mbps) conditions: We first ex-
amine the average energy consumption and end-to-end latency
characteristics of the TX2s when the total network upload
speed is fixed at 24 Mbps (for 4G like scenarios) in Figs. 11(a)
and 11(b). We observe that both performance metrics become
stable after few optimization epochs. Algo. (1) running on the
controller tells ‘Aruna’ (running AlexNet) to select the cut
point i = 3 and lets the ‘Valentina’ and ‘Malala’ run all their
DNN layers remotely (i.e., ResNet and VGG, respectively). In
Figs. 11(a) and 11(b), EFFECT-DNN partitioning (P ) achieves
9.2% energy savings and 20.7% lower end-to-end latency
compared to remote-only based solution (R). Such results
clearly highlight the benefits of EFFECT-DNN’s collaborative
DNN inference. On the other hand, the results also show the
benefit of EFFECT-DNN’s resource allocation in stabilizing
the end-to-end latency (i.e., the length of the virtual queue).
This is evident from Fig. 11(b), where the average end-to-end
latency of all TX2 converge close to their latency requirements
(denoted the dashed line) after a few optimization epochs.

ii) Under very low data rate (12 Mbps) conditions:
Figs. 12(a) and 12(b) demonstrate the TX2s’ average energy
consumption and end-to-end latency characteristics when the
total network upload speed is fixed at even lower 12 Mbps. In
this case, all TX2s are unlikely to meet their end-to-end latency
requirements as shown in Fig. 12(b) due to high network
delay and limited on-board computation abilities. By running
Algo. (1), controller tells ‘Aruna’ (running AlexNet) to select
the cut point i = 8 and let ‘Valentina’ and ‘Malala’ run all their
DNN layers remotely (ResNet and VGG, respectively). These
results are consistent with our previous intuitions about the
characteristics of DNN layers in Section III-A. For AlexNet,
by choosing the cut point i = 8, the data is reduced by
more than 90%. This justifies such cut point selection when
the TX2s are faced with very low data rates. In the results,
although the average energy consumption is increased by
2.0%, the average end-to-end latency is reduced by 37.1%.
Such preference over energy consumption and end-to-end
latency is carried out by the weighted objective function
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Fig. 13: The role of balance factor V for the trade-off between
energy consumption and end-to-end inference latency

that we proposed in problem (P2). Overall, the above results
demonstrate the effect of available network resource on the
overall system performance as it acts as a bottleneck for
the end-to-end inference latency. Also, for DNNs, such as
VGG and ResNet, partitioning is not a good option as these
DNNs are mo are computationally intensive and consequently
require considerable local computation in order to reduce data
transfer requirements. This in turn incurs significant energy
consumption from the device and thus the entire DNNs are
offloaded to the server with partitioning.

B. Simulation Results
In this subsection, we evaluate EFFECT-DNN’s perfor-

mance using a realistic simulation with large scale IoT devices
running DNN inference. The devices’ simulation setup mimics
the hardware configurations of TX2, e.g., maximum CPU
frequency and energy consumption parameters. The server’s
computational resources are measured by the number of CPU
cores with the CPU frequency is set to 3.2 GHz. As for DNN
types and inference latency requirements, we assume the same
three DNNs, viz., AlexNet (τ = 200 ms), ResNet (τ = 300
ms) and VGG (τ = 350 ms) and their overall ratios to be 50%,
30%, and 20% of all workflows running in the simulation,
respectively. Through this simulation, we seek to observe: i)
the impact of balance factor proposed in problem (P2), ii)
the impact of data rate, and iii) the impact of number of IoT
devices. The overall objective of this simulation is to test the
schedulability and scalability of EFFECT-DNN.

i) Impact of balance factor V : Previously in problem (P2),
we defined a balance factor V (> 0) that seeks to strike a trade-
off between average device energy consumption and end-to-
end inference latency. The impact of V can be visualized in
Fig. 13 where we use 10 IoT devices with edge resources of
200 Mbps and 32 CPU cores. As shown in Fig. 13, larger
V leads to better energy saving but also results in higher
inference latency. Here, for the given the distribution of DNNs
mentined earlier, the average inference latency requirement
is calculated to be around 260 ms. Based on Fig. 13, we
can can observe that, the balance factor needs to be set at
V ≤ 0.05 in order to satisfy such latency constraint (i.e., C5
in problem (P1)).

ii) Impact of number of IoT devices: The impact of
number of IoT devices on energy consumption and end-to-
end inference latency is shown in Fig. 14. In the case of
a fixed amount of edge resources, as more IoT devices run
collaborative DNN inference, resource competition among
IoT devices becomes more intense. The comparisons be-
tween EFFECT-DNN’s partitioning (P ) and remote-only (R)
strategies show that with a few IoT devices (≤ 20), the
two strategies perform similarly as there are sufficient edge
resources. However, with more IoT devices, the performance

Fig. 14: Device energy consumption and end-to-end inference
latency performance against different number of IoT devices

gap between the two gradually widens with EFFECT-DNN (P )
achieving considerably better performance for both reduction
in device energy consumption (23% to 46%) and decreased
end-to-end latency (15% to 52%).

iii) Impact of available data rate: Finally, Fig. 15
compares the performance of EFFECT-DNN’s collaborative
inference (P ) strategy against two baseline DNN inference
strategies, viz., remote-only (R) and local-only (L), in terms
of offloading decision, average energy consumption, and in-
ference latency with varying available data rate. Intuitively,
IoT devices are more likely to choose DNN partitioning when
more network resources are available, i.e., when total data
rate increases. In Fig. 15(a), the ratio of partitioning decisions
increases from 11% to 36% when available upload data rate
increases from 80 Mbps to 200 Mbps (e.g., under WiFi or
5G LTE conditions). At the same time, with higher data rate,
fewer IoT devices are willing to execute DNNs locally due to
low transmission delay as we can see that local-only decisions
reducing from 41% to 14%. On the other hand, EFFECT-DNN
saves considerable energy consumption compared to remote-
only inference. In Fig. 15(b), DNN partitioning saves more
energy in low data rate scenarios, particularly 32.5% and 7%
energy saving when total data rate is set to 80 Mbps and
200 Mbps, respectively. Also, as shown in Fig. 15(c), our
collaborative DNN inference ensures that all DNN inference
can be finished within the latency requirement constraint of
260 ms. Compared to remote-only inference, EFFECT-DNN
saves 8% to 21% on end-to-end latency.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we analyzed the trade-off between end-to-
end latency of DNN inference and IoT device energy con-
sumption and proposed EFFECT-DNN framework that em-
ploys a novel collaborative DNN inference model. EFFECT-
DNN framework performs cut point selection, computation,
and network resource allocation that jointly optimize latency
and energy consumption. The framework decouples the long
term optimization problem in run-time where the resource
allocation is solved using convex optimization and cut point
selection is carried out using a game-like heuristic. Using real-
world DNNs and a hardware testbed, we evaluated the benefits
of EFFECT-DNN in terms of both energy saving and end-to-
end latency reduction. A simulation is based evaluation is also
conducted to measure the benefit at scale. In future, we seek
to explore other DNN latency optimization techniques, such
as DNN compression and layer pruning and further analyze
the trade-off between inference latency, energy consumption,
and model accuracy.
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Fig. 15: Offloading decision, device energy consumption, and end-to-end inference latency performance against available data
rate
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