

This paper appeared in the Proceedings of the 1997 AAAI Workshop on Spatial and Temporal Reasoning.

Representation and Reasoning for Pragmatic Navigation

Susan L. Epstein

Department of Computer Science
Hunter College of The City University of New York

New York, NY 10021
epstein@roz.hunter.cuny.edu

Abstract
This paper focuses upon features of two-dimensional space
that facilitate and/or obstruct travel through it. Three kinds
of facilitators and four kinds of obstructers are identified.
For each one, learning algorithms and navigational applica-
tions are proposed. The program described here simulates a
robot that learns such features as it encounters them, and
then applies them to subsequent travel decisions. The result-
ing system travels pragmatically through a variety of two-
dimensional worlds.

1. Introduction
As we send robots into dangerous, distant, or dynamic do-
mains, their ability to navigate through them becomes an
increasingly important issue. Because the robots’ con-
trollers may have no map for the territory to be traversed, a
reasonable approach would be to have the robot learn about
the space it travels through. There are two issues that arise,
however, if we require the robot to map this new space ex-
plicitly. First, accurate mapping is unlikely, since robotic
sensors are subject to noise and robotic travel is subject to
error. Second, unless people plan to follow the robot into
the territory, the robot’s principle goal is to travel from one
point to another, not to construct a map. The alternative
proposed here is to satisfice, to have the robot learn
approximations of the territory that support competent,
rather than optimal, travel. The foundation concepts for this
work are the facilitation and the obstruction of movement
through space.
 Pragmatic navigation aspires to provide robust, compe-
tent performance in two-dimensional space, performance
that improves across time and is resilient to changes in
origin and destination. Instead of pre-engineered expertise
for a particular territory, a pragmatic navigator learns its
way around a new territory from a series of trips through
the territory, trips whose origins and destinations differ.
Just as a person who travels efficiently through a campus
does not retain a detailed description of each trip or re-
member the location of each tree and rock, a pragmatic
navigator ignores much travel history and many topograph-
ical details. Instead of a detailed map, pragmatic navigation
relies upon features that support efficient travel or make it

more difficult, such as a door into a room or an extended
wall. In a new territory, a pragmatic navigator initially
performs as a competent novice, and then, as it learns fea-
tures of the territory from traveling there, it uses that
knowledge to improve its performance. As envisioned
here, most features are heuristic rather than absolutely ac-
curate; they are useful approximations that describe a
territory and travel experience through it. Such rep-
resentation deliberately sacrifices detail in exchange for ef-
ficient storage, retrieval, and computation.
 The pragmatic navigation task was first suggested as a
problem that would challenge the power of search algo-
rithms

(Korf
1990)

. The

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2

3

4

5

6

7

8

9

10

11

12

13

14

R

G

Key

obstruction

R

G

robot

goal

legal move

Figure 1: A problem and its solution in a

maze.

robot’s world is a maze, a discrete, rectangular grid with
external walls and internal obstructions like the 14 × 14
maze that is 30% obstructed in Figure 1. (All the examples
in this paper are taken from actual runs; the experiments
themselves are on substantially larger mazes than this one.)
A location (r, c) in a maze is the position in the rth row and
cth column, addressed as if it were an array. A problem is
to travel from an initial robot location R to some goal
location G in a sequence of legal moves, that is, to find a
(not necessarily optimal) path to the goal. In Figure 1 the
problem is to travel from (9, 8) to (1, 14). In any state, the
robot senses only its own coordinates, the coordinates of
the goal, the dimensions of the maze, and the distance
north, south, east, and west to the nearest obstruction or to
the goal. The robot does not sense while moving, only
before a move. The robot knows the path it has thus far tra-
versed in the current problem, but it is not given, and does
not construct, an explicit, detailed map of the maze like the
one in Figure 1.
 Instead of a map, pragmatic navigation relies upon two
kinds of features to describe a territory: those that support
efficient travel (facilitators) and those make it more diffi-
cult (obstructers). These features constitute useful knowl-
edge, and are learned for a specific territory from experi-
ence. Although it may be approximate, useful knowledge is
expected to enhance performance. The robot remembers
any useful knowledge acquired in previous trips through
this maze, perhaps the lengthy irregular wall separating the
eastern and western portions of Figure 1, and the dead-end
at (12, 13). Each feature is prespecified by the system de-
signer, including its learning algorithm, learning time limit,
and learning schedule (after a decision, a problem, or a set
of problems).
 Intuitively, a legal move passes through any number of
unobstructed locations in a vertical or horizontal line. The
robot in Figure 1 has 11 legal moves: north to (7, 8) and
(8, 8), east to (9, 9) through (9, 14), south to (10, 8), and
west to (9, 6) and (9, 7). A problem is solvable if and only
if there exists some path
<R =loc0move1loc1…moveiloci…locp-1moveplocp = G>
such that movei is a legal move from loci-1 to loci for
1 ≤ i ≤ p. The level of difficulty of a solvable problem is the
minimum value of p for which there is a solution, i.e., the
minimum number of legal moves with which the robot can
reach the goal. (Effectively, the level of difficulty of a
problem is one more than the minimum number of left or
right turns the robot must make to reach the goal.) This is
different from the Manhattan distance from R to G. Figure
1 is a level-6 problem; one six-move solution for it, with
Manhattan distance 16, is indicated there. Interchanging
the robot and the goal produces another problem at the
same level. The heading of the task is the subset of {north,
east, south, west} that describes the direction from R to G.
The heading of the task in Figure 1 is {north, east}.
 This task has several performance criteria. The robot is
expected to solve multiple problems in the same maze.
Easier problems should be easier to solve. The robot is ex-
pected to perform quickly. Speed can be measured as

elapsed computation time, number of decisions, or path
length (Manhattan distance) traveled. The robot is also ex-
pected to perform efficiently. Efficiency can be measured
as the number of distinct locations visited or the percentage
of repeated locations in a path. Finally, the robot is ex-
pected to learn; its performance should improve with expe-
rience.
 The task formulated above is not amenable to traditional
AI techniques. Depth-first search requires substantial
backtracking; its paths are long and repetitive. Breadth-first
search visits too many nodes; on most hard problems it ap-
proaches exhaustive search while it visits a high proportion
of nodes in the search space and maintains a very large
structure for open paths. Means-ends analysis is inapplica-
ble because it requires knowledge about the vicinity of the
goal to reason backwards. Best-first search with a
“sensible” evaluation function, such as Euclidean distance
to the goal, is easily misled by deceptive problems where
proximity is not a valid indicator of progress. (The goal
might be hidden behind a long wall so that the robot must
move away from the goal to reach it eventually. For ex-
ample, placing the robot at (9, 4) and the goal at (8, 5) in
Figure 1 produces a deceptive level-6 problem.) For a large
maze, explicit search would be extremely inefficient, per-
haps intractable.
 The next two sections describe the facilitators and ob-
structers used by a program called Ariadne, whose reason-
ing process is described in Section 4. (Ariadne, daughter of
King Minos of Crete, told Theseus how to find his way
through the labyrinth that protected a great treasure.) Sec-
tion 5 evaluates the role of facilitators and obstructers in
Ariadne. Subsequent sections consider Ariadne’s cognitive
plausibility and related work.

2. Facilitators
Ariadne has three kinds of facilitators: gates, bases, and
corners. A gate has, in theory, the ability to provide a tran-
sition from one large segment of space to another. A base
repeatedly appears as a counter-intuitive choice in success-
ful paths. A corner offers the possibility of a new direction.
 Since the robot knows the dimensions of the maze, it can
calculate quadrants. A gate is a location that offers a transi-
tion from one quadrant of the maze to another. After each
move, the robot can test whether its quadrant has changed,
that is, if it has moved through a gate. If so, the robot’s cur-
rent location is learned as a gate between the current quad-
rant and the previous one. A gate may not always be help-
ful; for example, (8, 10) is a gate between quadrants 3 and
4 in Figure 2(a), but it offers access to little of quadrant 3.
Each gate is stored with its extent (rectangular approxima-
tion of the locations from which it can be reached) in a
hash table whose key is the sorted pair of quadrant num-
bers. The extent of (8, 10) in Figure 2(a), for example, is
the rectangle with vertices (6, 10), (9, 10), (9, 5), and (6, 5).
Ariadne only learns the gates it visits, so many locations in
Figure 2(a) that satisfy the definition of gate were not
learned and are not marked. The subdivision of the maze

into only four areas (the quadrants) was deliberate. If one
specifies more, there are an increased number of gate cate-
gories to manage (as many as nC2 for n areas). If one
specifies fewer, there is too little transition information.
 A corridor is a passageway of width one that either has a
single exit (a dead-end) or is a hallway. A pipe is a straight
hallway, that is, its endpoints lie in the same row or the
same column. In Figure 2(b), there is a hallway from
(13, 5) to (14, 8) and a pipe from (14, 10) to (14, 11). Some
pipes offer a view of the space after their far end. For ex-
ample, from (14, 9) in Figure 2(b) the robot can move not
only to the ends of the pipe from (14, 10) to (14, 11), but
also beyond it to (14, 12). Other pipes do not offer a view
of the space after their far end, but since a pipe is not a
dead-end, that promises a turn in some other direction. For
example, from (4, 10) in Figure 2(b) the robot can see both
ends of the (length one) pipe at (4, 13) but not beyond it;
that promises a turn at the far end. Such a turn-promising
far end of a pipe is called a corner. A corridor is learned
when, from the current state, the robot has only one or two

moves. The two endpoints of a corridor serve as the keys to
a hash table which also indicates whether or not they are
for a dead-end. Corridors are enlarged and merged together
as necessary. Like gates, only corridors that Ariadne expe-
riences are learned.
 A base is a location in a maze that appears to have been
a key to a successful path. In the author’s home town, peo-
ple regularly give directions beginning “first you go to the
Claremont Diner.” Although it served memorable cheese-
cake, the Claremont Diner burned down 15 years ago, and
there is nothing particularly significant about the car deal-
ership that has replaced it. What is significant is that the
diner was at a location that affords ready (not necessarily
shortest path) access to other locations in a 10-mile radius.
A base is such a location. Bases are learned after a success-
ful problem; the algorithm first corrects the path to elimi-
nate loops and unnecessary digressions. A base is a loca-
tion in that corrected path that was not in the heading from
R to G. A base is not a dead-end or G itself, and a path
intended

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2

3

4

5

6

7

8

9

10

11

12

13

14

*
* *

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Quadrant 2

Quadrant 4Quadrant 3

Quadrant 1

*
*
*

* ** *

*

Key

obstruction

dead-end

hallway

gate

 (a) (b)

Figure 2: After 20 problems: (a) gates and (b) corridors learned for a simple maze.

 (a) (b)
Figure 3: (a) A solution path and the bases that arise from it. (b) A plan for a problem formulated from learned bases.

to circumvent a wall contributes only its most extreme po-
sitions opposite the original headings. Bases are stored on a
list with their frequency, the number of times they have
been identified in different problems. The bases learned
from one solution path are circled in Figure 3(a), where the
heading was {north} and the eastern-most corners became
bases.
 Bases facilitate some primitive, high-level planning for
Ariadne’s decision making. A plan in Ariadne is a se-
quence < b0 b1 b2 … bi-1 bi bi+1 … bn bn+1 > where b0 is
the robot’s current location, bn+1 is the goal, bi is a base
for i = 1 to n, bi is aligned vertically or horizontally with
bi+1, and either bi-1 is closer to b0 than bi is, or else bi+1 is
closer to G than bi is. Plans are constructed with bidirec-
tional search on aligned bases, with preference for bases of
higher frequency, as if there were no obstructions. A plan
fails when the robot is at some bi and there is an interven-
ing obstruction that prevents its move to bi+1. An example
of a plan Ariadne formulated for a problem is shown in
Figure 3(b), where the bases learned after 20 level-6 prob-
lems in the same maze are indicated by their frequency
values. In Figure 3(b), some bases, such as (14, 5) and
(14, 9) are the keys to the only route between the eastern
and western portions of the maze. Others, such as (7, 13)
and (9, 9) lie at important intersections, like the Claremont
Diner.

3. Obstructers
Ariadne identifies four kinds of obstructers: certain corri-
dors, chambers, bottles, and barriers. A corridor may ob-
struct movement either because it is a dead-end, such as
(2, 9) in Figure 2(b), or because it is a pipe, whose internal
locations afford access only to each other. Chambers and
bottles are circumscribing rectangular approximations of
restricted spaces that are less narrow than a corridor, and
have one or more exits. A barrier is a linear approximation
of contiguous obstructed positions. Learning an obstructer
is often triggered when the robot has been hampered in its

ability to move through space. For example: “The area of
the territory covered by the last 30% of the moves was less
than 10% of the total maze area or included less than 10%
of the possible maze locations,” or “All the legal moves
have been visited at least once,” or “60% of the decision
limit has been exhausted.”
 A chamber is an irregularly shaped space with an access
point and an approximate extent. The extent is a bounding
rectangle, a compact, heuristic approximation of the fur-
thest in each direction one can go in the chamber. The
access point is a location within the chamber that affords a
view outside it, but need not be on the border of the extent.
Figure 4(a) shows a chamber with extent 1 north, 13 east, 5
south, and 9 west. When the robot moved to access point
(4, 13) it saw beyond that extent to the south. All locations
reachable from the robot’s initial position really constitute
one large chamber, but the chambers that Ariadne learns
are more limited and room-like. The learning algorithm for
a chamber is triggered when the problem has been under-
way for some time, the robot has been recently constrained
and has been in its current location before, and there are
few legal moves to locations not yet visited on this problem
or the goal is remote. The learning algorithm for a chamber
first estimates the dimensions according to its current sens-
ing, and then tries to move to a location where the chamber
appears both higher and wider. From its current location
the robot scans once horizontally, and then from the
scanned location offering the largest view scans once again
vertically. (If there are no horizontally-adjacent legal loca-
tions, the vertical scan is performed first.) If the procedure
identifies a sequence of one or two locations (access
points) that enlarge the extent, at least one of which is pre-
viously unvisited during this problem, it records the cham-
ber’s extent and access point on a list. The scan for the
chamber in Figure 4(a) began from (4, 12). A new chamber
may subsume an old one, in which case it replaces it on the
list. Otherwise, chambers are not merged, and they may
overlap or have more than one access point.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Key

obstruction
A

A access point

N bottleneck

extent

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2

3

4

5

6

7

8

9

10

11

12

13

14

N

 (a) (b)

Figure 4: (a) A learned chamber, with its extent and access point (b) A learned bottle with its neck and extent.
 A bottle is another useful knowledge description of a
constrained space, similar to a chamber. Chambers, how-
ever, are learned deliberately by search, whereas bottles are
learned without search from analysis of the entire path after
a problem is completed. A potential bottle begins with a
location that was visited more than once, and is repeatedly
extended in both directions along the path by immediately
neighboring positions only if it includes several spots, is
not corridor-like, and does not ultimately encompass more
than 15% of the area of the maze. Once a bottle is identi-
fied and its extent computed, its neck (not necessarily con-

tiguous entry and/or exit point) is identified. Bottles are
stored in a hash table as an extent and a neck. Figure 4(b)
shows a bottle with extent 12 north, 6 east, 14 south, and 1
west, and neck (6, 2).
 A barrier is a linear approximation of a wall that ob-
structs movement. Figure 5 shows the barriers learned after
20 problems in a simple maze. The barrier from (13, 10) to
(11, 13), for example, is an approximation of the wall in
the lower right corner of the maze. Barriers are learned
different ways, depending upon the search context in which
they arise. In each case, the learning algorithm is a function
of the preferences in the rationale that produced the search
path. Experience determines which barriers are encoun-
tered; thus there could have been some barriers learned to
describe the irregular vertical wall between the eastern and
western portions of the maze in Figure 5, had the program
encountered difficulty when required to avoid them. Each
retained barrier is an object with endpoints, slope, inter-
cept, and length.

4. Reasoning for Pragmatic Navigation
FORR (FOr the Right Reasons) is a problem-solving and
learning architecture that models the transition from gen-
eral expertise to specific expertise, and capitalizes on
methods that people use

(Epst
ein
1994)

.
FORR approaches problem solving as a sequence of
reasonable decisions based on the current state of the world
and learned useful knowledge. Ariadne is a FORR-based
system for pragmatic navigation; it applies facilitators and
obstructers to the maze task. FORR’s three-tier
hierarchical model of the reasoning process (shown in
Figure 6) mediates among decision-making rationales
called Advisors. Each Advisor is a “right reason,” im-
plemented as a time-limited procedure. Input to each of
Ariadne’s Advisors is the current state of the world, the
current permissible actions from that state, and any learned

Figure 6: How FORR makes decisions.

useful knowledge about the current territory. Each Advisor
outputs any number of comments that support or
discourage permissible actions. A comment lists the Advi-
sor, the action commented upon, and a strength, an integer
in [0, 10] that measures the intensity and direction of the
Advisor’s opinion. Details on the architecture appear in

(Epst
ein
1995)

. A
full listing of Ariadne’s 30 Advisors and the useful
knowledge 18 of them apply appears in Table 1.
 The tiers are consulted in turn; if any tier makes a deci-
sion, it is executed and control is returned to tier 1. Advi-
sors in tiers 1 and 2 are consulted in the predetermined,
fixed order shown in Table 1, and may make a unilateral
decision. The four tier-1 Advisors are perfectly correct, re-
active procedures that decide quickly. Tier-1 Advisors also
have the ability to veto a move, eliminating it from further
consideration. The eight tier-2 Advisors are situation-based
procedures that do time-limited search in an attempt to pro-
duce a sequence of moves that they then mandate. Each

Table 1: Ariadne’s Advisors with tiers 1 and 2 in
prioritized order.

Tier Advisor Rationale Useful knowledge
1 Victory If goal is reachable by a legal move, go there. —
1 Can Do Move adjacent to goal. —
1 No Way Avoid dead-ends. Corridors
1 Pipeline Avoid internal locations in straight corridors. Corridors
2 Roundabout Circumnavigate intervening obstructions. Barriers, corridors
2 Outta Here Exit chamber or dead-end not containing goal. Chambers, corridors
2 Probe Determine the current extent and try to leave it. —
2 Patchwork Repair plans. Bases
2 Other Side Move robot to opposite side of goal. —
2 Super Quadro Search for entry into goal’s quadrant or into new quadrant. Gates
2 Wander Move far in an L-shaped path. Barriers, average

problem steps, bases,
corridors

2 Humpty Dumpty Seek barriers. —
3 Adventure Move to thus far unvisited locations, preferably toward goal. Barriers
3 Been There Discourage returning to location already visited during this problem . —
3 Chamberlain Move into chamber that contains goal; avoid chamber that does not. Chambers
3 Contract Take large steps when far from goal, and small steps when close to it. —
3 Cork Move into a bottle that contains goal; avoid a bottle that does not. Bottles
3 Corner Move to the end of a pipe that promises a turn. Corridors
3 Crook Move to the end of a crooked corridor. Corridors
3 Cycle Breaker Stop repeated visits to same few spots. —
3 Detour Move away from barriers that obstruct goal. Barriers
3 Done That Discourage moves in same direction as before from a previously-vis-

ited location.
—

3 Giant Step If recently confined, take a long step, preferably toward goal. —
3 Goal Column Align robot horizontally with goal, if it is not already. —
3 Goal Row Align robot vertically with goal, if it is not already. —
3 Home Run Move toward bases. Bases
3 Hurry Take big steps early and small steps late. Average problem steps
3 Leap Frog Execute opportunistic plans. Bases
3 Mr. Rogers Move into neighborhood of goal. —

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2

3

4

5

6

7

8

9

10

11

12

13

14
Key

obstruction

barrier
Figure 5: After 20 problems, barriers

computed for a simple maze.

3 Opening Begin as a previously successful path did. Openings
3 Plod Take a one-unit step, preferably toward goal. —
3 Quadro Move into goal’s quadrant or into new quadrant. Gates

tier-2 Advisor has a trigger that signals its applicability and
a search method that attempts to compute solution frag-
ments (sequences of moves) to address the identified situa-
tion. The solution fragments generated by a tier-2 Advisor
are tested serially. The 20 tier-3 Advisors are reactive,
time-limited heuristics that embody path-finding common-
sense and do no search in the maze. Each may recommend
or oppose any number of unvetoed legal moves. All tier-3
Advisors vote together, and the simple ideas behind them
support rapid computation. Given 10 seconds, none has
ever run out of time on level 10 problems.
 Advisors reason with facilitators by attempting to exploit
them. Super Quadro and Quadro apply gates to move the
robot into the goal’s quadrant or to change quadrants, the
former with limited search, the latter with a reactive
heuristic. Four Advisors apply bases, and plans constructed
from them, to revisit key locations: Patchwork repairs
plans, Wander makes L-shaped paths into unknown terri-
tory in inverse proportion to the percentage of locations
known to be bases, and Home Run and Leap Frog react to
plans. Corner and Crook apply corridors. Corner advocates
a move to the far end of a pipe that turns, more strongly
when the pipe is in the direction of the goal, less so when it
is opposite the direction of the goal. Crook advocates a
move to the near end of a corridor that is neither straight
nor a dead-end, again more strongly when the corridor is in
the direction of the goal, less so when the far end of the
corridor is opposite the direction of the goal.
 Some Advisors simply avoid obstructers. No Way vetoes
any move that would lead the robot into a dead-end that
could not contain the goal, and Pipeline vetoes a move to
any location within a pipe which it can see through. For ex-
ample, in Figure 2(b) from (14, 9) Pipeline would veto
moves to (14, 10) and (14, 11); if traveling east efficiently,
one would go through that pipe, not into it. Outta Here,
Roundabout, and Wander all avoid dead-ends during
search. Roundabout and Wander restrict their search to
avoid known barriers. Adventure and Detour avoid moves
that position the robot with a known barrier between it and
the goal. If a barrier already intervenes, Detour also en-
courages moves to avoid it.
 Other Advisors must consider whether an obstructer
might contain the goal. Outta Here applies chambers with
restricted search to exit a chamber if the goal is not there,
and enter it if the goal might be there. Probe learns cham-
bers as a side effect of limited search. Chamberlain is a re-
active heuristic version of Outta Here, and Cork is the bot-
tle version of Chamberlain. Thus when the robot is outside
the bottle, Cork discourages moves into a bottle whose ex-
tent indicates that it cannot contain the goal, and encour-
ages moves into the neck of a bottle whose extent indicates
that it can contain the goal. When the robot is inside the
bottle, Cork reverses this advice.

 Finally, two Advisors apply useful knowledge supplied
by default by FORR, knowledge that is not specific to
pragmatic navigation: Opening encourages the reuse of
previously successful path beginnings when applicable.
Although such moves may seem odd if the goal is in a dif-
ferent location, the heuristic works well if the old path was
successful because it began by moving to an area that of-
fered good access to other parts of the maze. The average
number of problem steps is also referenced by Hurry and
by the triggers of several tier-2 Advisors.

5. Empirical Design and Results
Pragmatic navigation is achieved by the execution of
FORR’s Figure 6 decision process with all the Advisors of
Table 1. Together Ariadne’s Advisors keep the robot on a
reasonable path toward the goal, exploiting the facilitators
and steering clear of the obstructers. To demonstrate that it
is facilitators and obstructers that empower Ariadne, we
devised an ablation experiment consisting of 10 runs. On
each run, Ariadne generated a 20 × 20 random maze that
was 30% obstructed, and solved 20 learning problems
there. Then learning was turned off, and 10 newly-gener-
ated testing problems for the same maze were offered both
to the full version of Ariadne and to a No-Learn agent that
applied all the Advisors but made no useful knowledge
available. This experiment was repeated for problems at
levels 4, 6, and 8. The learning problems established a use-
ful knowledge base for those Advisors that depend on it. A
problem of either kind was terminated when the reasoning
agent reached the goal or when it reached the decision step
limit which included all exploration during tier-2 search.
On levels 4 and 6, this limit was set to 200. Above level 6,
it was set to 1000 to give the agents ample opportunity to
solve each problem. The higher limit permitted more expe-
rience, so that Ariadne acquired additional useful knowl-
edge to support better comments.
 Table 2 reports the results for No-Learn and Ariadne
averaged across the 10 runs in each experiment. In Table 2,
“distance” is the Manhattan distance along the path to the
goal. Since a step may move through one or more loca-
tions, path length varies among problems of the same diffi-
culty. “Decisions” is the number of steps taken during tier-
2 search or solution, while “moves” is the number of steps
in the solution. (The distinction between the number of de-
cisions and number of moves is important: a move appears
in the solution path, while a decision is a step taken during
tier-2 search or solution.) The number of distinct locations
actually visited during those moves is reported as
“locations.” Distance, moves, and locations are computed
only over solved problems. (This tends to make the ablated
agents look somewhat better than they actually are,
because they solve the easier problems.) “Time” is
execution time per testing problem, in seconds.

 On every level Ariadne solved a few problems that No-
Learn did not. By level 6, No-Learn had fairly long paths,
but consumed similar time and decision cycles. On level 8,
however, its inadequacy was measurable at the 95% confi-
dence level. Although No-Learn managed to solve 93% of
the problems there, inspection indicated that it had relied
heavily on tier 2, that is, had substituted search for knowl-
edge. As a result, its paths were far longer, and its decision
cycles and solution time substantially greater. The degree
of repetition in the paths is also indicative of their
behavior. On level 8 No-Learn visited 36% of its locations

more than once while Ariadne revisited only 8%. Clearly
facilitators and obstructers enhance Ariadne’s performance.
 Nor is there apparently any danger of learning so much
useful knowledge that a detailed, grid-like map of the maze
would have been a more efficient representation than Ari-
adne’s learned heuristic features. After 20 level-8 problems
in 20 × 20 random mazes, for example, there were on aver-
age only 41.8 barriers, 83.6 bases, 1.0 bottles, 3.7 cham-
bers, 49.3 corridors, and 18.2 gates. As a graph, however,
such a maze would have 280 nodes and approximately
1485 edges.

Table 2: The performance of Ariadne and an ablated version of it after learning in a particular 20 × 20 maze in Ariadne’s

world. Results are averaged over runs in 10 mazes.

 (a) (b) (c)

Figure 7: Some non-random environments: (a) warehouse (b) furnished room (c) office. Grids are omitted for clarity.

 To measure the efficacy of Ariadne’s problem solving,
we compare it here with two standard AI techniques:
breadth-first search and heuristic search with an evaluation
equal to the Euclidean distance from the robot to the goal.
In a separate experiment, again averaging 10 runs on level
8, on the testing problems Ariadne only visited 7.93% of
the locations in the maze, while breadth-first search visited
79.89%. (This somewhat understates the cost of a physi-
cally executed breadth-first search, whose many repetitive
subpaths go uncounted here.) In yet another 10-run experi-
ment, this time at level 10, best-first search was able to
solve only 37% of the problems within 1000 steps, and
averaged path lengths of 92.32 on these solved problems,
versus Ariadne’s 55.30 path length with a 93% success
rate. Best-first search averaged 271.23 seconds per prob-
lem, Ariadne 5.93 seconds.
 Although random mazes present interesting challenges,
real navigators face environments which are not random.
To test Ariadne’s robustness, three other classes of mazes
intended to model more realistic worlds were constructed.

These maze classes represent furnished rooms, warehouses,
and office suites on a 40 × 40 grid. An example of each ap-
pears in Figure 7. A warehouse maze models a single
room, much like the typical basement, garage, attic or
storeroom, with non-overlapping rectangular obstructions
scattered about. A furnished room maze models a room
some of whose rectangular obstructions may overlap or be
balanced along the perimeter. An office maze models a
single floor in an office building, with an outer rectangle of
offices (those that could have windows) bordered within by
a rectangular hallway and corner offices accessible only
through an adjacent office.
 Ariadne was developed for random mazes. Without any
changes in the useful knowledge or the Advisors, we tested
the program in mazes like those in Figure 7. Level-8 prob-
lems were run on the offices and warehouses, but it was
difficult to find a furnished room with enough problems at
any higher level than 4, apparently because the required
gap between the perimeter and the furniture provides ready
access to most locations. Although these new mazes were 4

Problem level Agent Distance Decisions Moves Locations Time
4 No-Learn 23.77 35.27 11.99 10.17 1.41
4 Ariadne 18.74 20.33 11.64 10.95 1.21
6 No-Learn 40.33 58.53 21.77 18.02 2.38
6 Ariadne 27.23 47.61 16.22 15.15 1.99
8 No-Learn 99.08 202.85 44.10 28.39 7.08
8 Ariadne 38.15 115.19 24.16 22.19 4.00

times larger than those in earlier experiments, the decision-
step limit remained at 1000. Ariadne solved all the fur-
nished room problems easily, 54% of them as well or better
than the problem generator’s solution. (This is possible be-
cause the problem generator minimizes the number of turns
on the path to the goal, not the distance. In some mazes, a
path with more turns can be shorter.) It also solved all the
warehouse problems readily, 39% as well or better than the
problem generator. The office mazes presented a greater
challenge. Only 9% of Ariadne’s solutions were as good or
better than the problem generator’s, and in several cases
Ariadne did not solve the test problem within the 1000 de-
cision-step limit. (In contrast, the program devoted an aver-
age of 37.47 decisions to furnished room problems, and
64.65 to warehouse problems.) Inspection indicated that in
most cases the solution was near at hand, but the corner of-
fices had been sufficiently deceptive to demand additional
search.

6. Cognitive plausibility
There is no claim here that Ariadne is a cognitive model of
a human navigator, only that many of its features are cog-
nitively plausible. Several of the Advisors do model princi-
ples of naive geographic reasoning

(Ege
nhofer & Mark
1995)

 all
of us readily recognize: Plod’s tentativeness, Adventure’s
curiosity, and Hurry’s anxiety. In addition, cognitive
scientists have found evidence for Contract’s rationale

(Goll
edge
1995)

 and
the rationales of several of the other Advisors

(Gryl
1995)

.
There have, however, been no tests of human subjects on
problems as difficult as these. Indeed, psychologists doubt
that most people with the same visual limitations as
Ariadne’s robot could solve problems on this scale much
above level 4 (personal communication, Ratterman).
 The use of a learning architecture, rather than a prespeci-
fied one, is supported by evidence that people evolve supe-
rior performance. Human expertise develops only from re-
peated experience at problem solving

(Eric
sson & Charness 1994; Ericsson, Krampe, & Tesch-Römer
1993; Ericsson & Smith 1991; Piaget & Inhelder
1967)

. This
expertise is applicable to a related set of problem classes.
For example, an expert path finder in unfamiliar territory
will immediately wonder about dead-ends and not about
the color of obstructions. Experts rely upon a foundation of

domain knowledge that provides a source of focus and di-
rection to provide a baseline level of competence. Thus the
architecture need not begin with total ignorance; it is rea-
sonable to provide it with general domain knowledge and
the methods to specialize it, for example, by learning fea-
ture instances.
 Ariadne’s facilitators and obstructers form its cognitive
map, its representation of its world. These features are con-
sistent with the ways humans represent space. People use
constructed representations of the visual world to make in-
ferences about space, representations that are based upon,
but more abstract and general than, perception

(Tver
sky
1991)

.
These representations systematically distort visual
perception to facilitate recall

(Tver
sky
1992)

.
They are integrated with many other kinds of information
to form a model that the human user does not require to be
complete or consistent. Ariadne’s reliance upon multiple
representations and its tolerance for inconsistent and even
incorrect information, geographers tell us, is much like the
naive geography that people rely on

(Ege
nhofer & Mark
1995)

.
Even the use of levels (number of turns) for degree of
problem difficulty is supported by results that people gauge
distance that way

(Sada
lla & Magel
1980)

.

7. Related Work
Although Ariadne’s maze problems may be reminiscent of
recent work in reinforcement learning, it is important to
note that the program’s task and fundamental approach are
significantly different

(Moo
re & Atkeson 1993; Sutton
1990)

.
Such programs seek convergence to an optimal path
through repeated solution of what, according to our defini-
tion, would be a single problem. In contrast, Ariadne has
no mechanism that would guarantee optimality, and will
quickly settle upon the same route in most cases. Ariadne
constructs satisficing paths for a set of problems, applying
knowledge learned from one problem to the others, instead

of from one problem-solving attempt to another attempt at
the same problem.
 Another suggested learning approach was a case-based
planning method for the grid world that operated in a set of
abstraction spaces, and stored both detailed and abstracted
solution paths

(Bran
ting & Aha
1995)

.
These mazes were somewhat simpler versions of Ariadne’s
warehouses, which present few dead-ends, narrow-necked
chambers or bottles, or effective barriers between large
regions. Once again, Ariadne would find them quite easy.
 One way to characterize an approach to learning naviga-
tion for a robot is by the degree to which it reflects what is
known about human perception and behavior. PLAN is a
connectionist model that integrates path finding into gen-
eral cognition

(Cho
wn, Kaplan, & Kortenkamp
1995)

.
PLAN learns a topological map of experienced landmarks,
a route map of place sequences and directions between
them, and a survey map of global information. All three
maps are based on a visual scene rather than an aerial view.
The resultant system has strong biases to human sensory
orientation (particularly in its refusal to see more than 180°
about its position) and limited short-term memory, neither
of which is necessary for intelligent robot navigation. The
authors claim that such maps are therefore based on experi-
ence, but the experience they record is purely visual or rote
experience. In contrast, Ariadne retains knowledge that
represents both momentary experience (e.g., a gate) and
reasoning about a sequence of experiences (e.g., a base).
Although developed independently, some of PLAN’s fea-
tures are quite similar to Ariadne’s: its gateways are similar
to Ariadne’s gates, its regions similar to Ariadne’s bottles
and chambers. PLAN makes its global overview explicit,
and plans hierarchically from regional maps. PLAN’s ex-
pertise, however, appears to be in maps whose scale and
level of difficulty are far below those Ariadne traverses
with ease, and the authors offer no statistics on either its ef-
ficiency or effectiveness.
 A second way to characterize an approach to learning
navigation for a robot is by its representation of its world.
Hayes has constructed a rigorous approach to reasoning
about space

(Hay
es
1988)

. He
too envisions representations of space into pieces (like
Ariadne’s bottles, chambers, and quadrants) that have
boundaries and connectors (like Ariadne’s bottlenecks,
access points, and gates). There is, as yet, no implemented

version, however. TOUR
(Kui

pers
1978)

 and
Qualnav

(Kui
pers & Levitt
1988)

 have
landmarks that are sensorily distinctive. Ariadne’s grid
world, as originally postulated by Korf, did not provide
such landmarks. As a substitute, Ariadne has gates and
bases predicated upon theories about what might be useful
in travel. Ariadne does not store routes or route fragments
from completed problems either, whereas TOUR and
PLAN both keep a topological network of routes between
places that can be manipulated to find a path. Unlike these
systems, Ariadne’s global overview is implicit in the useful
knowledge it learns; it plans naively and opportunistically.
Although it would be simple enough to learn a route-frag-
ment graph on Ariadne’s gates and bases, the reactive ap-
proach described here is preferred, for both its computa-
tional efficiency and its limited storage.

8. Conclusions
Human navigators react quickly and correctly to clearly
productive or unhelpful opportunities, such as “there’s the
goal” or “not that dead-end again.” They entertain a variety
of heuristics, such as “closer is better” or “when far away,
take a long, straight step.” They also digress into a search
mode tailored for a particular situation, for example, “this
obstacle is between me and the goal, so I have to get
around it.”
 Ariadne is an implemented pragmatic navigation system
that epitomizes this kind of naive geographic reasoning, as
if it were learning the way around a new campus or town.
Ariadne learns a variety of features about a new environ-
ment, and uses that knowledge to solve multiple travel
problems there. Ariadne solves multiple problems in the
same territory. It solves the easier ones in fewer steps and
with fewer resources than more difficult problems. Com-
pared to traditional search techniques, it solves these prob-
lems quickly, as measured in elapsed problem-solving
time, number of decisions, and path length. It also performs
efficiently, as measured by number of distinct locations
visited and the percentage of repeated locations in a path.
And Ariadne learns, so that it applies previous experience
to hitherto unseen problems, both in random mazes and in
a variety of more realistic world models.
 Facilitators and obstructers prove themselves to be a
flexible and pragmatic foundation for pragmatic naviga-
tion. As the data indicate, learning is essential to an agent
facing hard problems with limited resources. The ablated
No-Learn agent failed to solve many of the hardest prob-
lems, while the full version could perform quite well after
only 20 learning trials. The same useful knowledge can be

applied (e.g., dead-ends) and learned (e.g., barriers) in
many ways. Facilitators and obstructers appear to capture
key navigational concepts about two-dimensional space,
concepts that support robust and effective travel there.

Acknowledgments
Thanks to David Sullivan, Barry Schiffman, and Mike
Pazzani for their thoughts on this effort. This work was
supported in part by NSF grants #9001936 and #9423085,
and PSC-CUNY grant #665292.

References
Brant

ing, L. K. and Aha, D. W. (1995). Stratified Case-Based
Reasoning: Reusing Hierarchical Problem Solving
Episodes. In Proceedings of the 14th International Joint
Conference on Artificial Intelligence, 384-390. Montreal:
Morgan Kaufmann.

Chown, E., Kaplan, S. and Kortenkamp, D. 1995. Proto-
types, Location , and Associative Networks (PLAN): To-
wards a Unified Theory of Cognitive Mapping. Cognitive
Science, 19 : 1-51.

Egenhofer, M. J. and Mark, D. M. 1995. Naive Geography,
95-8, National Center for Geographic Information and
Analysis.

Epstein, S. L. 1994. For the Right Reasons: The FORR Ar-
chitecture for Learning in a Skill Domain. Cognitive Sci-
ence, 18 (3): 479-511.

Epstein, S. L. (1995). On Heuristic Reasoning, Reactivity,
and Search. In Proceedings of the 14th International Joint
Conference on Artificial Intelligence, 454-461. Montreal:
Morgan Kaufmann.

Ericsson, K. A. and Charness, N. 1994. Expert Perfor-
mance: Its Structure and Acquisition. American Psycholo-
gist, 49 (8): 725-747.

Ericsson, K. A., Krampe, R. T. and Tesch-Römer, C. 1993.
The Role of Deliberate Practice in the Acquisition of Ex-
pert Performance. Psychological Review, 100 (3): 363-406.
Ericsson, K. A. and Smith, J. (1991). Toward a General
Theory of Expertise - Prospects and Limits. Cambridge:
Cambridge University Press,

Golledge, R. G. (1995). Path Selection and Route Prefer-
ence in Human Navigation: A Progress Report. In
Proceedings of the International Conference on Spatial In-
formation and Theory (COSIT 95), 207-222. Semmerling,
Austria: Springer Verlag.

Gryl, A. (1995). Analyse et Modélisation des Processus
Discursifs Mis en Oeuvre dans la Description d'Itinéraires.
Ph.D., Université Paris Xi Orsay.

Hayes, P. J. (1988). The Second Naive Physics Manifesto.
In J. R. Hobbs, & R. C. Moore (Ed.), Formal Theories of
the Commonsense World (pp. 1-36). Norwood, NJ: Ablex
Publishing.

Korf, R. 1990. Real-Time Heuristic Search. Artificial Intel-
ligence, 42 (2-3): 189-211.

Kuipers, B. J. 1978. Modeling Spatial Knowledge. Cogni-
tive Science, 2 : 129-153.

Kuipers, B. J. and Levitt, T. S. 1988. Navigation and Map-
ping in Large-Scale Space. AI Magazine, 9 (2): 25-43.

Moore, A. W. and Atkeson, C. G. 1993. Prioritized Sweep-
ing: Reinforcement Learning with Less Data and Less
Time. Machine Learning, 13 (1): 103-130.

Piaget, J. and Inhelder, B. 1967. The Child's Conception of
Space. New York: W. W. Norton.

Sadalla, E. K. and Magel, S. G. 1980. The Perception of
Traversed Distance. Environment and Behavior, 12 : 65-
79.

Sutton, R. S. (1990). Integrated Architectures for Learning,
Planning, and Reacting Based on Approximating Dynamic
Programming. In Proceedings of the Seventh International
Conference on Machine Learning, 216-224. Austin, TX:
Morgan Kaufmann.

Tversky, B. 1991. Spatial Mental Models. The Psychology
of Learning and Motivation, 27 : 109-145.

Tversky, B. 1992. Distortions in Cognitive Maps. Geofo-
rum, 23 (2): 131-
138.

