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Abstract

In order to meet the growing demands for high-throughput, cost-effective, and energy efficient solution for the
emerging device-to-device (D2D) based Internet of Things (IoT) communication, Dynamic Spectrum Access (DSA)
and sharing based protocols have been proposed. However, due to the temporal and spatial transience of spectrum
utilization by licensed incumbents, optimal spectrum resource management becomes critical for: a) effective D2D
communication without disrupting the licensed incumbents, and b) sustained operation in a multi-hop mesh environ-
ment due to the inherent energy constraint of IoT devices.

In this paper, we propose SpEED-IoT: Spectrum aware Energy-Efficient multi-hop multi-channel routing scheme
for D2D communication in IoT mesh network. We assume the knowledge of a radio environment map (REM) ob-
tained through dedicated spectrum sensors that capture the spatio-temporal spectrum usage. We exploit such REMs
to propose a multi-hop routing scheme that finds the: (a) best route, (b) best available channels at each hop along the
route, and (c) optimal transmission power for each hop. SpEED-IoT also employs an evolutionary game theoretic
route allocation model to sustain parallel D2D communication. SpEED-IoT ensures: i) licensed incumbent protec-
tion, ii) IoT device energy preservation, iii) effective end-to-end data rate optimization, and iv) fast convergence and
fair route assignment among interfering D2D communications. Through simulation-driven GENI-based IoT testbed,
we evaluate SpEED-IoT’s performance in terms of: a) ensuring connectivity and reachability among the IoT devices
under varying spectrum usage conditions, b) data rate optimization of the assigned routes and the overall IoT net-
work, c) effectiveness in licensed incumbent protection, and d) degree of fairness while assigning routes to multiple
interfering devices.

1 Introduction

With the proliferation of Internet of Things (IoT) based applications in fields such as manufacturing, energy, trans-

portation, healthcare, and emergency/disaster response, autonomous deployments of large scale IoT networks will ace

the burden of hauling large volume of produced and consumed data. Since most of the IoT devices are expected to

be connected wirelessly, there will be an unprecedented need for higher capacity wireless networks. Naturally, the

current wireless networks that operate on the Industrial, Scientific and Medical (ISM) or licensed bands will fall short.

As a remedy, dynamic spectrum access (DSA) and sharing have been proposed as a high-throughput, cost-effective

solution for the growing demands [11]. Using DSA, unlicensed (i.e., secondary) IoT devices will opportunistically

use the underutilized or unused channels for licensed or primary users/network (PU). In recent times, DSA based

solutions are being proposed and pursued for the growing demands of commercial networks [14], smart cities with

smart vehicular networks (VANET) [16], smart grids [21], and military communications [52], to name a few. Since



Figure 1: Inefficient multi-hop routing among secondary IoT devices causing interference to primary receivers and
other hidden/exposed IoT devices

the spectrum availability is space and time variant, selection of the best among the available channels between a given

pair of IoT devices becomes very crucial. This is especially true for Device-to-Device (D2D) communications, such

as [12, 39] where data needs to be routed over multiple hops. Sophisticated multi-hop routing algorithms are needed

that can find the best end-to-end route in terms of quality of service (QoS) metrics and the best channels at each hop.

The primary challenges for such multi-hop D2D IoT communications in using DSA over dedicated spectrum are:

a) the need for spatio-temporal spectrum-awareness in terms of finding unused or underused channels at different

locations along an end-to-end route, b) protecting licensed primary transmission on channels when and where they

arrive from harmful interference caused by secondary IoT communication, and c) ensuring power controlled IoT

communication to maintain the strict energy preservation requirements of the IoT devices. Due to these reasons,

the state-of-the-art Internet routing protocols, such as, LSR [35], and OSPF [42], or traditional wireless mesh network

routing protocols, such as, DSR and AODV cannot be seamlessly applied to DSA based IoT communications. Figure 1

shows one such scenario where an inefficient multi-channel route from source IoT device (D1) to the destination (D6)

yields harmful interference to primary receiver (PRX ) when an alternate multi-channel route (D1 → D7 → D8 →

D9 → D6) is available that ensures primary protection as well as uses low power transmission (leading to multiple
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hops) ensuring energy preservation. The figure also shows that such suboptimal transmission power and route selection

can cause interference among parallel D2D communications due to hidden/exposed terminal problems. In the example

shown in Figure 1, D6 is exposed to D3’s signal due to the usage of the same channel Ch2. Such interference could

have been avoided by intelligently choosing a lower transmission power that is just sufficient to reach D4 but not

as much that interferes with D6. Therefore, designing efficient multi-hop routing solutions for secondary D2D IoT

communication requires IoT network to be tightly coupled with real-time spectrum awareness such that the IoT devices

can be continuously aware of the surrounding physical and spectral environment.

The traditional cognitive radio [20] enabled DSA networks achieve such coupling using devices that are sensing

capable and perform local spectrum availability optimization. However, such techniques are useless for IoT networks

as the device level spectrum sensing adds considerable time and power overhead on the already constrained IoT

devices. As a solution, Federal Communications Commission (FCC) has recently proposed a network of dedicated

spectrum sensors called Environmental Sensing Capability (ESC) [3, 13] to detect the presence of primary incumbents

to aid secondary access, such as IoT communications. The recent advancements in developing ESC-driven radio

environment or spectrum maps (REM) [18, 19, 23, 33] can work as ideal spectrum availability references that provide

accurate and up-to-date spectrum availability visualization to the IoT network for a vast geographical region. Such

spectrum map aided multi-channel routing scheme for multi-hop D2D IoT communication can: a) help find best end-

to-end routes in terms of best hops and best channels at each hop, and b) suggest optimized transmission power at each

hop that protects primary incumbents in the vicinity and also achieved energy efficiency.

In this paper, we propose SpEED-IoT: Spectrum aware Energy-Efficient multi-hop multi-channel routing scheme

for D2D communication in IoT mesh network. SpEED-IoT utilizes a dedicated ESC to sense and build a spectrum map

and use the spectrum availability information to identify the best possible end-to-end routes in terms of intermediate

hops, and the best channel to use at each hop. With the help of the map, the sensors also compute the optimal power
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for each device and for each channel which simultaneously protects primary incumbents and other ongoing secondary

IoT communications in the vicinity. The transmission power control proposed in SpEED-IoT uses a selective flooding

technique to limit the overhead of route request forwarding and thereby preserves precious energy resources of the

IoT devices. Through thorough analysis, we show that under different network connectivity conditions, SpEED-IoT

maximizes end-to-end network performance metrics, such as, achievable data rate. For simultaneous and conflicting

secondary IoT end-to-end route assignment, SpEED-IoT employs an evolutionary game theoretic approach played on

behalf of the interfering end-to-end D2D routes. By analyzing the game, we show that there exists an equilibrium that

the sensors can enforce which maximizes overall network performance and also achieves fairness unlike ad-hoc or

greedy based route assignments.

Finally we evaluate SpEED-IoT through a rigorous simulation-driven GENI [1] based IoT testbed model. The

results show that under realistic ESC parameters, SpEED-IoT ensures close to 100% D2D connectivity in the IoT

network, or in other words, there will always exist at least one route from any IoT device to any other. The results reflect

that when power control is used, the number of possible end-to-end routes decreases, but it still ensures reachability

between source and destination device. The results show that SpEED-IoT power control achieves on average 70%

transmission power reduction against traditional non-power controlled schemes. The results also show how SpEED-

IoT ensures 100% primary receiver protection under different IoT network parameters. The results demonstrate how

the SpEED-IoT game theoretic approach ensures fairness and overall IoT network data rate optimization unlike other

spectrum agnostic and spectrum aware greedy route assignment schemes. Overall, the salient contributions of this

work are as follows:

• The proposed SpEED-IoT routing scheme uses spectrum availability information from radio environment maps

to guarantee incumbent and ongoing secondary communication protection.

• Through selective flooding, SpEED-IoT limits route request forwarding overhead and preserves critical energy
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resources of IoT devices.

• SpEED-IoT employs an evolutionary game theoretic approach in provisioning end-to-end routes to competing

IoT devices that maximizes achievable channel performance without compromising fairness.

• The simulation-driven GENI based IoT testbed evaluation results demonstrate close to perfect primary incum-

bent protection with 70% reduction in IoT transmission power while achieving close to 100% D2D connectivity

under realistic conditions.

The rest of the paper is organized as follows. Section 2 discusses the related work in this area. Section 3 presents the

system model. Section 4 presents the proposed power controlled routing scheme. Section 5 discusses the mathematical

and game theoretic analysis of the proposed scheme. Section 6 describes the performance evaluation and results.

Section 7 concludes the paper.

2 Related works

In recent times, multi-hop routing protocols have been proposed for D2D IoT networks, such as, [6, 28, 29, 37, 27, 26,

24] that mostly used licensed spectrum. In [27], authors discuss the applicability of IPv6 Routing Protocol for low-

power and lossy networks (RPL) for de-facto routing standard in IoT networks. In [29], the authors propose a content

centric routing scheme where end-to-end routing paths are determined by content. This scheme also aims to reduce en-

ergy consumption by managing redundant transmission. Authors in [28] propose a scalable routing architecture using

Bloom Filters for mobility management in IoT applications. In [37], the authors present a distributed geographic-

based multicast routing protocols for IoT applications where they seek to reduce the number of transmission links and

shorten path lengths in the constructed multicast paths. Authors in [26, 24] propose multicast, multi-path routing for

IoT networks with specialized functions such as, multimedia applications and fault tolerant communications respec-

tively. In [6], the authors propose LinGO, a link quality and geographical beacon-less opportunistic routing scheme
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for efficient video dissemination for mobile IoT network. LinGO supports transmission of video flows, which can be

delivered to multimedia platforms for further processing and analysis. Most of these works are only applicable for IoT

networks working on dedicated spectrum as primary incumbents.

DSA based end-to-end routing protocols are broadly categorized into two main classes: full spectrum knowl-

edge [4, 25, 48, 51] and local spectrum knowledge [8, 15, 17, 22, 38, 45, 46]. Although these works make valid

contributions, most of them fail to guarantee primary receiver protection and optimize desired routing performance

metric at the same time. Also most of these works require the secondary devices to be cognitive radio enabled which

adds too much energy overhead on the IoT devices. The authors in [51] propose a comprehensive framework to

jointly address channel assignment and routing in semi-static multi-hop cognitive radio networks. In this work, the

PU dynamics are assumed to be low enough such that the channel assignment and the routing among secondaries can

be statically designed. In [25], the focus is on the problem of designing efficient spectrum sharing techniques for

multi-hop secondary networks. It introduces a Mixed Integer Non-Linear Programming (MINLP) formulation whose

objective is to maximize the spectrum reuse factor throughout the network, or equivalently, to minimize the overall

bandwidth usage throughout the network. A graph structured based approach is proposed in [4], where a colored

graph is used to represent the network topology. Route and spectrum selection in networks with single transceiver

half duplex cognitive radios are addressed in [48]. The proposed solution decouples routing and channel (spectrum)

assignment.

Among the notable works on routing protocols with limited/local spectrum knowledge, the distributed algorithm

presented in [45] addresses the scheduling, power control, and routing problems simultaneously. Authors in [15],

introduce a metric for multi-hop secondary networks which is aware of both the switching delay between frequency

bands and back-off delay within a given frequency band. In [46], a distributed resource management strategy to

support video streaming in multi-hop secondary networks is presented. The Spectrum Aware Mesh Routing (SAMER)
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proposed in [38] is a routing protocol that accounts for long term and short term spectrum availability. SAMER seeks to

utilize available spectrum blocks by routing data traffic over paths with higher spectrum availability, without ignoring

instantaneous spectral conditions. Link stability is considered in [8] where link stability is associated to the overall

route connectivity via a mathematical model based on the Laplacian spectrum of graphs. In [22], a route stability

oriented routing analysis and protocol are presented where a novel definition of route stability is introduced based on

the concept of route maintenance cost. In [17], SEARCH routing protocol is designed for mobile multi-hop secondary

networks based on geographic forwarding principles.

In recent times, cognitive radio based spectrum aware IoT networks that operate have been proposed for 5G

applications such as, smart grid [32, 31]. Among the recent works that propose unlicensed spectrum access schemes

by IoT networks, [53, 36] are notable. Authors in [53] propose a learning algorithm based spectrum access scheme

for cognitive radio enabled IoT network comprising of wireless sensors that tries to maximize the overall system

throughput. In [36], the authors analyze the possibility of using underutilize FM spectrum for low-power short-range

IoT devices enabled with cognitive radio devices. Among the works pertaining to DSA based D2D communications in

IoT networks, [10] is notable where the authors propose CEEA, a data delivery scheme for large-scale IoT networks for

disaster management. However, most of such works assume an over-conservative primary contour protection scheme

which considerably decreases the achievable secondary throughput.

3 System Model and Background

We consider a geographic region consisting of a primary network, secondary network comprising of IoT devices, and

a collection of sensors comprising the ESC that periodically sense primary activity and create a spectrum map.

Primary network: In this work, we consider a centralized primary network consisting of licensed base stations as

transmitters and a collection of receivers associated with such base stations, e.g., cellular networks, TV bands [7]. The
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Figure 2: Proposed IoT network environment with primary transmitters, primary receivers, ESC sensors, edge, non-
edge, and uncovered IoT devices

primary networks operate independent of the secondary IoT devices. These primary networks have prioritized access

to the licensed spectrum. For our analysis, and later simulation, we assume that the primary base station and receiver

locations are Poisson distributed as characterized in [41] for centralized TV transmitters. These primary transmitters

operate on pre-defined channels and follow the well-known ON-OFF [30, 49] model for transmission pattern. We

assume that the signal strength diffuses isotropically in the environment and is received at any location with a power

reduced due to isotropic dispersion and absorption in the environment. For our analysis, we do not assume any fixed

transmission range/radius for the base stations as assumed in works with Boolean model [34, 40]. Rather, we use more

fundamental computation of received signal to noise ratio at any location to determine the presence of the primary at

any location and analyze network connectivity [9].

Environmental sensing capacity: We assume that the sensors comprising the ESC are deployed in the area of interest
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either at strategic locations or randomly depending on the technique used for the construction of the spectrum map.

Each sensor has a transmission range of rs and secondary IoT devices within the range, i.e., the sensor’s domain are

under the purview of the sensor. The sensors’ responsibilities are broadly two-fold: spectrum map creation and route

discovery. The sensors periodically sense the spectrum for primary activities, share the information among themselves

and create the spectrum map. The latter function includes receiving route requests (RREQ) from secondary IoT de-

vices within the domain, finding routes to the final destination or local forwarding device based on network topology,

and caching potential routes. Sensors communicate with each other using dedicated low bandwidth control channel/s.

The same control channel is used to communicate with the IoT devices with the domain as well. The underlying

sensor-to-sensor, and sensor-to-device communication details using the dedicated control channel/s in terms of frame

structure are properties of medium access control (MAC) protocol and can be integrated with any of the state-of-the-art

wireless MAC protocols.

Spectrum map: The spectrum map or REM created periodically by the ESC is a 3-dimensional representation of

spectrum utilization in a geographical region [18, 19, 23, 33]. The models/techniques for creating such maps allow

secondary networks to compute or predict the spectrum usage at arbitrary locations. Most of these spectrum map

construction techniques are flexible enough to be used for varied cross-layer secondary network services ranging

from resource allocation, MAC design to routing schemes. Although our proposed routing scheme can utilize any

of such map construction techniques, their design and implementation specifics are beyond the scope of this paper.

Algorithm 1 describes one such ESC-driven spectrum map creation pseudocode that we used for our analysis and

simulation later. Figure 3 presents the visual representation of a spectrum map in terms of power spectral density

(PSD) of primary channel usage for one channel of 100 kHz bandwidth using 40 sensing locations [19]. Locations

of the sensors used for estimation are shown in darker shades. As discussed in previous works, the accuracy of such
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spectrum map depends on the number and orientation of the sensor locations.

Algorithm 1: Spectrum map creation algorithm

Data: Set of sensor nodes Si = {δi}
Data: Sensor radius r
Data: Power spectral density eiq for each node in Si for each channel q
Result: Estimated power spectral density in a region for each channel
for all locations (xt, yt) in the region do

for all channels q do
for all sensor nodes i in the set Si do

if 0 ≤ dti ≤ r
3 then

disFactti ⇐ 1
dti

else if r3 < dti ≤ r then
disFactti ⇐ 27

r (
dti
r − 1)2

for all sensor nodes k ∀ k 6= i do
angFactti ⇐ angFactti + disFactti × ((xt − xi)(xt − xk) + (yt − yi)(yt − yk))/disFactti

end

fnlWghtti ⇐ (disFactti)
2(1 + angFactti) powSpecDnst

t
q ⇐ powSpecDnsttq +

fnlWghtti×e
i
q

fnlWghtti

end
end

end

Secondary IoT network: The secondary IoT devices seek to access the channels not being used by the primaries. We

assume that these IoT devices are deployed irrespective of primary and sensor locations as a two dimensional Poisson

point process. The IoT devices are not cognitive radio enabled and thus have no spectrum sensing capability. The

devices are instructed by the sensors to use a particular channel intended for a particular destination. According to our

SINR model, an IoT device is a transceiver with no fixed transmission range. The connectivity among the devices is

a function of the availability of free channels, IoT transmission power, path loss and other propagation characteristics

like shadowing and fading. IoT devices that are under the purview/domain of a single sensor are called non-edge

devices; while IoT devices situated in the overlapping regions/domains of two or more sensors are called edge devices.

The edge devices can listen to multiple sensors using the control channel. As we mentioned earlier that the details of

the MAC design of the control channel is beyond the scope of this work. All the communication among IoT devices

and the sensors uses network layer addressing. IoT devices outside the domain of any sensor is an uncovered device.

For simplicity of modeling and analysis, in this work we only consider IoT devices that are static or slow moving.
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Figure 3: Estimated power spectral density for ESC with 40 sensors

However, the principles of spectrum aware D2D IoT communication proposed in this paper can be easily extended to

mobile IoT devices.

Any IoT device requiring route information to a destination initiates a route request to the associated sensor. The

sensor, using our proposed SpEED-IoT routing algorithm finds an optimal route to the intended destination based on

the availability of free spectrum and relay IoT devices or hops, and orientation of primary receivers. In our model, we

also consider scenarios where multiple source-destination (SD) pairs request route assignment with or without channel

and hop conflicts increasing the complexity of the route assignment problem. A pictorial representation of the entire

system model is shown in Figure 2.

4 SpEED-IoT Scheme Overview

Discovery of a route is initiated when an IoT device sends a route request (RREQ) to the associated sensor on the

control channel. SpEED-IoT employed by the sensor seeks to optimize two main aspects in the route establishment:

next hop and channel selection to minimize interference and end-to-end data rate maximization, and optimal power
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control for primary receiver protection.

4.1 Route discovery

A route from source to destination can be of two kinds depending on their relative locations: intra-domain and inter-

domain. When the source and destination devices are under the purview of the same sensor then it is called intra-

domain and when under different sensors it is inter-domain. We will first discuss intra-domain routing and then

explain how inter-domain routing is treated as a collection of intra-domain routing.

4.1.1 Intra-domain routing

A sensor upon receiving the RREQ checks whether the destination is associated with it i.e., is within rs from it. If

so, for each source device i, the sensor consults the most recent spectrum map and eliminates all the channels which

are occupied. For all the available channels in the spectrum, the sensor calculates P
n

i which is the upper bound on

secondary transmission power while using channel n so that no primary receivers are interfered on that channel.
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Figure 4: Inter-domain routing: RREQ selective flooding controlled by sensors

Graph creation: We define Pni = min{Phw, P
n

i } to be the optimum power to be used on channel n which will
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maximize the channel performance while protecting the primary receivers on that channel. Phw is the maximum

secondary IoT transmission power due to hardware constraints and we assume it to be same for all IoT devices.

For every device j(j 6= i) within the domain, if RSSnij/η
n
j ≥ δ then there exists an edge between devices i and j

for channel n. Here, RSSnij is the received signal strength at device j on channel n when device i transmits with

power P
n

i } estimated by the sensor, ηnj is the noise on channel n at j from the spectrum map, and δ is the signal to

noise threshold for successful IoT communication. The sensor in consideration can easily calculate RSSnij using any

sophisticated pass-loss model; the more sophisticated the model is, better is the estimation. Therefore, for all such n

channels between i and j, there exists an edge enij from i to j. Each such edge is associated with a cost ζnij . Although

the cost function can be designed as a complex combination of classical and novel route quality metrics, for simplicity

we design the cost as a reciprocal of achievable Shannon’s capacity [43] of channel n in order to satisfy the design

end-to-end data rate objectives. Therefore,

ζnij = Blog2(1 +
RSSnij
ηnj

) (1)

which in our case is inversely proportional to the achievable capacity of channel n raised to the power α. The achiev-

able channel capacity is calculated using the bandwidth of channel n and signal to noise ratio RSSnij/η
n
j . With the

edges calculated for each SD pair, the sensor creates the connectivity graph within its domain for the current primary

usage scenario. By employing any well known shortest path algorithm (such as Dijsktra’s), the sensor determines

the shortest path between the source and destination within its domain. The shortest path thus contains the next hop

network address, channel to be chosen for each hop, and IoT transmission power for each such channel at each hop.

Once the path is determined, the sensor sends the routing instructions on the control channel to the all IoT devices

working as hops along the route.

P
n

i estimation: Evaluating P
n

i is an intuitive reverse calculation to protect primary contour. Let d
n

i be the distance

between device i and the nearest location from i where channel n is no longer vacant, called the safe zone distance.
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Figure 5: Inter-domain routing: Unicast RREP involving only IoT devices

This distance can easily be measured by the sensor from the spectrum map. Therefore, the circle with radius d
n

i with

device i at the center has the smallest area where the primary receivers are interference-free on channel n. It is to

be noted that this so-called safe zone for the primary receivers is independent of the primary receiver distance from

the secondary IoT device i. Now if RSS
n

i = f(d
n

i , P
n

i ) is the estimated received signal strength at the perimeter

of the circle, and κ is the secondary to primary interference tolerance threshold, then to guarantee primary receiver

protection,

RSS
n

i

ηnsz
≤ κ (2)

where ηnsz is the noise on channel n at the perimeter of the safe zone. We use a highly sophisticated path-loss model

proposed in [5] for the sensors to estimate ¯RSS
n
i . Therefore P

n

i is given as,

P
n

i =
ηnsz × κ× 16π2(d

n

i )γ

λ2dγ−20

(3)

where γ is the average path-loss factor, d0 is the antenna far field, and λ is the wavelength of light.
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4.1.2 Inter-domain routing though selective flooding

When the the source and destination devices are not under the same sensor, the idea is to flood the route request in

the neighboring domains. However, due to the inherent energy constrains of the IoT devices, DSR or AODV inspired

flooding may not be the best options. Therefore, SpEED-IoT uses a selective flooding approach where once the sensor

determines the need of inter-domain routing, it finds the shortest route from the source to each of the edge devices

within its domain. The edge devices, upon the reception of a RREQ where the edge device itself is not the final

destination, forwards the RREQ to the other sensor/s it is associated with. For example for an edge device k having

{S2, S5, S1} as its sensor association, signifying that k is currently covered by S2, S5, and S1. Such associations are

created on k’s ability to receive periodic beacons from each of these sensors on the control channel. Once a sensor

receives a RREQ from the edge device, it follows the same recursive process of finding a route to the destination or to

the edge device until the final destination is found. In case of an edge device receiving same RREQ from generated

from two different sources, it forwards the RREQs on first come first serve basis and drops duplicate RREQs. The

proposed SpEED-IoT selective flooding considerably decreases the route discovery overhead without compromising

the discovery of multiple routes to the destination.

In Figure 4, we show SpEED-IoT selective flooding and explain the duplicate RREQ scenarios. We also show the

control messages from sensors directing source, destination, and intermediate relay devices along the route. We show

the case of a sensor getting the same RREQ from two edge devices: sensors S2 and S4 receive the same route request

from E1,E2, and E4,E7 respectively. However, they only forward the RREQ that arrived first, i.e., RREQs from E2

and E4 for S2 and S4 respectively. Noticeably S2 forwards RREQ from E2 to E1 as the latter is an edge device,

assuming S2 received RREQ from E2 earlier to E1. Now E1 receiving the duplicate RREQ generated from E2 simply

drops the RREQ. Same set of events happen for sensor S4 with devices E4 and E7. In this figure, we also illustrate

power control by relay devices. Edge device E3 forwards RREQ directly to E6 bypassing a potential relay device N1
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by transmitting with a seemingly high power. This was achieved because the channel used for transmission between

devices E3 and E6 was free in a larger geographical region around E3 and such high secondary IoT transmission

power did not cause any interference to the primary receivers around E3. In Figure 5, we show the RREP packet flow

from the final destination to the source. As explained earlier, there is no sensor involvement during the RREP flow.

4.2 Route discovery for multiple interfering SD pairs

When more than one SD pair requires route assignment with potential interference, the route discovery optimization

undertaken by the sensor becomes non-trivial. A global optimization approach although benefit the overall secondary

IoT network in terms of free channel utilization, such method can prove to be counter-productive for individual SD

pairs who logically should always try to maximize their own effective end-to-end data rate. Now, according to our

proposed SpEED-IoT scheme, the route discovery responsibility relies with the ESC sensors, rather than the IoT

devices themselves in order to preserve energy. Thus in cases of route discovery for multiple interfering SD pairs, the

sensors use an evolutionary game theoretic model by treating each interfering SD pair as a selfish player exhibiting

non-cooperative behavior and trying to maximize their own payoffs.

The entire route discovery process in such cases are broken down into domain specific route discovery exactly

the way route discovery happens for a single SD pair. First the sensor decides whether the final destinations for the

requesting routes belong to its domain or not and based upon that the RREQs are decided to be forwarded either to

the final destinations or to all the edge devices. In any case, the sensor computes all possible route options for the

interfering SD pairs using the optimal power Pni as explained earlier. Next, these possible routes for each of the

SD pairs comprise the set of strategies for the players, i.e., the SD pairs. Routes with higher achievable end-to-end

data rates (i.e., data rate of the intermediate link that has the minimum data rate in a route) define utility maximizing

strategies for the SD pair. The sensor then models the strategy choice outcomes of all SD pairs as either the well

known Reverse battle of sexes game or Hawk and dove game based on the interference scenarios. Then from the
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outputs of such non-cooperative games that maximize only individual utilities, the sensor evolves the strategies to be

chosen by each SD pair by analzing past best strategies and corresponding payoffs and thus leading to a evolutionary

stable strategy (ESS) model. Next with the help of replicator dynamics, the sensor will ensure that the ESS is the best

overall strategy for long term involving all SD pairs and converge to an equilibrium. In case of intra-domain routing,

routes belonging to the equilibrium are thus discovered and are used for RREQ forwarding. In case of inter-domain

routing, the best routes thus computed for all the interfering SD pairs end at the edge devices of the sensors from which

point the same route discovery method is followed by the next sensor along the route.

4.3 Route maintenance

Route maintenance in secondary IoT network is more involved than traditional wireless networks. Caching routes for

future use may not be a great idea as routes can become non-existent due to temporal variation of available channels.

In SpEED-IoT, route maintenance is carried out only by sensors as they are aware of the current spectrum usage

scenario. Route caching at IoT devices can reduce signaling overhead and latency, but it cannot guarantee primary

protection as such sensing disabled IoT devices have no way to gauge primary activity. Therefore, only the sensors are

responsible for caching routes. Sensors typically cache only those routes which connect each edge devices to all other

edge devices in their domain. This is because those routes connecting the edge devices are the most popular routes

for inter-domain routing and in most cases include subsets of intra-domain routes as well. Sensors use the cached

route only when there is negligible change in the spectrum maps. Secondary IoT devices along such cached routes

automatically benefit from such caching.

5 SpEED-IoT Analysis

In this section, we analyze SpEED-IoT performance in terms of IoT network connectivity and existence of an equi-

librium in game theoretic route discovery for interfering SD pairs. Here we assume a deployment of ESC sensors
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in a deterministic grid pattern equidistant from horizontal and vertical neighbors for relative simplicity of analysis.

However, the principles of our mathematical deduction hold true for any deployment of sensors and IoT devices. We

consider a grid of l × l dimension as our area of interest. The distance dij between sensors i and j are kept in such

a manner that every sensor domain overlaps with the four neighboring sensors but the overlapping regions of the do-

mains do not overlap with each other. We assume all the sensors with same domain radius rs. An example of such a

deployment is shown in Figure 6. Note, that for the following deployment
√

2rs ≤ dij ≤ 2rs.

i j

rs

ijd

Figure 6: Deterministic grid deployment of ESC sensors for SpEED-IoT analysis

5.1 Ensuring route discovery

For a successful route discovery from any source to destination using our proposed SpEED-IoT scheme requires two

conditions to be satisfied: i) both source and destination need to be associated with some sensor, i.e., located in some

domains and ii) those domains need to be connected with each other directly or indirectly though other domains.

5.1.1 Edge device probability

The first condition is fulfilled when the source and the destination devices are any edge or non-edge devices under the

purview of a sensor.

Definition 1 Edge device probability is defined as the probability of any IoT device to be an edge device, i.e., be in an
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overlapping region.

For the above mentioned deployment, the total number of overlapping regions, Noverlap, is 2
√
Nsen(

√
Nsen − 1).

Nsen is the number of deployed sensors in the grid. The area under each overlapping region is:

Aoverlap = r2s(θ − sinθ); (4)

where θ = 2 tan−1
(√

4r2s−d2ij
dij

)
. Therefore edge device probability can be expressed as:

pedge =
Noverlap ×Aoverlap

l × l
(5)

The expected number of edge devices is:

E[Number of edge devices] = NIoT × pedge (6)

where NIoT is the number of IoT devices in the secondary network, i..e, in this case, the grid. Using an ideal com-

bination of higher Nsen and rs, if we can ensure zero uncovered devices, then non-edge device probability can be

expressed as:

pnon−edge = 1−
Noverlap ×Aoverlap

l × l
(7)

Figure 7: Sensor deployment mapping to an undirected grid

5.1.2 Connectivity condition

The second condition is dependent on the overlapping regions of the domains and presence of edge devices in those

overlapping regions. This is because, edge devices are essential for inter-domain RREQ flooding. The number and
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locations of such overlapping regions in turn depend on the deployment of the sensors and their relative orientation.

We further investigate the conditions that dictate the connectivity of sensor domains.

Definition 2 (Connectivity Condition) The connectivity condition of any secondary IoT network is defined as the

sufficient condition for the existence of at least one path from any domain to all other domains in the network.

We formulated the Connectivity Condition by mapping the secondary network into a connected undirected graph

with domains as vertices and overlapping regions as the edge between the vertices as shown in Figure 7.

Definition 3 (Mapped Graph) The graph representation of a secondary network with domains as vertices and over-

lapping regions as edges is called a mapped graph.

Lemma 1 The connectivity condition for a secondary IoT network is that there exists at least one edge device at each

of the edges of any one of the minimum spanning trees of the mapped graph.

Lemma 1 provides the connectivity condition of such a mapped graph. A minimum spanning tree (MST) of an

undirected unweighted connected graph connects all the devices in the graph and has the minimum number of edges.

proof 1.1 Let Gn×n be a mapped graph of any above mentioned sensor deployment with n2 vertices. Let us assume

that it has τ(Gn×n) MSTs. Then each such MST has (n2 − 1) edges that connect all the vertices. If we remap the

MST into a sensor deployment then it represents a network of minimum number of overlapping regions connecting

all domains. Presence of any edge device in each of such overlapping regions will guarantee at least one path from

all covered devices to all other covered vertices in the secondary IoT network. Thus the total number of overlapping

regions is a measure of minimum number of edge devices required for a network to be connected. Hence proved.

For a secondary IoT network deployment shown in Figure 6, there areNsen sensors; henceNsen domains. There-

fore the mapped graph of the network will look like a
√
Nsen×

√
Nsen grid. The number of edges in any of the MSTs
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of such a mapped graph is the count of minimum number of edge devices required for the corresponding IoT network

to be connected. If τ is the total number of possible minimum spanning trees in such a grid, then each MST contains

(
Nsen − 1

)
edges.

Therefore, the probability of connectivity condition is given as:

pconn = τ × Prob{Z1 ≥ 1, Z2 ≥ 1, · · ·ZNsen−1 ≥ 1 | (8)

Z1 + Z2 + · · ·+ ZNsen−1 ≤ NIoT }

where Zi is the random variable denoting the number of edge devices in the ith edge of the mapped graph. For a

√
Nsen×

√
Nsen square grid, τ ≈ 3.209Nsen forNsen →∞ [47, 50]. In Section 6, we will evaluate pconn for a given

secondary IoT network deployment.

5.2 Game theoretic modeling and analysis

We assume each interfering SD pair to have a set of R = {1, 2, · · · , r} end-to-end routes where each route has a

utility represented by the set U = {u1, u2, · · · , ur} derived from the effective end-to-end data rate of the routes

described earlier. This means that the desirable route for a SD pair will have higher data rates. We already discussed

that the sensors assume that all the interfering SD pairs are selfish players exhibiting non co-operative behavior in

order to maximize their own payoffs. The players, i.e., SD pairs select a strategy/action from a set of action space

A = {a1, a2, · · · , ar}. These strategies create rules of the game and each strategy results different payoffs of the SD

pairs from the set U . Each SD pair has its own route preferences arranged in an non-increasing fashion in terms of

effective end-to-end data rate, i.e., the first route in the list is always the first preference. This list of route preferences

comprises the strategy/action space of each SD pair, i.e., each action or strategy by a SD pair signifies which route

from the ordered list the SD pair is trying to choose and the net payoff is the utility of the routes. If two or more SD

pairs choose actions that have an interfering channel/s at any hop along their routes, the net utility for all the SD pairs
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is considered to be 0.

5.2.1 Game formulation for dynamic networking environment

The interference scenario stated above can generate two generic game situations. In the first case, as each SD pair has

its own route metric and thus will choose the best route available to maximize payoff. However, it may so happen

that the best strategies, i.e., the best route options for both the SD pairs lead to interference. In other words, if both

pairs take their greedy choices, it leads to interference resulting zero payoffs for both. This scenario generates the well

known Hawk dove game as shown in Table 1.

Table 1: Hawk dove game
ak aj

ak 0, 0 uk, uj
aj uj , uk uj , uj

In the second game situation, if both pairs play the same strategies or choose their same route preferences, i.e.,

either their first, or their second, and so on, it will lead to interference resulting zero payoffs for both. This scenario

generates the well known Reverse battle of the sexes game as shown in Table 2. For these two game matrices, the

Table 2: Reverse battle of the sexes game
ak aj

ak 0, 0 uk, uj
aj uj , uk 0, 0

primary assumption is uk > uj , where uk is the payoff for strategy/action ak if no other pair is selecting routes that

conflict with the channels in route k. We will first analyze the game for two route options, i.e., two strategies/actions

ak and aj . Later in replicator dynamics strategy set, we will include the entire action space A = {a1, a2, · · · , ar}.

5.2.2 Pure Strategy Nash Equilibrium

From the definition of Pure Strategy Nash Equilibrium (PSNE), we observe that for hawk dove game in Table 1, there

are two PSNEs, (ak, aj) and (aj , ak). In this case, as uk > uj , when a pair chooses strategy aj , then choosing ak by
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another pair will be strictly dominant strategy over choosing aj . This is because, if the other pair switches to strategy

aj , then its overall incentive/payoff gets decreased.

For the reserve battle of the sexes game shown in Table 2, there are two PSNEs, (ak, aj) and (aj , ak). In this case,

if one pair chooses strategy ak, then there is only one dominant strategy for the other pair which is aj as choosing

ak will be a strictly dominated strategy. Now if the first pair shifts to strategy aj , then for the other pair there is no

strategy other than playing ak because then strategy aj will be a strictly dominated strategy. Thus this game has two

PSNEs.

5.2.3 Mixed Strategy Nash Equilibrium

Now for both the games, the interfering SD pairs can mix their strategies with probabilities α and β. Thus for both

reverse battle of sexes and hawk dove games, the expected utility EUm(ak) of SD pair m for choosing strategy ak is

given by EUm(ak) = αu(ak, ak) + βu(aj , ak) = α(0) + βuk. Similarly, the expected utility EUm(aj) of pair m for

choosing strategy aj is given by EUm(aj) = αu(ak, aj) + βu(aj , aj) = αuj + β(0). According to the definition of

Mixed Strategy Nash Equilibrium (MSNE), it only exists when:

EUm(ak) = EUm(aj)

⇒ βuk = αuj

⇒ α =
uk

uk + uj

& β = 1− α =
uj

uk + uj

Therefore, when both pairs select strategies ak and aj with probabilities α and β, respectively, then their opponents,

i.e., rest of the interfering SD pairs will be indifferent about the outcomes of their choices. This means that all IoT

SD pairs in a given region form a polymorphic population in which every SD pair mixes its choice of available

routes according to the probability distribution, which is the MSNE for the evolutionary route discovery game. The
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probability distribution also represents the proportions of the SD pair population adopting different strategies at any

given stage of the game. To generalize, the expected utility for any pair m in a |R| route discovery game is given as

follows:

EUm(ai) =

|R|∑
i=1

ui.pi,∀ i ∈ R

where pi represents the probability of a SD pair selecting strategy ai, i.e., route i and all other SD pairs not selecting

route i.

5.2.4 Learning, strategy evolution and converging stability

We have extended the above two player game scenario to multiple interfering SD pairs using an evolutionary game the-

oretic approach. The idea is to create a multistage game where the set of players learns from the strategy and outcomes

of the players playing in the previous stage and evolve their own strategies to maximize profit and eventually achieve

equilibrium. This evolutionary behavior of the players perfectly portrays the Darwinian competition for "Survival of

the fittest". In this model, the interfering SD pairs will play the game randomly in a pairwise manner and will mix

their strategies resulting new payoffs after every stage called fitness. Based on the fitness, each SD pair at each stage

of the game will learn the other pairs’ strategy. Through this process, the pairs will gain knowledge and accordingly

modify or evolve their strategies by replicator dynamic process. Thus eventually the game will reach a evolutionary

stable state (ESS) and can not be invaded by any mutant strategy.

Now let us assume that ŝ is an incumbent strategy, s′ is a mutant strategy taken by a small portion of population,

and u(ŝ, ŝ) be the utility that measures how the incumbent strategy perform against itself. For the strategy ŝ to be ESS,

it must satisfy the following conditions:

• u (ŝ, ŝ) ≥ u(s′, ŝ)

• if u (ŝ, ŝ) = u(s′, ŝ) then u (ŝ, ŝ) > u(s′, s′)
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where (ŝ, ŝ) is a symmetric Nash Equilibrium.

ESS for PSNE: For the hawk dove game from Table 1, there is no symmetric Nash equilibrium because if the pairs

choose the same strategy set (ŝ, ŝ), i.e., (ak, ak), the payoff is zero. Whereas, if they choose (aj , aj), then the payoff

is (uj , uj). However, as uk > uj , so this also cannot be considered as symmetric Nash and hence u (ŝ, ŝ) < u(s′, ŝ).

For the reverse battle of the sexes game from Table 2, there is no symmetric Nash equilibrium because if the pairs

choose the same strategy set (ŝ, ŝ), i.e., (ak, ak) or (aj , aj), then the payoff is zero and hence u (ŝ, ŝ) < u(s′, ŝ).

ESS for MSNE: For the reverse battle of the sexes game from Table 2, if a SD pair selects strategy aj with probability

β then the other pair will select ak with probability α. Again if the first pair selects ak with probability α then the

other pair will select aj with probability β. Therefore, in this case u(ŝ, ŝ) = αβuk + αβuj = αβ(uk + uj). Now we

have to calculate u(s′, ŝ) and if we can prove u(ŝ, ŝ) > u(s′, ŝ) then we can conclude that MSNE is ESS.

In order to do so, we assume a mutant strategy which is greedier than the incumbent strategy by an amount δ so

that other pairs either choose more preferred route with higher probability (α+ δ) or lesser preferred route with lower

probability (β − δ). Now payoff u(s′, ŝ), i.e., how the mutant strategy works with incumbent strategy is the expected

utility of one pair selecting strategy ak with probability α and another pair selecting strategy aj with probability (β−δ)

and vice versa. Thus u(s′, ŝ) = α(β − δ)uk + β(α+ δ)uj = αβ(uk + uj)− δ(αuk − βuj). As uk > uj , therefore

the second part of the expression is positive and hence u(ŝ, ŝ) > u(s′, ŝ). Therefore, we can conclude that the MSNE

is ESS for reverse battle of the sexes. Similarly, we can show that for the hawk dove game, the MSNE is ESS as well.

5.2.5 Strategy evolution through replicator dynamics

Let u0 be the initial fitness of every interfering SD pair, and the average payoff of pairs selecting route k at a given

stage of the game can be calculated as uk = u0 +
∑|R|
j=1 pku (ak, aj) ,∀ k, j ∈ R. Here u (ak, aj)) is the fitness of

a SD pair selecting route k in a pairwise competition against another pair selecting route j, and pk is the proportion

of the interfering SD pair population that selects route k at any given time. If ū is the average payoff of the entire
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interfering SD pair population at any given time, then

ū =

k∑
i=1

piui,∀ i ∈ R and p′k = pk +
pk (uk − ū)

ū

where p′k is the probability of a SD pair selecting channel k for the next stage of the game. This is the replicator

dynamics of evolutionary game. This signifies that if selecting route k in the current stage results in a higher average

fitness for the SD pairs that selected it than the overall fitness of the entire interfering SD population, then the propor-

tion of the population selecting route k in the next time slot will increase. In other words: a) if uk > ū, i.e., payoff

of selecting route k is greater than the average utility then probability of selecting the same will increase in the next

stage, and b) if uk < ū, then (uk − ū) will produce a negative result and probability pk′ will decrease in the next stage.

6 Performance evaluation

In this section we discuss the performance of our proposed SpEED-IoT scheme using simulation.

Simulation setup: For simulation, we first create a realistic discrete-event simulation environment using C++ and

use MATLAB scripts to generate different deployment and network characteristic scenarios. Each such simulation

scenario is then integrated in the distributed GENI [1] environment to create new wireless testbeds based on the

generated scenarios. Figure 8 shows one such GENI deployment derived from a simulation scenario. The overall

environment deployed primary transmitters in a 100×100 geographical area using the deployment models from [41, 2].

For different scenarios, we generate a varying number of channels from 5 upto 20 with 1 MHz bandwidth each. The

primary uses a well-known ON-OFF model for transmission [30]. Each primary transmitter has a fixed transmission

power of 50 Watts and the primary detection threshold is kept at -116 dBm. For all scenarios, nine sensors are

deterministically deployed in a grid pattern as discussed in Section 5. For each GENI implementation, the sensors

have direct connections with the domain devices, and devices may or may not be connected to other devices depending
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on channel availability between them according to the corresponding simulation scenario. Multiple links between the

devices signify presence of more than one available channels.

The secondary IoT devices are deployed following a Poisson Point Process to ensure that their locations are not

inter-dependent. The maximum IoT transmission power is kept at 100 mW. We used the highly realistic path-loss

model proposed in [5] which mimics the real life propagation characteristics in an urban macro-cell. The co-channel

interference threshold for primary receivers caused due to IoT communication is kept at -80dBm. On top of imple-

menting our proposed SpEED-IoT routing scheme, we also implemented a greedy wireless route assignment scheme

that is spectrum aware but non-power controlled, such as SAMER [38], and a typical IoT D2D channel assignment

scheme that is spectrum agnostic, but power controlled due to IoT constraints, such as LinGO [6]. Based on the inputs

from the simulation model, we generate outputs from the GENI testbed. Below, we showcase SpEED-IoT performance

results, and comparison results (against SAMER and LinGO) based on the testbed outputs.

Figure 8: Sample experiment topology in GENI testbed

Edge device probability: In Figure 9(a), we show the nature of probability of edge devices (pedge) with varying radius

of sensors, rs. The value of rs is varied from
√

2rs ≤ dij ≤ 2rs (16 to 24) as this is the range where the domains start

overlapping but the overlapping regions do not overlap with each other as discussed in Section 5. We see that within

this range of rs, pedge increases rapidly. In Figure 9(b), we plot Eqn. (6) against the same range of rs and compare the

numerical and simulation values. The simulation results closely match with the numerical trend from Eqn. (6) which
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in turn validates the mathematical analysis.

(a) (b)

Figure 9: (a) Edge device probability with varying sensor radius, (b) Expected number of edge devices for simulation
and numerical models

Connectivity: In Figure 10(a), we show how the probability of connectivity pconn varies with rs. Here NIoT is kept

constant at 100. We see as pedge increases with rs, so does pconn. The IoT network reaches complete connectivity at

rs = 23, i.e., at this point at least one edge device is present on each edge of at least one of the spanning trees of the

mapped graph. The nature is obtained by taking average of more than 20 different IoT network topologies. The nature

of pconn with varying NIoT is shown in Figure 10(b) with rs = 20. We see that with a denser network of secondary

IoT devices the connectivity increases. With 300 IoT devices, the network is fully connected i.e., there is at least one

route from each domain to each other.

(a) (b)

Figure 10: Probability of connectivity condition with (a) with varying sensor radius, (b) with varying number of
secondary IoT devices
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Figure 11: Reachability (a) without power control for 5 channels (b) with power control control for 5 channels (c) with
power control control for 20 channels (d) with power control control for 5 channels and detection threshold -15 dBm

Reachability: In Figures 11(a)-11(d), we show the reachability among secondary IoT devices with and without power

control. Non-edge and edge connections are shown in different colors. In Figures 11(a), we show the reachability with

no power control, i.e., the scenario does not take into account the primary hidden terminal problem and thus does not

protect any primary receivers that might be present within the IoT device’s communication range. It is to be noted

that in this scenario each link is bidirectional, i.e., a link represents both devices are reachable from each other. In

Figures 11(b) and 11(c), we observe much less reachability when power control is applied on the IoT devices. We see

that to protect possible primary receivers, the IoT devices had to use much less power thus the reachability decreases

considerably. With more channels in Figure 11(c), the reachability increases marginally. However in Figure 11(d),

when we change the detection threshold to -15dBm, which is more comparable with commercial IoT standards, we

see reachability increasing even with power control. However, unlike no power control, each link may or may not be
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bidirectional. This is due to the fact that it is not always true that both devices connecting the links will not cause

interference to primary receivers.

Route assignment: In Figures 12(a) and 12(b), we compare end-to-end multi-hop, multi-channel route assignment

between the same pair of IoT devices under identical network and channel conditions, with and without SpEED-IoT

power control respectively. We see that without SpEED-IoT power control the route takes less number of hops and also

uses the same channel throughout the route. However, when we use power control to protect the primary receivers,

number of hops increases and also the channels change along the route.

(a) (b)

Figure 12: Routing (a) without power control between Node 158 and Node 42, (b) with power control between Node
158 and Node 42

End-to-end data rate: In Figures 13(a), and 13(b), we show the end-to-end data rate performance of SPAER for

single SD pair in inter- and intra-domain scenarios. Figure 13(a) shows the percentage average route capacity with

varying ESC sensor radius rs. The percentage average route capacity is defined as the inverse of average hop count

per route. We see that for both inter-domain and intra-domain routing, with higher rs, the average hop count increases

as there are more routes available with higher capacity. Thus the percentage average route capacity decreases sharply

with rs until it reaches a steady state when chances of finding better routes saturate. We show the nature of effective

end-to-end data rate to average route capacity in Figure 13(b). With higher rs, network connectivity increases, thus

SpEED-IoT identifies better routes with higher end-to-end data rate. With inter-domain routing, the probability of a
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finding a link with lower data rate increases, thus we observe reduction in effective end-to-end data rate.

(a) (b)

Figure 13: (a) Percentage average end-to-end data rate with sensor radius, (b) End-to-end data rate to average capacity
with sensor radius

(a) (b)

Figure 14: Performance comparison for end-to-end data rate with (a) varied number of IoT devices, (b) with varied
number of channels

In Figures 14(a), and 14(b), we compare SpEED-IoT’s end-to-end data rate performance against SAMER and

LinGO D2D routing schemes for scenarios when multiple SD pairs require route assignment. Figure 14(a) shows

that with increasing number of IoT devices in the secondary network, SpEED-IoT’s effective end-to-end data rate

increases gradually with the rate of increase much higher than SAMER and LinGO. This is due to the fact that with

more devices, the chances of getting routes with higher data rate links increase for SpEED-IoT. However, for SAMER

and spectrum agnostic LinGO approaches, increase in such chances are negated by the fact the most of higher data rate

links can not be used due to presence of primary incumbent. In Figure 14(b), similar characteristics can be observed,
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although the data rate seem to saturate after some value of the number of available channels. This is due to the fact that

after a certain number of free channels, the probability of finding a better link in terms of data rate along an end-to-end

route does not increase.

(a) (b)

Figure 15: SpEED-IoT power conservation against LinGO (a) for varied number of IoT devices, and (b) for varied
number of channels

Power conservation: Figures 15(a) and 15(b) demonstrates the percentage power conservation of SpEED-IoT’s in-

telligent power controlled routing in comparison to LinGO that do not use power control for primary protection.

Interestingly we see that against both increasing number of IoT devices and number of channels, the power conser-

vation magnitude albeit very high, gradually decreases which might be counter-intuitive. This is due to the fact that

with more devices and channels in the network, other approaches, such as, LinGO need to use less average power for

end-to-end communication thereby reducing the percentage power conservation benefits of SpEED-IoT. Even in such

cases, the magnitude of SpEED-IoT’s percentage power reduction is easily above 70% which is very high.

Primary receiver protection: In Figures 16(a) - 16(d), we demonstrate SpEED-IoT’s performance in terms of primary

receiver protection. Figures 16(a) and 16(b) show that the number of primary receivers protected increase with the

number of secondary IoT devices and number of free channels due to the increase in finding more route options and

thereby using less transmission power. Interesting to note that the number of primary receivers protected reaches a

saturation point where the identity of the best route does not alter even if more IoT devices or channels are made
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(a) (b)

(c) (d)

Figure 16: Characteristics of primary receivers protected with (a) varied number of secondary IoT devices in the
network, (b) varied number of channels, (c) varied distance between the source and destination, (d) varied primary
receiver density

available. In Figure 16(c), we show that the number of primary receivers protected increases as the distance between

the source and destination increases. This is because when power control is not used, more primary receivers are

interfered along the route. However, we observe that such nature is independent of the density of IoT devices in the

network. Figure 16(d) shows that the number of primary receivers protected is increasing with primary receivers in

the network for four different source-destination pairs, with a couple of cases each for inter-domain and inter-domain

routing. As expected, the number of primary receivers protected is higher for inter-domain routing as more hops in

inter-domain routing protects more receivers along the end-to-end route.

Hop count: Figures 17(a) and 17(b) compare SpEED-IoT performance in terms of number of hops used per route

against SAMER and LinGO. From Figure 17(a), we see that with higher number of IoT devices in the secondary

33



network, SpEED-IoT gets more options for better routes with lower transmission power which increases the number

of hops. Whereas, SAMER uses less hops as it does not use power controlled transmission. Figure 17(b) shows that

although SpEED-IoT uses more hops than other schemes, the average effective end-to-end data rate per route with any

number of hops is much greater than other schemes.

(a) (b)

Figure 17: (a) Comparison for number of hops used for end-to-end routes, (b) End-to-end data rate with different
number of hops per route

Channel switching: Switching channels along a route becomes essential for multi-hop, multi-channel D2D routing.

However, frequent channel switching may lead to time and energy overheads for IoT devices. Thus, it is desirable for

end-to-end routing protocols especially for IoT devices to keep such switching to a minimum. In Figure 18(a), we

show that SpEED-IoT on an average ends up using less number of channel switches per route than SAMER and LinGO

schemes in spite of using more hops per routes, as shown in Figure 17(a). This happens due to the fact that SpEED-

IoT uses both spatial information for spectrum availability which ends up choosing channels that are suitable for both

data rate and primary protection purposes. Thus, SpEED-IoT does not need to change channels that frequently along

a route. However, SAMER and LinGO always perform local data rate optimization that leads to choosing different

channels at different hops. Figure 18(b) is similar to Figure 17(b) where we show that for routes with any number

of channels switches, SpEED-IoT ensures higher end-to-end data rate than other schemes. Notably, most SpEED-

IoT routes have 1 to 2 channel switches, with only a handful of cases out of 20 runs having more than 2 switches.
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Interestingly, there seem to exist an inflection point on the number of switches for SpEED-IoT that leads to maximum

data rate. From Figure 18(b), such infection point is at 2 channel switches, beyond which the average end-to-end data

rate value seems to drop.

(a) (b)

Figure 18: (a) Comparison for number of channel switches along a route for varied number of IoT devices, (b) end-to-
end data rate performance for different values of channel switching

Fairness in route assignment: Finally, in Figures 19(a), and 19(b) we compare SpEED-IoT’s fairness in route as-

signment in terms of effective end-to-end data rates of interfering IoT SD pairs against that of SAMER and LinGO.

We apply the well known Jain’s fairness index formula [44] on the simulation results for the fairness comparison. Fig-

ure 19(a) shows that for any number of IoT devices, SpEED-IoT ensures on an average 50% higher route assignment

in terms of fairness when interfering IoT SD pairs require routes. Whereas, Figure 19(b) shows that for lower number

of available channels, SpEED-IoT is not able to ensure fair assignment due to lack of channel choices. However, with

more free channels, SpEED-IoT’s fairness is significantly better than other schemes.

7 Conclusions and Future Work

In this paper we discussed the challenges of DSA based secondary routing in a D2D IoT network. We proposed

SpEED-IoT, a spectrum aware, energy efficient multi-channel multi-hop routing technique among IoT devices with

the aid of a spectrum map created by ESC sensors. A transmission power control based selective flooding technique

is proposed to spread the route requests in the network without causing network wide transmission overhead. We
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(a) (b)

Figure 19: Fairness comparison in route assignment in terms of end-to-end data rate for (a) varied number of IoT
devices, (b) varied number of channels

analyzed the connectivity condition among IoT devices using such methods. As part of the SpEED-IoT scheme, an

evolutionary game theoretic model is also proposed that uses a dynamic learning algorithm to assign conflict free

end-to-end routes to interfering SD pairs without compromising effective data rate and assignment fairness. Using

an extensive simulation based testbed evaluation, we showed the SpEED-IoT performance in terms of ensuring IoT

network connectivity, end-to-end data rate optimization, primary receiver protection, and route assignment fairness.

As part of future work, we will analyze the performance of our proposed scheme both theoretically and experimen-

tally for different primary environments and IoT networks in terms of operational spectrum bands (such 3.5 GHz, TV

white space), primary transmission characteristics, spectrum characteristics, and heterogeneous secondary IoT device

communication mode/capabilities (full duplex). Finally, as part of long-term future plans, we plan to implement the

proposed scheme and its future extensions into a newly developed software-defined radio enabled indoor IoT testbed

for empirical results.
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