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Abstract—Multi-domain end-to-end network performance
monitoring (NPM) federations such as perfSONAR are increas-
ingly being used in Big Data application management. They rely
on trustworthy collaborative measurement intelligence to identify
and diagnose network anomaly events that impact application
performance. Large volumes of end-to-end measurement traces
are generated on a daily basis, and new Big Data analysis
techniques are needed to isolate network-wide anomaly event(s)
and to diagnose the root-cause(s). In addition, not all network
operators and application users have enough knowledge and
experience to understand the anomaly events. The lack of a
platform for sharing knowledge and working collaboratively
makes it difficult to isolate and diagnose network-wide anomaly
events quickly and accurately. In this paper, we define a “social
plane” that relies on recommended measurements based on
“content-based filtering” and “collaborative filtering” approaches
to enable network performance expectation management. Based
on similarity analysis, the “content-based filtering” facilitates
users to subscribe to useful measurements, and the “collabo-
rative filtering” promotes users to share knowledge on anomaly
symptoms. Using real perfSONAR measurements and synthetic
events, we show the effectiveness of our social plane approach
within a SoyKB Big Data application case study using social
network creation and mingling of experts. Our experimental
results show that our measurements recommendation scheme has
high precision, recall and accuracy, as well as efficiency in terms
of the time taken for large volume measurement trace analysis.

Index Terms—Network Monitoring, Socio-Technical Methods,
Measurement Recommenders, Performance Management

I. INTRODUCTION

Scientific communities (e.g., LHC in high-energy
physics [1], SoyKB in Bioinformatics [2]) have extensively
deployed multi-domain Network Performance Monitoring
(NPM) federations that use passive and active measurements
for troubleshooting network bottlenecks. Among these
NPM federations, perfSONAR [3] is the most widely
instrumented framework with over 1400 instances deployed
worldwide. It uses network diagnostic tools, such as Ping,
Traceroute, OWAMP (for one-way delay measurements),
and BWCTL (for TCP/UDP throughput measurements) to
collect measurements such as end-to-end delay, jitter, loss,
and bandwidth. With growing perfSONAR deployments
within multi-domain federations, the initial focus of intra-
campus network monitoring has shifted towards end-to-end
performance monitoring and troubleshooting of Big Data
applications. In multi-site Big Data collaborations, the
application traffic generated within a network (domain)
traverses several different domains or autonomous systems
before reaching a destination. As a result, end-to-end
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Figure 1: Limitations of current end-to-end performance monitoring
system due to: (a) challenges in diagnosing the root cause of anomaly
events; (b) lack of services to find relevant measurements; (c) lack
of frameworks to share knowledge or work collaboratively

performance troubleshooting becomes significantly harder for
standalone perfSONAR measurement instances (Measurement
Point Appliances or MPAs) installed at the source and
destination domains.

Current end-to-end performance monitoring systems have
many limitations: Firstly, an end-to-end measurement trace
normally traverses different domains and different service
providers. A single measurement trace is typically insufficient
to isolate and diagnose the root-cause of anomaly events.
Users usually need enough data to make an accurate and
trustworthy judgment. However, current infrastructure does
not provide the necessary tools or services for users to filter
out the relevant data from vast archives of measurements.
Secondly, multiple measurement traces from different domains
may not be calibrated and trustworthy in cases such as
invalid data (e.g., negative one-way delay values due to faulty
clock synchronization), missing data or too dense/sparse or
irregular (i.e., long data collection gaps) measurement data
sampling frequency. These measurement data “veracity” issues
can result in erroneous features [4], missing events or even
exponential anomaly event detection time [7]. Lastly, there are
no existing frameworks for users to create social networks and
mingle for trustworthy knowledge sharing and collaborative
work to efficiently and effectively diagnose anomaly event
root-causes.

Figure 1 illustrates the effect of these limitations from an
end-user perspective in an example scenario involving users
(i.e., A ⇠ F ) from different domains. We assume users A,
B and D have to depend on their own knowledge to diagnose
their problem of inferior performance due to an anomaly event.
Without knowledge sharing, we can see that most of these



users fail to diagnose or even recognize their problem, and
those users (e.g., user C and F in Figure 1) who may know the
cause of anomaly events could not be connected. In addition,
many users (e.g., user E in Figure 1) need more relevant
data to confirm their anomaly event detection results. Without
pertinent measurements recommendation, users usually collect
data randomly, which could result in erroneous detection and
ineffective diagnosis.

To overcome such situations that lead to users’ dilemma
during bottleneck anomaly root-cause diagnosis, we propose a
“social plane” approach. The goal of our social plane approach
is to provide a framework to allow expert knowledge and
other measurement intelligence information to be integrated/-
customized into scalable anomaly detection tools. We propose
the use of “measurement recommenders” for processing large
volumes of measurement traces collected on a daily basis
to improve the efficiency of application users and network
operators to troubleshoot and work collaboratively on root-
cause diagnosis. The novelty of our approach is to combine:
(i) content-based filtering which recommends pertinent traces
based on user’s measurements analysis objective to achieve
more accurate detection results, along with (ii) collaborative
filtering to recommend the most pertinent traces which may
have similar network issues or possibly the same root-cause
issues with user’s targeted trace.

The content-based filtering is used to rank and recommend
the most pertinent traces based on measurements temporal
and spatial similarity matching with a target trace/path. The
target trace is the one for which the operator/user needs help
to perform some specific measurement correlation analysis.
In order to strengthen the measurement data “veracity” in-
formation, we propose a data sanity checking scheme. The
measurement data sanity scores are extended to use a Bayesian
Inference-driven scheme for historical domain/community rep-
utation. This scheme acts as a “confidence indicator” to help
the operators and users in relevant long-term measurement
subscriptions. The data sanity together with domain reputation
ultimately provides the essential meta-information on top of
content-based filtering recommendation for the operators/users
to take informed decisions.

The collaborative filtering scheme is used to seek the mea-
surements which have similar network issues, or possibly the
same root-cause issues with a user’s targeted trace. Through
relevant measurement analysis, we could find potential users
who face similar problems, so that those users could share
diagnosis experiences or work collaboratively on the issue.
Our algorithm does so by measuring the similarity in anomaly
symptoms between users’ targeted measurements and candi-
date measurements. Lastly, we implement a “social network”
for measurements, on top of filtering scheme to demonstrate
how our collaborative filtering scheme helps users to enhance
knowledge sharing and trustworthy collaboration for network
performance expectation management.

In our evaluation studies, we use real measurements with
synthetic events to validate the effectiveness and efficiency of
our scheme in recommending pertinent measurement traces by
combining content-based filtering and collaborative filtering.
In addition, we also use real measurements to show how users
can use content-based filtering to filter pertinent measurements
in terms of their measurements analysis objective. Further, we

simulate the SoyKB [8] Big Data application’s network envi-
ronment in a GENI Cloud Testbed [9] to show how our scheme
recommends the most pertinent traces. The evaluation results
demonstrate how our proposed measurement recommendation
scheme will enable network operators and application users to
intelligently use subscribed community traces for diagnosing
network events that impact Big Data applications.

The rest of the paper is organized as follows: Section II
discusses the related works. In Section III, we briefly de-
scribe our “social plane” approach, and basic components in
our approach. In the Sections IV and V, we describe the
major components of our proposed schemes in detail. The
“social plane” implementation is described in Section VI.
Section VII discusses the evaluation and results using real and
synthetic data. Our approach effectiveness in several Big Data
application scenarios is presented in Section VIII. Section IX
concludes the paper.

II. RELATED WORKS

Measurement Intelligence Sharing. New challenges are
emerging for analyzing measurements in large-scale multi-
domain infrastructures in order to resolve bottleneck anomaly
events and facilitate efficient root-cause diagnosis. In [10], the
authors from Google show the benefits of expertise sharing and
knowledge management of network failures as vignettes within
a complex and high-scale environment. The authors in [11]
show that it is possible to have experts identify symptoms of
anomaly events based on measurement trace characteristics,
which can be shared as measurement intelligence to under-
stand performance bottleneck events in perfSONAR deploy-
ments. Our work uses these symptoms knowledge and the idea
of expertise sharing within the social plane implementations
of Big Data applications such as SoyKB [8].

In addition, our work builds upon [12], where the authors
present an automatic network fault detection and diagnosis
system for end-users called DYSWIS (“Do You See What
I See”). A distributed hash tree network is used to search
the collaborative nodes with appropriate properties required
to diagnose a failure in large-scale home networks. Contri-
butions of expert knowledge (diagnosis rules and probes) by
application developers, vendors, and network administrators
are used to enable crowdsourcing of diagnosis strategy. Our
work is also comparable to the work in [13], where the authors
implement a “social angle” to monitor and detect problems in
a large collaborative network environment involving multiple
domains. Their solution was limited to a social media platform
setup to allow communication of users to share issues, ideas,
concerns and problems with other users or network experts
and does not feature any recommender algorithms. Our social
plane implementation for measurement intelligence sharing is
inspired by the work in [14]. Therein, the authors propose a
social-media approach to monitor virtualized environments by
creating a “community” that includes various entities along
with an administrator.
Data Veracity and Domain Reputation. The risks of us-
ing potentially misleading data and the related guidelines to
trustworthy measurement best practices were first highlighted
in [4], wherein the author explains the methods implemented in
handling errors and inaccuracies; the importance of associating



meta-data with measurements; the technique of calibrating
measurements by examining outliers and testing for consis-
tencies; difficulties that arise with large-scale measurements;
among other issues. Our previous work on using sanitized
measurement data for anomaly detection [5] is closest to the
work by [6] where an anomaly detection system is developed
based on prediction of upper and lower dynamic thresholds
of various time-varying data trends. In [15], the authors pro-
posed an overlay fault diagnosis framework with a diagnosis
uncertainty reasoning analysis based on evidences.

Similarly, reputation-based trust schemes have long been
used by the scientific community for decision making in
shared environments. In [16], the authors present a reputation-
based trust model for peer-to-peer eCommerce communities.
Whereas, in [17], the authors describe a similar scheme to use
Bayesian Inference to build reputations for agents in the e-
business community. Further, works such as [18] extend such
reputation models by introducing an age factor in Bayesian
Inference as it is desirable to give greater weight to more
recent ratings. In [19], the authors propose a tagging and
trust mechanism in social networks based on users and their
contents that is similar to our research of building a reputa-
tion scheme for multi-domain measurement domains within
scientific Big Data communities.
Recommender System. Filter-based (mostly content-based
and collaborative) social/community environments have been
proposed in different areas of computing. However, in relation
to measurement frameworks, such works are limited. Our
work is the first to propose a recommender framework to
systematically analyze large number of measurement traces to
identify bottlenecks and resolve them in multi-domain network
monitoring. Collaborative filtering is a technique to filter large
sets of data for information and patterns. The authors in
[20] propose a novel method that uses social networks and
collaborative filtering to identify and prioritize requirements in
large-scale software projects. More specifically, they address
information overload problems in requirements elicitation of
software development activities by using collaborative filter-
ing to recommend relevant requirements to stakeholders and
prioritizing the requirements and stakeholders. In [21], the
authors use collaborative filtering and a probabilistic topic
model to recommend relevant scientific articles to users of
online communities. With collaborative filtering, their model
can recommend articles for a particular user based on other
users who liked similar articles.

Our approach builds upon the above prior works and aims
to combine both content-based and collaborative filtering
techniques for finding: (a) measurement traces with similar
anomaly symptoms, and (b) relevant people who can min-
gle and resolve any identified bottlenecks. In our previous
work [22], we have proposed a content-based recommender
to filter relevant measurements based on user’s analysis ob-
jective, such as temporal analysis and spatial analysis. This
work extends the prior content-based filtering in combina-
tion with collaborative filtering to find measurements with
similar anomaly symptoms such as those identified in [11].
Furthermore, we show the effectiveness of our social plane
approach for a Big Data application case study i.e., SoyKB that
involves distributed computing across HPC sites, and Big Data
processing within large knowledge bases in bioinformatics.

III. SOCIAL PLANE APPROACH OVERVIEW

The anomaly symptom space can be broad in real network
situations, and could pose challenges for effective root-cause
analysis. However, it is possible to obtain expert knowledge of
common network symptoms that affect e.g., large file transfer
applications over wide-area network paths as in [11]. The goal
of our social plane approach is to provide a framework to allow
such expert knowledge and other measurement intelligence
information to be integrated/customized into scalable anomaly
detection tools. We propose a subscription of large-scale
monitoring of measurement data sets collected on a daily basis
and timely identification/notification of critical anomaly events
accurately. We suppose that the root-cause diagnosis of the
critical anomaly events require mingling of relevant stakehold-
ers for diagnosis. Our social plane approach thus provides a
“systematized” method is to: (i) help users to obtain relevant
measurements for analysis which may enhance measurements
subscription and sharing, and (ii) find potential people who
may solve a given multi-domain problem which could enhance
knowledge sharing and trustworthy collaborations.

Figure 2: Framework of social plane approach

In the following, we describe our “social plane” architecture
that is depicted in Figure 2, which combines the content-
based and collaborative filtering techniques to accomplish the
purpose:
Content-based Filtering. Content-based filtering is applied
when users do some correlation analysis and want to find
pertinent measurements according to their temporal or spatial
correlation analysis objectives. We propose the measurements
similarity analysis algorithm to calculate measurement tempo-
ral and spatial attributes similarity score between users’ target
measurement trace and candidate measurement traces from
the pool of measurements archives. Using a decision tree, we
can rank relevant measurements based on user’s temporal or
spatial analysis objectives. Because “data veracity” may affect
accuracy of analysis results, we provide data sanity checking
for users to indicate the trustworthiness of measurements and
analysis results. With domain reputation estimation, users
could decide if they should subscribe their measurements from
long-term perspective. Hence, content-based filtering scheme
could encourage measurements sharing and subscription bases
on user’s interests.
Collaborative Filtering. Collaborative filtering is applied
when users need helps from others who may solve their
problem or have similar problem which could involve collab-



orative work. In order to find similar problem, we classify it
with different types of anomaly symptoms (e.g., “delay level
shift”, “high delay utilization”) by using an anomaly symp-
tom detection algorithm, and then rank relevant measurement
traces with most similar anomaly symptom with target trace
using anomaly similarity analysis. Through filtering out the
measurement traces with similar anomaly events, we connect
most relevant persons who face a similar problem. This in turn
allows those persons to share diagnosis knowledge and work
collaboratively. Consequently, a collaborative filtering scheme
encourages diagnosis knowledge sharing and trustworthy col-
laboration.

With the help of “content-base filtering” and “collaborative
filtering” schemes, the “social plane” could be formed to
encourage measurements sharing/subscription, expertise shar-
ing and cooperative diagnosis. In the following sections, we
explain the details of each of these schemes.

IV. CONTENT-BASED FILTERING MEASUREMENT
RECOMMENDATION

Content-based filtering is applied when users perform cor-
relation analysis and want to find pertinent measurements
according to their temporal or spatial correlation analysis
objectives. In this section, we propose our content-based
filtering measurements recommendation scheme. Our filter-
ing approach is derived from the concepts of content-based
filtering techniques used in many recommendation systems,
especially by online retail enterprises, such as Amazon, eBay.
Content-based filtering, also referred to as cognitive filtering,
recommends items based on a comparison between the con-
tents/features of the items and users’ profiles or interests.
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Figure 3: Major components of content-based filtering scheme,
which filters out the relevant measurements according to users’
analysis objective

As shown in Figure 3, our proposed content-based filter-
ing recommendation scheme filters and ranks most relevant
measurement traces from a pool of traces based on Mea-
surement similarity analysis and Analysis objective decision
tree. In addition, due to current qualities of measurements,
“data veracity” is an important factor to affect the accuracy
of measurements analysis, especially in correlation analysis.
Thus, we provide Data sanity checking and Domain reputation
estimation in content-based filtering scheme for users to have
a level of certainty regarding their measurements and analysis
results.

A. Measurements Similarity Analysis
As proposed in our previous work [22], we argue that for

any broad type of correlation analysis objective, i.e., spatial

or temporal, there are four important factors that define time-
series measurement traces’ attributes. They are: 1) Topology:
the path taken by the measurement probe packets; 2) Metric:
the measurement tool (such as one-way delay, throughput)
used to collect the samples; 3) Time Range: the time range
of the time-series measurements; 4) Alignment: the relative
positions of the measurement sampling time stamp instances.

For each of these factors, we will quantify the relative simi-
larity between target trace and candidate traces and then create
an overall similarity score from individual factor similarities.
The overall similarity score will help the network operators to
rank the candidate traces in the order of their relevance.
Measurements Topology Similarity. The topology attribute
of any measurement trace is the traceroute information be-
tween two sites, which is made of intermediate nodes or hops.

This topology information is very important for correlating
measurements traces because - higher the similarity between
traces’ topologies, higher the probability of common network
events of interest. Therefore, we express the topology similar-
ity topo simii,j between target trace i and candidate trace j
as:

topo simii,j =
topoi \ topoj
topoi [ topoj

(1)

Measurements Metric Similarity. The measurement metric
indicates the network performance measurement tool used
for monitoring, such as Ping, OWAMP, BWCTL, etc. The
measurement metrics similarity between traces is of impor-
tance based on the type of measurement analysis sought. We
consider measurement metric similarity for recommendation
of measurement traces of two different tools that use dif-
ferent configurations/methods to provide similar metrics e.g.,
latency or loss. We express measurement metric similarity
metric simii,j between traces i and j as a boolean repre-
sentation:

metric simii,j =
⇢

1, (mi = mj)
0, (mi! = mj)

(2)

Measurements Time Range Similarity. The measurement
time range of a trace is one of the most important measurement
attributes for temporal analysis, when the duration of the traces
becomes critical to detect a time-specific network event. Thus,
if two traces’ duration are not aligned temporally, their time
range similarity should be equal to zero. Therefore, we express
the time range similarity range simii,j between traces i and
j as:

range simii,j =
ri\rj
ri

(3)

Measurements Alignment Similarity. Measurement align-
ment, i.e., the relative positions of measurement sample in-
stances is also significant for correlation analysis with multiple
dimension time-series measurements. Samples that are closely
aligned are easier to correlate and have better chances of
accurate detection of network events upon analysis. Relative
alignment of sample instances between two traces is a better
metric to quantify their relative similarity. In an illustrative
example shown in Figure 4, we show one target and three
candidate traces with different periods and sampling patterns.
As far as the similarity is concerned, candidate trace 1 is best
aligned to the target trace as the mean relative displacement
between the trace 1 and the target trace is minimum.



Figure 4: Measurements alignment illustration between traces with
varied periodicity and non-aligned sample time stamp instances.

Thus, for generic quantification of alignment between mea-
surement traces, we define an alignment displacement metric
d that denotes the mean relative distance between sample
instances of target trace i and candidate trace j. The metric d
is expressed as:

di,j =
X

T

|tsi � ˆtsj | (4)

where tsi denotes target trace time stamp, ˆtsj denotes the
candidate time stamp closest to the target trace time stamp tsi,
and T denotes the number of such time stamps in the target
trace. The range of metric d varies between [0,+1) with
smaller value indicating better alignment between traces. In
order to normalize d and to be consistent with other similarity
factors, we transform the range of metric d between [0, 1] using
min-max normalization method, which can be expressed as:

align simii,j =
maxdi,j � di,j

maxdi,j � mindi,j

(5)

where maxdi,j and mindi,j are the maximum and minimum
values of di,j .

B. Overall Similarity Scores based on Analysis Objective
Decision Tree

The overall measurements similarity is expressed as a
weighted product of the aforementioned four similarity factors:

overall simii,j =
X

k

wk ⇤ factor simiki,j (6)

where factor simiki,j denotes each of the aforementioned sim-
ilarity factors and wk denotes their respective weights for
the overall measurements similarity score. The values of the
weights depend on the relative importance of these attributes
to achieve different measurement analysis objectives. In order
to simplify the weights but at the same time to have a more
comprehensive list of analysis objective scenarios, we design
a decision tree of different generic measurement analysis
objectives and corresponding relative importance of attributes’
weights (wt, wm, wr, and wa respectively for each of the
similarity factors), as shown in Figure 5.

Broadly, we divide the entire analysis objective space
into temporal and spatial analysis. In temporal analysis,
the weights for temporal factors, such as time range and
alignment are more important than spatial factors such as
topology. For example, one of the most common mea-
surement analysis for end-to-end data-intensive applica-
tion management is the correlated anomaly event detec-
tion [25], which involves a spatial analysis and falls un-
der ‘Analysis Objective’!‘Spatial’!‘Measurement Metric
Specific’!‘Short-term Change’. So, the relative weights

Analysis 
Objective

Measurement 
Metric Specific

Spatial

Temporal

Measurement 
Metric Agnostic

Short-term 
Change 

Long-term 
Performance

Short-term 
Change

Long-term 
Performance

Measurement 
Metric Specific

Measurement 
Metric Agnostic

Measurement 
Metric Specific

Measurement 
Metric Agnostic

Short-term 
Change

Long-term 
Performance

wt>wm>wa>wr

wt>wm>wr>wa

wr>wa>wt>wm

wr>wa>wm>wt

wa>wr>wm>wt

wt>wa>wr>wm

wt>wr>wa>wm

wa>wr>wt>wm

Figure 5: Decision tree for different measurement analysis objectives
and the corresponding relative measurement attributes’ weights

should be wt > wm > wa > wr. Hence, using a content-
based filtering scheme, users can easily obtain the relevant
measurements according to their analysis interests.

C. Data Sanity Checking and Domain Reputation Estimation
“Data veracity” factor is important to determine the accu-

racy of any measurement analysis results. Hence, we design a
“data sanity checking” scheme to check the quality of data, and
use it with a “domain reputation” algorithm to verify whether
a measurements from a certain domain should be subscribed
from a long-term perspective or ignored for critical analysis.
Data Sanity Checking. We implement the two-pronged ap-
proach from [5] to sanitize measurement data: a reputation
analysis scheme for collected samples, and a filter framework
to intelligently prune the potentially misleading samples.

In the context of detecting and diagnosing potential cor-
related anomaly events within time-series measurements, it is
important that the sample data has a desired nature expected by
the monitoring objective in terms of two aspects: (i) Sampling
Pattern, and (ii) Data Validity. To identify potentially mis-
leading features of measurements, we use the reputation-based
data sanity checking scheme which analyzes the measurement
samples for sampling pattern, and collected sample validity.
Domain Reputation Estimation. The concept of reputation
of data is closely linked to its trustworthiness; an entity’s
reputation is generally a subjective proof of its historical
actions and in most cases, a measure of expectations of future
behavior. The main objective of proposing a domain reputation
scheme is to generate domain-centric expectations for network
operators when they subscribe to measurement data from
different domains. Such a domain reputation scheme can
encourage trustworthy measurement practices (e.g., sharing of
calibrated measurement tool data) among multiple domains
supporting Big Data applications.

Reputation of any domain is a function of the quality of
measurement data generated from that domain. We observed
that in any random collection that was publicly accessible,
some measurements exhibit non-periodic sampling patterns,
i.e., they are either too dense or too sparse, and some were
invalid due to faulty clock synchronization between measure-
ment servers or data corruption (e.g., negative one-way delay
values). For spatial analysis with OWAMP, the characteristics
are: sampling pattern and data validity. Thus, in our earlier
work [5], we have defined the sanity score of any trace with
path (source, destination) i as:



si =
Ni � (Ni � nmajority

i )� (Ni � nvalid
i )

Ni
(7)

where Ni denotes the number of measurement samples in
path i, nvalid

i denotes the number of valid data samples in
path i, and nmajority

i denotes the number of samples showing
consistent sampling pattern.

Through Bayesian Inference, new or an updated reputa-
tion score (i.e., posteriori) of an entity can be computed
by combining the old/previous reputation score (i.e., priori)
with a new belief. In order to translate sanity scores into
domain reputation, we first discretize the measurement data
sanity scores into data sanity ratings of a particular domain
using boolean variables such as ‘Good’ (variable x) and ‘Bad’
(variable y), and some sanity threshold ✏. The value of ✏ is
a measure of the degree of conservativeness of the reputation
scheme that is kept constant for the entire system. The value
of ✏ can be set based on the distribution of measurements’
sanity scores in the system. If the average sanity score of
measurement data in the system is very high, ✏ value is kept
high to differentiate between good and bad measurements, and
vice versa. Usually for all practical purposes, ✏ value is around
[µ+ �, µ+ 2 ⇤ �].

x = |i| 8 si >= ✏; y = |i| 8 si < ✏ (8)

Therefore, at any given time t, the measurement data sanity
rating of any domain is represented as ⇢t = [x, y]t. Now if
there are T such discrete data sanity ratings collected over
a period of time, then the overall data sanity rating after T
collection is given as ⇢T = [x, y]T , where xT and yT are
expressed as:

xT =
TX

t=1

�T�txt and yT =
TX

t=1

�T�tyt (9)

where 0  �  1 is called the ‘forgetting factor’ and keeps the
recent history of data sanity rating more relevant in reputation
calculation than ancient history. The value of � represents how
forgetful a system is, � = 1 means the system forgets nothing.
Thus, this value depends on the user’s opinion such that, if the
user thinks the historical reputation is also very important, this
value should be close to 1; however, if the user thinks current
reputations are more important, the value should be close to
0.

Now after collecting T such discrete data sanity ratings, the
reputation of the domain responsible is expressed as a posterior
expectation of beta distribution of ⇢T and is represented as:

RT = E[beta(⇢T )]

=
xT + 1

xT + yT + 2
(10)

V. COLLABORATIVE FILTERING MEASUREMENT
RECOMMENDATION

Collaborative filtering is applied when users need help
from other users to solve a multi-domain performance issue.
When network anomaly events are detected in their monitoring
system, the application users or network administrators want
to diagnose the reasons of anomaly events. However, anomaly

event diagnosis is a challenging problem, especially in and
end-to-end multi-domain monitoring system. Due to lack of
skills or knowledge in network diagnosis and complicated
reasons to cause network issues involving large measurement
archives, most users fail to identify many anomaly events,
which may affect their performance. If there was a “social”
platform for users to share experience and diagnosis skills,
it could improve the efficiency of trouble-shooting anomaly
events greatly. This is the reason why we leverage the concept
of collaborative filtering to add a “social plane” to anomaly
event detection in the overall monitoring system.

Collaborative filtering is widely used in recommendation
systems, such as eBay, Amazon, to find the possible interesting
products for particular users based on finding other users
with similar interests, by using all the users’ ratings in their
database (also called as user-based collaborative filtering).
Similarly, when anomaly events are found in a monitoring
system, the users want to find those people who faced similar
network anomaly events and find the root-cause of the anomaly
events. Thus, we leverage the concept of collaborative filtering
in our anomaly detection for finding those network measure-
ment traces with similar anomaly symptoms. Our approach is
also based on the reasonable assumption that the people who
have encountered similar networking issues previously have a
higher probability to know the root-cause of these anomaly
events.

The original collaborative filtering (user-based model) usu-
ally involves two procedures: Finding the Top-N users with
similar tastes; Using Top-N users’ ratings for a particular item
to predict a targeted user’s rating. The collaborative filtering
in our scenario similarly, has two steps:

• Finding those measurement traces having similar
anomaly symptoms;

• Using those measurement traces to connect the potential
people who may understand the network issues and
provide solutions and suggestions, assuming each mea-
surement trace is managed by the network administrators
or Big Data application community users.

As shown in Figure 6, target users put their suspicious
measurements traces into our collaborative filtering, and then
our system pulls all measurements traces as candidate mea-
surements from a relevant perfSONAR measurements archive.
The anomaly symptom detection module scans target and
candidate measurements to detect anomaly symptoms for each
measurement trace. After detecting anomaly symptoms, we
quantify each anomaly symptom and construct an anomaly
symptom matrix. Finally, the anomaly symptom similarity
analysis module filters out those measurements traces with
most similar anomaly symptoms. Hence, through similar
anomaly symptoms, we can connect those users who also
have similar network problems such that they can diagnose
collaboratively and in a trustworthy manner.

In the following subsections, we describe how our col-
laborative filtering based recommender detects and classifies
anomaly events and similarity between measurement traces.

A. Anomaly symptom detection
The first challenge of our collaborative filtering approach

is how to detect anomaly symptoms in measurements i.e.,
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Figure 6: Major components of collaborative filtering scheme, which filters out relevant measurement traces to connect relevant
users to the target user

how to classify anomaly events based on their features.
Anomaly events could be visualized and analyzed in different
approaches such as time-series, clusters or heat maps. In our
research, we apply anomaly detection algorithms to network
time-series measurements. As described in [11], network mal-
functions are caused by different reasons. Moreover, different
network malfunctions may have different anomaly symptoms
(or signatures) in the time-series measurements. In this section,
we describe how to detect anomaly symptoms and create an
anomaly profile for each anomaly symptom, which can help
us quantify anomaly symptoms for collaborative filtering and
content-based filtering.

In addition, our anomaly symptoms detection algorithm is
based on our previous work on the Adaptive Plateau Detector
algorithm (APD) [7]. Before describing the anomaly symp-
toms detector, we describe the working of the APD algorithm
briefly. Plateau events are used to detect performance change
events in network environment, which look like a “plateau”
in the measurements plots, as shown in Figure 7. A plateau
trigger event is detected if the most recent measurement
sample value crosses the upper or lower thresholds of the
summary (i.e., TSU , TSL) and quarantine (i.e., TQU , TQL)
buffers as determined by the settings of sensitivity and trigger
elevation parameters. The summary buffer is used to maintain
sample history that indicates the normal state values and a
quarantine buffer is used to store outlier data samples that are
more than twice the normal state sample values. A plateau
anomaly is triggered when the count of trigger events reaches
a value of pre-configured trigger duration, which is indicated
by the cross mark in Figure 7.

High delay utilization. “High delay utilization” may be
caused by network congestion overload, which is a case of a
significant and persistent queue backlog in one or more links
along the path. As shown in Figure 8(a), the feature of “high
delay utilization” has a high delay utilization duration, and we
configure the parameter trigger duration of APD algorithm as
shown in Table I to detect this symptom.

Delay level shift. The “delay level shift” may be caused by
route changes or clock synchronization issue. It will be a
significant change above normal baseline shown in Figure 8(b)
and related configuration shown in Table I.

Single point peak. The “Single point peak” may be affected
by end-points, such as NIC (Network Interface Card) buffering
issue, I/O issue and OS manual operations issues. So, this
symptom is usually made of a single (or few) point(s) higher

Figure 7: Plateau-detector thresholds illustration: normal state
threshold is [TSL, TSU ], and abnormal state threshold is >
TSU or < TSL

than normal delay as shown in Figure 8(c) and a related
configuration is shown in Table I.

For each anomaly symptom s, we quantify it as s = (p, g),
where the p denotes the type of anomaly symptom (such as
“high delay utilization”, “delay level shift”), and the value
of p will be denoted as enumerative value (0, 1, 2); And the
g denotes the magnitude of anomaly symptom, which can be
expressed as (1� normal

abnormal
) means the difference ratio between

average value of abnormal events and average value of normal
events during a certain defined window size, so the value of
g 2 [0, 1].

Hence, after anomaly symptom detection, we obtain a set of
anomaly symptoms s for each measurement trace Mi, which
could be expressed as Mi = {s1, s2, ..., sm}.

B. Anomaly Symptom Matrix
In Section V-A, we obtain a set of anomaly symptoms for

each measurement trace by using anomaly symptom detection.
The next step is to construct an anomaly symptom matrix D
to compare similarities of measurement anomaly events.

However, constructing an anomaly symptom matrix is a
challenging problem. A naive approach may scan all the
anomaly symptoms and look for the most similar one to be
aligned with target anomaly symptoms. However this approach
is hard to operate and requires lots of computation resources.

To solve this problem, we propose using bins to align similar
anomaly symptoms. This approach is easier to operate and re-
quires lesser computation resources. The overall computation
time of alignment processing could be achieved in O(n). As



(a) High delay utilization (b) Delay level shift (c) Single point peak

Figure 8: The process of adjusting different parameters in the APD configurations to detect different anomaly symptoms

Parameters High delay utilization Delay level shift Single point peak
summary window count (swc) 100 100 100
trigger duration (td) 50 15 1
trigger threshold (tt) Same as original APD 1.2 1.5
trigger method (tm) Persistent and Intermittent Persistent Same with original APD

Table I: Parameters configuration of APD to detect anomaly symptoms

the value of symptom magnitude g is between 0 and 1, our bin
size will be defined within a 0.2 scale. However, a challenge
with this approach is the lack of a way to analyze similarity
with different anomaly symptom types. The value should be
zero, if the types are different. Hence, we adjust them with
different ranges. The magnitude of anomaly symptom Si for
particular anomaly symptom could be expressed as,

Si = pi + gi (11)
Where pi equals to 0, 1, or 2, so the adjustment magnitude

of anomaly symptom with different anomaly type will be
shifted to different range.

Hence, our anomaly symptom matrix is defined as: the X-
axis has 15 number of bins with 0.2 scale for each bin; and
the Y-axis is the measurements traces as shown in Figure 6.

C. Anomaly Symptom Similarity Analysis
After generating anomaly symptom matrix, we apply Pear-

son correlation coefficient to compute the anomaly symptom
similarity score between two measurement trace Mi and Mj ,
which can be expressed as:

M sim(i, j) =

P
(Mi �Mi)(Mj �Mj)qP

(Mi �Mi)2
qP

(Mj �Mj)2
(12)

Through anomaly symptom similarity analysis, we could fil-
ter out the measurements with most similar anomaly symptoms
when compared to the target measurement, so as to connect
the relevant users to the target user for expertise sharing and
cooperative mingling as shown in Figure 6.

VI. SOCIAL PLANE IMPLEMENTATION

We implemented our “social plane” approach social net-
working user interface in HumHub [27], which is social
network open source development kit. When HumHub is
deployed, it works as a common social network website
as Facebook, Twitter, and it supports basic social network
interfaces: users can create their own domains or communities;
users can post their messages, which could be shared among
their domains and their followers. We address challenges that
could be faced by our proposed architecture implementation

in a real deployment. The main challenge is to adapt our
implementation of our proposed architecture such that it can
be used routinely on a regular basis by many stakeholders.
One strategy is to allow users to subscribe and receive
anomaly event notifications via email pertaining to various
communities’ measurement resources and data archives that
are of direct interest in terms of performance monitoring
objectives. Another strategy is to create relevant user interfaces
and visualizations that allow stakeholders to use the social
plane tools to collaborate around critical anomaly events in
a ‘systematic’ manner through knowledge sharing and expert
mingling for root-cause diagnosis.

In the following, we will describe the basic features of our
“social plane” implementation.
Content-based Filtering Features. When users want to per-
form correlation analysis, the users have the option to find
other measurements which are interest to them. The mea-
surements can be searched based mainly on two objectives:
Temporal and Spatial correlation analysis objectives. Based on
the objectives selected, our recommendation scheme will rec-
ommend measurements which match the user’s measurements.
In our application, users in a particular domain only need to
choose their analysis objectives (such as temporal, spatial),
thereafter our system will automatically analyze a domain’s
measurements attributes (refer to Section IV) and recommends
relevant measurements based on a user’s analysis objective.
Collaborative Filtering Features. Users can subscribe to
measurements by inputting e.g., the IP address of measure-
ments archive, which are related to their services. After
subscribing the measurements, users can observe these mea-
surements, their end-to-end performance. When users find
any suspect events, they can post the suspect events on the
social web site by providing basic events information. The
Collaborative filtering scheme is executed when users post a
suspect event as described in the procedure in Section V. After
collaborative filtering, the users with similar anomaly will be
filtered out as shown in Figure 9. Further, users can directly
send messages to those for asking for help. Consequently,
those users can build up connections and share diagnosis
knowledge or work collaboratively.



Figure 9: Screenshot of social plane implementation in Humhub

VII. PERFORMANCE EVALUATION AND RESULTS

In the evaluation section, we separately evaluate the effec-
tiveness of content-based filtering and collaborative filtering to
show the effectiveness of our measurements recommendation
scheme in accurately identifying anomaly events for a user’s
measurements analysis objective, and accurately identifying
those anomaly events with similar symptoms. Because of the
challenges in finding the ground-truth of measurements in real-
world deployments, we create a simulation environment to
synthesize measurements and anomaly events to prove our
recommendation schemes. The data sets used in our evaluation
experiments are publicly accessible at [28].

A. Content-based Filtering Recommendation Scheme Func-
tionality with Synthetic Traces

In order to examine the effectiveness of the proposed
recommendation scheme in accurately identifying anomaly
events upon analysis, we perform experiments with synthetic
perfSONAR data. The synthetic data is carefully generated to
closely mimic the actual perfSONAR OWAMP measurement
traces. And then, we inject two types of anomaly events: cor-
related and uncorrelated anomaly events. Correlated anomaly
events are temporal correlated anomaly events, which means
anomaly events from different traces happened at same time.
In order to inject correlated anomaly events, we generate
100 traces and then inject anomaly events in those traces
at the same time. We also inject events at random times
as uncorrelated anomaly events. The percentage of anomaly
events in each trace varies from 0.1%-1% of the trace sample
population. The magnitudes of anomaly events vary from 10%
- 60% over normal measurements with higher magnitudes
causing sharper spikes.

In the first experiment, we use the traces recommended
by our scheme to detect network anomaly events using an
exemplary temporal correlation analysis. For this experiment,
we use different number of recommendations and see whether
analysis with such recommendations can successfully identify
the correlated/uncorrelated anomaly events that we injected. In
Figure 10(a), 10(b), and 10(c), we show the accuracy of such
anomaly event detection with our scheme recommending 2,
10 and all 100 traces, respectively. We observe that in this
particular scenario, 10 recommendations accurately detect all
the anomaly events with no false alarms. Whereas analysis
with only 2 recommendations lack the necessary data to

(a) 2 recommendations (b) 10 recommendations

(c) 100 recommendations (d) Accuracy vs. recommendations

Figure 10: Accuracy of correlated anomaly detection in terms of
false alarms with varying number of recommended traces

establish correlation, thus causing false alarms. Further, all
100 recommendations suffer from too much noise in anomaly
detection caused by undesired traces resulting in false alarms.
In Figure 10(d), we showed the nature of detection accuracy
with the number of recommended traces exhibiting an inflec-
tion within the 10 - 40 recommendations range. Thus, we argue
that there exists: an optimal number of recommendations (in
this case 10) for accurate detection, and an inflection point (in
this case 40) beyond which too many traces contribute to high
levels of noise resulting in false alarms.

Figure 11: False Alarm Rate comparison among the three different
schemes evaluated

Figure 11 shows the benefits of our content filter based
recommendation scheme over the greedy recommendation
approach (random selection), and recommendation strategy
with filtering based on partial measurement features, such as
temporal aspects (time range) of the traces. For this experi-
ment, we vary the density of anomaly events and recommend
equal number of traces for each approach being compared. We
see that on an average, the content filter performs consistently
better than the greedy and temporal filter based approaches.
It is interesting to observe that for a very small density
of anomaly events, the false alarm rate is higher for all



approaches. This is because, too few anomaly events with
minimal anomalous features are difficult to detect and are
neither related to the number of recommendations nor the
filtering approaches.

B. Collaborative filtering recommendation scheme functional-
ity with synthetic traces

To evaluate our collaborative filtering scheme for finding the
most similar symptoms, we perform experiments with perf-
SONAR data as detailed in Section VII-A. We also evaluate
the efficiency of our scheme to show the overload for accuracy.

• Effectiveness: We use three different metrics (Precision,
Recall, Accuracy) in the effectiveness evaluation. These
metrics are widely used in pattern recognition and infor-
mation retrieval fields.

– Precision is to indicate the fraction of recommended
measurement traces that have similar anomaly symp-
tom as the target measurement trace.

– Recall is to indicate the fraction of measurement
traces that have similar anomaly symptom as the
target measurement trace that are recommended.

– Accuracy is to indicate the fraction of measurement
traces that have and don’t have similar measurement
traces that are accurately estimated.

• Efficiency: We use the average running time to evaluate
efficiency of our scheme.

1) Effectiveness Evaluation: We compare our collaborative
filtering scheme with other two schemes: temporal filter-
ing and greedy filtering schemes. temporal filtering scheme
recommends measurements with similar anomaly symptoms
by checking temporal correlation level; and greedy filtering
scheme recommends measurements by random selection.

In order to show the effectiveness of our scheme in dealing
with each anomaly symptom, we separately evaluate our
scheme in dealing with each anomaly symptom in terms
of different number of anomaly events injected in candidate
measurement traces. First, we select one measurement trace
as a target measurement trace and 100 measurement traces
as candidate measurement traces. Second, for each evaluation
scenario, we inject one anomaly symptom into the target
measurement trace, and then we randomly select number of
measurement traces from candidate measurement traces to
inject different types of anomaly symptoms.

For example, as shown in Figure 12, we inject the “high
delay utilization” anomaly event into target measurement trace
and inject different types anomaly symptoms to candidate
measurement traces. The goal of these schemes is to find
those measurements in candidate measurement traces that have
similar anomaly symptoms as the target measurements. In
Figure 12, we show that our collaborative filtering scheme
has much better performance than the other two schemes
with respect to the Precision and Recall metrics. We see
that the results won’t change as the number anomaly events
are increased. However, in Figure. Accuracy the collaborative
filtering scheme also has higher performance, but it is not
obvious as the previous two metrics. The reason for why
temporal filtering and greedy filtering also have good accuracy
is because of the number of true negatives, which means
without any positive predication it can achieve 0.95 accuracy if

there are 5 measurement traces with similar anomaly symptom.
Also, the accuracy result decreases as the number of anomaly
events increase. The other two evaluation scenarios for “delay
level shift” in Figure. 13 and “single peak point” in Figure. 14
show the similar results. We also find that the “Temporal
filter” and “Greedy filter” schemes are unable to make correct
positive predictions, so the “precision” and “recall” results are
almost close to zero.

2) Efficiency Evaluation: In the efficiency evaluation stud-
ies, we compare the computation time for finding similar
anomaly symptoms among these three approaches in terms
of different number of measurements traces. Table II shows
scalability results of our filtering algorithms when used on
a large number of traces in a production scale environment.
Specifically, we show computation time performance com-
parison of our filtering algorithm with greedy filtering and
temporal filtering from 100 to 100,000 measurement traces.
For this, we use different Amazon Web Services instances (see
descriptions provided in Table III) for analyzing scalability.
We can observe that the computation time increases linearly
as the number of measurements traces increases. Also, the
overhead of our algorithm is minimal in production scale
environments and is on the order of a few seconds even for sev-
eral thousands of measurement traces. The computation time
results of greedy filtering and temporal filtering are similar,
and the computation time of collaborative filtering is ⇡ 1.5
times larger than the other two schemes. This is an expected
result, because the greedy and temporal filtering schemes need
to run the APD algorithm only once. Whereas, our APD
algorithm runs 1 ⇠ 3 times in the case of the collaborative
filtering scheme depending on how we randomly inject three
different anomaly symptoms in the target measurement trace
for efficiency evaluation.

VIII. APPLICATION TESTBED CASE STUDIES

In this application testbed case studies section, we will
show how our collaborative filtering scheme creates a “social
plane” for helping application users or network administrators
to share experience and diagnose collaboratively. We also show
how our content-based filtering helps users find best matched
measurements based on their measurement analysis objectives.

A. Case studies of Collaborative Filtering in a Social Plane
SoyKB [8] is a comprehensive web resource developed at

University of Missouri (MU) for soybean translational ge-
nomics and breeding, which handles the integration of soybean
genomics and multi-omics data along with gene function
annotations, biological pathway and trait information. The
SoyKB has been featured as a model distributed computing
use case in the systems biology area within the Open Science
Grid community. It represents a Big Data application in
bioinformatics due to the large volume of distributed data sets
that need to be integrated and analyzed.

In order to simulate various network issues in a Big data
application, we use the GENI Cloud Testbed [9] to develop
our case studies. First, we simulate the SoyKB Big Data
application [2] related network environment in GENI. As
shown in Figure 15, SoyKB Application imports raw data
from other counties (such as China, Brazil). Researchers at
MU use iPlant and TACC resources to store and process. They
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Figure 12: Results of recommendation schemes to find anomaly symptom: “high delay utilization” with varying number of anomaly events

(a) Precision (b) Recall (c) Accuracy

Figure 13: Results of recommendation schemes to find anomaly symptom: “delay level shift” with varying number of anomaly events

(a) Precision (b) Recall (c) Accuracy

Figure 14: Results of recommendation schemes to find anomaly symptom: “single point peak” with varying number of anomaly events

Instance Type 100 Traces 1000 Traces 10000 Traces 100000 Traces
CF GF TF CF GF TF CF GF TF CF GF TF

t2.small 4 3 2 33 20 21 340 209 211 22492 16347 16936
c4.large 3 2 2 28 18 17 277 175 174 3081 1942 1890

Table II: Computation time (seconds) comparison of collaborative filtering (CF), greedy filtering (GF) and temporal filtering (TF)

Instance Type Descriptions
t2.small Variable ECUs, 1 vCPUs, 2.5 GHz, Intel Xeon Family, 2 GiB memory, EBS only

m3.medium 3 ECUs, 1 vCPUs, 2.5 GHz, Intel Xeon E5-2670v2, 3.75 GiB memory, 1 x 4 GiB Storage Capacity
c4.large 8 ECUs, 2 vCPUs, 2.9 GHz, Intel Xeon E5-2666v3, 3.75 GiB memory, EBS only

Table III: Descriptions of Amazon EC2 instances; Legend: ECU (EC2 compute unit), GiB (gibibite), EBS (elastic block store)

may also choose public cloud (AWS, Azure) to achieve better
performance. Same storage (iPlant) and computing (TACC)
resources could also be used by researchers from Iowa and
Arkansas. Second, we deploy an end-to-end monitoring infras-
tructure to collect measurements using our OnTimeMeasure
software for GENI [24]. The measurements are collected by a
‘Measurements engine’ shown in Figure 15. Third, we use the

“netem” command [26] to control delay values and duration
time to simulate different anomaly symptoms, as shown in
Table IV. Note that the arrows in Table IV denote the increase
in the value of “delay” to simulate different types of anomaly
symptoms. Lastly, we use our collaborative filtering scheme
to create a social plane for sharing knowledge or collaborative
diagnosis in a trustworthy manner.



Anomaly symptom type variation duration(s)
High delay utilization " (20 ⇠ 40)% 3600s
Delay level shift " (55 ⇠ 60)% Persistence
Single point peak " 60% 10s

Table IV: Simulation anomaly symptoms with “netem” commands
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Figure 15: Physical simulation of SoyKB application testbed in
GENI Cloud Infrastructure

We will now present a few scenarios which are most com-
mon cases in scientific Big Data applications, such as different
user experiences with same applications; issues located at
sources (e.g. users’ side) which may impact on those users’
application performance; and issues located at sinks (e.g. data
centers or computation centers) which may impact on most
users’ application performance.

Missouri Iowa

Arkansas

iPlant Data center

Internet

Collaborative Filtering Engine
Symptom Recommendation
High delay 
utilization

Missouri and Arkansas
are normal. You may
ask them for help

?

Figure 16: Logical illustration of User Experience bottleneck case:
users in “Iowa” feel the high latency SSH operation on iPlant server

1) User Experience Issue: User experience issue suggests
that a user has bad or unsatisfactory experiences of applica-
tion performance, such as long data transfer times, excessive
execution times, or slow SSH login speed. The cause of those
issues are usually complicated and irregular, which may be
caused by mis-configurations, network bottlenecks, or firewall
security issues.

As shown in Figure 16, the users in Iowa find the speed
of using SSH to login into the iPlant data center for SoyKB
related computations is very slow. After analysis using our
collaborative filtering engine (labeled in Figure 16), the engine
detects a “high delay utilization” symptom in the measurement
trace from “Iowa” to “iPlant”, and the engine also finds
measurements traces from “Missouri” or “Arkansas” to iPlant
without this kind of issues. So, the engine may recommend
users in “Iowa” ask users in “Missouri” or “Arkansas” for
help, so that a “social plane” is created among those users

for sharing knowledge or collaborative troubleshooting. This
example also could be the scenario of issues located at sources,
because only certain users face them.

Trace Name Metric Periodicity Time Range

bnl$fnal One-way delay [58, 62] 09-01 00:57 $ 09-09 23:58
lbl$ornl One-way delay [51, 68] 09-03 05:39 $ 09-03 22:19

aofa$bost One-way delay [51, 161] 09-01 00:00 $ 09-01 05:35
bnl$bois One-way delay [57, 63] 09-01 00:00 $ 09-09 23:59
sacr$bois One-way delay [53, 150] 09-01 00:00 $ 09-01 16:42
bnl $bost One-way delay [53, 67] 09-01 00:00: $ 09-01 05:35
hous $srs One-way delay [53, 69] 09-05 05:31 $ 09-05 22:08
bnl $lbl One-way delay [61, 66] 09-01 00:00 $ 09-09 23:59

newy $sacr Throughput [54, 67] 09-01 00:00 $ 09-09 23:59
anl $newy Throughput [52, 64] 09-01 00:01 $ 09-09 23:59
bnl $nash Throughput [57, 71] 09-03 05:58 $ 09-03 22:38
denv $fnal Throughput [58, 67] 09-01 00:00 $ 09-09 23:59

Table V: Real perfSONAR measurements traces’ attributes descrip-
tion
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Figure 17: Logical illustration of data center issue case: data center
iPlant has some issues, which would affect all the iPlant users

2) Data Center Issue: Data center issue (or called issues
located at data sink) means that the data center faces some
issues which are caused by data centers’ device failures or
link failures, as a result of which, many users or entities will
be affected. Those issues may not directly impact on user’s
experiences, however, those issues may be manifest as notable
changes in measurements, which catch users’ attention.

As shown in Figure 17, the users in Missouri observe the
performance change in their measurements. After analysis with
our collaborative filtering engine, we detect a “Single point
peak” symptom in the measurement trace from “Missouri”
to “iPlant”, and also detect similar anomaly symptoms in
measurements traces from “Arkansas” or “iPlant” and from
“Iowa” to “iPlant”. Consequently, the engine may suggest
diagnosing collaboratively work with users in “Arkansas”
and “Iowa”. And because they have same sink (iPlant), they
may also check this issues with administrators of iPlant.
Consequently, a “social plane” is created among those users
and service provider for sharing knowledge or collaborative
troubleshooting of the root-cause issue.

B. Case studies of studies of Content-based filtering scheme
with real traces

We collect hundreds of perfSONAR traces from National
labs and ESnet sites with perfSONAR end-points with dif-
ferent measurement attributes as inputs to our proposed mea-
surement recommendation scheme. In Table V, we show the
attributes for only a small subset of collected samples. In this
subset, we have kept the trace BNL$FNAL as the target
trace (in bold font) and the rest as candidate traces. Applying



our proposed recommendation scheme, we seek to find the
most relevant traces for two separate measurement analysis
objectives: a) Temporal analysis for correlated anomaly event
detection [25] where complete topology information is not
available; and b) Spatial analysis for topology-aware correlated
anomaly event detection [23]. We remark that recommen-
dations in a spatial analysis context are as useful as the
amount of topology details available between the various
measurement end-points. In reality, it is not always possible to
obtain topology information for the measurement traces in the
publicly available perfSONAR data archives. Consequently,
recommendations might not be useful for root-cause diagnosis
in cases where there is an absence of topology information.

Table VI shows the measurement attributes similarity scores
for the candidate measurement traces with the target trace
described in Table V. The score evaluations follow the scheme
described in Section IV and due to the varied attributes of
the collected traces, we observe that the similarity scores of
candidate traces based on different attributes can vary by a
considerable margin.

Trace Topology Metric Alignment Time Range
Name Similarity Similarity Similarity Similarity

lbl$ornl 0 1 0.456 0.077
aofa$bost 0.077 1 0 0.026
bnl$bois 0.385 1 0.999 1
sacr$bois 0 1 0.103 0.077
bnl$bost 0.4 1 0 0.026
hous$srs 0 1 0.767 0.53
bnl$lbl 0.333 1 0.999 1

newy$sacr 0.125 0 0.999 1
anl$newy 0 0 1 0.999
bnl$nash 0.143 0 0.979 0.862
denv$fnal 0.154 0 0.999 1

Table VI: Measurement attributes similarity score description

Figure 18: Historical reputation characteristics comparison of 3
exemplar DOE lab with real perfSONAR traces over one year period

In Figure 18, we show the historical reputation characteristic
comparison of 3 exemplar National Lab sites based on one
year (Oct 2014 - Oct 2015) traces’ data sanity scores using
the scheme discussed earlier. We observe that although these
are well known and seemingly reputed perfSONAR end-
points within the Big Data application communities deploying
perfSONAR, not all the sites produce trustworthy data at all
times. Thus, we establish the need for a domain’s reputation
as a key factor in subscribing to that domain’s measurement
data for accurate detection and effective troubleshooting. For
example, according to Figure 18, subscribing to data from
domain ‘NEWY and ‘ATLA’ is likely to yield data with
high veracity; whereas, subscribing to STAR data may not
always lead to accurate correlated anomaly event detection
and diagnosis.

Subsequently, we apply the relative weights of the mea-
surement attributes on the similarity scores based on the two
monitoring objectives: temporal and spatial. For temporal anal-
ysis, we focus on detecting correlated anomaly events in time
series measurements where measurement metric needs to be of
similar type. Hence, we follow the path: ‘Analysis Objective’
! ‘Temporal’ ! ‘Short-term Change’ ! ‘Measurements
Metric Specific’, and assign the weights according to the rule
wa > wr > wm > wt. Whereas for spatial analysis, focus is
on using measurements topological information to drill down
the location of events. Hence, it follows the path: ‘Analysis
Objective’ ! ‘Spatial’ ! ‘Measurements Metric Specific’ !
‘Short-term Change’, with final relative weights following the
rule wt > wm > wa > wr.

The final recommendation outcomes and corresponding
ranking of a subset of candidate traces are shown in Table VII
along with the traces’ data sanity scores, and corresponding
source and destination domains’ reputation scores. Table VII is
a snapshot of the actual manifestation of our proposed recom-
mendation scheme to assist the operators and application users
to better gauge the relevance and veracity of collected samples.
For example, the Trace BNL$BOIS (shown in Table VII) is
the best choice among the candidates (1st ranked) in terms
of similarity and high instantaneous data sanity score (0.993).
Whereas, Trace BNL$LBL, although being 2nd ranked for
both temporal and spatial analysis, may not be a good choice
for candidacy as the low sanity score (0.642) suggests sub-par
data quality which can be attributed to low reputation (0.611)
of the destination domain (LBL). Thus, operators should be
advised to use Trace DENV$FNAL over Trace BNL$LBL
for temporal analysis as the data quality of the former is much
better (0.972) in spite of having a slightly lower similarity
(0.765). However, DENV$FNAL will not be a significantly
better choice over BNL$LBL for spatial analysis due to the
former’s very low similarity score (0.327).

IX. CONCLUSION

In this paper, we showed the need of a “social plane”
for network operators and users to effectively troubleshoot
bottlenecks affecting Big Data applications in a trustworthy
manner. We leveraged the concept of recommendation sys-
tem to enhance measurements sharing/subscription, diagnosis
expertise sharing and collaborations. Using content-based fil-
tering, we filter and rank best relevant measurement traces
from a pool of candidate traces. The recommendation scheme
was complemented by a Bayesian Inference based domain
reputation calculation scheme that indicates the trustworthiness
of the collected samples among the involved domains. With
collaborative filtering, we find those measurement traces hav-
ing similar anomaly symptoms with target measurements, and
through measurements traces, we can connect those people for
sharing knowledge, or working collaboratively in a trustworthy
manner. Using real measurements traces and synthetic events,
we showed how our content-based filtering scheme enables
operators to intelligently use less but relevant measurement
samples to accurately detect and diagnose performance bot-
tleneck causing network events. In addition, we showed how
our collaborative filtering scheme finds similar anomaly issues
efficiently and effectively.



Trace Sanity Temporal Correlation Analysis Spatial Correlation Analysis Domain Reputation

Name Score Overall Similarity Score Ranking Overall Similarity Score Ranking Source Destination

bnl$bois 0.993 0.938 1 0.938 1 0.983 0.984
bnl$lbl 0.642 0.933 2 0.933 2 0.985 0.611

denv$fnal 0.972 0.765 3 0.327 5 0.991 0.984
newy$sacr 0.982 0.762 4 0.312 7 0.979 0.986
anl$newy 0.984 0.221 5 0.273 10 0.987 0.986
bnl$bost 0.953 0.197 10 0.453 3 0.983 0.964
hous$srs 0.976 0.666 7 0.418 4 0.934 0.986

Table VII: Data sanity score and domain reputation results for selected traces used in exemplar analysis case study

Our future work is to adapt our social plane approach to be
more deeply integrated into diverse Big Data application com-
munities, to help them better socialize around measurements
and achieve expected performance.

REFERENCES

[1] L. Evans, P. Bryant, “LHC Machine ” Journal of Instrumentation, Volume 3, Au-
gust, 2008. The Large Hadron Collider (LHC) Project - http://lhc.web.cern.ch/lhc

[2] Y. Liu, D. Xu and T. Joshi, “PGen: large-scale genomic variations analysis
workflow and browser in SoyKB”, BMC Bioinformatics 17(Suppl 13):337, DOI:
10.1186/s12859-016-1227-y, 2016.

[3] A. Hanemann, J. Boote, E. Boyd, J. Durand, L. Kudarimoti, R. Lapacz, M.
Swany, S. Trocha and J. Zurawski, “perfSONAR: A Service Oriented Architecture
for Multi-Domain Network Monitoring”, Proceedings of the Third international
conference on Service-Oriented Computing Pages 241-254, 2005.

[4] V. Paxson, “Strategies for sound internet measurement, Proceedings of the 4th
ACM SIGCOMM conference on Internet measurement, Taormina, Sicily, Italy,
2004.

[5] Y. Zhang, S. Debroy and P. Calyam, “Network-wide Anomaly Event Detection
and Diagnosis with perfSONAR”, IEEE Transactions on Network and Service
Management (Volume: 13, Issue: 3, Sept. 2016 ), 2016.

[6] M. Marvasti, A. Poghosyan, A. Harutyunyan and N. Grigoryan, “An Enterprise
Dynamic Thresholding Systenm”, Proceedings of 11th International Conference
on Autonomic Computing (ICAC 14), pages: 129–135, 2014.

[7] P. Calyam, J. Pu, W. Mandrawa and A. Krishnamurthy, “OnTimeDetect: Dynamic
Network Anomaly Notification in perfSONAR Deployments”, Modeling, Analysis
and Simulation of Computer and Telecommunication Systems (MASCOTS), IEEE
International Symposium, 2010.

[8] T. Joshi, Y. Liu and D. Xu: “Soybean knowledge base (SoyKB)”: “A web resource
for integration of soybean translational genomics and molecular breeding”, Nucl.
Acids Res. (1 January 2014)42 (D1): D1245-D1252. doi: 10.1093/nar/gkt905,
2014.

[9] M. Bermana, Jeffrey S. Chaseb, L.Landweberc, A. Nakaod, M. Otte, D. Ray-
chaudhurif, R. Riccig and I. Seskarf, “GENI: A federated testbed for innovative
network experiments”, Volume 61, 14 March 2014, Pages 5-23, Special issue on
Future Internet Testbeds Part I. GENI - http://www.geni.net/.

[10] R. Govindan, I. Minei, M. Kallahalla, B. Koley and A. Vahdat, “Evolve or Die:
High-Availability Design Principles Drawn from Googles Network Infrastruc-
ture”, Proceedings of the 2016 conference on ACM SIGCOMM, 2016.

[11] P. Kanuparthy and C. Dovrolis, “Pythia: Diagnosing Performance Problems in
Wide Area Providers”, USENIX Annual Technical Conference (USENIX ATC 14),
pages=371–382, 2014.

[12] K. H. Kim, H. Nam, V. Singh, D. Song and H. Schulzrinne, “DYSWIS:
Crowdsourcing a home network diagnosis,” Proceedings of 23rd International
Conference on Computer Communication and Networks (ICCCN), 2014.

[13] M. Grigoriev, P. DeMar, B. Tierney, A. Lake, J. Metzger, M. Frey
and P. Calyam,“E-center: A collaborative platform for wide area network
users”,Proceedings of International Conference on Computing in High Energy
and Nuclear Physics (CHEP), 2012.

[14] R. Soundararajan, E. Celebi, L. Spracklen, H. Muppalla and V. Makhija, “A Social
Media Approach to Virtualization Management”, VMWare Technical Journal,
2012.

[15] Y. Tang, E. Al-Shaer and K. Joshi, “Reasoning under Uncertainty for Overlay
Fault Diagnosis”, IEEE Transactions on Network and Service Management
(Volume: 9, Issue: 1, 2012.

[16] L. Xiong and L. Ling, “A Reputation-Based Trust Model for Peer-to-Peer eCom-
merce Communities”, Proceedings of the IEEE Conference on E-Commerce,
2003.

[17] L. Mui, M. Mohtashemi and A. Halberstadt, “A computational model of trust and
reputation,” Proceedings of the 35th Annual Hawaii International Conference on
System Sciences (HICSS’02), Volume 7, Page 188, 2002.

[18] A. Jsang and R. Ismail, “The Beta Reputation System”, Proceedings of the 15th
Bled Conference on Electronic Commerce, 2002.

[19] I. Ivanov, P. Vajda, J. Lee and T. Ebrahimi, “In Tags We Trust: Trust modeling
in social tagging of multimedia content”, IEEE Signal Processing Magazine,
Volume: 29, Issue: 2, March 2012.

[20] S. L. Lim and A. Finkelstein, “StakeRare: Using Social Networks and Collabo-
rative Filtering for Large-Scale Requirements Elicitation,” IEEE Transactions on
Software Engineering, Volume: 38, Issue: 3, May-June 2012.

[21] C. Wang and D. M. Blei, “Collaborative topic modeling for recommending sci-
entific articles”, Proceedings of the 17th ACM SIGKDD international conference
on Knowledge discovery and data mining, 2012.

[22] Y. Zhang, P. Calyam and S. Debroy,“Network Measurement Recommendations
for Performance Bottleneck Correlation Analysis”,Local and Metropolitan Area
Networks (LANMAN), IEEE International Symposium, 2016.

[23] P. Calyam, M. Dhanapalan, M. Sridharan, A. Krishnamurthy and R. Ramnath,
“Topology-Aware Correlated Network Anomaly Event Detection and Diagnosis”,
Journal of Network and Systems Management, Volume 22, Issue 2, pp 208234,
April 2014.

[24] P. Calyam, M. Sridharan, Y. Xu, K. Zhu, A. Berryman, R. Patali, “Enabling
Performance Intelligence for Application Adaptation in the Future Internet”,
Journal of Communications and Networks (JCN), 2011.
OnTimeMeasure-GENI: http://ontime.rnet.missouri.edu/.

[25] Y. Zhang, P. Calyam, S. Debroy and M. Sridharan, “PCA-based network-wide
correlated anomaly event detection and diagnosis”, 11th International Conference
on the Design of Reliable Communication Networks (DRCN), 2015.

[26] netem provides Network Emulation functionality for -
https://wiki.linuxfoundation.org/networking/netem.

[27] HumHub: open source social network kit - https://www.humhub.org/en
[28] Publicly accessible perfSONAR data sets used in evaluation experiments -

https://github.com/zhangyuanxun/OnTimeSocial.git

Yuanxun Zhang received his BE degree from
Southwest Jiaotong University, China, in 2006. He
is currently pursuing his PhD degree in University
of Missouri-Columbia. His research interests include
network performance monitoring, software-defined
networking, and big data analytics.

Prasad Calyam received his MS and PhD degrees
from the Department of Electrical and Computer
Engineering at The Ohio State University in 2002
and 2007, respectively. He is currently an Assistant
Professor in the Department of Computer Science
at University of Missouri-Columbia. His current
research interests include distributed and cloud com-
puting, computer networking, and cyber security. He
is a Senior Member of IEEE.

Saptarshi Debroy received his PhD degree in Com-
puter Engineering from University of Central Florida
in 2014, MTech degree from Jadavpur University,
India in 2008, and BTech degree from West Bengal
University of Technology, India in 2006. He is
currently an Assistant Professor in the Department of
Computer Science at City University of New York.
His current research interests include cyber security,
cloud computing and wireless networks. He is a
member of IEEE.

Sai Shreya Nuguri received her BTech degree from
BNM Institute of Technology, Bangalore, India in
2015. She is currently pursuing her MS degree
in University of Missouri-Columbia. Her current
research interests include cloud computing, big data
analytics, computer networking and security.


