
 
 
 
This paper appeared in the Proceedings of the 1997 AAAI Workshop on Spatial and Temporal Reasoning. 
 

Representation and Reasoning for Pragmatic Navigation 
 

Susan L. Epstein 
 

Department of Computer Science 
Hunter College of The City University of New York 

New York, NY 10021 
epstein@roz.hunter.cuny.edu 

 
 
 

Abstract 
This paper focuses upon features of two-dimensional space 
that facilitate and/or obstruct travel through it. Three kinds 
of facilitators and four kinds of obstructers are identified. 
For each one, learning algorithms and navigational applica-
tions are proposed. The program described here simulates a 
robot that learns such features as it encounters them, and 
then applies them to subsequent travel decisions. The result-
ing system travels pragmatically through a variety of two-
dimensional worlds.  

1. Introduction 
As we send robots into dangerous, distant, or dynamic do-
mains, their ability to navigate through them becomes an 
increasingly important issue. Because the robots’ con-
trollers may have no map for the territory to be traversed, a 
reasonable approach would be to have the robot learn about 
the space it travels through. There are two issues that arise, 
however, if we require the robot to map this new space ex-
plicitly. First, accurate mapping is unlikely, since robotic 
sensors are subject to noise and robotic travel is subject to 
error. Second, unless people plan to follow the robot into 
the territory, the robot’s principle goal is to travel from one 
point to another, not to construct a map. The alternative 
proposed here is to satisfice, to have the robot learn 
approximations of the territory that support competent, 
rather than optimal, travel. The foundation concepts for this 
work are the facilitation and the obstruction of movement 
through space. 
 Pragmatic navigation aspires to provide robust, compe-
tent performance in two-dimensional space, performance 
that improves across time and is resilient to changes in 
origin and destination. Instead of pre-engineered expertise 
for a particular territory, a pragmatic navigator learns its 
way around a new territory from a series of trips through 
the territory, trips whose origins and destinations differ. 
Just as a person who travels efficiently through a campus 
does not retain a detailed description of each trip or re-
member the location of each tree and rock, a pragmatic 
navigator ignores much travel history and many topograph-
ical details. Instead of a detailed map, pragmatic navigation 
relies upon features that support efficient travel or make it 

more difficult, such as a door into a room or an extended 
wall. In a new territory, a pragmatic navigator initially 
performs as a competent novice, and then, as it learns fea-
tures of the territory from traveling there, it uses that 
knowledge to improve its performance. As envisioned 
here, most features are heuristic rather than absolutely ac-
curate; they are useful approximations that describe a 
territory and travel experience through it. Such rep-
resentation deliberately sacrifices detail in exchange for ef-
ficient storage, retrieval, and computation.  
 The pragmatic navigation task was first suggested as a 
problem that would challenge the power of search algo-
rithms 

(Korf 
1990)

. The 
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Figure 1: A problem and its solution in a 

maze. 



robot’s world is a maze, a discrete, rectangular grid with 
external walls and internal obstructions like the 14 × 14 
maze that is 30% obstructed in Figure 1. (All the examples 
in this paper are taken from actual runs; the experiments 
themselves are on substantially larger mazes than this one.) 
A location (r, c) in a maze is the position in the rth row and 
cth column, addressed as if it were an array. A problem is 
to travel from an initial robot location R to some goal 
location G in a sequence of legal moves, that is, to find a 
(not necessarily optimal) path to the goal. In Figure 1 the 
problem is to travel from (9, 8) to (1, 14). In any state, the 
robot senses only its own coordinates, the coordinates of 
the goal, the dimensions of the maze, and the distance 
north, south, east, and west to the nearest obstruction or to 
the goal. The robot does not sense while moving, only 
before a move. The robot knows the path it has thus far tra-
versed in the current problem, but it is not given, and does 
not construct, an explicit, detailed map of the maze like the 
one in Figure 1.  
 Instead of a map, pragmatic navigation relies upon two 
kinds of features to describe a territory: those that support 
efficient travel (facilitators) and those make it more diffi-
cult (obstructers). These features constitute useful knowl-
edge, and are learned for a specific territory from experi-
ence. Although it may be approximate, useful knowledge is 
expected to enhance performance. The robot remembers 
any useful knowledge acquired in previous trips through 
this maze, perhaps the lengthy irregular wall separating the 
eastern and western portions of Figure 1, and the dead-end 
at (12, 13). Each feature is prespecified by the system de-
signer, including its learning algorithm, learning time limit, 
and learning schedule (after a decision, a problem, or a set 
of problems).  
 Intuitively, a legal move passes through any number of 
unobstructed locations in a vertical or horizontal line. The 
robot in Figure 1 has 11 legal moves: north to (7, 8) and 
(8, 8), east to (9, 9) through (9, 14), south to (10, 8), and 
west to (9, 6) and (9, 7). A problem is solvable if and only 
if there exists some path  
<R  =loc0move1loc1…moveiloci…locp-1moveplocp = G> 
such that movei is a legal move from loci-1 to loci for 
1 ≤ i ≤ p. The level of difficulty of a solvable problem is the 
minimum value of p for which there is a solution, i.e., the 
minimum number of legal moves with which the robot can 
reach the goal. (Effectively, the level of difficulty of a 
problem is one more than the minimum number of left or 
right turns the robot must make to reach the goal.) This is 
different from the Manhattan distance from R to G. Figure 
1 is a level-6 problem; one six-move solution for it, with 
Manhattan distance 16, is indicated there. Interchanging 
the robot and the goal produces another problem at the 
same level. The heading of the task is the subset of {north, 
east, south, west} that describes the direction from R to G. 
The heading of the task in Figure 1 is {north, east}. 
 This task has several performance criteria. The robot is 
expected to solve multiple problems in the same maze. 
Easier problems should be easier to solve. The robot is ex-
pected to perform quickly. Speed can be measured as 

elapsed computation time, number of decisions, or path 
length (Manhattan distance) traveled. The robot is also ex-
pected to perform efficiently. Efficiency can be measured 
as the number of distinct locations visited or the percentage 
of repeated locations in a path. Finally, the robot is ex-
pected to learn; its performance should improve with expe-
rience.  
 The task formulated above is not amenable to traditional 
AI techniques. Depth-first search requires substantial 
backtracking; its paths are long and repetitive. Breadth-first 
search visits too many nodes; on most hard problems it ap-
proaches exhaustive search while it visits a high proportion 
of nodes in the search space and maintains a very large 
structure for open paths. Means-ends analysis is inapplica-
ble because it requires knowledge about the vicinity of the 
goal to reason backwards. Best-first search with a 
“sensible” evaluation function, such as Euclidean distance 
to the goal, is easily misled by deceptive problems where 
proximity is not a valid indicator of progress. (The goal 
might be hidden behind a long wall so that the robot must 
move away from the goal to reach it eventually. For ex-
ample, placing the robot at (9, 4) and the goal at (8, 5) in 
Figure 1 produces a deceptive level-6 problem.) For a large 
maze, explicit search would be extremely inefficient, per-
haps intractable.  
 The next two sections describe the facilitators and ob-
structers used by a program called Ariadne, whose reason-
ing process is described in Section 4. (Ariadne, daughter of 
King Minos of Crete, told Theseus how to find his way 
through the labyrinth that protected a great treasure.) Sec-
tion 5 evaluates the role of facilitators and obstructers in 
Ariadne. Subsequent sections consider Ariadne’s cognitive 
plausibility and related work. 

2. Facilitators 
Ariadne has three kinds of facilitators: gates, bases, and 
corners. A gate has, in theory, the ability to provide a tran-
sition from one large segment of space to another. A base 
repeatedly appears as a counter-intuitive choice in success-
ful paths. A corner offers the possibility of a new direction.  
 Since the robot knows the dimensions of the maze, it can 
calculate quadrants. A gate is a location that offers a transi-
tion from one quadrant of the maze to another. After each 
move, the robot can test whether its quadrant has changed, 
that is, if it has moved through a gate. If so, the robot’s cur-
rent location is learned as a gate between the current quad-
rant and the previous one. A gate may not always be help-
ful; for example, (8, 10) is a gate between quadrants 3 and 
4 in Figure 2(a), but it offers access to little of quadrant 3. 
Each gate is stored with its extent (rectangular approxima-
tion of the locations from which it can be reached) in a 
hash table whose key is the sorted pair of quadrant num-
bers. The extent of (8, 10) in Figure 2(a), for example, is 
the rectangle with vertices (6, 10), (9, 10), (9, 5), and (6, 5). 
Ariadne only learns the gates it visits, so many locations in 
Figure 2(a) that satisfy the definition of gate were not 
learned and are not marked. The subdivision of the maze 



into only four areas (the quadrants) was deliberate. If one 
specifies more, there are an increased number of gate cate-
gories to manage (as many as nC2 for n areas). If one 
specifies fewer, there is too little transition information. 
 A corridor is a passageway of width one that either has a 
single exit (a dead-end) or is a hallway. A pipe is a straight 
hallway, that is, its endpoints lie in the same row or the 
same column. In Figure 2(b), there is a hallway from 
(13, 5) to (14, 8) and a pipe from (14, 10) to (14, 11). Some 
pipes offer a view of the space after their far end. For ex-
ample, from (14, 9) in Figure 2(b) the robot can move not 
only to the ends of the pipe from (14, 10) to (14, 11), but 
also beyond it to (14, 12). Other pipes do not offer a view 
of the space after their far end, but since a pipe is not a 
dead-end, that promises a turn in some other direction. For 
example, from  (4, 10) in Figure 2(b) the robot can see both 
ends of the (length one) pipe at (4, 13) but not beyond it; 
that promises a turn at the far end. Such a turn-promising 
far end of a pipe is called a corner. A corridor is learned 
when, from the current state, the robot has only one or two 

moves. The two endpoints of a corridor serve as the keys to 
a hash table which also indicates whether or not they are 
for a dead-end. Corridors are enlarged and merged together 
as necessary. Like gates, only corridors that Ariadne expe-
riences are learned.  
 A base is a location in a maze that appears to have been 
a key to a successful path. In the author’s home town, peo-
ple regularly give directions beginning “first you go to the 
Claremont Diner.” Although it served memorable cheese-
cake, the Claremont Diner burned down 15 years ago, and 
there is nothing particularly significant about the car deal-
ership that has replaced it. What is significant is that the 
diner was at a location that affords ready (not necessarily 
shortest path) access to other locations in a 10-mile radius. 
A base is such a location. Bases are learned after a success-
ful problem; the algorithm first corrects the path to elimi-
nate loops and unnecessary digressions. A base is a loca-
tion in that corrected path that was not in the heading from 
R to G. A base is not a dead-end or G itself, and a path 
intended 
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Figure 2: After 20 problems: (a) gates and (b) corridors learned for a simple maze. 



 (a)  (b) 
Figure 3: (a) A solution path and the bases that arise from it. (b) A plan for a problem formulated from learned bases.

to circumvent a wall contributes only its most extreme po-
sitions opposite the original headings. Bases are stored on a 
list with their frequency, the number of times they have 
been identified in different problems. The bases learned 
from one solution path are circled in Figure 3(a), where the 
heading was {north} and the eastern-most corners became 
bases. 
 Bases facilitate some primitive, high-level planning for 
Ariadne’s decision making. A plan in Ariadne is a se-
quence < b0 b1 b2 … bi-1 bi bi+1 … bn bn+1 > where b0 is 
the robot’s current location, bn+1 is the goal, bi is a base 
for i = 1 to n, bi is aligned vertically or horizontally with 
bi+1, and either bi-1 is closer to b0 than bi is, or else bi+1 is 
closer to G than bi is. Plans are constructed with bidirec-
tional search on aligned bases, with preference for bases of 
higher frequency, as if there were no obstructions. A plan 
fails when the robot is at some bi and there is an interven-
ing obstruction that prevents its move to bi+1. An example 
of a plan Ariadne formulated for a problem is shown in 
Figure 3(b), where the bases learned after 20 level-6 prob-
lems in the same maze are indicated by their frequency 
values. In Figure 3(b), some bases, such as (14, 5) and 
(14, 9) are the keys to the only route between the eastern 
and western portions of the maze. Others, such as (7, 13) 
and (9, 9) lie at important intersections, like the Claremont 
Diner. 

3. Obstructers 
Ariadne identifies four kinds of obstructers: certain corri-
dors, chambers, bottles, and barriers. A corridor may ob-
struct movement either because it is a dead-end, such as 
(2, 9) in Figure 2(b), or because it is a pipe, whose internal 
locations afford access only to each other. Chambers and 
bottles are circumscribing rectangular approximations of 
restricted spaces that are less narrow than a corridor, and 
have one or more exits. A barrier is a linear approximation 
of contiguous obstructed positions. Learning an obstructer 
is often triggered when the robot has been hampered in its 

ability to move through space. For example: “The area of 
the territory covered by the last 30% of the moves was less 
than 10% of the total maze area or included less than 10% 
of the possible maze locations,” or “All the legal moves 
have been visited at least once,” or “60% of the decision 
limit has been exhausted.”  
 A chamber is an irregularly shaped space with an access 
point and an approximate extent. The extent is a bounding 
rectangle, a compact, heuristic approximation of the fur-
thest in each direction one can go in the chamber. The 
access point is a location within the chamber that affords a 
view outside it, but need not be on the border of the extent. 
Figure 4(a) shows a chamber with extent 1 north, 13 east, 5 
south, and 9 west. When the robot moved to access point 
(4, 13) it saw beyond that extent to the south. All locations 
reachable from the robot’s initial position really constitute 
one large chamber, but the chambers that Ariadne learns 
are more limited and room-like. The learning algorithm for 
a chamber is triggered when the problem has been under-
way for some time, the robot has been recently constrained 
and has been in its current location before, and there are 
few legal moves to locations not yet visited on this problem 
or the goal is remote. The learning algorithm for a chamber 
first estimates the dimensions according to its current sens-
ing, and then tries to move to a location where the chamber 
appears both higher and wider. From its current location 
the robot scans once horizontally, and then from the 
scanned location offering the largest view scans once again 
vertically. (If there are no horizontally-adjacent legal loca-
tions, the vertical scan is performed first.) If the procedure 
identifies a sequence of one or two locations (access 
points) that enlarge the extent, at least one of which is pre-
viously unvisited during this problem, it records the cham-
ber’s extent and access point on a list. The scan for the 
chamber in Figure 4(a) began from (4, 12). A new chamber 
may subsume an old one, in which case it replaces it on the 
list. Otherwise, chambers are not merged, and they may 
overlap or have more than one access point. 
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 (a)  (b)   

Figure 4: (a) A learned chamber, with its extent and access point (b) A learned bottle with its neck and extent.
 A bottle is another useful knowledge description of a 
constrained space, similar to a chamber. Chambers, how-
ever, are learned deliberately by search, whereas bottles are 
learned without search from analysis of the entire path after 
a problem is completed. A potential bottle begins with a 
location that was visited more than once, and is repeatedly 
extended in both directions along the path by immediately 
neighboring positions only if it includes several spots, is 
not corridor-like, and does not ultimately encompass more 
than 15% of the area of the maze. Once a bottle is identi-
fied and its extent computed, its neck (not necessarily con-

tiguous entry and/or exit point) is identified. Bottles are 
stored in a hash table as an extent and a neck. Figure 4(b) 
shows a bottle with extent 12 north, 6 east, 14 south, and 1 
west, and neck (6, 2). 
 A barrier is a linear approximation of a wall that ob-
structs movement. Figure 5 shows the barriers learned after 
20 problems in a simple maze. The barrier from (13, 10) to 
(11, 13), for example, is an approximation of the wall in 
the lower right corner of the maze. Barriers are learned 
different ways, depending upon the search context in which 
they arise. In each case, the learning algorithm is a function 
of the preferences in the rationale that produced the search 
path. Experience determines which barriers are encoun-
tered; thus there could have been some barriers learned to 
describe the irregular vertical wall between the eastern and 
western portions of the maze in Figure 5, had the program 
encountered difficulty when required to avoid them. Each 
retained barrier is an object with endpoints, slope, inter-
cept, and length. 

4. Reasoning for Pragmatic Navigation 
FORR (FOr the Right Reasons) is a problem-solving and 
learning architecture that models the transition from gen-
eral expertise to specific expertise, and capitalizes on 
methods that people use 

(Epst
ein 
1994)

. 
FORR approaches problem solving as a sequence of 
reasonable decisions based on the current state of the world 
and learned useful knowledge. Ariadne is a FORR-based 
system for pragmatic navigation; it applies facilitators and 
obstructers to the maze task. FORR’s three-tier 
hierarchical model of the reasoning process (shown in 
Figure 6) mediates among decision-making rationales 
called Advisors. Each Advisor is a “right reason,” im-
plemented as a time-limited procedure. Input to each of 
Ariadne’s Advisors is the current state of the world, the 
current permissible actions from that state, and any learned  

Figure 6: How FORR makes decisions. 



useful knowledge about the current territory. Each Advisor 
outputs any number of comments that support or 
discourage permissible actions. A comment lists the Advi-
sor, the action commented upon, and a strength, an integer 
in [0, 10] that measures the intensity and direction of the 
Advisor’s opinion. Details on the architecture appear in 

(Epst
ein 
1995)

. A 
full listing of Ariadne’s 30 Advisors and the useful 
knowledge 18 of them apply appears in Table 1.  
  The tiers are consulted in turn; if any tier makes a deci-
sion, it is executed and control is returned to tier 1. Advi-
sors in tiers 1 and 2 are consulted in the predetermined, 
fixed order shown in Table 1, and may make a unilateral 
decision. The four tier-1 Advisors are perfectly correct, re-
active procedures that decide quickly. Tier-1 Advisors also 
have the ability to veto a move, eliminating it from further 
consideration. The eight tier-2 Advisors are situation-based 
procedures that do time-limited search in an attempt to pro-
duce a sequence of moves that they then mandate. Each  

Table 1: Ariadne’s Advisors with tiers 1 and 2 in 
prioritized order.  

 
Tier Advisor Rationale Useful knowledge 
1 Victory If goal is reachable by a legal move, go there.  — 
1 Can Do Move adjacent to goal. — 
1 No Way Avoid dead-ends. Corridors 
1 Pipeline Avoid internal locations in straight corridors. Corridors 
2 Roundabout Circumnavigate intervening obstructions. Barriers, corridors 
2 Outta Here Exit chamber or dead-end not containing goal. Chambers, corridors 
2 Probe Determine the current extent and try to leave it. — 
2 Patchwork Repair plans. Bases 
2 Other Side Move robot to opposite side of goal.  — 
2 Super Quadro Search for entry into goal’s quadrant or into new quadrant. Gates 
2 Wander Move far in an L-shaped path. Barriers, average 

problem steps, bases, 
corridors 

2 Humpty Dumpty Seek barriers. — 
3 Adventure Move to thus far unvisited locations, preferably toward goal. Barriers 
3 Been There Discourage returning to location already visited during this problem . — 
3 Chamberlain Move into chamber that contains goal; avoid chamber that does not. Chambers 
3 Contract Take large steps when far from goal, and small steps when close to it. — 
3 Cork Move into a bottle that contains goal; avoid a bottle that does not. Bottles 
3 Corner Move to the end of a pipe that promises a turn. Corridors 
3 Crook Move to the end of a crooked corridor. Corridors 
3 Cycle Breaker Stop repeated visits to same few spots.  — 
3 Detour Move away from barriers that obstruct goal. Barriers 
3 Done That Discourage moves in same direction as before from a previously-vis-

ited location.  
— 

3 Giant Step If recently confined, take a long step, preferably toward goal. — 
3 Goal Column Align robot horizontally with goal, if it is not already. — 
3 Goal Row Align robot vertically with goal, if it is not already. — 
3 Home Run Move toward bases. Bases 
3 Hurry Take big steps early and small steps late. Average problem steps 
3 Leap Frog Execute opportunistic plans. Bases 
3 Mr. Rogers Move into neighborhood of goal. — 
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3 Opening Begin as a previously successful path did. Openings 
3 Plod Take a one-unit step, preferably toward goal. — 
3 Quadro Move into goal’s quadrant or into new quadrant. Gates 
 
tier-2 Advisor has a trigger that signals its applicability and 
a search method that attempts to compute solution frag-
ments (sequences of moves) to address the identified situa-
tion. The solution fragments generated by a tier-2 Advisor 
are tested serially. The 20 tier-3 Advisors are reactive, 
time-limited heuristics that embody path-finding common-
sense and do no search in the maze. Each may recommend 
or oppose any number of unvetoed legal moves. All tier-3 
Advisors vote together, and the simple ideas behind them 
support rapid computation. Given 10 seconds, none has 
ever run out of time on level 10 problems. 
 Advisors reason with facilitators by attempting to exploit 
them. Super Quadro and Quadro apply gates to move the 
robot into the goal’s quadrant or to change quadrants, the 
former with limited search, the latter with a reactive 
heuristic. Four Advisors apply bases, and plans constructed 
from them, to revisit key locations: Patchwork repairs 
plans, Wander makes L-shaped paths into unknown terri-
tory in inverse proportion to the percentage of locations 
known to be bases, and Home Run and Leap Frog react to 
plans. Corner and Crook apply corridors. Corner advocates 
a move to the far end of a pipe that turns, more strongly 
when the pipe is in the direction of the goal, less so when it 
is opposite the direction of the goal. Crook advocates a 
move to the near end of a corridor that is neither straight 
nor a dead-end, again more strongly when the corridor is in 
the direction of the goal, less so when the far end of the 
corridor is opposite the direction of the goal. 
 Some Advisors simply avoid obstructers. No Way vetoes 
any move that would lead the robot into a dead-end that 
could not contain the goal, and Pipeline vetoes a move to 
any location within a pipe which it can see through. For ex-
ample, in Figure 2(b) from (14, 9) Pipeline would veto 
moves to (14, 10) and (14, 11); if traveling east efficiently, 
one would go through that pipe, not into it. Outta Here, 
Roundabout, and Wander all avoid dead-ends during 
search. Roundabout and Wander restrict their search to 
avoid known barriers. Adventure and Detour avoid moves 
that position the robot with a known barrier between it and 
the goal. If a barrier already intervenes, Detour also en-
courages moves to avoid it.  
 Other Advisors must consider whether an obstructer 
might contain the goal. Outta Here applies chambers with 
restricted search to exit a chamber if the goal is not there, 
and enter it if the goal might be there. Probe learns cham-
bers as a side effect of limited search. Chamberlain is a re-
active heuristic version of Outta Here, and Cork is the bot-
tle version of Chamberlain. Thus when the robot is outside 
the bottle, Cork discourages moves into a bottle whose ex-
tent indicates that it cannot contain the goal, and encour-
ages moves into the neck of a bottle whose extent indicates 
that it can contain the goal. When the robot is inside the 
bottle, Cork reverses this advice.   

 Finally, two Advisors apply useful knowledge supplied 
by default by FORR, knowledge that is not specific to 
pragmatic navigation: Opening encourages the reuse of 
previously successful path beginnings when applicable. 
Although such moves may seem odd if the goal is in a dif-
ferent location, the heuristic works well if the old path was 
successful because it began by moving to an area that of-
fered good access to other parts of the maze. The average 
number of problem steps is also referenced by Hurry and 
by the triggers of several tier-2 Advisors. 

5. Empirical Design and Results 
Pragmatic navigation is achieved by the execution of 
FORR’s Figure 6 decision process with all the Advisors of 
Table 1. Together Ariadne’s Advisors keep the robot on a 
reasonable path toward the goal, exploiting the facilitators 
and steering clear of the obstructers. To demonstrate that it 
is facilitators and obstructers that empower Ariadne, we 
devised an ablation experiment consisting of 10 runs. On 
each run, Ariadne generated a 20 × 20 random maze that 
was 30% obstructed, and solved 20 learning problems 
there. Then learning was turned off, and 10 newly-gener-
ated testing problems for the same maze were offered both 
to the full version of Ariadne and to a No-Learn agent that 
applied all the Advisors but made no useful knowledge 
available. This experiment was repeated for problems at 
levels 4, 6, and 8. The learning problems established a use-
ful knowledge base for those Advisors that depend on it. A 
problem of either kind was terminated when the reasoning 
agent reached the goal or when it reached the decision step 
limit which included all exploration during tier-2 search. 
On levels 4 and 6, this limit was set to 200. Above level 6, 
it was set to 1000 to give the agents ample opportunity to 
solve each problem. The higher limit permitted more expe-
rience, so that Ariadne acquired additional useful knowl-
edge to support better comments.  
 Table 2 reports the results for No-Learn and Ariadne 
averaged across the 10 runs in each experiment. In Table 2, 
“distance” is the Manhattan distance along the path to the 
goal. Since a step may move through one or more loca-
tions, path length varies among problems of the same diffi-
culty. “Decisions” is the number of steps taken during tier-
2 search or solution, while “moves” is the number of steps 
in the solution. (The distinction between the number of de-
cisions and number of moves is important: a move appears 
in the solution path, while a decision is a step taken during 
tier-2 search or solution.) The number of distinct locations 
actually visited during those moves is reported as 
“locations.” Distance, moves, and locations are computed 
only over solved problems. (This tends to make the ablated 
agents look somewhat better than they actually are, 
because they solve the easier problems.) “Time” is 
execution time per testing problem, in seconds.  



 On every level Ariadne solved a few problems that No-
Learn did not. By level 6, No-Learn had fairly long paths, 
but consumed similar time and decision cycles. On level 8, 
however, its inadequacy was measurable at the 95% confi-
dence level. Although No-Learn managed to solve 93% of 
the problems there, inspection indicated that it had relied 
heavily on tier 2, that is, had substituted search for knowl-
edge. As a result, its paths were far longer, and its decision 
cycles and solution time substantially greater. The degree 
of repetition in the paths is also indicative of their 
behavior. On level 8 No-Learn visited 36% of its locations 

more than once while Ariadne revisited only 8%. Clearly 
facilitators and obstructers enhance Ariadne’s performance. 
 Nor is there apparently any danger of learning so much 
useful knowledge that a detailed, grid-like map of the maze 
would have been a more efficient representation than Ari-
adne’s learned heuristic features. After 20 level-8 problems 
in 20 × 20 random mazes, for example, there were on aver-
age only 41.8 barriers, 83.6 bases, 1.0 bottles, 3.7 cham-
bers, 49.3 corridors, and 18.2 gates. As a graph, however, 
such a maze would have 280 nodes and approximately 
1485 edges. 

 
Table 2: The performance of Ariadne and an ablated version of it after learning in a particular 20 × 20 maze in Ariadne’s 

world. Results are averaged over runs in 10 mazes.  

  

     
 (a)  (b)  (c) 

Figure 7: Some non-random environments: (a) warehouse (b) furnished room (c) office. Grids are omitted for clarity. 

 To measure the efficacy of Ariadne’s problem solving, 
we compare it here with two standard AI techniques: 
breadth-first search and heuristic search with an evaluation 
equal to the Euclidean distance from the robot to the goal. 
In a separate experiment, again averaging 10 runs on level 
8, on the testing problems Ariadne only visited 7.93% of 
the locations in the maze, while breadth-first search visited 
79.89%. (This somewhat understates the cost of a physi-
cally executed breadth-first search, whose many repetitive 
subpaths go uncounted here.) In yet another 10-run experi-
ment, this time at level 10, best-first search was able to 
solve only 37% of the problems within 1000 steps, and 
averaged path lengths of 92.32 on these solved problems, 
versus Ariadne’s 55.30 path length with a 93% success 
rate. Best-first search averaged 271.23 seconds per prob-
lem, Ariadne 5.93 seconds.  
 Although random mazes present interesting challenges, 
real navigators face environments which are not random. 
To test Ariadne’s robustness, three other classes of mazes 
intended to model more realistic worlds were constructed. 

These maze classes represent furnished rooms, warehouses, 
and office suites on a 40 × 40 grid. An example of each ap-
pears in Figure 7. A warehouse maze models a single 
room, much like the typical basement, garage, attic or 
storeroom, with non-overlapping rectangular obstructions 
scattered about. A furnished room maze models a room 
some of whose rectangular obstructions may overlap or be 
balanced along the perimeter. An office maze models a 
single floor in an office building, with an outer rectangle of 
offices (those that could have windows) bordered within by 
a rectangular hallway and corner offices accessible only 
through an adjacent office. 
 Ariadne was developed for random mazes. Without any 
changes in the useful knowledge or the Advisors, we tested 
the program in mazes like those in Figure 7. Level-8 prob-
lems were run on the offices and warehouses, but it was 
difficult to find a furnished room with enough problems at 
any higher level than 4, apparently because the required 
gap between the perimeter and the furniture provides ready 
access to most locations. Although these new mazes were 4 

 
Problem level Agent Distance Decisions Moves Locations Time 
4 No-Learn 23.77 35.27 11.99 10.17 1.41 
4 Ariadne  18.74 20.33 11.64 10.95 1.21 
6 No-Learn 40.33 58.53 21.77 18.02 2.38 
6 Ariadne  27.23 47.61 16.22 15.15 1.99 
8 No-Learn 99.08 202.85 44.10 28.39 7.08 
8 Ariadne  38.15 115.19 24.16 22.19 4.00 



times larger than those in earlier experiments, the decision-
step limit remained at 1000. Ariadne solved all the fur-
nished room problems easily, 54% of them as well or better 
than the problem generator’s solution. (This is possible be-
cause the problem generator minimizes the number of turns 
on the path to the goal, not the distance. In some mazes, a 
path with more turns can be shorter.) It also solved all the 
warehouse problems readily, 39% as well or better than the 
problem generator. The office mazes presented a greater 
challenge. Only 9% of Ariadne’s solutions were as good or 
better than the problem generator’s, and in several cases 
Ariadne did not solve the test problem within the 1000 de-
cision-step limit. (In contrast, the program devoted an aver-
age of 37.47 decisions to furnished room problems, and 
64.65 to warehouse problems.) Inspection indicated that in 
most cases the solution was near at hand, but the corner of-
fices had been sufficiently deceptive to demand additional 
search. 

6. Cognitive plausibility 
There is no claim here that Ariadne is a cognitive model of 
a human navigator, only that many of its features are cog-
nitively plausible. Several of the Advisors do model princi-
ples of naive geographic reasoning 

(Ege
nhofer & Mark 
1995)

 all 
of us readily recognize: Plod’s tentativeness, Adventure’s 
curiosity, and Hurry’s anxiety. In addition, cognitive 
scientists have found evidence for Contract’s rationale 

(Goll
edge 
1995)

 and 
the rationales of several of the other Advisors 

(Gryl 
1995)

. 
There have, however, been no tests of human subjects on 
problems as difficult as these. Indeed, psychologists doubt 
that most people with the same visual limitations as 
Ariadne’s robot could solve problems on this scale much 
above level 4 (personal communication, Ratterman). 
 The use of a learning architecture, rather than a prespeci-
fied one, is supported by evidence that people evolve supe-
rior performance. Human expertise develops only from re-
peated experience at problem solving 

(Eric
sson & Charness 1994; Ericsson, Krampe, & Tesch-Römer 
1993; Ericsson & Smith 1991; Piaget & Inhelder 
1967)

. This 
expertise is applicable to a related set of problem classes. 
For example, an expert path finder in unfamiliar territory 
will immediately wonder about dead-ends and not about 
the color of obstructions. Experts rely upon a foundation of 

domain knowledge that provides a source of focus and di-
rection to provide a baseline level of competence. Thus the 
architecture need not begin with total ignorance; it is rea-
sonable to provide it with general domain knowledge and 
the methods to specialize it, for example, by learning fea-
ture instances. 
 Ariadne’s facilitators and obstructers form its cognitive 
map, its representation of its world. These features are con-
sistent with the ways humans represent space. People use 
constructed representations of the visual world to make in-
ferences about space, representations that are based upon, 
but more abstract and general than, perception 

(Tver
sky 
1991)

. 
These representations systematically distort visual 
perception to facilitate recall 

(Tver
sky 
1992)

. 
They are integrated with many other kinds of information 
to form a model that the human user does not require to be 
complete or consistent. Ariadne’s reliance upon multiple 
representations and its tolerance for inconsistent and even 
incorrect information, geographers tell us, is much like the 
naive geography that people rely on 

(Ege
nhofer & Mark 
1995)

. 
Even the use of levels (number of turns) for degree of 
problem difficulty is supported by results that people gauge 
distance that way 

(Sada
lla & Magel 
1980)

. 

7. Related Work 
Although Ariadne’s maze problems may be reminiscent of 
recent work in reinforcement learning, it is important to 
note that the program’s task and fundamental approach are 
significantly different 

(Moo
re & Atkeson 1993; Sutton 
1990)

. 
Such programs seek convergence to an optimal path 
through repeated solution of what, according to our defini-
tion, would be a single problem. In contrast, Ariadne has 
no mechanism that would guarantee optimality, and will 
quickly settle upon the same route in most cases. Ariadne 
constructs satisficing paths for a set of problems, applying 
knowledge learned from one problem to the others, instead 



of from one problem-solving attempt to another attempt at 
the same problem. 
 Another suggested learning approach was a case-based 
planning method for the grid world that operated in a set of 
abstraction spaces, and stored both detailed and abstracted 
solution paths 

(Bran
ting & Aha 
1995)

. 
These mazes were somewhat simpler versions of Ariadne’s 
warehouses, which present few dead-ends, narrow-necked 
chambers or bottles, or effective barriers between large 
regions. Once again, Ariadne would find them quite easy. 
 One way to characterize an approach to learning naviga-
tion for a robot is by the degree to which it reflects what is 
known about human perception and behavior. PLAN is a 
connectionist model that integrates path finding into gen-
eral cognition 

(Cho
wn, Kaplan, & Kortenkamp 
1995)

. 
PLAN learns a topological map of experienced landmarks, 
a route map of place sequences and directions between 
them, and a survey map of global information. All three 
maps are based on a visual scene rather than an aerial view. 
The resultant system has strong biases to human sensory 
orientation (particularly in its refusal to see more than 180° 
about its position) and limited short-term memory, neither 
of which is necessary for intelligent robot navigation. The 
authors claim that such maps are therefore based on experi-
ence, but the experience they record is purely visual or rote 
experience. In contrast, Ariadne retains knowledge that 
represents both momentary experience (e.g., a gate) and 
reasoning about a sequence of experiences (e.g., a base). 
Although developed independently, some of PLAN’s fea-
tures are quite similar to Ariadne’s: its gateways are similar 
to Ariadne’s gates, its regions similar to Ariadne’s bottles 
and chambers. PLAN makes its global overview explicit, 
and plans hierarchically from regional maps. PLAN’s ex-
pertise, however, appears to be in maps whose scale and 
level of difficulty are far below those Ariadne traverses 
with ease, and the authors offer no statistics on either its ef-
ficiency or effectiveness.  
 A second way to characterize an approach to learning 
navigation for a robot is by its representation of its world. 
Hayes has constructed a rigorous approach to reasoning 
about space 

(Hay
es 
1988)

. He 
too envisions representations of space into pieces (like 
Ariadne’s bottles, chambers, and quadrants) that have 
boundaries and connectors (like Ariadne’s bottlenecks, 
access points, and gates). There is, as yet, no implemented 

version, however. TOUR 
(Kui

pers 
1978)

 and 
Qualnav 

(Kui
pers & Levitt 
1988)

 have 
landmarks that are sensorily distinctive. Ariadne’s grid 
world, as originally postulated by Korf, did not provide 
such landmarks. As a substitute, Ariadne has gates and 
bases predicated upon theories about what might be useful 
in travel. Ariadne does not store routes or route fragments 
from completed problems either, whereas TOUR and 
PLAN both keep a topological network of routes between 
places that can be manipulated to find a path. Unlike these 
systems, Ariadne’s global overview is implicit in the useful 
knowledge it learns; it plans naively and opportunistically. 
Although it would be simple enough to learn a route-frag-
ment graph on Ariadne’s gates and bases, the reactive ap-
proach described here is preferred, for both its computa-
tional efficiency and its limited storage.  

8. Conclusions 
Human navigators react quickly and correctly to clearly 
productive or unhelpful opportunities, such as “there’s the 
goal” or “not that dead-end again.” They entertain a variety 
of heuristics, such as “closer is better” or “when far away, 
take a long, straight step.” They also digress into a search 
mode tailored for a particular situation, for example, “this 
obstacle is between me and the goal, so I have to get 
around it.”  
 Ariadne is an implemented pragmatic navigation system 
that epitomizes this kind of naive geographic reasoning, as 
if it were learning the way around a new campus or town. 
Ariadne learns a variety of features about a new environ-
ment, and uses that knowledge to solve multiple travel 
problems there. Ariadne solves multiple problems in the 
same territory. It solves the easier ones in fewer steps and 
with fewer resources than more difficult problems. Com-
pared to traditional search techniques, it solves these prob-
lems quickly, as measured in elapsed problem-solving 
time, number of decisions, and path length. It also performs 
efficiently, as measured by number of distinct locations 
visited and the percentage of repeated locations in a path. 
And Ariadne learns, so that it applies previous experience 
to hitherto unseen problems, both in random mazes and in 
a variety of more realistic world models.  
 Facilitators and obstructers prove themselves to be a 
flexible and pragmatic foundation for pragmatic naviga-
tion.  As the data indicate, learning is essential to an agent 
facing hard problems with limited resources. The ablated 
No-Learn agent failed to solve many of the hardest prob-
lems, while the full version could perform quite well after 
only 20 learning trials. The same useful knowledge can be 



applied (e.g., dead-ends) and learned (e.g., barriers) in 
many ways. Facilitators and obstructers appear to capture 
key navigational concepts about two-dimensional space, 
concepts that support robust and effective travel there. 
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