
1

ADON: Application-Driven Overlay
Network-as-a-Service for Data-Intensive Science

Ronny Bazan Antequera, Prasad Calyam, Saptarshi Debroy, Longhai Cui,
Sripriya Seetharam, Matthew Dickinson, Trupti Joshi, Dong Xu, Tsegereda Beyene

University of Missouri-Columbia, USA; Cisco Systems, USA
Email: {rcb553, calyamp, debroysa, lcyvb, ssn68, dickinsonmg, joshitr, xudong}@missouri.edu, tbeyene@cisco.com

Abstract—Campuses are increasingly adopting hybrid cloud
architectures for supporting data-intensive science applications
that require “on-demand” resources, which are not always
available locally on-site. Policies at the campus edge for handling
multiple such applications competing for remote resources can
cause bottlenecks across applications. These bottlenecks can be
proactively avoided with pertinent profiling, monitoring and con-
trol of application flows using software-defined networking and
pertinent selection of local or remote compute resources. In this
paper, we present an “Application-driven Overlay Network-as-a-
Service” (ADON) that manages the hybrid cloud requirements
of multiple applications in a scalable and extensible manner by
allowing users to specify requirements of the application that are
translated into the underlying network and compute provisioning
requirements. Our solution involves scheduling transit selection,
a cost optimized selection of site(s) for computation and traffic
engineering at the campus-edge based upon real-time policy
control that ensures prioritized application performance delivery
for multi-tenant traffic profiles. We validate our ADON approach
through an emulation study and through a wide-area overlay net-
work testbed implementation across two campuses. Our workflow
orchestration results show the ADON effectiveness in handling
temporal behavior of multi-tenant traffic burst arrivals using
profiles from a diverse set of actual data-intensive applications.

Keywords—Overlay Network-as-a-Service, Distributed Resource
Orchestration, Data-intensive Applications Multi-tenancy

I. INTRODUCTION

Data-intensive applications in science fields such as bioin-
formatics, climate modeling, particle physics and genomics
generate vast amounts (peta-byte scale) of data that needs
to be processed in some cases with real-time analysis. The
general data processing facilities and specialized compute
resources do not always reside at the data generation sites
on campus, and data is frequently transferred in real-time to
geographically distributed sites (e.g., remote instrumentation
site, federated data repository, public cloud) over wide-area
networks. Moreover, researchers share workflows of their data-
intensive applications with remote collaborators for multi-
disciplinary initiatives on multi-domain networks [1] leading
to a shift in design of advanced network architectures [2].

Current campus network infrastructure policies place strin-
gent security policies at the edge router/switch and install
firewalls to defend the campus local-area network (LAN) from
potential cyber attacks. Such defense mechanisms significantly
impact research traffic especially in the case of data-intensive
science applications whose flows traverse wide-area network
(WAN) paths. This has prompted campuses to build Science
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Fig. 1: Illustration to show the need for application perfor-
mance visibility and control over a wide-area network path

DMZs (de-militarized zones) [1] with high-speed (1 - 100
Gbps) programmable networks to provide dedicated network
infrastructures for research traffic flows that need to be handled
in parallel to the regular enterprise traffic, due to the inflexible
nature of traditional policies.

The advanced network infrastructure components in Science
DMZs that help with high-performance networking to remote
sites and public clouds include: (i) software-defined network-
ing (SDN) based on programmable OpenFlow switches [3],
(ii) RDMA over Converged Ethernet (RoCE) implemented
between zero-copy data transfer nodes [4] for data transport
acceleration, (iii) multi-domain network performance monitor-
ing using perfSONAR active measurement points [5], and (iv)
federated identity and access management using Shibboleth-
based entitlements [6].

In addition to network infrastructure that is being shared,
there is an increasing push to share computational resources
federated across enterprises that are connected with high-
speed network connections. These hybrid cloud-like computa-
tional resources make use of virtualization and management
platforms such as OpenStack [7]. The ability to schedule
resources, including both network and computation in an end-
to-end workflow scenario across multiple domains allows the
completion of complex tasks in a shorter timeframe.

Moreover, when multiple applications that access hybrid
cloud resources compete for the exclusive and limited Science
DMZ resources, the policy handling of research traffic can
cause a major bottleneck at the campus edge router and impact
the performance across applications. Figure 1 illustrates an
actual problem scenario we faced when we initiated a file
transfer as part of a research application (Advanced Data
Transfer Service) using RoCE protocol on the high-speed
overlay between the University of Missouri (MU) and the
Ohio State University (OSU) [8]. As shown, the achieved
transfer time was substantially low compared to the expected
theoretical transfer time. Upon investigation, we discovered
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that our application’s traffic was being rate limited to 2
Gbps at OSU edge router even though the link’s capacity
was capable of 10 Gbps speeds. This highlights two issues:
i) the complexity of inter-domain network configuration is
frequently not known by all parties concerned, thus leading to
inefficient and often problematical network performance and
ii), the RoCE protocol assumes a 10 Gbps link availability
and is highly sensitive to packet loss and, as such, application
performance suffers severely.

As evident from the above mentioned scenario, there is a
need to provide dynamic Quality of Service (QoS) control of
Science DMZ network resources versus setting a static rate
limit affecting all applications. The dynamic control should
have awareness of research application flows with urgent or
other high-priority computing needs, while also efficiently
virtualizing the infrastructure for handling multiple diverse
application traffic flows. The virtualization obviously should
not affect the QoS of any of the provisioned applications.
Further, advanced network services should be easy-to-use
for data-intensive application users, who are frequently not
versed in the underlying infrastructure resource architecture
and configuration.

Our work in this paper aims to solve the network path
provisioning problem to meet unique needs of data-intensive
applications in an federated resource environment, while mak-
ing network programmability related issues a non-factor for
the users. More specifically, we present a new “Application-
Driven Overlay Network-as-a-Service” (ADON) architecture
to intelligently provision on-demand network resources by
performing a direct binding of applications to infrastructure.
Additionally, the path selection for the network is based upon
a cost-calculation dependent on the available network and
compute resource requirements for a particular application.

The novelty and contributions of our work are as follows: we
detail how “network personalization” can be performed using
a concept of “custom templates” to catalog and handle unique
profiles of application workflows. We also detail a multi-
tenant architecture for real-time policy control of an “Overlay
Network-as-a-Service” through a “Network Flowvisor - Virtual
Tenant Handler” (NF-VTH) and “Compute Hypervisor - Vir-
tual Tenant Handler” (CH-VTH). Both leverage awareness of
the overall “load state” at the campus edge, and the individual
application “flow state” using software-defined performance
monitoring integration within the overlay network paths. Using
the concepts of custom templates, NF-VTH and CH-VTH,
ADON can manage the hybrid cloud requirements of multiple
applications in a scalable and extensible manner. It ensures
predictable application performance delivery by scheduling
transit selection (choosing between regular Internet or high-
performance Science DMZ paths), selection of compute pro-
cessing in terms of local or remote location dependent upon the
availability of computation resources, and traffic engineering
(e.g., rate limit queue mapping based on application-driven
requirements) at the campus-edge. We highlight the application
of our ADON approach in the context of several real-time
data-intensive applications, and an exemplar data-intensive
knowledge based application.

The remainder paper is organized as follows: Section II
presents related work. Section III describes the network per-
sonalization through custom templates for exemplar appli-
cation workflows. Section IV details ADON’s architecture
featuring NF-VTH and CH-VTH. Section V presents ADON-
orchestrated network and compute resource allocation algo-
rithms. Section VI describes ADON effectiveness evaluation
with an emulation study and a real-testbed implementation.
Section VII concludes the paper.

II. RELATED WORK

There is a need for simple and scalable end-to-end network
architectures and implementations that enable applications to
use wide-area networks most efficiently; and possibly control
intermediate network resources to meet Quality of Service
(QoS) demands [10]. A number of approaches, such as [11]
and [12] have been developed that allow applications to
bypass campus firewall rulesets by adopting programmable
management technologies such as SDN. In [11], the authors
describe a protocol implementation as part of a commu-
nication middleware offering flow control, connection man-
agement, and task synchronization, thereby maximizing the
parallelism of RDMA operations. Whereas, authors in [12]
propose an incrementally deployable Data-Centric Network
Architecture (DCNA) between the application and transport
layers to efficiently connect these layers and support mobility,
multi-homing, and ease the adoption of new applications and
networking technologies. Legacy data transfer methods have
fundamental scalability issues [13] with regards to data transfer
to the cloud for processing and data archival. Existing studies
such as [14] recognizes similar application-driven network
virtualization issues at network-edges, and have proposed new
architectures based on SDN principles. In [14], application
level requirements are programmed using an inter-domain
controller implemented using OpenFlow [3], and a custom-
built extensible session protocol is used to provide end-to-end
virtual circuits across campus DMZs.

Although these schemes propose novel cyberinfrastructure
deployment strategies for efficient resource management, data-
intensive application QoS requirements-specific resource man-
agement techniques were lacking. Studies such as [15]–[18]
are among a few that address the data-intensive applications’
QoS requirement issues. Among these, in [15], a work closely
related to ours, QoS parameters are programmed dynamically
based on high-level requirements of different kinds of appli-
cation traffic. The authors argue (similar to our argument in
context of Figure 1) that there is a need for dynamic QoS
configuration based on application needs, and current practice
of manual configuration by network administrators hinders
application performance. In [16], the authors propose a new
controller design for QoS based routing of multimedia traffic
flows. In [17], QoS requirements are discussed in an SDN
environment for end-to-end scientific applications. Many QoS
aware automated network convergence schemes are proposed
for a purely cloud computing context [15]. Authors in [18]
propose new methods for the estimation of execution time
when distributed computing resources are utilized in a dynamic
provisioning setup.

There are some notable works such as [19]–[24] for dy-
namic resource provisioning in cloud environment that take
into consideration the diverse resource requirements of data-
intensive applications. In particular, authors in [19] have
identified that flexible resource management is a key factor
in any data center for efficient provisioning of resources.
Hence, orchestration of hybrid cloud infrastructure requires
fine-grained control of resources, especially when resource
discovery and reservation are integral in the provisioning
process. In this context, cloud infrastructure scheduling plays
an important role during on-demand and dynamic provisioning
of computing resources [20] in single or large heterogeneous
multi-cloud infrastructures [21]. Authors in [22] and [23]
consider implications of high-performance computing (HPC)
and cloud computing paradigms for data-intensive applications
in order to provide Infrastructure-as-a-Service for data process-
ing workflows in public clouds. In [22], the authors connect
high-bandwidth radar sensor networks with computational and
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storage resources in a cloud platform to orchestrate an end-
to-end data-intensive application. Authors in [23] propose
advanced virtualization techniques for a HPC cloud platform
by enabling advanced accelerators such as GPUs and high-
speed, low latency communication through InfiniBand between
virtual machines. In [24], the issues surrounding the automatic
deployment of HPC and database applications in a hybrid
cloud environment are discussed.

In contrast to these above works, using SDN for “person-
alization” as discussed in our preliminary work [25] within
hybrid cloud computing architectures for on-demand and
concurrent application handling for accelerated performance
is still under-explored. Network overlays for data-intensive
applications with real-time or urgent computing require more
fine-grained control over network resources. This is because
the main goal of such application support involves fast and
reliable movement of data-intensive transfers with guaranteed
QoS based upon the specific requirements of the application
prioritization algorithm driven by the priorities. Our work in
this paper is focused on the requirements and challenges at
the campus-edge. We uniquely handle Science DMZ resources
and related high-performance network configurations (e.g., rate
limit queue mappings) that need to be controlled in real-time
for meeting hybrid cloud computing needs of diverse data-
intensive application flows.

III. NETWORK PERSONALIZATION FOR APPLICATIONS
WITHIN ADON

As discussed previously, handling diverse data-intensive ap-
plication requirements at the campus edge can be challenging
due to the complexity of their cyberinfrastructure needs. In
order to address such challenges, efficient resource manage-
ment through “application performance visibility and control”
within the provisioned resources for individual applications
is fundamental. This can be achieved by simple and scalable
resource provisioning based on incremental experiences stored
in templates for its reuse and/or customization according to
new applications’ requirements. Thus, our approach involves
maintaining a catalog of application profiles in terms of
Resource Specifications (RSpecs) and Quality Specifications
(QSpecs). In addition, policies should be determined for the
extent to which programmable capabilities at the campus edge
can be used to “personalize” the network overlay setup based
on: (a) the individual application RSpecs and QSpecs, and
(b) the temporal behavior of multi-tenant traffic burst arrivals.

In the following subsections, we first describe the concept
of custom templates that can be used within ADON to develop
a catalog of application profiles. Following this, we apply the
custom template concept for exemplar data-intensive applica-
tion workflows with diverse QoS requirements such as Real-
Time applications and Knowledge Base applications.

A. Custom Templates
Our concept of custom templates within ADON is similar

to the best practices such as Amazon Web Services (AWS)
Machine Image (AMI) [26] and RSpecs in the NSF-supported
Global Environment for Network Innovations (GENI) [27].
Studies such as [28] also suggest the value of using of tem-
plates that can allow for composing and executing workflow
pipelines for data-intensive applications in a reusable manner.

Figure 2 shows how custom templates can be used as part
of the sequential steps of ADON auto-orchestration during on-
demand resource provisioning for a data-intensive application
flow that needs an overlay network path. The details of the
steps in ADON orchestration are as follows: First, a researcher

Fig. 2: Sequential workflow of ADON during on-demand
resource provisioning for a data-intensive application flow

of a data-intensive application can securely request the ADON
by authenticating with a Federated Identity and Access Man-
agement (Federated IAM) system that uses Shibboleth-based
entitlements [6]. Such Federated IAM systems are necessary
to handle multi-institutional policy specifications pertaining
to cases such as: (i) How can a data-intensive application
user at Campus A be authenticated and authorized to reserve
HPC resources or other scientific instruments at a remote
Campus B? (ii) How can a OpenFlow controller at one campus
be authorized to provision flow spaces within a backbone
network in an on-demand manner? (iii) Who can subscribe
to the performance measurements related to a data-intensive
application to monitor workflow status and track/troubleshoot
any bottleneck anomaly events?

Subsequently, the researcher provides his/her data intensive
application handling specifications through a simple and in-
tuitive application dashboard mashup. The specifications can
include details such as destination host (i.e., remote collab-
orator or remote instrument site) and application type (e.g.,
remote interactive volume visualization, video streaming, file
transfer or compute resource reservation). Next, the application
specifications are subsequently matched to a custom template
that corresponds to the requested application type for resource
discovery/reservation of the necessary compute and network
resources.

The custom template can then be pre-configured by a
“Performance Engineer” to apply specific resource descriptions
and associated campus policies that can be interpreted by a
network flowvisor (i.e., proxy for OpenDaylight, POX [29]
or Ryu [30]) to instantiate flows on intermediate OpenFlow
switches, and by a compute hypervisor to instantiate virtual
machines within a data center. We refer to a Performance
Engineer as a person who serves as the primary “keeper”
and “helpdesk” of the Science DMZ equipment, and the
success of this role is in the technician’s ability to augment
traditional System/Network Engineer roles on campuses and
serve high-throughput computing needs of researchers. In
addition to helping the Performance Engineer with the resource
configuration, custom templates also help in configuring real-
time network monitoring within the overlay network path
to provide the performance visibility to define triggers for
dynamic resource adaptation. Moreover, performance bottle-
necks such as those observed in Figure 1 can be avoided
through use of custom templates, and in exception cases where
end-to-end QoS configuration is not possible, bottlenecks can
be relatively more easily discovered and overcome. Manual
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(a) Neuroblastoma application (b) RIVVIR application

(c) GENI classroom experiments application (d) ElderCare-as-a-Service application

Fig. 3: Data movement scenarios of various data-intensive applications that need network personalization

interventions that require the Performance Engineer attention
can be minimized in cases where custom templates can be
automatically re-applied through user ‘self-service’, if a similar
specification was successfully handled previously.

B. Custom Templates for Real-Time Applications
1) Neuroblastoma Data Cutter Application: As shown in

Figure 3(a), the workflow of the Neuroblastoma application [8]
consists of a high-resolution microscopic instrument on a local
campus site (at MU) generating data-intensive images that
need to be processed in real-time to identify and diagnose
Neuroblastoma (a type of cancer) infected cells. The pro-
cessing software and HPC resources are available remotely
at OSU, and hence images from MU need to be transferred
in real-time to the remote OSU campus. To handle the large
scale data transfers, the application relies on advanced file
transfer protocols such as RoCE and GridFTP technologies
that support parallel TCP flows between the two campuses.
A corresponding Neuroblastoma application template can be
given as: (i) RSpec - high-resolution microscope instrument
that is connected to remote GPU and storage resources, and
(ii) QSpec - high flow throughput with no packet loss and
high flow priority to provide fast-enough application response
time for a histopathological evaluator.

2) Remote Interactive Volume Visualization Application
(RIVVIR): As shown in Figure 3(b), the RIVVIR applica-
tion [31] at OSU deals with real-time remote volume visu-
alization of 3D models of small animal imaging generated
by MRI scanners. When such an application needs to be
accessed for remote steering and visualization by thin-clients,
the network path between the two sites should have as much
available bandwidth as possible. A corresponding RIVVIR
application template can be: (i) RSpec - HPC compute with
GPU and storage resources to process high resolution images at
research lab, and (ii) QSpec - low latency/jitter flow with high
bandwidth and medium flow priority to help with interactive
analysis with a thin-client.

3) GENI Classroom Lab Experiments: As shown in Fig-
ure 3(c), a class of 30 students conducting lab experiments
at MU in a Cloud Computing course [29] require resources
across multiple GENI racks. As part of the lab exercises,
multiple virtual machines need to be reserved and instantiated
on remotely located GENI racks. There can be sudden bursts
of application traffic flows at campus edge router, especially

the evening before the lab assignment submission deadline. A
corresponding GENI Classroom application template can be:
(i) RSpec - virtual or physical remote machines with UNIX
distribution, and (ii) QSpec - low packet loss and medium
flow priority to allow students to finish the lab exercises.

4) ElderCare-as-a-Service Application: As shown in Fig-
ure 3(d), the ElderCare-as-a-Service application [29] consists
of an interactive video streaming session between a therapist
on MU campus and a remotely residing elderly patient at a
Kansas City residence for performing physiotherapy exercises
as part of Telehealth interventions. During a session, the
quality of application experience for both users is a critical
factor (especially in skeletal images from Kinect sensors), and
the application demands strict end-to-end QoS requirements to
be usable. A corresponding ElderCare-as-a-Service application
template can be: (i) RSpec - remote HPC resources with
abundant storage, and (ii) QSpec - consistent high available
bandwidth with very low jitter and high flow priority for elder
to closely follow postures being exercised in the session.

C. Custom Templates for Knowledge Base Applications
Having a Knowledge Base (KB) of certain transactional

genomics, multi-omics and molecular breeding datasets allows
users and researchers to have a single point of information
source. It can enable the collaboration of experts in different
areas such as Grass KB (GrassKB), Rice KB (RiceKB), and
Soybean KB (SoyKB). An exemplar is the SoyKB [32], which
is a comprehensive all-inclusive web resource for soybean
translational genomics and breeding. SoyKB handles the man-
agement and integration of soybean genomics and multi-omics
data along with gene function annotations, biological pathway
and trait information. The process consists of large data sets
being transferred to MU for pre-processing and subsequently
being transferred to either local or remote HPC sites (at: ISI
(Information Sciences Institute) [33], TACC (Texas Advanced
Computing Center) [34] or XSEDE [35]) for analysis as shown
in Figure 4. Following computation completion, the resultant
processed data is transferred to MU and also to the iPlant
Collaborative [9] storage, in addition to becoming available
for user browsing in SoyKB.

The above process can suffer from long run-time for the
overall process due to workloads at HPC centers and slow
network transmission of large data sets despite high bandwidth
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Fig. 4: SoyKB workflow

connectivity over paths involving Internet2 national high-
speed network backbone. End-to-end performance monitoring
is achieved through instrumentation of the infrastructure with
perfSONAR measurement points based upon our Narada Met-
rics framework [36]. Various custom metrics at the system,
network and application-levels are integrated into relevant
measurement archives in order to obtain timely and accurate
performance intelligence (e.g., log analysis and anomaly event
notifications). A corresponding SoyKB application template
can be: (i) RSpec - HPC compute environment with local site
and remote location speedup processing capabilities of raw
genomic data, and (ii) QSpec - high flow throughput with
little or no packet loss to provide fast-enough data transfer
to justify wide-area network path selection to move data to
remote compute resources.

IV. ADON ARCHITECTURE

In this section, we describe the policy implementation
architecture of ADON that leverages the custom templates
for fine-grained control and customization of programmable
resources. Figure 5 shows the ADON architecture, which
consists of the application, middleware and the infrastructure
layers within which individual components interact with each
other to provision resources for incoming application requests.

The high-level application requirements along with RSpecs,
QSpecs and application priority are captured in the application
layer. Depending upon the resources being requested in the
infrastructure layer, and the campus policy rules (maintained
by the Performance Engineer), the routing and queue policy
assignments are applied in the middleware layer for each
application being provisioned. Real-time performance moni-
toring of individual flows can be used to configure adaptation
triggers within already provisioned flows, or even to reject
a new application flow if the required QoS levels cannot
be met given the load of already provisioned flows. Such
middleware layer functions can be implemented with: (i)
Control Module, (ii) Network Flowvisor, and (iii) Compute
Hypervisor. In this paper, we mainly focus on the Control
Module’s ‘Custom Template Catalog’, Network Flowvisor
module’s ‘Virtual Tenant Handler’ (NF-VTH) and Compute
Hypervisor ‘Virtual Tenant Handler’ (CH-VTH) (highlighted
in red color boxes in Figure 5) that are necessary to implement
ADON functionalities.

Fig. 5: ADON reference architecture

Fig. 6: Individual components of the Network Flowvisor-
Virtual Tenant Handler

A. Custom Template Catalog

The Control Module consists of the Template Generator
component which exposes RESTful APIs for configuring ap-
plication type, application priority and routing specifications
that can be programmed within the application layer. The
Template Generator module also allows the Performance En-
gineer to save a successfully configured template in a custom
template catalog database, which allows re-use for future
flow provisioning instances. The QoS and application priority
parameters are then fed into the Network Flowvisor module
by programming the required REST APIs such as: queue
policies and bandwidth requirements. The Federated IAM
component within the Control Module features an ‘entitlement
service’ module for all campuses that federate their Science
DMZ infrastructures using third-party frameworks such as the
Internet2 Incommon federation [37]. It also allows for centrally
managing entitlements based on mutual protection of privacy
policies between institutions to authorize access to different
multi-domain infrastructure components.
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Fig. 7: Illustration of dynamic layer selection and queue
management

B. Network Flowvisor - Virtual Tenant Handler
The NF-VTH is responsible for dynamically handling in-

coming application flows and providing the intelligence for
adaptive network resource allocation. As shown in Figure 6,
the Policy Engine interacts with the Template Generator com-
ponent on the top layer for accepting the QSpec parameters
along with application priority within the custom templates.
The Policy Engine then interacts with the Flow Scheduler
to compute the relative costs of assigning the application
flow either to Layer 2 (Science DMZ path over Internet2
AL2S) or Layer 3 (regular Internet) infrastructure should
the application flow be provisioned any network resources.
The Flow scheduler also compares the priority of the new
application with the existing applications in order to decide on
the appropriate queue assignment within Layer 2. The Routing
Controller is responsible for assigning network configuration
for the hybrid-port of the OpenFlow switch depending on the
Flow Scheduler decision on the network resource allocation.

The next component is the Dynamic Queue Manager which
is responsible for provisioning the right QoS policies for a
given application flow. To accomplish such right provisioning,
we utilize the minimum rate and maximum rate properties of
queue configuration on OpenFlow switches as provided by
the OpenFlow 1.3 specification [38]. The configured queues
on the OpenFlow switch ports are then mapped to incoming
application flows using the set-queue action of the OpenFlow
specification. As shown in Figure 7, the queue slots are mapped
based on the application priority as specified in the high-
level application requirements. A higher priority application
is mapped to a queue with the maximum available bandwidth.

In the case that the desired queue is not available, the
application is mapped down the queue priority level to be
provisioned in the next best available priority queue. The
mapping is performed until a queue slot that can provide an
acceptable QoS is selected. If found, the flow is provisioned
on the selected queue, else it is pushed to the Flow Scheduler
component. If none of the slots are available, the flow can
be pushed again to the Flow Scheduler to be retrieved later
once the appropriate queue is available. The Dynamic Queue
Manager then interacts with the Resource Aggregator to update
the available resources once a given flow is provisioned on its
overlay network.

The NF-VTH also monitors the load states of each queue
and flow states of each application using Flow State Moni-
tor and Load State Monitor components. These components
receive inputs from the Network Performance Measurement
module powered by Narada Metrics SDN monitoring that

Fig. 8: Individual components of the Compute Hypervisor
Virtual Tenant Handler components

Fig. 9: Illustration of computation location selection

provides network health status notifications such as flow statis-
tics and other such QoS impacting factors. The module also
provides options to reconfigure existing paths based on the
custom template directed resource reservations. In cases where
the load state in terms of number of applications contending
for Layer 2 service creates a link saturation, NF-VTH can steer
the traffic on Layer 3 if acceptable QoS parameters can allow
a push of the new flows into the Flow Scheduler.

The NF-VTH further interacts with the underlying Open-
Flow controller for installing the required flows on the Open-
Flow switches. The Network Topology Manager (part of the
OpenFlow controller) implements shortest available path algo-
rithms with weighted and non-weighted deterministic routes to
remote WAN-accessible sites and provides graphical abstrac-
tions to the NF-VTH module with topology link states.

C. Compute Hypervisor - Virtual Tenant Handler
The CH-VTH is responsible for local and remote HPC pro-

visioning process using suitable HTCondor [39] configurations
and OpenStack based on detailed resources utilization and
performance as show in Figure 8. Template Generator module
collects all users’ RSpec requirements that are needed for the
‘Dynamic Compute Resources Provisioning’, where Resource
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Policy identifies and considers the cluster resource boundaries.
The multi-tenant aware, Load Balancer in this module manages
the elastic processes in conjunction with Orchestration and
Synchronization for different nodes deploying the process. The
Resource Scheduler administers the deployment of HPC jobs,
and this process is controlled by the Cloud Controller module.
On the other hand, HPC Resource Utilization Monitoring
is a real-time monitoring system that provides information
of the available Task State and Load State i.e., computing
resources, run-time processes, and detailed information of
executed jobs and storage usage. Finally, HPC Infrastructure
Manager initializes HPC resources considering Compute and
Storage Information based on State Monitors.

D. Computation Location Selection
Through the help of NF-VTH and CH-VTH, we achieve

the end-to-end overall network and computational resource
optimization as illustrated in Figure 9. Here we show a typical
data-intensive application life-cycle where the final repository
of processed data is reached through two possible paths
involving either local (A.1) or remote computation (B.1). The
choice of computation location as well as storage destination
is mandated by a comprehensive cost optimization which takes
into consideration factors such as: availability of computation
resources, residual utilization left over by existing applications,
and RSpec of the new application. At each stage of network
transfer of either raw or processed data, NF-VTH performs
dynamic layer and queue selection thereby optimizing network
resources. In the case that the data is processed locally, the
resultant data will be locally stored (A.3) and a copy will be
transferred to the Final Destination (A.2). Alternately, if the
data is processed remotely, the resultant data will be stored in
the Final Destination (B.2) and a copy will be transferred to
Local Store (B.3). The applied algorithm details that are critical
in the NF-VTH and CH-VTH are described in the following
section.

V. ADON-SUPPORTED RESOURCE ALLOCATION
ALGORITHMS

The NF-VTH and CH-VTH receive resource allocation re-
quirements of any application ax from the Template Generator
represented as a vector {QSax

, Rax
, Pax

}, where QSax
is the

k-tuple vector QSpec, RSax is the 2-tuple representing RSpec,
and Pax is the priority of the application ax. The Performance
Engineer is responsible for translating the resource require-
ments into QSpec and RSpec and forwards the translated
information to the respective NF-VTH and CH-VTH. For both,
QSpec of application ax is a QoS vector of k elements (i.e.,
k QoS metrics) with each vector being represented with an
optimal qoxk and a lower bound qlbxk value required by the
application itself, whereas, RSpec is a vector {RSC

x } denoting
the computational resource requirement of the application.

Upon receipt of any such application resource allocation
request, the NF-VTH and CH-VTH are responsible for the
allocation of optimal network and computational resources
from a set of available resource R so that the allocation not
only satisfies the application QoS needs, but also minimizes the
allocation cost. This allocation cost function can be designed
by the NF-VTH and CH-VTH to minimize any performance
or economic metric or a function of different metrics specific
to the overall system requirements. In our implementation of
ADON to be discussed in Section V-D, we use a specific cost
metric custom designed for the applications we aim to support.

The algorithm makes use of a generic basis for overall
application flow, each part of which has a specific cost that

is able to be calculated by the custom cost metric function as
follows: (i) data is moved from source to point of computation
(using one or more network paths), (ii) computation occurs
at an appropriate compute location, and (iii) data is moved
to a storage location (using one or more network paths). By
including a custom cost metric function for each step of the
process, we allow the ability for selection of network path
or compute, not only for performance reasons but also other
arbitrary decisions such as $cost or availability of a resource.

A. Optimization Function
Let us assume that Rax = {RC

x , R
N
x } represents the optimal

resource allocation for application ax, with RC
x being the

allocated computational resource and RN
x being the allocated

network resource. The resource allocation algorithm should
then guarantee RN

x to satisfy the application QSpec and RC
x

to satisfy the application RSpec. Thus, with C() being the
allocation cost function and Qk() being the QoS translation
function for metric k, the objective function of the resource
allocation can be written as -

minimize C(Rax
)

subject to qlbxk < Qk(RN
x ) ≤ qoxk ∀ k

& RC
x ≥ RSC

x (1)

B. Edge Optimization Algorithm
We solve the optimization problem in Equation (1) using

a heuristic approach explained through a set of algorithms.
Algorithm 1 explains the Edge Optimization which takes a
new application anew with the corresponding RSpec and
QSpec requirements as inputs, compares the local, and remote
processing costs (both network and compute) using compute-
Local() and computeRemote() functions. The corresponding
outputs are then compared to take the final decision on
allocating compute resources, suitable Layer 2 or Layer 3
network resources, and assignment of the proper queue within
the network tunnel. The Edge Optimization algorithm thus
solves the cost computation problem to choose the optimal
network and compute resources. It also solves the dynamic
queue assignment problem by choosing the most appropriate
queue within the network resource using the new application
priority Panew . Further, it satisfies Equation 1 through a set of
End-to-End Optimization algorithms which are responsible to
compute the stepwise costs for each possible computation and
ensuing networking scenarios.

C. End-to-End Optimization Algorithms
The end-to-end optimization ensures the local or remote

processing outcome of the application. Thus, such optimization
is a direct consequence of local and remote computational
resource availability, and corresponding available network re-
sources. Although apparently remote processing seems un-
desirable for unpredictability of ensuing remote networking
issues, factors such as: local resource availability, time period
of the available resources, CPU core requirements of the
application, data transfer time and available network bandwidth
for data transfer - influence the application computation loca-
tion decision and thus affect the overall resource allocation.
The end-to-end optimization is ensured through Algorithm 2
and Algorithm 3 where we compute the local and remote
processing costs, respectively.
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TABLE I: Notations used

R Entire resource pool
ax Any application x

R = {RL
C ,RR

C ,RL2
N ,RL3

N } 4-tuple representing available resources
RL

C Available local compute resource
RR

C Available remote compute resource
RL2

N Available L2 network resource
RL3

N Available L3 network resource
RSax = {RSC

x } RSpec of application ax represented by computational resource requirement RSC
x

QSax={{qox1, qlbx1}, {qox2, qlbx2}, · · · , {qoxk, q
lb
xk}} k-tuple vector QSpec of application ax

{qoxk, q
lb
xk} QoS metric k 2-tuple with optimal and lower bound values respectively

Pax Priority of application ax
A = {AL2, AL3} Set of all allocated applications

AL2 Set of all applications allocated L2 resources
AL3 Set of all applications allocated L3 resources

Rax = {RC
x , RN

x } 2-tuple representing resource allocated to application ax
RC

x Compute resource allocated to application ax
RN

x Network resource allocated to application ax
RT Threshold resource needs to be available for a new application to be allocated

Algorithm 1 Edge Optimization Algorithm
Input: RSpec RSanew , QSpec QSanew , and Priority Panew of new application
anew

Compute: R=R -
∑

ai∈A

Rai

Compute: Pmin = min(Pai
) ∀ ai ∈ AL2

Output: Resource allocation Ranew
begin procedure
if R ≥ RT then

/*Cost for local computation*/
CL = computeLocal(QSanew , RSanew , Panew , Pnew)
/*Cost for remote computation*/
CR = computeRemote(QSanew , RSanew , Panew , Pnew)
/*Compare costs and final decision*/
if CL < CR then
RL = RL − {RSC

new, RSN
new}

Include anew to A
else
RR = RR − {RSC

new, RSN
new}

Include anew to A
end if

else
Push anew to resource scheduler

end if
end procedure

1) Local Processing: In Algorithm 2, we compute the
cost incurred for local computation of scientific data and the
ensuing networking cost to transfer the processed data to a
remote location. Such local computation is only possible if
sufficient computational resources that are available at the local
site meet the RSpec requirements of the application. Another
requirement is that the available bandwidth to transfer the
processed data to the final destination site should meet the
QSpec requirements of the application, which is computed us-
ing estimateQoS() function. Such transference of the processed
data is carried out either through the legacy best effort Layer
3 infrastructure i.e., public Internet, or through a dedicated
high-speed Layer 2 infrastructure such as Internet2 AL2S. The
choice of network infrastructure depends upon factors such
as: the capacity of the network, ensuing network performance
metrics such as loss or latency, and the current utilization
as well as future availability of network resources. Thus, for
both Layer 2 and Layer 3 scenarios, cost of computation is
calculated using computeCost() function and the minimum is
returned to the Edge Optimization Algorithm.

We designed the ADON-supported resource allocation in
such a way that the NF-VTH first tries to accommodate an

Algorithm 2 Local Processing Cost Computation Algorithm
Input: RSpec RSai

, QSpec QSai
, and Priority Pai

of application ai

Output: Local computation cost CL
begin procedure
if RL

C ≥ RSC
i then

/*Compute cost for L3 transfer*/
if qlbik < estimateQoS(RL3

N , RSai
) < qoik ∀ QoS metrics k then

CL3
L = computeCost(RL

C ,RL3
N , RSC

i , RSN
i )

else
CL3

L =∞
end if
/*Compute cost for L2 transfer*/
if qlbik < estimateQoS(RL2

N ) < qoik ∀ QoS metrics k then
CL2

L = computeCost(RL
C ,RL2

N , RSC
i , RSN

i )
else if Pai

> Pmin then
if qlbik < estimateQoS(RL2

N + RN
min) < qoik ∀ QoS metrics k then

terminate(amin)
CL2

L = computeCost(RL
C ,RL2

N + RN
min, RSC

i , RSN
i )

end if
else

CL2
L =∞

end if
return min(CL3

L , CL2
L )

else
return ∞

end if
end procedure

incoming application in Layer 3, if the available Layer 3 re-
sources meet all the performance metric requirements specified
in the application QSpec. The argument behind such a greedy
provisioning is to conserve the precious/expensive Layer 2
services and dedicate them for future applications needing
higher bandwidth and stricter QoS guarantees. However, if the
new application QSpec requirements are not met by the avail-
able Layer 3 resources, Layer 2 resources are provisioned. If
enough Layer 2 resources are not available to meet the QSpec
requirements, the NF-VTH tries to force deallocate the Layer
2 scheduled application with lowest priority, provided that the
new application is of higher priority than the application being
deallocated. Although such provisioning satisfies the optimiza-
tion conditions from Equation 1, and intelligently prioritizes
precious network resources only for deserving applications, it
fails to satisfy the optimization function of Equation 1. Thus, to
satisfy the cost minimization, we compute costs for both Layer
2 and Layer 3 allocation scenarios and choose the option that
incurs minimal cost.
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2) Remote Processing: The remote computation analysis
is very similar to that of local computation. However, when
science applications are computed remotely for lack of local
computation resources, the eventual processing can be either
done at the final destination or at an intermediate HPC location
with the need to duplicate the processed data locally. Such
duplication requirements may incur more costs in terms of
possible Layer 2 or Layer 3 transfer of the processed data to
the local site, which eventually affects the final local versus
remote computation decision. Thus in Algorithm 3, we make
such provisions by performing a step-by-step cost computation
taking into account: the cost incurred for transferring the un-
processed data to that remote HPC facility, cost of computation
at a remote HPC facility, cost of transferring the processed data
to the final destination, and the possible duplication cost, i.e.,
transferring the processed data back to the local site again.

Algorithm 3 Remote Processing Cost Computation Algorithm
Input: RSpec RSai

, QSpec QSai
, and Priority Pai

of application ai

Output: Remote computation cost CR
begin procedure
if RR

C ≥ RSC
i then

/*Compute cost for L3 transfer*/
if qlbik < estimateQoS(RL3

N ) < qoik ∀ QoS metrics k then
CL3

R = computeCost(RR
C ,RL3

N , RSC
i , RSN

i )
else

CL3
R =∞

end if
/*Compute cost for L2 transfer*/
if qlbik < estimateQoS(RL2

N ) < qoik ∀ QoS metrics k then
CL2

R = computeCost(RR
C ,RL2

N , RSC
i , RSN

i )
else if Pai

> Pmin then
if qlbik < estimateQoS(RL2

N + RN
min) < qoik ∀ QoS metrics k then

terminate(amin)
CL2

R = computeCost(RR
C ,RL2

N + RN
min, RSC

i , RSN
i )

end if
else

CL2
R =∞

end if
/*Check for duplication cost*/
if Duplication of process data needed then

/*Compute cost for L3 transfer*/
if qlbik < estimateQoS(RL3

N ) < qoik ∀ QoS metrics k then
CL3

D = computeCost(RR
C ,RL3

N , RSC
i , RSN

i )
else

CL3
D =∞

end if
/*Compute cost for L2 transfer*/
if qlbik < estimateQoS(RL2

N ) < qoik ∀ QoS metrics k then
CL2

D = computeCost(RR
C ,RL2

N , RSC
i , RSN

i )
else

CL2
D =∞

end if
CR = min(CL3

R , CL2
R ) + min(CL3

D , CL2
D )

else
return min(CL3

R , CL2
R )

end if
else

return ∞
end if
end procedure

The output of algorithms 2 and 3 are compared in the Edge
Optimization Algorithm (Algorithm 1) where the final deci-
sions on computation location and ensuing resource allocation
are made. Thus, the final output from Algorithm 1 minimizes
the cost of allocation and satisfies the QSpec and RSpec
requirements from Equation 1.

D. Algorithm Implementation for SoyKB Use Case
In our ADON mathematical model, the function compute-

Cost() is a generic abstraction for calculating the cost of differ-
ent applications. It can be defined and represented in different
forms based on the specific requirements and heuristics of each

application. The purpose of calculating this cost is to decide:
i) Should the computation be performed locally at MU or at
remote HPC resources, such as ISI, TACC or XSEDE? and
ii) Should we use AL2S or regular Internet for data transfer
the data to the iPlant data store? In the SoyKB application,
for example, it is essential for users to get the analyzed results
in a timely manner after they run the application with a large
size of input data, which will speed up their bioinformatics
research process.

To meet these requirements, we can define the cost from
Edge Optimization Algorithm (Algorithm 1) as the total time
taken, which is mainly comprised of data computation time and
network transfer time. Once the application is formalized as
a workflow, the Pegasus Workflow Management Service [40]
can map it onto available compute resources and execute the
steps in appropriate order. However, it is possible that the
service cannot find enough resources and needs to put the
task in a prioritized queue. When there are many application
tasks waiting in the Workflow Management Service queue,
the SoyKB application has to wait for a long time to start
the Pegasus workflow. The Mapper component in Pegasus is
responsible for dividing the jobs and mapping these jobs to
corresponding nodes to optimize performance. Since we are
also able to get the data size that needs to be computed, number
of the worker nodes assigned and the average throughput of
each worker node, we can easily calculate the total estimated
computation time by adding the waiting time and actual
computation time. It is to be noted that if currently any local
HPC resources with Pegasus workflow are not available for
SoyKB, the local queuing time is set to infinity as the workflow
will always use the remote HPC resources at ISI, TACC or
XSEDE, as shown in Figure 4.

Once processed, all the processed SoyKB research data is
stored in the iPlant Data Center and is available to query
through a website hosted in iPlant Atmosphere cloud platform
that is similar to Amazon EC2. The iPlant collaborative uses
iRODS [41] to manage and transfer the data, which creates
multiple TCP streams for transferring data. Since our network
performance monitoring system can provide us the round-
trip time (RTT) delay of the transfer, we can configure the
TCP buffer size and length of the processor input queue
at the end nodes accordingly by following well-known TCP
tuning practices [42] to achieve throughput that is close to the
theoretical maximum throughput. However, both the AL2S and
regular Internet are not always able to provide the maximum
bandwidth desired for SoyKB, especially when there are high
levels of cross-traffic passing through the shared links, or
source to destination physical distance is large enough to
impact TCP behavior. Nevertheless, the computation time is
significant and the network performance can often play a
smaller role in the overall time to task completion.

In this scenario, the network monitoring system can again
play an important role and provide the maximum bandwidth
and the current throughput utilization of the network links to
calculate the actual available bandwidth left for the SoyKB
data transfer, or directly measure single thread TCP throughput
and treat it as approximate available bandwidth. We can com-
pare the theoretical TCP throughput and actual available band-
width to get the estimated network transfer time, given that the
size of data to be transferred is known to our ADON-related
support services. We particularly remark that the analyzed data
will be significantly reduced after the computation process and
could be only ≈1/10th of the original raw data size. This
indicates that even if the local HPC resources is not as powerful
as the remote resources at TACC, it might still provide an
increased overall performance by significantly reducing the
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Fig. 10: Timeline of a campus edge router handling multiple
data-intensive application workflows

estimated wait-time in the task queue for the computation
part, and by reducing the size of the data to be transferred
over the wide-area network segments. Such characteristics
does impact the outcome of the Local and Remote processing
algorithms (Algorithms 2 and 3, respectively) which in turn
decide between local or remote processing.

VI. EXPERIMENTAL EVALUATION

In this section, we first present a emulation study with
application workflows to analyze the ADON-supported algo-
rithm results while handling temporal behavior of multi-tenant
traffic burst arrivals. Next, we describe a case study featuring
validation experiments of our ADON implementation with
the SoyKB data-intensive science application on a wide-area
testbed across OSU and MU campuses with regular Internet
(Layer 3) and Internet2 AL2S (Layer 2).

A. Emulation Study
We used Mininet network emulator for NF-VTH experi-

ments that involved synthetic traffic flows using the “tc” and
“iperf” network utility tools. Figure 10 shows the timeline
from time t1 to t7 as seen by an edge OpenFlow router/switch
handling application workflows as they enter and exit the NF-
VTH module. RIVVIR application workflow (see Figure 3(b))
was initiated as a UDP flow at time t1 with a guaranteed
bandwidth of 10 Mbps (typical requirements of remote desktop
access with raw encoding) and latency of 50 ms (RTT between
OSU and MU). At time t2, ElderCare-as-a-Service application
workflow (see Figure 3(d)) was started as a new UDP flow with
a guaranteed bandwidth of 100 Mbps (typical requirement of
a Kinect video stream) and latency of 30 ms (RTT between
MU and Kansas City).

At this moment, the Dynamic Queue Manager within the
NF-VTH instantiated the queues on the OpenFlow switch to
provide the required QoS guarantees for each of the concurrent
flows. The total jitter observed when both flows coexisted
on the link are captured with and without NF-VTH dynamic
queue management in Figures 11(a). We can see that the jitter
is significantly reduced (improved performance) for both the
applications, especially for the video flow using the NF-VTH
module with application-specific queue policies. This is due to
the fact that the NF-VTH reduced the external fragmentation of
available bandwidth caused by static policy management on the

(a) Jitter comparison (b) Throughput comparison

Fig. 11: SoyKB Layer 2 performance without contending
traffic

switch ports. The dynamic queue mapping of the UDP flows
to the requested bandwidth provided performance isolation to
each of the flows, and hence reduced their jitter values.

At time t3, GENI Classroom workflow (see Figure 3(c)) was
started as a TCP flow with burst traffic pattern (burst rate - 1
Mbps and buffer size - 10 KB similar to web traffic) parallel to
the RIVVIR workflow. Both flows co-existed without affecting
each other’s QoS policies as both flows were assigned their
individual priorities on the queues. At time t4, Neuroblastoma
workflow (see Figure 3(a)) was started as a parallel TCP flow
with 5 parallel streams to simulate a GridFTP application
for image file transfer. NF-VTH then triggered the dynamic
queue configuration for assigning a prioritized bandwidth of
600 Mbps for Neuroblastoma and 360 Mbps bandwidth for
GENI Classroom experiments (on a 1 Gbps link).

Figure 11(b) shows throughput of the two workflows
achieved with and without NF-VTH. Bandwidth is equally split
when there is no dynamic queue management for both flows.
However with NF-VTH, internal fragmentation of bandwidth is
reduced. The total bandwidth is sliced between the two flows as
per their individual priorities ensuring each flow is only utiliz-
ing the requested bandwidth as provided in the application QoS
templates. This slicing happens until time t5 when the GENI
Classroom flow exits and resources are released. However,
when a new RIVVIR workflow starts again at time t6 while the
Neuroblastoma application is currently provisioned, the new
flow is rejected and pushed to the Flow Scheduler. This is
because the new flow’s QoS requirements cannot be guaranteed
and mapped in the Dynamic Queue Manager. This scenario
occurs due to the resource unavailability of the link which is
fully utilized by the prioritized data-intensive Neuroblastoma
application flow.

Thus, we can conclude from the above experiments that
the NF-VTH is effective in scheduling transit selection and
traffic engineering at the campus-edge based on real-time
policy control that ensures predictable application performance
delivery, when handling temporal behavior of multi-tenant
traffic burst arrivals corresponding to a diverse set of data-
intensive applications.

B. Real-Network Case Study
The testbed setup for the real-network case studies is as

shown in Figure 12, which consists of the OSU and MU
campuses connected through an extended VLAN overlay that
involves an Internet2 AL2S connection by way of local re-
gional networks of OARnet and GPN/MOREnet in Ohio and
Missouri, respectively. Each Science DMZ has a matching
DTN equipped with dual Intel E5-2660, 128GB of memory,
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Fig. 12: Collaborative Science DMZ testbed between two cam-
puses for handling multi-tenancy of data-intensive applications

300GB PCI-Express solid state drive, and dual Mellanox
10 Gbps network cards with RoCE support. Each Science
DMZ has perfSONAR measurement points powered by Narada
Metrics for continuous monitoring at 1 - 10 Gbps network
speeds. A common Dell R610 node in the OSU Science DMZ
is used to run the OpenFlow controller based on OpenDayLight
for the NF-VTH functionality. The NEC switch on the OSU
end is connected to OSU’s 100 Gbps Cisco Nexus router at 10
Gbps, but has the ability to scale to 40 Gbps as the Science
DMZ grows to support future researchers and applications. At
MU, the Science DMZ features a Brocade VDX 8770 switch
to attach various nodes in the Science DMZ, and a 100 Gbps
Brocade MLXE router at 10 Gbps interface speeds, with the
ability to scale to 100 Gbps speeds.

We used the SoyKB application use case in experiments to
comprehensively validate the effectiveness of the ADON algo-
rithm implementation in the MU-OSU Science DMZ testbed.
We mainly focused on improving the SoyKB data transfer us-
ing ADON adaptations that couple with data computation. Our
goal was to improve the SoyKB-related processing tasks with
and without contending real-time applications such as Neu-
roblastoma that have much higher bandwidth requirements.
Initially, we perform SoyKB data transfer with and without
the ADON service to show how our network measurement
system can help to intelligently and confidently make decisions
for SoyKB application workflow with and without contending
traffic to get the best performance, while meeting the QSpecs.
Following this, we present the performance improvement after
TCP tuning process and with the help of our SDN monitoring
system to provide a better Custom Template configuration for
the SoyKB system.

Unlike the real-time applications such as Neuroblastoma or
ElderCare-as-a-Service whose goals are to reduce the jitter in
order to provide better user experience, the SoyKB application
focus is more on the time taken for the data transfer and
data analysis across the distributed computing resource sites.
Regarding the testbed configuration, we set the TCP buffer
size to 256 MB on both sides of MU and OSU data transfer
nodes. Prior to the experiment, we made sure that the TCP
buffer size and processor input queue sizes were big enough
to ensure that our path selection decision is solely dependent
on the available bandwidth when the application is executed
by the SoyKB users.

Figure 13 shows the orchestration timeline of data-intensive
applications as seen by our ADON along with periodically
sampled TCP throughout measurements. At time t1, the
SoyKB application workflow is initiated, whose QSpec re-
quires to have at least 700 Mbps of single TCP throughput

Fig. 13: Timeline of OpenFlow switch handling SoyKB appli-
cation workflows based on application QSpecs and periodic
throughput measurement

(a) Throughput (b) Transfer time

Fig. 14: SoyKB Layer 2 performance without contending
traffic

in the event that iRODS is not able to create more than
1 thread. Predictably, the 10 Gbps Internet2 AL2S network
connection between MU and OSU has significantly better
throughput (around 5.5-to-6 Gbps) than the regular Layer 3
network connection with only around 650 Mbps achievable
throughput when there are no other contending applications.
Since ADON can get updated information from our Narada
Metrics SDN monitoring system, it makes the decision to use
AL2S for SoyKB data transfer, and calls a function in the
OpenFlow controller for transferring traffic to a specific VLAN
created for AL2S connection with a higher priority.

Figure 14 shows the overall performance of the SoyKB
transfer with different data sizes tested during the experiment
run period from t1 to t2. The figure shows that due to absence
of any other contending traffic, the SoyKB flow can use
the entire AL2S bandwidth achieving close to the highest
achievable TCP throughput of 5.5 Gbps with the total transfer
time in the order of tens of seconds. After t1, the achievable
TCP throughput measured by Narada Metrics becomes about
4.8 Gbps from the original 5.5 Gbps, since the bandwidth test
applications will compete against the SoyKB applications for
the network bandwidth resource. At time t3, Neuroblastoma
workflow which requires extremely high throughput and higher
flow priority starts and the single TCP stream throughput test
only shows around 500 Mbps, which does not meet the QSpec
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(a) Throughput (b) Transfer time

Fig. 15: SoyKB Layer 3 performance without contending
traffic

of another SoyKB application workflow started at time t4 with
at least 600 Mbps throughput requirements. That is when the
ADON algorithm recalculates new estimated transfer times and
achievable TCP throughput in Layer 3 (which currently had
no other contending data-intensive traffic), and decides to use
Layer 3 for SoyKB data transfer by making the priority of rule
for the AL2S VLAN lower than the rule for Layer 3.

Figure 15 shows the performance of SoyKB application
transfer without any other contending data-intensive flows
in Layer 3. The data throughput reduced when compared
to the Figure 14. However counter-intuitively, it still has
considerably higher performance if we continued the SoyKB
data transfer through Layer 2, as shown in Figure 13. The
transfer performance in such a scenario is shown in Figure 16
where the SoyKB data is transferred through Layer 2 along
with the contending Neuroblastoma traffic and does not even
meet the minimum SoyKB QSpec. Thus through intelligent
provisioning with ADON service, we can save more than 100
seconds when transferring a 25 GB size file. In bioinformatics,
it is very important for the users to transfer and analyze the
data as soon as possible, and the time difference becomes
very significant since the actual research data size can be
up to several TBs for important applications such as the
SoyKB. When we initiate another SoyKB application workflow
requiring at least 700 Mbps single throughput at time t6,
the ADON algorithm will reject the transfer task and push
it to the Flow Scheduler, since neither network links can meet
the QSpec of the new workflow. It is relevant to note that
SoyKB transfer time performance (from Figure 16b) for 5
GB data with contending traffic is as good as 1 GB data
transfer on the same testbed with no contention without ADON
scheme as previously shown in Figure 1; thus validating the
overall effectiveness of the proposed ADON scheme in terms
of performance improvements.

Next, we perform additional experiments to demonstrate
the performance improvements after the TCP tuning process
following guidelines in [42]. While performing above exper-
iments, we found that the network infrastructure does not
provide full advertised throughput due to protocol overhead,
physical distance between the source and destination data
transfer nodes, and end-point hardware limitation related is-
sues. The MU-OSU AL2S link, which advertises 10 Gbps
capacity, only had a maximum TCP throughput of 6 Gbps.
When using tools such as iRODS that support parallel streams,
or have multiple data transfers in parallel, we can configure
the system settings such as Linux auto tuning TCP buffer limit
and length of the processor input queue in both the MU and
OSU data transfer nodes to achieve closer to maximum TCP
throughput in order to have fair sharing between flows. We

(a) Throughput (b) Transfer time

Fig. 16: SoyKB Layer 2 performance with contending traffic

(a) Layer 2 performance (b) Layer 3 performance

Fig. 17: SoyKB transfer performance with different thread
counts

(a) Throughput (b) Transfer time

Fig. 18: SoyKB Layer 2 transfer performance with different
TCP buffer sizes

found that it is important to change the configurations at both
the source and destination edge nodes in order to ensure that
the parallel stream setting performs at peak rates.

Through Figure 17, we observe that the overall throughput
increases when we use an increased number of TCP threads
to move the data. However, the current iRODS system limits
the maximum number of parallel threads to 16. Therefore,
to achieve higher speed in next-generation networks, such as
100 Gbps Internet2 infrastructures, the iRODS system might
need to support a increased number of parallel TCP threads.
Nevertheless, ADON capitalizes on the information regarding
the number of threads that can be effectively used for SoyKB
data throughput acceleration within the given Science DMZ
environments.

Figures 18 and 19 show the performance of Layer 2 and
Layer 3 network connections with different TCP buffer sizes
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(a) Throughput (b) Transfer time

Fig. 19: SoyKB Layer 3 transfer performance with different
TCP buffer sizes

configured in both MU and OSU edge data transfer nodes.
For both the cases, we keep the thread count at 16 in order
to compare the respective maxima. In Layer 3, we were
not able to improve the actual data throughput since the
theoretical maximum throughput after TCP tuning in the data
transfer nodes exceeds the throughput that the physical regular
IP network infrastructure can provide. In contrast, when we
increase the TCP buffer size to 64 MB from the original
16 MB, the data throughput increases by almost 50%. The
maximum throughput of Layer 2 is greater than the theoretical
maximum TCP throughput with 16 MB TCP buffer size, which
indicates that there is significant room for improvement by
using multiple threads for TCP transfer with bigger buffer
sizes (as shown with our experiments with increments of
buffer size up to 256 MB). Hence, we can conclude that
no further significant improvement of network performance
can be obtained while transferring data through the 10 Gbps
Layer 2 link beyond using the 64 MB TCP buffer size. Such a
knowledge of the achievable peak performance over a certain
wide-area overlay network path can be updated within the
corresponding ADON custom template, and can be used with
the SDN monitoring system to manage expectations of the
peak performance achievable for a given application workflow.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel ADON architecture with
an application-driven overlay network-as-a-service approach
to support multi-tenant data-intensive application flows with
hybrid cloud resource needs. With the pent-up resource re-
quirements of data-intensive application flows, traditional net-
work and compute infrastructures are not scalable or flexible
for effectively handling such flows, especially in cases with
urgent or real-time computing requirements. Using our ADON
architecture, we showed that the application-specific policies
can be effectively controlled at the campus edge based on
individual application flow requirements, and the ‘friction’
imposed due to firewalls for enterprise traffic flows can be
overridden for data-intensive science applications.

The novelty of our work is in our approach for “network
personalization” that can be performed using a concept of
“custom templates” that helps a Performance Engineer to
catalog and handle unique profiles of application workflows
in an automated and repeatable manner. We also presented
design details and validation experiments of a multi-tenant
architecture featuring “Network Flowvisor - Virtual Tenant
Handler” (NF-VTH) and “ Compute Hypervisor - Virtual
Tenant Handler” (CH-VTH) for real-time policy control of
an “Overlay Network-as-a-Service” within a campus Science

DMZ environment. Our testbed for ADON validation featured
high-performance networking capabilities such as OpenFlow
switches and RoCE-based data transfer nodes, as well as local
and remote HPC resources for real-time and knowledge base
application use cases. Our experiment results have demon-
strated how our ADON architecture and implementation is
capable of providing predictable performance to data-intensive
applications, without any changes to existing campus network
infrastructure designed for regular enterprise traffic.

As part of the future work, we plan to work with additional
data-intensive application use cases having diverse computing
and networking needs - e.g., a compute-intensive application
that has a compute complexity that is greater than the data
transfer complexity over an overlay network path. We also
plan to extend ADON to jointly orchestrate nodes and links
mapping across multiple geographically-distributed campuses
for efficient virtual network embedding to satisfy multiple QoS
constraints of data-intensive applications.
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